

Semantic Matching of Interaction Rules

(Semantischer Abgleich von Interaktionsregeln)

Thesis of Matthias Ferdinand 08.07.2002

Structuring

- Problem Situation
- Goals and Proceeding
- B2B E-Commerce with RosettaNet
- Semantic Web
 - Vision
 - Ontologies
 - Languages

Problem Situation

- important for growth of XML based B2B E-Commerce via Internet: widespread adoption of standards for business processes and documents
- major obstacle are integration costs for business partners
- focus on RosettaNet B2B Framework
 - •partners must **manually analyze** each standard document and consult with their internal processes and IT systems
 - •then form an agreement on how to use
 - •some document fields are optional or may be used in a 'creative' way
 - •takes up to three months to set up a new trading relationship
 - cost is prohibitive except for large companies
 - document specifications are complex
 - •all work is done manually
 - ·lack of reusability, captured information can only be used by humans

Matthias Ferdinand

Goals

- automization of the definition and agreement of/on business document usage
- help to reduce time and cost to set up a new RosettaNet connection
- develop a language to express business rules
 - •stating constraints for the use of RosettaNet documents
 - considering different application contexts
- · define semantics to specify
 - application context of rules
 - ·field contents
- develop a way to match two sets of rules
 - •finding differences in the rule logic
 - •semantic matching of rule terms using Semantic Web technology and ontologies

Proceeding

- analysis of RosettaNet Architecture and of business/technical requirements
- · investigation, analysis and evaluation of
 - Semantic Web concepts, languages
 - •concepts, languages, systems to express & handle (business) rules
 - •problems and options concerning semantic matching with (multiple) ontologies
 - existing APIs, systems, platforms
- · development of
 - •a **general concept** & framework to express and handle rules
 - ·a language to describe rules
 - •algorithms for semantic matching and for finding rule logic differences + implementation
- analysis of problems, contraints and benefits of the solution Matthias Ferdinand

RosettaNet Introduction

- RosettaNet is a **non-profit consortium** of >400 companies of the IT, electronic components and semiconductor manufacturing industry, founded 1998
- · wants to automate interactions between IT supply chain partners
- creates, implements and promotes open B2B standards for processes and data based on XML

RosettaNet Components

- Words → Dictionaries: provide common vocabulary
 - •Business Dictionary defines the terms used in basic business activities
 - •Technical Dictionary provides properties and a simple taxonomy to define products and services
- Grammar → Implementation Framework: provides exchange protocols, specifies information exchange incl. transport, routing, packaging, security
- Dialog → Partner Interface Processes (PIP): specialized system-to-system XML dialogs, define business processes between trading partners
- additional Product and partner codes

Matthias Ferdinand

- PIPs are organized in clusters (core business processes) and segments, e.g. "Service and Support", "Order Management", "Manufacturing"
- · each specification includes
 - structure and content of exchanged documents
 - •a process definition with the choreography of the message dialog
 - constraints for time, performance, security

Sample PIP interaction diagram:

Matthias Ferdinand

RosettaNet NextGen PIPs

- · single XML schema defines document
- UML used to document the design, generates the schema ("Specification Guide")
- reuse of common data structures, machine-readable specifications

Schema example:

Matthias Ferdinand

RosettaNet NextGen PIPs

Business Document Structure (spreadsheet) example:

```
1
            PIP3C3 LineItem.product: PIP3C3 FinancialDocumentLineItemProduct
                PIP3C3_FinancialDocumentLineItemProduct.componentReference: PurchaseOrderLineItemComponentReference
                   PurchaseOrderLineItemComponentReference.purhcaseOrderLineItemIdentifier: ProprietaryDocumetnIdentifier
                FinancialDocumentLineItemProduct.invoicedProductQuantity: ProductQuantity
                   ProductQuantity.description: String
                   ProductQuantity.quantity: AbstractQuantity (Choice: BulkQuantity, CountableQuantity)
                   ProductQuantity.quantity: BulkQuantity
                      BulkQuantity.bulkQuantity: double
                   ProductQuantity.quantity: CountableQuantity
                      CountableQuantity.productCount: Integer
                FinancialDocumentLineItemProduct.unitPrice: FinancialAmount
                   FinancialAmount.globalCurrencyCode: CurrencyRef
                   FinancialAmount.monetaryAmount: MonetaryAmount
                FinancialDocumentLineItemProductShippingInformation: FinancialDocumentLineItemProductShippingInformation
0 1
                   FinancialDocumentLineItemProductShippingInformation.serviceLevel: ShippingServiceLevelDefinitionRef
                   FinancialDocumentLineItemProductShippingInformation.shipDate: DateStamp
1..n
                   FinancialDocumentLineItemProductShippingInformation.shipFrom: GlobalLocationIdentifier
1..n
                   FinancialDocumentLineItemProductShippingInformation.handlingCharges: FinancialAmount
                      FinancialAmount.globalCurrencyCode: CurrencyRef
                      FinancialAmount.monetaryAmount: MonetaryAmount
```


Semantic Web Problems Today

Situation today in the WWW:

- exponential growth
- .handwritten and machine-generated HTML pages
- .HTML is a markup language for display/rendering purposes
- .web pages are made for direct human consumption & use
- .content is primarily presented in natural language
- .→ it's a web for humans
- .today's clients only transmit and present information
- difficult or impossible for machines to process content, especially semantics
- lack of meta-data, a "syntactic web"
- search engines only rely on (syntactic) keyword matching, often imprecise
- shopping agents must parse and extract information from web pages texts (screen scraping): hardwired implementation, hard to maintain

Matthias Ferdinand

Semantic Web

Vision of the Semantic Web:

- . idea of Tim Berners-Lee 1998:
 - "extension of the current Web in which information is given **well-defined meaning**, better enabling computers and people to work in cooperation"
 - "allows **data** to be **shared** and processed by automated tools as well as by people"
- a web with machine-usable content, machine-accessible semantics of information
- · explicit representation of the semantics underlying data, programs, pages and other web resources

Matthias Ferdinand

00 07 0000

Semantic Web Vision

- meet the computer 'half-way':
 annotate data with semantic markup (meta-data)
- markup links information on the pages to semantic concepts defined in **ontologies**
- . XML is not sufficient:
 - only allows a data format for structured documents
 - .but does not imply specific interpretation of data
- . XML tag names do not provide semantics, only implicit semantic agreements

Matthias Ferdinand

Semantic Web Ontologies

- · ontologies are a popular research topic since the 1990s
- · important in AI, knowledge representation, natural language processing, multiagent systems etc.
- def.: "an ontology is a formal, explicit specification of a shared conceptualization" (Gruber 1993)
- . formal: should be machine-understandable
- . *shared:* should capture consensual knowledge accepted by communities
- . explicit: type of **concepts** and constraints on their use are explicitly defined
- · conceptualization: abstract model of (phenomena in) the real world
- enables to share common understanding of the structure of information among people or software agents that can be communicated ("a common language")
- · enables reuse of domain knowledge
- · makes domain assumptions explicit

Semantic Web Ontologies

- · ontology typically consists of
 - important **concepts** in a domain (classes)
 - .hierarchical **relations** among them
 - .descriptions of **properties** of each concept (slots)
 - restrictions on properties
 - .axioms, rules
- can be classified along different dimensions: formality, purpose, domain, task, level of detail, generality, language
- · generalizations of ERM diagrams, OO designs, taxonomies, thesauries
- · examples:
 - .WordNet: large thesaurus for English language
 - RosettaNet Technical Dictionary: simple taxonomy of electronic equipment
 - .Yahoo! directory, amazon.com catalog

Semantic WebResource Description Framework

- . XML provides a structure for data
- . RDF tells something about data, i.e. give meaning to it
- \cdot RDF is a foundation for representing and exchanging meta-data on the web
- · provides meta-data **interoperability** between applications, developed by the W3C
- · defines a **model** and an encoding syntax for machine-accessible semantics
- · statements about resources
 - resources can be anything in the world with an associated URI statements are always a triple with:

subject (resource)

.predicate (property)

object (resource or literal)

.or "object-attribute-value"

Semantic WebResource Description Framework

Example:

· Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila

vsis

Semantic Web RDF Schema

- RDF data model provides no mechanisms for declaring specific types or classes of resources or for meaningful use of properties
- RDF Schema is a simple, object-oriented type system on top of RDF
- RDFS is a vocabulary description language, introduces basic ontological modeling primitives
- · used to describe properties of other RDF resource (incl. properties) to define domain-specific vocabularies
- . primitives:
 - .classes, types and properties definitions
 - range and domain constraints on properties
 - subclass and subproperty relations
- · RDFS enables sharing, reuse and extensibility of meta-data definitions
- RDF & RDFS provide a simple knowledge representation mechanism for web resources

Semantic Web

- · more expressive power is necessary to describe resources in sufficient detail
- automated **reasoning** over descriptions is desirable to determine semantic relationships and to derive new knowledge
- · this has led to development of **DAML+OIL** based on RDFS
- · result of merger in 2001 between
 - DARPA Agent Markup Language (USA)
 - Ontology Inference Layer (EU)
- · an ontology definition and general-purpose markup language for the Semantic Web
- · provides a set of intuitive and **rich modelling** primitives
- . has well-defined formal semantics
- basis for the future Web Ontology Language by W3C

Axioms:

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
sameClassAs	$C_1 \equiv C_2$	$\mathrm{Man} \equiv \mathrm{Human} \sqcap \mathrm{Male}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
samePropertyAs	$P_1 \equiv P_2$	$cost \equiv price$
${ t disjoint With}$	$C_1 \sqsubseteq \neg C_2$	$Male \sqsubseteq \neg Female$
${ t same Individual As}$	$\{x_1\}\equiv\{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
${\tt differentIndividualFrom}$	$\{x_1\} \sqsubseteq \neg \{x_2\}$	$\{\mathrm{john}\} \sqsubseteq \neg \{\mathrm{peter}\}$
inverse0f	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
${ t transitive}$ Property	$P^+ \sqsubseteq P$	$ancestor^+ \sqsubseteq ancestor$
${f unique}{f Property}$	$\top \sqsubseteq \leq 1P$	$\top \sqsubseteq \leq 1 \text{hasMother}$
unambiguousProperty	$\top \sqsubseteq \leq 1P^-$	$\top \sqsubseteq \le 1$ is M other O f $^-$

Matthias Ferdinand

Semantic Web

Example:

Semantic Web

- . DAML+OIL is equivalent to the very **expressive description logic** *SHIQ* DL
- · exploits efficient algorithms for automated reasoning about ontologies
- · key inference problems are decidable
 - · **consistency**: detect logically inconsistent classes
 - \cdot subsumption : detect implicit subsumption relationships, new concept positions
- · highly optimized **DL inference engines** can be used
 - .FaCT (University of Manchester)
 - .RACER (University of Hamburg, KOGS)
- · many research challenges

Matthias Ferdinand

Semantic Web

Reasoning Example:

Woman ≡ Person □ Female

 $Man \equiv Person \sqcap \neg Woman$

Mother \equiv Woman $\sqcap \exists$ hasChild.Person

Father ≡ Man □ ∃hasChild.Person

Parent \equiv Father \sqcup Mother

Grandmother \equiv Mother $\sqcap \exists$ hasChild.Parent

- · Person subsumes Woman
- . Woman, Parent subsume Mother
- . Mother subsumes Grandmother

Questions?

EMail: 6ferdina@informatik.uni-hamburg.de

Matthias Ferdinand

<u> 00 07 0000</u>