
1

FRESCO
Foundational Research on

Service Composition

Modelling Support for Service
Compounds

Thomas Plümpe
Henning Brandt

8 July 2002

OVERVIEW

• CONTEXT

• OBJECTIVES

• METHOD OF PROCEEDING

• RELATED WORK
• Overview
• Γ-language / Chemical Abstract Machine (CHAM)
• PICCOLA language / πL-calculus

2

CONTEXT
The FRESCO framework

• Purpose: enable service providers to model, design and execute
composite services

• Conceptual elements:
• Models for service composition, aggregation, coordination
• Methodology for using the framework
• ...

• Technology elements:
• Integrated Development Environment (IDE)
• Integrated Runtime Environment (IRE)

CONTEXT
Basic principles for service creation and provision:

• Composition
• The capabilites of a (composite) service S are based entirely on
other services SC1, SC2, ... , referred to as its service components.
• specify causal and temporal relations between components
• special focus on dynamic nature of composition

• Aggregation
• (dynamic) acquisition of instances of service components by the
provider of the composite service

• Coordination
• management of cooperation between service components during
service provision

3

OBJECTIVES
• Develop a conceptual service composition model

• capturing the FRESCO composition approach
• providing an intuitive metaphor (opt.)

candidate: chemical metaphor (due to Banatre/Le Metayer)

• Derive a formal service composition model
• expressing a feasible subset of properties
• providing proof mechanisms for composition specifications
• preserving the metaphor

• Implement a service IDE prototype
• based on the formal composition model
• allowing compound services to be assembled from service
components
• for verifying compositions / detecting architectural mismatch

OBJECTIVES IN CONTEXT
The FRESCO framework

• Purpose: enable service providers to model, design and execute
composite services

• Conceptual elements:
• Models for service composition, aggregation, coordination
• Methodology for using the framework
• ...

• Technology elements:
• Integrated Development Environment (IDE)
• Integrated Runtime Environment (IRE)

4

METHOD OF PROCEEDING

Write diploma thesis and report

Design and implement service IDE

Develop a formal model from the conceptual model

Define conceptual service composition model

... relevant formal
models (architectural,
process calculi)

... existing service
models (as used in
web services-related
standards and in
related research)

... requirements
imposed by the
FRESCO service
composition approach

Investigate ...

RELATED WORK - Overview

applied
formal
methods

R. Milner,
Cambridge Uni

π-calculus

component
architectures

service
composition

Inverardi, WolfCHAM

SCG, Uni BernPICCOLA

VSIS, Uni HHDynamiCS

Carleton Uni
Toronto

ICARIS

HP LabsE-Flow

research
projects

HP LabsDySCo

MicrosoftXLANG

industry
standard
specs

IBMWSFL

categorywho ?targetsapproach
formal ?

5

Formal Methods – Concepts
• Calculi

• formal (low-level, minimalist) ways of specifying computing concepts
• tools for rigorous analysis of computing systems and formal proof
• basis for deriving higher-level languages by adding higher-level
features (data structures, objects, functions, ...)

• Abstract Machines
• executional models of computing systems
• provide implementions of calculi
• serve the analysis of dynamic aspects of a computing system

• Examples:
• λ-calculus: investigation of computable functions, basis for LISP
• Turing machines, RAMs: models of sequential machines, e.g. to
study computational complexity

Formal Methods – Overview

CHAM
(Chemical Abstract Machine)

CCS
(Calculus of

Communicating
Systems)

Γ-language

PICCOLA
(π -calculus based

Composition Language)

π-calculus

πL-calculus

- communicating
systems

- processes exchanging
names through
channels

+ mobility

replace data
tuples by forms

- parallel program
specification

- programming by multiset
transformation

- chemical metaphor

software composition
language built on top of
a πL abstract machine

reaction rules+ molecule syntax
+ expressive power

6

The Γ programming language

• General Abstract Model for Multiset Manipulation
• Main Advantage: focus on logical parallelism, i.e. without specifying

more sequentiality than necessary
• Contrasts with traditional imperative/formal programming languages:

(1) ma := max_array(a);
(2) mb := max_array(b);
(3) m := max(a,b);

• first (1), then (2): unnecessary sequentiality (may run in any order)
• first (1) + (2), then (3): a necessary sequentiality

• fact(N) = GAMMA((R,A)) ({1, ..., n}) where
R(x, y) = true
A(x, y) = {x*y}

Γ example

Example: fact(5)

1. Jointly reacting elements x,y are removed from the multiset

2. The result of the function A(x, y) is added to the multiset

3. Program terminates when the predicate holds for no combination of values

1
2

3

4 5

1

2

15

4

2

60
120

7

The Chemical Metaphor

• The execution of GAMMA programs is often
compared to a chemical reaction

• The multiset then corresponds to a chemical solution
• The control structure corresponds to the stirring

mechanism,
• heating (turning a molecule into many), cooling (turning
many molecules into one) and simple reaction rules
(preserving the multiset's cardinality)
• A solution is inert when no transformation rule is active

The Chemical Abstract Machine

• based on the GAMMA programming style
• adds

• a syntax for molecules,
• a classification of transformation rules
• a membrane/airlock construct, thus achieving

– the expressive power of classic process calculi, and
– a mechanism for describing modules and interfaces

• An example rule:
i(char) o(tok) lexer, o(char) text

o(tok) lexer i(char), text o(char)

8

CHAM applications in software
architecture description

• GAMMA/CHAM programs are executable, but slow
• main application: precise specification of functions/systems
• specification of a multiphase compiler

• Inverardi, Wolf [1995]
• description as a monolithic software system
• with a focus on membrane/airlock use

• specification of a compressing proxy server
• Inverardi, Wolf, Yankelevich [2000]
• description as a set of interacting components

basis for a formal service architecture description?

PICCOLA

• Pi-calculus based composition language
• Conceptual framework:

applications = components + scripts
• generalized approach to composition not biased towards
special component models or architectural styles

• The architectural style of components is determined by
• the connectors used to connect them

(events channels, pipes, method invocations, ...)
• rules governing their composition

(example: Stream >> File File)

9

PICCOLA

• Modelling primitives:
• agents – communicating entities performing calculations
• forms – extensible immutable records containing mappings
from labels to values
• channels – shared communication channels used by agents to
exchange forms

• Formal foundation:
• πL-calculus (variant of the polyadic πL-calculus, modified to
work on forms instead of tuples)
• forms do not alter the expressive power of the calculus but it
makes it much simpler to express higher-level abstractions in
Piccola

PICCOLA – System Layers

agents, channels, formsπL abstract
machine

built-in types (numbers, strings, booleans), operator
syntax, nested forms, „services“ (= functions)

Piccola
language

basic control abstractions (if-then-else, try-catch, ...),
basic object model, basic coordination abstractions,
interface to Java

Core
libraries

streams, events, GUI compositionArchitectural
styles

components + scriptsApplication

10

PICCOLA – Highlights and Impulses

Appealing features

• communication of forms
• versatile data structure, suitable for representing
interfaces, complex arguments, contexts, ...

• layered approach
• keep formal underlyings simple
• retain ability to explain higher-level concepts in terms of
the formal foundations
• eases extensibility and substitutability of elements

• elaborate abstractions built on the π-calculus

Thanks for listening

Comments and questions welcome.

Henning Brandt 5brandt@informatik.uni-hamburg.de
Thomas Plümpe 5pluempe@informatik.uni-hamburg.de

