
Grundlagen von Datenbanken

Abbildung ERM-RM

Abbildung ERM-RM

Kriterien:

- Informationserhaltung, d.h. möglichst genaue Übereinstimmung der Semantik (Übernahme aller spezifizierten Eigenschaften)
- Minimierung der Redundanz
- Minimierung des Verknüpfungsaufwandes
- Natürlichkeit der Abbildung
- Keine Vermischung von Objekten
- Verständlichkeit

2 Entity-Mengen mit (n:m)-Verknüpfung

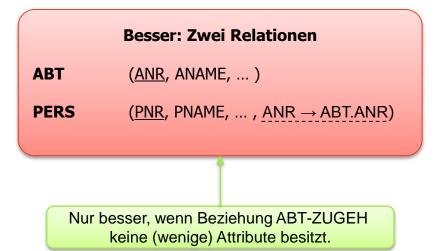
Verwendung von drei Relationen erforderlich:

PROJEKT (JNR, BEZEICH, ...)

PERS (PNR, PNAME, ...)

MITARBEIT (JNR → PROJEKT.JNR, PNR → PERS.PNR)

2 Entity-Mengen mit (1:n)-Verknüpfung



Drei Relationen

ABT (ANR, ANAME, ...)

PERS (PNR, PNAME, ...)

ABT-ZUGEH (ANR → ABT.ANR, PNR → PERS.PNR)

2 Entity-Mengen mit (1:1)-Verknüpfung

Drei Relationen

RAUM (RNR, LAGE, ...)

PERS (PNR, PNAME, ...)

BÜRO (RNR → RAUM.RNR, PNR → PERS.PNR)

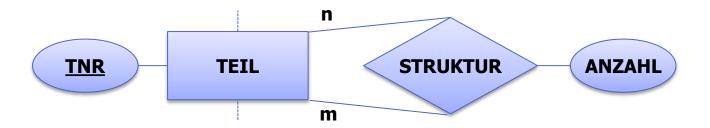
Besser: Zwei Relationen A

RAUM (RNR, LAGE, ...)

PERS (PNR, PNAME, ..., RNR \rightarrow RAUM.RNR)

Achtung Null-Werte!
Viele Räume werden nicht als Büro genutzt.

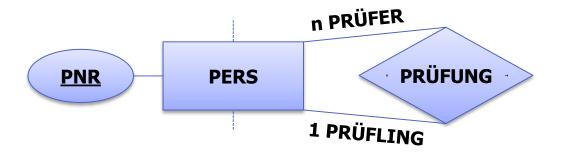
Zwei Relationen B


RAUM (RNR, LAGE, ..., PNR \rightarrow PERS.PNR)

PERS (PNR, PNAME, ...)

1 Entity-Menge mit (n:m)-Verknüpfung

Darstellungsmöglichkeit im RM:


TEIL (TNR, TBEZ, GEWICHT, ...)

STRUKTUR (OTNR →TEIL.TNR, UTNR →TEIL.TNR, ANZAHL)

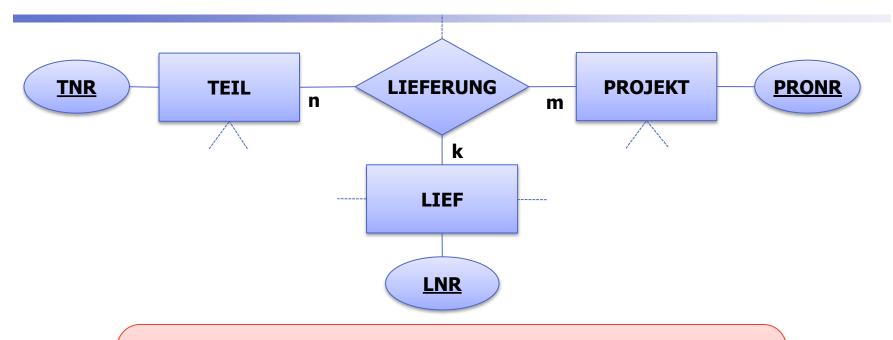
Umbennung erforderlich!

1 Entity-Menge mit (n:1)-Verknüpfung

Zwei Relationen

(PNR, PNAME, ...) **PERS**

PRÜFUNG (PRÜFLING → PERS.PNR, PRÜFER→ PERS.PNR)


Besser: Eine Relation

(PNR, PNAME, ..., PRÜFER → PERS.PNR) **PERS**

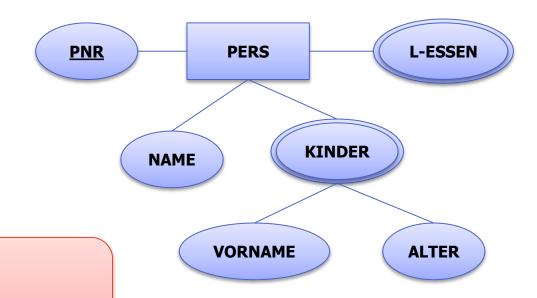
Umbennung erforderlich!

mehrere Entity-Mengen mit (n:m)-Verknüpfung

Darstellungsmöglichkeit im RM:

LIEF (LNR, LNAME, ...)

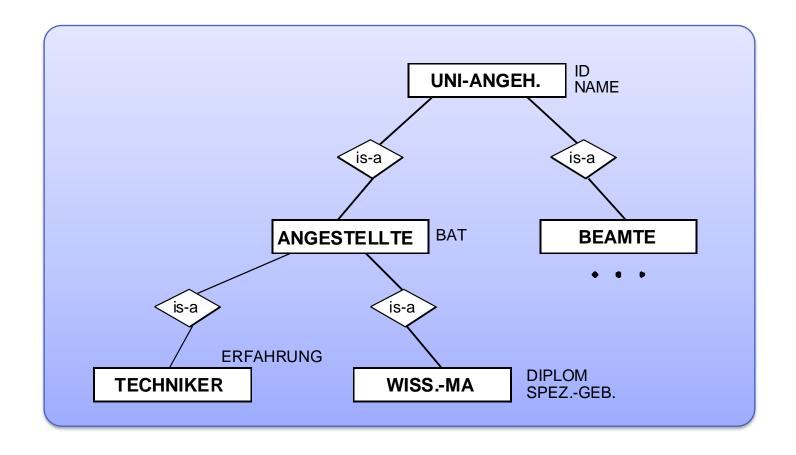
PROJEKT (PRONR, PRONAME, ...)


TEIL (TNR, TBEZ, GEWICHT, ...)

 $\textbf{LIEFERUNG}(\underline{\mathsf{LNR}} \to \! \mathsf{LIEF}.\mathsf{LNR}, \underline{\mathsf{PRONR}} \to \! \mathsf{PROJEKT}.\underline{\mathsf{PRONR}}, \underline{\mathsf{TNR}} \to \! \mathsf{TEIL}.\underline{\mathsf{TNR}}, \, \mathsf{DATUM})$

Abbildungstypen innerhalb einer Entity-Menge

Darstellungsmöglichkeit im RM:


PERS (PNR, NAME)

L-ESSEN (PNR → PERS.PNR, GERICHT)

KINDER (PNR \rightarrow PERS.PNR, VORNAME, ALTER)

Generalisierung

Generalisierung: Hausklassenmodell

- Jede Instanz ist genau einmal und vollständig in ihrer Hausklasse gespeichert
- Es wird eine **horizontale Partitionierung** der DB-Instanzen erreicht

	UNI-ANGEH. ID							
							111	Ernie
			ANGES	STELLTE	NAME		BAT	
					Garfield		la	
TEC	ID	ERFAHI	NAME		BAT			
123			123	SUN			nald	IVa
WISSMA.	ID	DIPLOM		SEPZGEB.		NAME		BAT
	333	Informatik		RECOVERY		Daisy		lla
	765	Mat	hematik	ERM	Grouch		lla	

Generalisierung: Partitionierungs-Modell

- Jede Instanz wird entsprechend der Klassenattribute in der Is-a-Hierarchie zerlegt und in Teilen in den zugehörigen Klassen gespeichert
- Es wird nur das ID-Attribut dupliziert
- Es wird eine **vertikale Partitionierung** in der DB erzielt

UNI-ANGEH.	ID	NAME ANGESTELLTE			ID	BAT			
	007	Garfield	t				007	la	
	111	Ernie					123	IVa	
	123	Donald					333	lla	
	333	Daisy					765	lla	
	765	Grouch				'			
	HNIKER		ID	ERFA	HRUNG				
			123	SL	JN				
	WISS	SMA		ID	DIPLOM		SPE	SPEZGEB	
				333	Informatik		El	ERM	
				765	Mathematik		ik M	MAD	

Generalisierung: Volle Redundanz

- Eine Instanz wird wiederholt in jeder Klasse, zu der sie gehört, gespeichert
- Sie besitzt dabei die Werte der Attribute, die sie geerbt hat, zusammen mit den Werten der Attribute der Klasse

UN	II-ANGEH.	ID		NAME			ANGES	TELLTE	ID	NAME	BAT	
_		007		Garfield					007	Garfield	la	
		111		Ernie					123	Donald	IVa	
		123		Donald					333	Daisy	lla	
		333		Dais	sv				765	Grouch	lla	
		765		Groud								
	1				ļ					'		
	TECHNIKER			D	NAM	1E	BAT	ERFA	HRUNG			
			1	23	3 Dona		IVa	SUN	SUN			
	WISSMA			D I	LNIAN	4 ⊏ I	BAT	DIPLO	na I	SPEZGI	ED	
_			11	U	NAME		DAI	DIPLO	IVI	SPEZGEB.		
			3	33	Daisy		lla	Informatik		RECOVERY		
			7	65	Grouch		lla	Mathematik		ERM		

Kriterium: Minimierung der Redundanz?

Fragen?

