

Tickets in Kerberos
 {K_{C,TGS} C from to}_{K_{AS,TGS}} Is the <i>ticket granting ticket</i>. Received by C in message 2 and forwarded to TGS in message 3. Only TGS can decrypt it to obtain short-term key K_{C,TGS} and validity period from to. These parameters determine ticket given to C in message 4.
 {K_{C,S} C from to}_{K_{TGS,S}} Is the <i>ticket.</i> Received by C in message 4 and forwarded to S in message 5. Only S can decrypt it to obtain session key K_{C,S} and validity period from to. These parameters determine access given to C in subsequent session with server S.
These tickets are similar to message 3 in Needham- Schroeder: {K A} _{KB,T} Now extended with validity periods for keys.

Protocols: More Technicalities ©	
Interlock Protocol	
Secret Splitting	
SKEY	
© UH, FB Inf, SVS	19

Securely Remen	bering Data: Secret Splitting
Goal: Confidentiality	of a message M
Trent generates a ran	dom number R, where R = M
$\begin{array}{c} T \to A:\\ T \to B: \end{array}$	M⊕R R
A and B must coopera	ate to retrieve M:
M = M ⊕ R ⊕ F	1
Can be extended to n	principals:
$T \rightarrow A: M \oplus R_1$ $T \rightarrow B: R_1$ $T \rightarrow C: R_2$ 	$\mathbf{H} \oplus \mathbf{R}_2 \oplus \mathbf{R}_3 \oplus \oplus \mathbf{R}_n$
Disadvantage: you ne	ed all pieces to reconstruct M
More complex solutio	n to this: (n,m) threshold schemes
© UH, FB Inf, SVS	2

UH A	Lessons Learned?	
	Designing protocols is easy.	
	Designing <u>secure</u> protocols is hard ■ there are many infamous failures in the literature.	
	Some good protocols are already standardised (e.g. ISO 9798, ITU-T X.509, …)	
	- use these rather than rolling your own!	
	The problem of verifying security gets harder as the protocols get more complex.	
	Security weaknesses arise from errors in specification and implementation, side-channels, lack of user training, host insecurities, poor random number generation	
© UH, FB Inf, S	SV6	38

