
 UH, FB Inf, SVS 1

Kerberos: http://web.mit.edu/kerberos/

� Kerberos is a TTP-based authentication protocol developed

from Needham-Schroeder.

� There is (free) software implementing that protocol

� Kerberos was originally devised as part of Project Athena at

MIT.

� designed to provide a means for workstation users (clients) and
servers (and vice versa) to authenticate one another.

� See also RFC 1510 – Kerberos and DASS (Distributed

Authentication Security Service), RFC 1507 (asymmetric

Version)

� A version of Kerberos is integral to Windows since Win2K.

� Kerberos is integrated into many versions of Unix and used

by “Kerberized” applications.

 UH, FB Inf, SVS 2

Kerberos Principals

Authentication Server (AS)

� Authenticated by client at login based on long-term key,

� AS gives client ticket granting ticket and short-term key.

� AS provides an authentication service.

Ticket Granting Server (TGS)

� Authentication with client based on short-term key and ticket

granting ticket.

� TGS then issues tickets to client which give client access to

further servers.

� TGS provides an access control/authorization service.

 UH, FB Inf, SVS 3

Logical separation of authentication and
authorisation/access control.

� But: AS and TGS are often implemented on same physical

platform.

Differentiated control over lifetime of ticket granting tickets
(typically 10 hours) and session tickets for actual access to
services (typically 5 minutes).

A user only needs to use his long-term secret key once per
10 hour session, to establish short-term key and ticket
granting ticket.

� Convenient for users.

� Reduces possibility of exposure of long-term key.

Advantages of Kerberos

 UH, FB Inf, SVS 4

C
(client)

S
(server)

AS
(authentication

server)

TGS
(ticket-

granting
server)

1 2

Kerberos Protocol

Messages 1 and 2 are exchanged between the client and the AS. This
typically happens only once per ‘log in’. A short-term key is provided by the
AS. Message 2 contains the ticket granting ticket and a version of that ticket

encrypted under KAS,TGS for the client to forward to the TGS.

 UH, FB Inf, SVS 5

C
(client)

S
(server)

AS
(authentication

server)

TGS
(ticket-

granting
server)

1 2 3
4

Kerberos Protocol

Messages 3 and 4 are exchanged between the client and the TGS (using the
short-term key provided by the AS). Message 3 and 4 can be repeated a
number of times without repeating messages 1 and 2. 3,4 messages exchange

happens whenever the client wants to communicate with a new server.

 UH, FB Inf, SVS 6

C
(client)

S
(server)

AS
(authentication

server)

TGS
(ticket-

granting
server)

1 2 3
4

5

6

Kerberos Protocol

Messages 5 and 6 are exchanged between the client and server (using a key
provided by the TGS). Message 5 and 6 can be repeated a number of times
without repeating messages 3 and 4, during the lifetime of the key set up

between the client and the server.

 UH, FB Inf, SVS 7

Phase 1: In messages 1 and 2, C and AS use long-term
key to authenticate. AS gives C short-term key and
ticket granting ticket (TGT).

Phase 2: In messages 3 and 4, C and TGS use short-term
key and ticket granting ticket to authenticate. TGS
gives C session key and ticket.

Phase 3: In messaged 5 and 6, C and S use session key
and ticket to authenticate and set up secure session.

Phases 2 and 3 will usually be repeated many times for
each execution of Phase 1.

Kerberos Phases

 UH, FB Inf, SVS 8

1. C →→→→ AS: TGS||from||to||NC

2. AS →→→→ C: {KC,TGS||C||from||to}KAS,TGS
|| {KC,TGS||NC||from||to||TGS}KAS,C

(the first part of message 2 is the ticket granting ticket for the TGS).

3. C →→→→ TGS: S||from||to||N’C || {KC,TGS||C||from||to}KAS,TGS
|| {C||T1}KC,TGS

4. TGS →→→→ C: {KC,S||C||from||to}KTGS,S
|| {KC,S|| N’C||from||to||S}KC,TGS

(the first part in message 4 is the ticket for the server S; T is a
timestamp).

5. C →→→→ S: {KC,S||C||from||to}KTGS,S
|| {C||T2}KC,S

6. S →→→→ C : {T2}KC,S
(optional)

(‘from’ and ‘to’: time interval to limit the key validity)

Kerberos – Message Formats (Simplified)

 UH, FB Inf, SVS 9

Keys Used in Kerberos

KAS,TGS is a long-term key shared by AS and TGS.

KAS,C is a long-term key shared by AS and C.

KTGS,S is a long-term key shared by TGS and S.

� These keys need to be established in advance.

KC,TGS is a short-term key shared by C and TGS
(established by messages 1 and 2).

� This key is transported securely from C to TGS in the ticket

granting ticket.

KC,S is a session key shared by C and S (established by
messages 3 and 4).

� This key is transported securely from C to S in the ticket.

 UH, FB Inf, SVS 10

Tickets in Kerberos

{KC,TGS||C||from||to}KAS,TGS

� Is the ticket granting ticket.

� Received by C in message 2 and forwarded to TGS in
message 3.

� Only TGS can decrypt it to obtain short-term key KC,TGS and
validity period from||to. These parameters determine ticket
given to C in message 4.

{KC,S||C||from||to}KTGS,S

� Is the ticket.

� Received by C in message 4 and forwarded to S in message 5.

� Only S can decrypt it to obtain session key KC,S and validity
period from||to. These parameters determine access given to C
in subsequent session with server S.

These tickets are similar to message 3 in Needham-
Schroeder: {K || A}KB,T
� Now extended with validity periods for keys.

 UH, FB Inf, SVS 11

Entity Authentication in Kerberos

Entity authentications are achieved using a mixture of
nonces and timestamps.

Methods are similar to the protocols discussed earlier (and
in particular the Needham-Schroeder protocol).

For example: AS is authenticated to C using
challenge/response protocol based on encryption, shared
key KAS,C and nonce NC in messages 1 and 2.

C is not authenticated to AS explicitly, but C can only
decrypt message 2 if it has the correct key KAS,C.

Other authentications: C and TGS; C and S.

 UH, FB Inf, SVS 12

Use of Cryptography in Kerberos

Kerberos uses symmetric encryption and MACs.

Specifically, Version 5 (as in RFC 1510) uses DES combined
with one of MD4, MD5, or a CRC (not recommended).

Releases 1.2 and higher of Kerberos Version 5 allow triple
DES (3DES) in CBC-mode.

Extensions supporting AES included since Kerberos
Version 5, release 1.3.2.

 UH, FB Inf, SVS 13

Kerberos Issues – 1

Lack of revocation: ticket granting tickets valid until they
expire, typically 10 hours. What if compromised?

Key management: within realms (domains): long-term keys
need to be established between AS and TGS, TGS and
Servers and AS and clients.

Scalability: authentication across realms is complicated.

Synchronous clocks needed, protected against attacks.
Caches of recent messages to protect against replay within
clock skew.

Availability: need for on-line AS and TGS, trusted by clients
not to eavesdrop.

 UH, FB Inf, SVS 14

Kerberos Issues – 2

Key storage: short-term keys and ticket granting tickets located on
largely unprotected client hosts.

Denial of Service: potential for DoS attacks on clock service or on
AS/TGS?

Passwords: in most deployments, the Client-AS long-term key
KAS,C is usually based on password entered by user at start of
session

� Kerberos vulnerable to dictionary attacks – paper by Wu at:

http://citeseer.nj.nec.com/wu99realworld.html

� Ultimately, then, security is dependent on users and the quality of
the passwords they can be persuaded to remember.

Code Vulnerabilities: many found over the years.

see http://web.mit.edu/kerberos/www/advisories/

 UH, FB Inf, SVS 15

 UH, FB Inf, SVS 16

Windows 2000 Network Authentication

Microsoft have adopted and extended Kerberos for network
authentication in Windows 2000.

Supersedes Windows NTLM (unilateral authentication) in
NT4.

One extension:

� support for public-key encryption to protect client/AS

messages (rather than password-based long-term key).

� allows use of authentication based on client smart cards.

www.microsoft.com/windows2000/techinfo/howitworks/security/kerberos.asp

 UH, FB Inf, SVS 17

Windows 2000 Network Authentication

Second extension:

� use of Kerberos data authorization field (normally empty)

� transports Win2K access privileges in the form of SIDs

(Security IDentifiers) derived from Active Directory these are

compared to ACLs of remote objects to make access

decisions.

Message formats published, but proprietary to Microsoft.

Non-standard extension to Kerberos makes it difficult to
interoperate Microsoft and non-Microsoft implementations.

 UH, FB Inf, SVS 18

Single Sign On

Kerberos is an example of a Single Sign On (SSO) system.

User enters a single password, and obtains seamless
access to multiple network services or applications.

Microsoft Passport: an example of a web-based SSO
solution, aimed at e-commerce consumers.

Liberty Alliance: an open, standards-based effort at
achieving federated network identity, a concept related to
SSO.

Many vendors currently offer similar SSO/password
management products.

 UH, FB Inf, SVS 19

Protocols: More Technicalities ☺

Interlock Protocol

Secret Splitting

SKEY

 UH, FB Inf, SVS 20

Key Exchange with Public Keys

Full Version of „Authenticated Key Establishment – 3 “:

A →→→→ B: PKA

B →→→→ A: PKB

A →→→→ B: {SK}PKB
B →→→→ A: {SK}PKA

If Mallory can modify 1 and 2, he can put himself in the
middle by distributing PKM to Alice and Bob

-> M must be able to intercept and modify traffic; how hard this

is depends on the network (cf. Internet, GSM, Broadcast

media,...)

 UH, FB Inf, SVS 21

Interlock Protocol (Rivest & Shamir)

Let‘s make it harder for Mallory :

A →→→→ B: PKA

B →→→→ A: PKB

A →→→→ B: |{MA}PKB
|1..(n/2)

B →→→→ A: |{MB}PKA
|1..(n/2)

A →→→→ B: |{MA}PKB
|(n/2)+1..n

B →→→→ A: |{MB}PKA
|(n/2)+1..n

 UH, FB Inf, SVS 22

Interlock protocol:

� A and B want to send messages to each other.

� A sends first half to B.

� B sends first half to A.

� A sends second half to B.

� B sends second half to A.

Since the man-in-the-middle cannot decrypt half of a
message, it must pass something on.

� Secure if the attacker cannot intelligibly mimic A or B.

 UH, FB Inf, SVS 23

Trent

Trent can make Mallory‘s life still harder by signing PKA and
PKB

� M cannot insert his public key, because it is signed by T as

belonging to M

� Assume M compromises T:

� M can only sign new keys

� M cannot intercept traffic unless he inserts his own faked key

But:

� Trent can be a bottleneck

� Mechanisms like key revocation are needed

 UH, FB Inf, SVS 24

Real life: Hybrid Systems

Often used in communication systems based on public
keys:

A →→→→ B: SA{{M}SK ||{SK}PKB
}

Hybrid system

� can be combined with time stamps, etc.

� can be extended to multiple receipients

 UH, FB Inf, SVS 25

Simple Authentication using SKEY

Let f be a one-way (trap door) function and R a random
number

� Bob computes and (securely) transmits f(R), f2(R), ... fn-i(R) to

Alice

� Bob remembers only one value: current := fn(R)

� Alice remembers all fi(R), 1 < i < n-1

Alice‘s ith authentication:

A →→→→ B: fn-i(R)

� Bob authenticates A by checking

f(fn-i(R)) = current

and sets current := fn-i(R)

� Knowing what Bob knows cannot compromise Alice!

 UH, FB Inf, SVS 26

Securely Remembering Data: Secret Splitting

Goal: Confidentiality of a message M

Trent generates a random number R, where |R| = |M|

T →→→→ A: M ⊕⊕⊕⊕ R
T →→→→ B: R

A and B must cooperate to retrieve M:

M = M ⊕⊕⊕⊕ R ⊕⊕⊕⊕ R

Can be extended to n principals:

T →→→→ A: M ⊕⊕⊕⊕ R1 ⊕⊕⊕⊕ R2 ⊕⊕⊕⊕ R3 ⊕⊕⊕⊕ ... ⊕⊕⊕⊕ Rn

T →→→→ B: R1

T →→→→ C: R2
...

Disadvantage: you need all pieces to reconstruct M

More complex solution to this: (n,m) threshold schemes

 UH, FB Inf, SVS 27

Zero Knowledge Protocols

“I can’t tell you my secret,

but I can prove to you

that I know the secret.”

 UH, FB Inf, SVS 28

A

B C

Ali Baba‘s Cave

Ali Baba had discovered the secret of this strange cave. A
password will vanish the secret wall between point B and point
C, creating a loop.

To prove his great discovery, Ali Baba invites a television team.
He wished not to share his secret password, however.

He would go to either point B or C, and a reporter will randomly
request Ali Baba to go to point A via either the left or the right
passage.

Knowing the secret of the cave,
Ali Baba can pass the
reporter’s test:
He can prove that he knows the
password without having to reveal it.

 UH, FB Inf, SVS 29

A

B C

Ali Baba‘s Cave

However, a fake version of the documentary had been
made. It involved an Ali-look-alike performing the same
experiment. But without the knowledge of the secret, the
actor can only succeed 50% of the time.

However, after editing the film, no one in the world can tell
the different between the real and the fake version.

 UH, FB Inf, SVS 30

Guillou-Quisquater’s Analogy

� By performing a series of verification experiment, it is
possible to prove that you know a certain secret without
sharing it with anyone.

� Zero-Knowledge Protocols help prevent leaks of any secret
information by not directly requesting the secret itself during
verification.

� Zero-Knowledge Protocols won’t care if you actually know the
password or not, as long as you can prove that you know it.

� Faking the proof of knowing the secret is possible, but it has
a low probability of success.

Further reading:
J.J. Quisquater and L. Guillou: How to explain zero-
knowledge protocols to your children", Springer
LNCS, 435 (1990), 628-631.

 UH, FB Inf, SVS 31

Bob: “Let me in! I have access to this area!”

Alice: “Oh really? What is the secret password?”

Bob: “I can’t tell you my password; it’s a secret.”

Alice: “That’s too bad. Because you cannot get in
without telling me your secret password.”

The Bizcard Example

 UH, FB Inf, SVS 32

The Zero-Knowledge Protocol:

- The password is a positive integer.

- Equipment: A deck of cards

1. While Alice is looking away, Bob counts from the top of the deck
until he reaches the card that corresponds to the password. Bob
then make an unique mark on one side of that card and turn over
all the cards in the deck (without changing their order) and hand

the deck to Alice.

2. Now Bob is looking away. Alice also counts from the top of the
deck until she reaches the card that corresponds to the password.
Alice then make an unique mark on the other side of that card. To
conceal the secret, Alice shuffles the deck.

3. If the shuffled deck contains one card having distinct marks on
both its sides, then it is possible that both Bob and Alice knows the
password. Therefore, Bob is able to prove his knowledge of the
password without revealing it to Alice.

The Bizcard Example (slighty misleading)

 UH, FB Inf, SVS 33

The Bizcard Example

The Zero-Knowledge Protocol Phase II:

Alice is not convinced that Bob actually knows the password

because the protocol is not perfect: Bob might have guessed

the password!

Since the password, s, is a positive integer, it has to be limited

by a range, z, such that: 1 ≤≤≤≤ s ≤≤≤≤ z. If Bob doesn’t actually know
the password, he could have guessed it with probability 1/z.

The Solution: Alice can request Bob to perform the exact same

experiment k times so that the probability of Bob correctly

guessing the password every time is reduced to (1/z)k.

(If we use a secret that varies with each try!)

When (1/z)k is small enough, that is, when the probability of Bob

actually knowing the password is high enough, Alice may

grant Bob access to his account without worrying that he

might be an imposter.

 UH, FB Inf, SVS 34

(Dis)Advantages

Advantages of Zero-Knowledge Protocols:

� Not requiring the revelation of one’s secret.

� Does not involve complex encryption methods.

Disadvantages of Zero-Knowledge Protocols:

� Limited:

Secret must be numerical, otherwise a translation is needed.

� Lengthy:

Each computation requires a certain amount of running time.

� Imperfect:

Mallory can still intercept the transmission (i.e. messages to

the Verifier or the Prover might be modified or destroyed).

 UH, FB Inf, SVS 35

Properties of ZKPs

Completeness:

� The Verifier will always accept a proof from the Prover, given

that they both follows the correct protocol.

Soundness:

� The Verifier will not accept any “incorrect” proof from the

Prover, given that the Verifier follows the correct protocol.

Zero-Knowledge:

� During the whole “proving” process, the Verifier will learn

nothing about the Prover’s secret, nor will she be able to

prove that secret to any other party.

 UH, FB Inf, SVS 36

Zero Knowledge Proofs of Identity

The Chess Grandmaster Problem

� Anyone can defeat or beat a grandmaster in Chess:

�Choose a second grandmaster and act as a man-in-the-

middle

Problem with ZKP:

� Mallory can act as a man-in-the-middle and pass
Alice‘s answers to Bob

� Can be „fixed“ with timestamps, where each
answer must be given at an exact time: no time left
to pass messages

� ... often of little value in practice

 UH, FB Inf, SVS 37

Probabilistic Proofs

Proofs based on interactive protocols are probabilistic.

� There is generally a chance that the Verifier will
reject some valid proofs or accept invalid ones.

We can define a probabilistic proof system for L as an
interactive protocol P such that:
� For all x in the assertion language P(x) halts in polynomial

time.
� The Efficiency property.

� If x is in L, then P(x) accepts with probability at least αααα....
� The Completeness property.

� If y is not in L, then P(x) accepts with probability at most ββββ....
� The Soundness property

� Where 1 >= αααα > ββββ >= 0
� We can repeat such a proof multiple times to make the chance of

false positive or negative negligible.

 UH, FB Inf, SVS 38

Lessons Learned?

Designing protocols is easy.

Designing secure protocols is hard

� there are many infamous failures in the literature.

Some good protocols are already standardised (e.g. ISO
9798, ITU-T X.509, …)

– use these rather than rolling your own!

The problem of verifying security gets harder as the
protocols get more complex.

Security weaknesses arise from errors in specification and
implementation, side-channels, lack of user training, host
insecurities, poor random number generation…

 UH, FB Inf, SVS 39

Further Reading

Ross Anderson & Roger Needham: Programming Satan’s
Computer, http://www.cl.cam.ac.uk/~rja14/#Protocols

http://www.conceptlabs.co.uk/alicebob.html

� Now there are hundreds of papers written about Alice and

Bob. Over the years Alice and Bob have tried to defraud

insurance companies, they have played poker for high stakes

by mail, and they have exchanged secret messages over

tapped telephones.

...

