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This paper discusses the implementation of a database buffer manager as a component of a DBMS. 
The interface between calling components of higher system layers and the buffer manager is described; 
the principal differences between virtual memory paging and database buffer management are 
outlined; the notion of referencing versus addressing of database pages is introduced; and the concept 
of fixing pages in the buffer to prevent uncontrolled replacement is explained. 

Three basic tasks have to be performed by the buffer manager: buffer search, allocation of frames 
to concurrent transactions, and page replacement. For each of these tasks, implementation altema- 
tives are discussed and illustrated by examples from a performance evaluation project of a CODASYL 
DBMS. 

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management--storage 
hierarchies; H.2.2 [Database Management]: Physical Design 
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1. INTRODUCTION 

Database management systems (DBMSs) use external magnetic devices (disks) 
for the storage of mass data. They offer low cost per bit and nonvolatility, which 
makes them indispensible in today’s DBMS technology. However, under com- 
mercially available operating systems, data can only be manipulated (i.e., com- 
pared, inserted, modified, and deleted) in the main storage of the computer. 
Therefore, part of the database has to be loaded into a main storage area before 
manipulation and written back to disk after modification. A database buffer has 
to be maintained for purposes of interfacing main memory and disk. 

Although several modern operating systems provide a main storage “cache” 
for their file systems, most DBMSs have their own buffer pools in the user 
address space-they do not use the OS file cache for various reasons (for a 
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detailed discussion, see, for example, [24]). In order to facilitate the exchange of 
data between disk and main storage, the database is divided into pages of equal 
size (generally 512 to 4096 bytes). The buffer consists of page frames of the same 
size. The number of frames in the buffer can be selected as a DBMS parameter, 
which remains constant during a DBMS session. Today buffer sizes vary from 
about 16 K to 12 M bytes. A typical buffer size may be assumed to be between 
128 K and 256 K bytes. 

Since a physical access to a database page on disk is much more expensive 
than an access to a database page in the buffer, the main goal of a database 
buffer manager is the minimization of physical I/O for a given buffer size. This 
goal has to be accomplished under certain restrictions resulting from the interface 
between the buffer manager and other DBMS components. 

The purpose of this paper is to describe, in some detail, the main functions of 
a database buffer manager. In Section 2, its typical interface to the calling DBMS 
routines is investigated. Section 3 of the paper compares the applicability of 
different techniques for searching the buffer. Section 4 concentrates on the 
problem of allocating sufficient buffer space for concurrent transactions. In 
addition to the usual techniques, a new, page-type-oriented allocation algorithm 
is considered for use in the DBMS context. In Section 5, various page replacement 
algorithms are classified. The combination of classification criteria leads to the 
refinement of known algorithms. Section 6 presents an empirical study of the 
performance aspects of various buffer allocation algorithms in connection with 
page replacement algorithms. The results were gained using page reference strings 
of CODASYL DBMS applications. Section 7 describes some further buffer 
management problems related to a virtual OS environment and control of 
overload behavior. The final section summarizes the major aspects of DBMS 
buffer management. 

2. INTERFACE AND OPERATIONS OF A DATABASE BUFFER MANAGER 

In this paper the buffer manager is considered to be a component within the 
DBMS, having well-defined interfaces to other components. This section de- 
scribes the interface between the buffer management component and the calling 
components of higher system layers, in order to provide a basic specification for 
the implementation of a buffer manager. 

A request for a data object is performed as follows. The requesters have to be 
aware of the page boundaries and must use the DBMS catalog, index structures, 
and so on, to find the page numbers of pages they have to access. A page request 
Pi is issued by the FIX operator qualified by an optional update intent. As a 
result, Pi is located and fixed in the buffer to prevent replacement during ita use. 
The address of the frame containing Pi is then passed back. Requestors can now 
execute machine instructions (i.e., COMPARE, MOVE, etc.) addressing data 
objects within Pia Since only the requestors know when the addressing phase 
within Pi ends, they must call the buffer manager to again perform the UNFIX 
operation and make Pi eligible for replacement. 

The addressability established by the FIX-UNFIX-mechanism is an important 
reason for choosing pages of equal size in a buffer with high replacement activity. 
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Since pages cannot be displaced deliberately, variable-size pages would cause 
heavy fragmentation problems. 

Each request for a page is called a logical reference. For each logical reference 
the buffer manager has to perform the following actions: 

- The buffer is searched and the page is located. 
- If the page is not in the buffer, a buffer allocation strategy is used to 

determine the set of candidate buffer pages from which a “victim” for the 
requested page is to be taken. A page replacement algorithm then decides 
which of the buffer pages has to be replaced. Whenever the page selected for 
replacement has been modified, it has to be written back to disk before the 
new page is read into the buffer frame. Each access to a database page on 
disk is called aphysical reference, and is one of the most expensive operations 
within a DBMS; it not only costs 25 to 50 ms of disk access time, but also 
involves 2000 to 5000 CPU instructions in most operating system environ- 
ments. 

- The requested page is fixed in the buffer by marking its buffer control block. 
- The fact that the page has been referenced is recorded, since most replace- 

ment algorithms are based on the history of references to the buffer pages 
(e.g., LRU). 

- Finally, the address of the buffer frame containing the requested page is 
passed to the calling DBMS component as a return parameter. 

The sequence of logical references to database pages in temporal order (re- 
corded as a sequence of page numbers) is called a logical page reference string. It 
describes the reference behavior of the DBMS, independent of the buffer size 
and replacement algorithm of the buffer manager. The logical reference behavior 
is determined by 

- the types of transactions constituting the DBMS load (retrieval/update, 
direct/sequential access, etc.); 

- the transaction mix (number and type of parallel transactions); 
- the access path structures provided by the DBMS and its underlying data 

model, in the form selected in the internal database schema. For example, 
direct access on the external schema level may result in quite different logical 
page reference strings, depending on the existence of an index (e.g., a B*- 
tree) for the attribute specified in a query: Without an index, all records of 
a certain type (or all tuples of a relation) would have to be scanned, leading 
to a much longer reference string. 

Logical references issued by a single transaction are independent of buffer size, 
whereas a global logical reference string characterizing the concurrent execution 
of multiple transactions is indirectly influenced by the size of the buffer. The 
global sequence of references is affected by intertransaction switches, which in 
turn are affected by specific transactions failing to find their data, which in turn 
are a function of buffer size. This kind of dependency is determined by many 
intrinsic implementation details of the DBMS and is very difficult to analyze. 

Not every logical reference leads to a physical reference, but every physical 
reference is preceded by a logical reference. In contrast to logical references, 
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Fig. 1. Classification of search alogrithms for a database buffer manager. 

physical references are strongly influenced by the size of the database buffer and 
the page replacement algorithm of the buffer manager. The same string of logical 
references can result in quite different physical reference strings under different 
replacement algorithms. Since physical references are expensive, the optimization 
of the page replacement algorithm is very important for the overall performance 
of the DBMS. Optimization means the minimization of the number of physical 
disk accesses for a typical transaction load, described by a logical reference string. 
As the characteristics of logical reference strings depend on the implementation 
details of a DBMS, the empirical results given in this paper should not be 
generalized. Our emphasis is on the basic principles of database buffer manage- 
ment and on the methods used in our evaluation rather than on the results 
themselves. 

Having described the interface and operations of a database buffer manager, 
we now proceed to the implementation of single actions, as mentioned above- 
search within the buffer, buffer allocation, and page replacement. 

3. SEARCHING THE BUFFER 

Whenever a logical reference to a database page occurs, the buffer manager has 
to search the buffer. Since this is a frequent event, the search strategy imple- 
mented must be efficient. Figure 1 shows a classification scheme for possible 
search algorithms. 

A direct search within buffer frames checks the page headers of all pages in 
the buffer sequentially. Since no assumptions are made concerning the ordering 
of buffer pages, the average number of pages searched in a buffer of size N will 
be N/2 in case of success and N in case of a fault. The main disadvantage of a 
direct search within buffer frames shows up when the DBMS is used under a 
virtual memory operating system. The buffer pool is then contained in the virtual 
address space of the DBMS. Searching page headers will result in the addressing 
of many distant parts of the virtual address space, causing frequent page faults 
and high paging overhead. Therefore, a DBMS running under a virtual memory 
operating system should use a table search technique, leading to higher locality 
in addressing behavior and thus reducing the page fault rate. 

A translation table uses the page number as a displacement within the table. 
Hence, the table must provide LI entries for a database containing D pages. It is 
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where: 
Pi, pj# P,o PI: page numbers 
BAi, BAj, BA,, BAl: buffer addresses (frame numbers) 
h: hash function 
HT (k): k-th entry of hash table 

Fii. 2. Use of a hash table to improve buffer searching. 

therefore restricted to very small databases. All other tables contain only N 
entries for a buffer of size N, independent of the size D of the database. The 
unsorted and sorted tables both require N/2 accesses on the average for a page 
found in the buffer. The sorted table reduces the number of accesses from N to 
N/2 for an unsuccessful sequential search and allows binary search techniques, 
but involves a much higher overhead when a table entry is inserted or deleted. 
By maintaining an index to the sorted table or by implementing the sorted table 
with a balanced binary tree, the search can be reduced to log,N accesses in either 
case; update costs, however, are even higher. A table with chained entries has 
two advantages over a compact table: 

(1) update is less costly, since no entries have to be moved; 
(2) the chaining sequence can be used to represent additional information. For 

example, table entries could be chained in LRU sequence, representing the 
replacement information for an LRU algorithm and speeding the buffer 
search when locality in the reference behavior is observed (e.g., when the 
probability of rereferencing recently used pages is high). 

Since the most frequent operation in a page table is direct access using a page 
number, hush techniques can be used efficiently. The hash algorithm transforms 
a page number into a displacement within the page table, where the entry 
describing the page and its current position in the buffer can be found. Collisions 
can be resolved by chaining overflow entries to the “home” entry. With an 
appropriately sized hash table, the number n of entries searched per logical 
reference can be on the order of 1 < n < 1.2. An example of such a hash table is 
given in Figure 2. 

4. BUFFER ALLOCATION FOR CONCURRENT TRANSACTIONS 

The buffer allocation algorithm of the buffer management component distributes 
the available buffer frames among the concurrent database transactions. It is 
closely related to the page replacement algorithm; in some cases, there is only 
one algorithm used both to distribute buffer frames to transactions and to make 
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replacement decisions (e.g., a global LRU algorithm), However, since the problem 
of allocating frames to transactions in an optimal way is logically different from 
the problem of selecting a page for replacement, buffer allocation algorithms are 
treated separately. 

Before discussing specific algorithms, the reference behavior of database trans- 
actions has to be considered. In order to design optimal allocation and replace- 
ment algorithms, as much knowledge of the actual database reference character- 
istics as possible should be used. The following three basic properties of database 
reference strings distinguish them clearly from page reference strings of programs 
executing under a virtual memory operating system. 

(1) Since database pages are a centralized resource shared by many users, the 
concurrent use of a page in the buffer by several transactions is quite frequent. 

(2) Locality in the reference behavior of a DBMS is not necessarily due to the 
references of a single transaction; rather, the parallel execution of many trans- 
actions can increase the rereferencing probability across transaction boundaries 
(intertransaction locality, intratransaction sequentiality [18]). 

(3) In some cases, the reference behavior of database transactions is predict- 
able, being based on existing access path structures. Often, specific pages con- 
taining system tables, upper index levels, and so on, have a higher reference 
probability than do data pages. These identifiable, special-purpose pages can be 
treated in a special way when they are referenced. 

Besides these general observations, it is important to know as much as possible 
about the reference behavior of the specific DBMS for which the buffer manage- 
ment component is to be implemented. On such a detailed level, different systems 
show different behavior. It is therefore more interesting to look at evaluation 
methods for reference strings than at the results for a specific DBMS in a specific 
database environment. 

For storage allocation and page replacement algorithms, the most important 
property of a reference string is the locality of the reference behavior. Locality 
means that the probability of reference for recently referenced pages is higher 
than the average reference probability. If locality is observed in a reference string, 
most of the virtual memory allocation and replacement algorithms can be applied 
to buffer management; these algorithms were designed to keep the most recently 
referenced pages in main memory, since programs executing under virtual mem- 
ory operating systems show high locality in their reference behavior [ 23 1. 

Detailed information on locality is contained in an LRUstack depth distribution 
of the reference string, which shows the frequency of references to pages managed 
in the form of an LRU stack [22,26]. The more the distribution is biased towards 
low stack depths, the higher is the locality in the string. Figure 3 shows two 
examples of LRU stack depth distributions calculated from the page reference 
strings of a CODASYL DBMS. The schema and transactions were taken from a 
school DB application. The schema consisted of 20 record types and 21 set types. 
The database contained approximately 330,000 record occurrences. The two 
reference strings discussed here correspond to session times of 30 to 40 minutes 
each; they contained 130,366 and 99,975 logical references. Figure 3a shows the 
stack depth distribution of a transaction load with a high percentage of short 
update transactions, whereas Figure 3b shows the distribution of a transaction 
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(a) MIX40 
length of the string: 130366 logical references 
number of different pages in the string: 3553 

I ’ I I I I ’ I I 

10 20 30 40 50 60 70 80 90 100 

LRU Stack Depth 

(b) MIX50 
length of the string: 99975 logical references 
number of different pages in the string: 5245 

10 20 30 40 50 60 

LRU Stack Depth 
70 80 90 100 

Fig. 3. LRU stack depth distributions of reference strings from a CODASYL DBMS. 
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Fig. 4. Page reference density of a reference string from a CODASYL DBMS. 

mix consisting of sequential retrieval transactions with only very few updates. In 
both cases, up to eight transactions ran concurrently. It is easily seen that the 
first mix (MIX40) had a much higher degree of locality than did the second 
(MIX50); both mixes are taken from [9]. 

In contrast to the reference behavior of programs under virtual memory 
operating systems, the highest reference probability is not found in stack depth 
1 (containing the “youngest” page). This is due to the fact that the references 
observed are logical references to database pages and not addresses used by 
machine instructions. Since the “youngest” page in the buffer will be fixed in 
most cases, data objects within that page can be addressed without a new logical 
reference to the page. Another difference between the reference (or better: 
addressing) behavior of programs and the data reference behavior of database 
transactions is the probability of reference in stack positions 6 to 40 (approxi- 
mately). For example, the first five stack positions may cover as much as 97 
percent of all references of a program (data taken from [26]), whereas our MIX50 
would find only 9.5 percent of its references in this range. Rereferencing in 
deeper stack positions (e.g., 6 to 40) is mainly caused by transactions being 
suspended for a certain time because they are blocked by concurrent transactions 
having exclusive access to the needed resources. Also, the DBMS stack depth 
distributions are not monotonically decreasing, for the same reason. Similar 
results have been reported by Fernandez, Lang, and Wood [lo]. 

As mentioned before, the access path structures used by a specific DBMS lead 
to a higher reference probability for certain system pages, such as pages contain- 
ing free-space data, address translation tables, root pages of B-trees, and so forth. 
An evaluation technique showing these effects is presented in Figure 4. The 
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reference density of pages of a certain type is defined as the relative frequency of 
references to such pages within a given reference interval. In our experiment, 
database pages were subdivided into FPA (free place administration), DBTT 
(database key translation table), and USER pages. In Figure 4, the percentage of 
references to these three classes of pages is shown over time. Although the 
number of system pages (FPA and DBTT) is much smaller than the number of 
USER pages in the database, the percentage of references to system pages can 
be as high as 45 percent. The considerable changes in the usage pattern depicted 
in Figure 4 are caused by changes in the transaction mix over the time period 
measured. Update transactions tend to access more system pages than do retrieval 
transactions. 

Having found that there is locality in the reference behavior of database 
transactions, and that system pages have a much higher probability of reference 
than USER pages, we can now proceed to the discussion of buffer allocation 
algorithms. 

4.1 Classification of Buffer Allocation Algorithms 

Buffer allocation algorithms can be subdivided into local and global algorithms. 
An algorithm is local if it allocates buffer frames to a specific transaction without 
regarding the reference behavior of concurrent transactions. For a database 
buffer manager, local algorithms have to be supplemented with a mechanism for 
handling the allocation of buffer frames for shared pages, since concurrent access 
to the same database page is frequent. Local algorithms can be further subdivided 
into static and dynamic allocation. Under static allocation, the number of buffer 
frames belonging to a transaction remains constant during the lifetime of the 
transaction. A simple algorithm is the allocation of a fixed-size partition to each 
of the parallel transactions; more sophisticated algorithms could assign partitions 
of different sizes to different types of transactions, based on information known 
at the start time of a new transaction. Dynamic allocation assigns variable-size 
partitions to the transactions; each partition can grow and shrink according to 
the current reference behavior of the transaction. In contrast to local algorithms, 
global allocation algorithms consider not only the reference pattern of the 
transaction currently executing, but also the reference behavior of all other 
transactions. The allocation decision is based on data obtained from all trans- 
actions. In a DBMS context, a third class of allocation algorithms should also be 
considered. Whereas the terms “local” and “global” refer to transactions (proc- 
esses) as owners of partitions, the database buffer could also be divided into parts 
containing a single type of page only. In our example, the buffer could have three 
partitions, for FPA, DBTT, and USER pages respectively. Again, partition sizes 
could be static or dynamic. A complete classification scheme is given in Figure 

The given classification scheme seems to reflect all buffer allocation algorithms 
that promise r( successful application and are feasible with a reasonable amount 
of overhead. 

The main disadvantage of static allocation (whether transaction oriented or 
page-type oriented) is its inflexibility in situations where the DBMS load changes 
frequently. Since the number of buffer frames allocated to a single transaction 
remains constant, static allocation is especially inefficient in an interactive 
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Fig. 5. Classification of buffer allocation algorithms. 

environment where transactions can be blocked by long user think times. Because 
of its inflexibility, static allocation is not considered to be applicable in database 
buffer management. 

When local dynamic allocation is applied, the size of the partition of a single 
transaction grows and shrinks with the transaction’s changing need for buffer 
space. Only the current reference behavior of the transaction itself is taken into 
account by the allocation algorithm. When a buffer fault occurs, the allocation 
algorithm calculates the optimal partition size for the transaction. Depending on 
the reference history of the transaction, it may acquire an additional buffer 
frame, keep the partition size constant, or lose one or more frames. In the same 
way, partition sizes may vary under page-type-oriented dynamic allocation. For 
example, a database buffer could consist of a system part and a user part. New 
system pages would be placed in the system partition; new user pages in the user 
partition. The size of the partitions would vary with changing demand. With a 
fixed-size buffer, a second algorithm that selects pages for replacement has to be 
provided. 

Whereas local algorithms consider only the reference behavior of a single 
transaction when calculating its optimal partition size, global algorithms take 
into account the reference behavior of all parallel transactions. All references to 
data pages are considered in the same way, independent of the transactions 
causing them. Since the DBMS buffer is considered to be of fixed size, global 
buffer allocation and the page replacement algorithm coincide. When a buffer 
fault occurs, one single algorithm decides which page has to be replaced; the 
decision is global. Depending on the owner of the corresponding buffer frame, 
the actual partition sizes of the transactions change automatically. (Page replace- 
ment algorithms are discussed in Section 5.) 

Since static allocation is inefficient in a database environment and global 
allocation coincides with replacement algorithms, the only buffer allocation 
algorithms to be discussed in some detail here are local dynamic algorithms. 

4.2 Dynamic Buffer Allocation Using Local Algorithms 

The best-known dynamic storage allocation algorithm is Denning’s working-set 
algorithm as defined in [6], which can be used to describe locality in the reference 
behavior of programs or database transactions. The working-set W(t, T) of a 
transaction is defined as the set of pages referenced by the transaction during 
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Fig. 6. Examples of working sets. 

the last 7 references at time t. 7 is called window size. w (c, 7) = 1 lV(t, 7) 1 is the 
working-set size at time t. Figure 6 shows examples of working-sets and their 
sizes. 

The average working-set size ti(~) of a transaction can be used as a measure 
of locality. The higher the locality, the more references are made to elements 
previously referenced in the window of size T, leading to a lower average working- 
set size W. 

Denning’s working-set model can be used for the implementation of a buffer 
allocation algorithm, WS [17]. The basic principle is to keep the pages forming 
the working set of a transaction in the buffer, and to make all pages not belonging 
to any working set available for replacement. The window size T has to be 
determined carefully so that the working set of a transaction contains just the 
minimum of pages needed for an efficient execution. In phases of high locality, 
the working set of a transaction shrinks, and the buffer frames freed will be 
available for reallocation to other transactions. A further refinement of the WS 
algorithm could be the assignment of different window sizes r to different types 
of transactions, thereby establishing a priority system. 

Note that the WS algorithm only decides whether or not a certain page in the 
buffer is available for replacement. It is irrelevant if the last reference to the 
page occurred 7 + 1 or T + n (n >l) references ago. Therefore, in addition to the 
buffer allocation algorithm WS, a page replacement algorithm is needed that 
selects one of the eligible pages for replacement when a buffer fault occurs. All 
replacement algorithms described in the next section can be used in combination 
with WS. 

Implementing the WS algorithm means that whenever a buffer fault occurs, 
the working sets of all active transactions must be determined. Denning’s 
proposals for an implementation were based on a hardware feature of virtual 
memory computers: Associated with each storage frame is a reference bit that is 
set by hardware whenever a page is referenced (addressed). Since a database 
buffer manager defines references to pages in a different way, these references 
have to be recorded by the software. A straightforward implementation is the 
following: Every active transaction has a reference counter TRC(T), which counts 
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TRC(TI): 8 TRC(W): 6 
LRC(T1, A): 8 LRC(T2, B): 1 
LRC(T1, C): 3 LRC(T2, D): 2 
LRC(T1, C): 6 LRC(T2, E): 4 
LRC(T1, H): 7 LRC(T2, F): 6 

Fig. 7. An implementation of the WS algorithm for buffer allocation. For 7 = 5, pages C and B are 
available for replacement. 

all logical references of the transaction. Every page i in the buffer has, for every 
transaction using it, a field “last reference count” LRC(T, i). When transaction 
T references page i, TRC(T) is incremented and then copied into LRC(T, i). A 
buffer page i is available for replacement iff 

TRC(T) - LRC(T, i) L r 

for all transactions T using it. Figure 7 shows an example of this implementation, 
using the reference string of Figure 6. 

Another dynamic storage allocation algorithm discussed in the literature is the 
page-fault-frequency algorithm (PFF). It uses the current interval between the 
last two page faults (which is related to the current page fault rate) for the 
allocation decision: As long as the actual page fault rate FA of a transaction is 
lower than a predefined maximum rate F, the transaction keeps its working set 
in the buffer (as under WS). When the actual fault rate FA is higher than F 
(determined by the fact that the interval between the last two page faults was 
less than r ’ = l/F), a new buffer frame is allocated to the transaction, independ- 
ent of its current working set. PFF is designed to guarantee a maximum fault 
rate of F for all transactions. (Further details may be found in the literature 
[5, 81). 

Further dynamic buffer allocation algorithms are proposed in the literature 
(e.g., a so-called WSCLOCK algorithm and an allocation based on a modified 
CLOCK algorithm; their complete descriptions and evaluations can be found in 
PI and [41). 

In this section we have discussed the application of dynamic buffer allocation 
algorithms to transactions. Page-type-oriented dynamic allocations can be im- 
plemented in the same way. Hence, algorithms such as WS and PFF can be used 
with dynamic partitions in a transaction- or page-type-oriented database buffer. 

5. REPLACEMENT ALGORITHMS FOR THE DATABASE BUFFER 

If a logical reference to the buffer fails, a page in the buffer must be selected for 
replacement to make room for the requested page. Although a comparable 
problem arises in OS virtual memory management, there are some important 
differences: 

- Any virtual memory page can be replaced at any time, because every reference 
is done by address translation hardware. However, in order to guarantee their 
addressability, some database pages can be fixed in the database buffer and are 
not eligible for replacement. 

- A FIX-UNFIX interval of a database page, in which the calling system 
component issues n addressing operations to data objects within that page, is 

ACM Transactions on Database Systems, Vol. 9, No. 4, December 1984. 



572 l W. Effelsberg and T. Haerder 

treated as one database page reference. However, in OS memory management, 
every machine instruction touching the page is a page reference, resulting in 
substantially different replacement decisions. 

The replacement algorithms presented here are considered to be orthogonal to 
the various allocation schemes presented in the preceding section. That is, they 
can be combined with each other in any manner. The set of candidate pages for 
replacement is determined by both the buffer allocation algorithm and the FIX- 
UNFIX mechanism. Replacement is needed in connection with 

global allocation: within the entire buffer; 
static allocation: within the respective partition; 
dynamic allocation: in the set of eligible pages, that is, pages currently not 
contained in the working set of any transaction/page type. 

5.1 Fetching Pages 

Replacement algorithms can be classified into prepaging and demand paging 
algorithms. Prepaging algorithms fetch not only the requested page, but also m 
additional pages that are physically close to the requested page, thus saving 
considerable access time, compared to m + 1 individual accesses. When sequential 
page references are expected, this algorithm can reduce the overall I/O costs 
substantially; prefetching unused pages, however, increases only the I/O over- 
head. Even worse, the replaced pages could be rereferenced. Unfortunately, 
physically contiguous pages are not necessarily the next ones referenced in logical 
sequence. In special cases, however, there may be some advantages in the 
exploitation of prepaging techniques. For detailed discussion, we refer readers to 
[16, 18, 211. 

Demand paging algorithms fetch only the requested page when there is a page 
fault. Because of their importance for practical applications in buffer manage- 
ment, we classify and investigate them in a systematic manner. 

In order to distinguish virtual memory page faults in the address space of the 
DBMS from page misses in the database buffer, we use the term buffer fault for 
the latter. 

The goal of each replacement algorithm is the minimization of the buffer fault 
rate for a given buffer size and allocation. One can distinguish between algorithms 
that are practical and those that are not because they are based on knowledge of 
the future reference string. The latter are of theoretical interest. For example, 
Belady’s well-known algorithm OPT [2,15], which replaces the buffer page with 
the longest future reference distance, can be used to derive a lower bound of the 
buffer fault rate for a given reference string. Clearly, the “absolute” upper bound 
for the buffer fault rate can be derived by the algorithm WORST, which replaces 
the buffer page with the shortest forward distance. An upper bound on the buffer 
fault rate for all practical replacement algorithms (which are assumed to be 
designed properly) should be achieved by the algorithm RANDOM, which does 
not use any knowledge about past reference behavior. Hence, for practical 
purposes, OPT and RANDOM are assumed to limit the realm of reasonable 
algorithms, giving a quality measure and some hints concerning the optimization 
potential with respect to a given replacement algorithm. In the following, we 
refer to practical algorithms as “applicable” algorithms. 
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buffer fault rate in % 

100 
FRMax 

FRCS 

BMin D B 

BMin = Minimal buffer size 
D = Buffer holding entire database 
FRcs = Cold start buffer fault rate, i.e. the minimal fault rate for a 

given reference string due to the initially empty buffer 
(no. of different page/no. of references x 100%) 

Fig. 8. Bounds of applicable algorithms given by RANDOM and OPT. 

Figure 8 shows this relationship. With RANDOM referencing and RANDOM 
replacement, linear dependency of the buffer fault rate FR on buffer size B (FR 
= 1 -B(l - FR&/D) could be expected. The locality of reference, however, 
causes the kind of nonlinear dependency for RANDOM replacement that is 
shown in Figure 8. 

5.2 Systematic Description of Replacement Algorithms 

Applicable algorithms replace the buffer page having the lowest probability of 
rereference. They usually rely on the characteristics of the past reference string 
in order to extrapolate future reference behavior. Their general assumption is 
that there is locality of reference; that is, recent reference behavior is a good 
indicator for the near future. Hence, the age and the references of a buffer page 
can be applied as suitable criteria to predict future reference behavior. By using 
logical references as units of time, the age of a page can be measured in an 
appropriate way. 

We classify the various replacement algorithms by whether or not the following 
considerations are reflected in each algorithm’s page selection decision: 

- age since the first reference (fetch) to the page or since the last reference to 
the page; 

- all references or only the most recent reference to the page. 

Simple plausibility considerations lead to the conclusion that the exclusive use 
of only one of these criteria cannot guarantee an optimal replacement decision 
when there is locality of reference. 

The algorithm FIFO (first-in, first-out) replaces the oldest buffer page. Inde- 
pendent of its reference frequency, the age of a page since the first reference is 
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A 
A 

I343 B B 

reference of page A found 
in the buffer 

C 

A El33 A 

B 

reference of page C not found 
in the buffer; page B is replaced 

Fig. 9. The functioning of an LRU stack, buffer size = 4 pages. 

the only decision criterion. Hence, FIFO is only appropriate for sequential access 
behavior. Figure 10a shows a common representation of FIFO, using a circular 
allocation of pages and a rotating pointer moved one step at every replacement. 
The pointer indicates the next page to be replaced. 

The algorithm LFU (least frequently used) uses only the second decision 
criterion, and replaces the buffer page with the lowest reference frequency. As 
shown in Figure lOc, reference counters (RC) are needed to record all references 
to a buffer page. When a page is fetched, the corresponding RC is initialized to 
1; every rereference increments it by 1. When replacement is necessary, the 
buffer page with the smallest value of RC is chosen; a tie is resolved by some 
mechanism. In this strict LFU realization, the age of a page is not taken into 
account at all; pages with very high reference activity during a short interval can 
obtain such high RC values that they will never be displaced, even if they are 
never referenced again. For this reason, the pure LFU mechanism should not be 
implemented in a database environment. Using additional measures, the LFU 
concept can be made more appropriate, while losing its original characteristics. 

All further algorithms to be discussed consider age as well as references. The 
widespread algorithm LRU replaces the buffer page that was least recently used, 
and can be explained easily by means of a so-called LRU stack, as shown in 
Figure 9. 

The replacement decision is determined by which page is referenced and by 
the age of each buffer page since its most recent reference. The FIX mechanism 
for pages causes LRU to be optionally implemented by two versions, depending 
on how the term “used” is interpreted, as 

- least recently referenced, or 
- least recently unfixed. 

The following scenario can help to clarify the difference. 

FIX FIX UNFIX UNFIX 
A B B A 

T ’ 
I I I I I * 

t1 t 

At time tl with 

- least recently referenced, page A is replaced; 
- least recently unfixed, page B is replaced. 

The version considering the UNFIX time is preferable in DBMS buffer manage- 
ment because FIX phases can last a very long time due to delays caused by a 
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Fig. 10. Page replacement strategies (shown for 8 buffer pages). 

transaction’s blocking times and action interrupts. Thus, only this (UNFIX time) 

version guarantees the intended observation of the basic LRU idea. 
The CLOCK algorithm attempts to simulate LRU behavior by means of a 

simpler implementation. As shown in Figure lob, CLOCK is a modification of 
the FIFO mechanism (Figure 10a). A use-bit is added to every buffer page, 
indicating whether or not the page was referenced during the recent circulation 
of the selection pointer. The page to be replaced is determined by the stepwise 
examination of the use-bits. Encountering a l-bit causes a reset to 0 and the 
move of the selection pointer to the next page. The first page found with a O-bit 
is the victim for replacement. Another name for the CLOCK algorithm is 
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lol 
Use-bit 

lol FI 

(b) CLOCK 

(d) GCLOCK 
-421 1 

Fig. 10. (Conk.) 

SECOND CHANCE, indicating that a page survives if rereferenced during a full 
circulation of the selection pointer. 

In contrast to OS replacement algorithms, supported directly by special hard- 
ware features (e.g., use-bits), those for DBMS buffer management have to be 
fully accomplished in software. This necessity, however, offers more freedom 
with respect to the choice and evaluation of selection criteria. Thus, more complex 
algorithms are conceivable in a DBMS. 

In combining the idea of LFU with the implementation of CLOCK, the basic 
version of GCLOCK (generalized CLOCK [21]) arises. The use-bit of a buffer 
page Pi is replaced by a reference counter (RC). References to Pi increment the 
corresponding counter RC(i). In the basic GCLOCK version, RC(1’) is initialized 
to 1 upon first fetch of Pi and incremented by 1 at each rereference of Pi (see 
Figure 10d). When a buffer fault occurs, a circular search is initiated, decre- 
menting stepwise the reference counters until the first with a value of 0 is found. 
This method accomplishes an essential improvement compared to a pure LFU 
algorithm. Nevertheless, this basic GCLOCK version tends to replace the young- 
est buffer pages, independent of their type and actual probability of rereference. 
To improve this undesired behavior, a number of variations can be introduced: 

- initialize RC upon first fetch of a page with value >l; 
- increment RC at each reference of a page versus set RC at each rereference to 

a fixed value; 
- apply page-type or page-related weights. 
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The use of page weights (or virtual references) for the different page-types Tj (Fj 
for fetch and Rj for rereference) is appropriate to introduce knowledge about 
access paths and their traffic frequencies. For example, let T1 be DBTT pages, 
Tz FPA pages, T3 index pages, and T4 data pages. Then a fetch weight of 2 could 
be assigned to DBTT pages (J’i = 2), a fetch weight of 1 to FPA and index pages 
(F2 = F3 = l), while a weight of 0 could be assigned to data pages (F4 = O), 
expressing a low probability of rereference. A rereference could be treated by 
assigning the weights, R = (2, 2, 2, 1). 

This idea leads to the following versions Vl and V2 of GCLOCK, characterized 
by the way they handle the reference counter RC(i) related to page Pi of type q: 

Vl: first reference (fetch) : RC(i) := 6 
each rereference : RC(i) := RC(i) + Rj 

V2: first reference : RC(1’) := Fj 
each rereference : RC(i) := Rj 

When 6 = 1 and Rj 7 1 for all j, V2 is equivalent to CLOCK, while Vl 
represents the basic version of GCLOCK. In V2, Rj should be I Fj; otherwise, 
an immediate rereference to a recently fetched page would decrease the value of 
the reference counter, an undesired effect. 

In a real implementation, GCLOCK can be further refined-at the expense of 
increased overhead. It is generally possible to create a special version, called 
DGCLOCK, assigning dynamically calculated, page-related weights Fj (t) and 
R,(t). Further implementation details such as threshold values or periodic de- 
crease of the RCs are necessary to adapt a GCLOCK version to transitions in 
load characteristics. 

GCLOCK represents a class of algorithms in which the different versions can 
be tailored to special applications and types of reference behavior by the appro- 
priate choice of parameters. Its classification is difficult and necessarily fuzzy 
because of the variety of parameters involved, 

The algorithms discussed (with the exception of FIFO) evaluate the age of a 
buffer page in some indirect way (via the latest reference). It appears to be 
promising to relate the actual number of references to a buffer page Pi counted 
in RC(i) to its age, defined as the number of elapsed references (to all buffer 
pages) since the first reference to Pi. The age of a page is measured in units of 
logical references, and can be determined as follows. Let the GRC (global 
reference counter) be the total number of logical references. For each buffer page 
Pi the time of its first reference (fetch) is FC(i). Hence, GRC-FC(i) is the 
reference interval of the age of Pi. Since both the age and RC are measured in 
units of logical references, they can be related to each other. By the use of simple 
division, the reference density RD(i) of Pi can be obtained. In our terminology, 
reference frequency always refers to an absolute number of references, whereas 
reference density means a frequency related to a reference interval (i.e., a relative 
frequency). This idea is materialized by the following algorithm (see Figure 10e): 

RD(i) = RC(i)/(GRC-FC(i)) where GRC-FC(i) L 1. 

A buffer fault requires the determination of which buffer page has the lowest 
value for RD. GRC is incremented by the reference leading to the buffer fault, 
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before RD(1’) is evaluated; a tie has to be resolved in some way. This algorithm, 
presented in its simplest version, can be generalized in various ways. Let us call 
the resulting class of algorithms LRD (least reference density) and the described 
version LRD(V1). 

LRD(V1) determines the average reference density of a page. It assumes 
equidistant arrival of page references. High reference activity at the beginning of 
the reference interval keeps a page in the buffer much longer than desired, 
because the actual reference distribution within the interval is not known. The 
influence of older references on the selection decision-especially in the case of 
clustered arrivals-should be reduced. This goal, the reduction of the weight of 
references according to their actual age without the overhead of collecting 
additional page-related information, is achievable by the following LRD variant: 
After reference intervals of appropriate size, the reference counters RC of all 
buffer pages are reduced (e.g., by subtraction or division, using properly chosen 
constants). For example, the method to enforce some kind of “periodic aging” at 
the end of specific reference intervals IR could be chosen as follows: 

LRD(V2): aging by subtraction: 

RC(1’) = I 
RC(1’)-Cl if RC(i) - Cl z C2 

I 

with Cl > 0, C2 2 0 
c2 if RC(1’) - Cl < C2 

aging by division: 

RC(1’) = RC(i)/C3 with C3 > 1 

Cl, C2, and C3 are appropriately selected constants. The size of the reference 
interval IR for aging must also be selected carefully. In each algorithm counting 
reference frequencies, a number of modifications are conceivable (e.g., the use of 
page weights in case of fetch and/or rereference). 

An overview of the discussed replacement algorithms is given in Figure 11, 
which attempts to classify them according to their parameters and they way age 
and reference are taken into consideration. Those algorithms that are candidates 
for an application in buffer management are emphasized. 

Another important criterion to be considered in the replacement decision is 
the type of reference to a page, that is, whether a page is read only or modified. 
In general, it may be preferable to keep modified pages in the buffer longer (at 
least those with high probability of further updates), because their replacement 
is expensive (the page itself and the corresponding log information has to be 
written). On the other hand, overemphasizing this principle carries the danger 
of shrinking the active window for the read-only pages that are kept in the buffer. 
In a specific implementation, all algorithms have to be adapted to the particular- 
ities of the buffer interface (e.g., fixed pages are not displaceable and pages being 
modified have to be forced to disk at the end of the corresponding transaction 
when required by the logging mechanism). 

With local or page-type-oriented buffer allocation, it is conceivable to combine 
various replacement algorithms, tailored to specific characteristics of the refer- 
ence behavior. For example, four different reference types, apparently related to 
various page types, can be observed in the DBMS INGRES [24]. Hence, further 
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Name 

CLOCK 
LRU(UNFIX) 
GCLOCK(V1) 
GCLOCK(V2) 
DGCLOCK 
LRD(V1) 
LRD(V2) 

Parameter 
- 
- 
Fj, Rj 
Fj, Rj 
G(t), R(t) 
RC, FC 
IR, RC, Cl, C2, or C3 

Selection Criterion 

reference bit 
time (GRC) of last UNFIX 
value of reference counter RC 
value of reference counter RC 
value of reference counter RC 
reference density RD 
value of manipulated RC 

Consideration during 
selection decision 

no considera- 
tion 

No 
consideration 

RANDOM 

Since most 
recent 

reference 
Since first 
reference 

FIFO 

references most recent 
reference 

LRU 
CLOCK 
GCLOCK(V2) 

all references LFU GCLOCK(V1) 
DGCLOCK LRD(V1) 

LRD(V2) 

I 

Fig. 11. Classification of replacement algorithms. 

optimization should be possible by assigning appropriate replacement algorithms 
to a page-type-oriented buffer allocation scheme. Due to the nonprocedural 
requests of relational interfaces, transaction-oriented optimization of buffer 
replacement should be achievable because enough context information is given 
to the DBMS to predict a limited number of a transaction’s future references 
PI* 

6. EMPIRICAL STUDY OF REPLACEMENT STRATEGIES 

As mentioned earlier, logical reference strings are DBMS-dependent; their char- 
acteristics are determined by implementation details, internal structure of system 
and user data, look-up sequences, and so forth. Therefore, it is impossible to 
derive general results from specific reference strings. Nevertheless, our empirical 
study attempts to evaluate the usefulness of buffer allocation and replacement 
strategies and aims to give an indication of how the various strategies compare 
to each other. 

The large number of possible combinations of buffer allocation schemes and 
replacement algorithms prohibits an exhaustive study. Strategies such as 
GCLOCK and LRD offer especially many degrees of freedom, with their various 
versions and parameters. Optimal parameter values are difficult to determine 
and have to be tailored to a specific DBMS. Since such an optimizaton is not the 
goal of our study, we do not compare the effects of detailed parameter variations 
on these algorithms; rather, we compared various versions, with some simple 
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Total number of pages (school-DB) 
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41% 
41% 
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’ measured with a buffer size of 128 pages 

Fig. 12. Characteristics of the DB, transaction load and logical reference strings. 

parameter combinations, in order to roughly evaluate their behavior and to give 
an idea of their relative usefulness. 

The results of the empirical study reported in this section are based on two 
logical reference strings of different transaction loads, called MIX40 and 
MIX50 (see Section 4); their LRU stack-depth distributions are shown in Figure 
3. Some additional characteristics of these strings are summarized in Figure 12. 

A general buffer simulator consisting of PASCAL programs (and ASSEM- 
BLER subroutines) of approximately 20,000 lines of code was written, providing 
various allocation schemes and replacement algorithms. The simulator is driven 
by a logical reference string; the buffer fault rate, as a function of buffer size, is 
produced as output. Optionally, a number of useful statistics (FIX duration, 
shared pages, etc.) can be obtained (see Figure 12). Emphasis is placed on the 
global buffer allocation scheme. Two local schemes are added for comparison. 
Page-type-oriented schemes are presented in a separate section. 
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Buffer Size (Pages) 
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Fig. 13. The buffer fault rates of different replacement strategies. 

6.1 Global Buffer Allocation 

Figure 13 confirms the relationships illustrated in Figure 8. FIFO touches the 
bounds given by RANDOM, but fits into the expected range. The curves describ- 
ing a local buffer allocation scheme with “almost” fixed partitions and LRU 
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Fig. 14. The buffer fault rates of the CLOCK and LRU algorithms. 

replacement are the simulation results of an existing buffer manager. Owing to 
a design error detected by these simulations, the dynamic partitioning mechanism 
behaved like a static one, resulting in a catastrophic buffer fault rate (often twice 
as high as RANDOM). This example can be taken as an illustration of the 
inflexibility of static buffer allocation strategies; it supports our judgment in 
Section 4.1. Having digested this unexpected surprise, we designed and simulated 
the strategy WORST to show the full range of “optimization” by using badly 
understood algorithms. 

Figure 14 compares the buffer fault rates of the widely used LRU and CLOCK 
algorithms. LRU proved itself efficient in some operating systems as well as in 
DBMS buffer management (e.g., in System R). Figure 14 confirms the similarity 
of buffer fault rates between LRU and CLOCK, as stated elsewhere [20]. In our 
experiments, LRU (UNFIX) was slightly superior to LRU (REFERENCE) (not 
shown in Figure 14). 

Figure 15 compares two GCLOCK algorithms. For GCLOCK(V2), the param- 
eters are chosen in this example as follows: 

- F3 = 5 and RB = 5 for index pages, 
- Fj = 0 and Rj = 1 for all other pages. 

The DGCLOCK version applied in the simulation is used to illustrate the degrees 
of freedom of the GCLOCK technique, rather than as a proposal for implemen- 
tation. The weight Wi ( Wi is the fetch weight and also the rereferencing weight) 
assigned to page Pi is calculated dynamically, depending on the absolute number 
of its buffer faults BFi and the average number of buffer faults I# over all pages: 
BF = (total number of buffer faults so far)/(number of distinct pages referenced). 
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Fig. 14. (Conk) 

Hence, the weight is calculated as follows: 

w.= 
{ 

BFi - BF if BFi > BF 
I 0 otherwise 

As shown in Figure 15, a general recommendation cannot be made; DGCLOCK 
delivers very good results in a certain range, and worse results in others. According 
to the comparisons in Figures 17a and 18a, DGCLOCK is superior to all other 
replacement algorithms for a buffer size of 100 to 200 pages. 

The behavior of two LRD algorithms is shown in Figure 16. LRD(V1) corre- 
sponds to the respective algorithm in Section 5.2. The parameters of LRD(V2) 
are chosen in this example as follows: 

- reference interval IR (determining periodic aging) is 10; 
- divisor constant C3 = 2. 

Looking at Figure 16, the sophisticated algorithm LRD(V2) displays its supe- 
riority with respect to the simple version LRD(V1) over wide ranges; by better 
tailoring its parameters to the specific reference characteristics, further optimi- 
zation seems to be achievable. The use of LRD(VB), based on the subtraction 
method, in the DBMS ADABAS underlines its value for DBMS buffer manage- 
ment. 

The “best” algorithms of each class investigated in our empirical study are 
summarized with a wider buffer size range in order to facilitate comparison 
among all results. Unfortunately, the various curves had to be divided up into 
Figures 17 and 18 to avoid an overloaded representation, and at least allow for a 
clear separation of the inefficient algorithms. Comparable algorithms deserve 
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Fig. 15. The buffer fault rates of GCLOCK strategies. 

further investigation when applied to a specific DBMS. As shown in Figure 18, 
we include a local buffer allocation algorithm with dynamic partitions-a 
working set with LRU replacement-as a comparable candidate. The following 
reasons, however, seem to weigh against the application of local allocation in 
DBMS: 
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Fig. 16. The buffer fault rates of LRD strategies. 

- Such algorithms try to keep a transaction’s working set in the buffer, 
supposing a continuous sequence of operations issued by the transaction. For 
batch transactions calling the DBMS at intervals of several milliseconds, this 
assumption is valid. With multistep terminal transactions, groups of a few 
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Fig. 17. A comparison of different replacement strategies. 

references interrupted by delays of seconds or minutes (the think time of the 
interactive user) must be expected, making considerable inefficiencies probable. 

- Extra overhead has to be paid for handling the allocation of buffer frames 
for shared pages. 
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Fig. 18. A comparison of different replacement strategies (continuation). 

- The complexity of such algorithms (i.e., the determination of the dynamic 
partitions) increases with the number of active transactions, provoking substan- 
tial overhead in realistic applications. 

Comparison of buffer fault rates for OPT and the best applicable algorithms 
clearly indicates that further optimization with better tailored algorithms may 
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be worthwhile for restricted buffer sizes (less than 200 pages (400 K bytes)). In 
the range greater than 200 pages, the best algorithms come fairly close to OPT, 
so that additional efforts are not justified by the potential gain-at least in our 
applications, where we had an average degree of parallelism of less than 7. It is, 
however, conceivable that the range of buffer sizes, in which further optimization 
efforts pay-off, is enlarged under transaction loads having a higher number of 
concurrent transactions [13]. 

6.2 Page-Type-Oriented Buffer Allocation 

The disadvantages of local buffer allocation do not apply to page-type-oriented 
buffer allocation. The allocation of dynamic partitions by means of a WS or PFF 
algorithm permits flexible and fast adaptation to changes in reference behavior 
to the various page types. As compared to global allocation, the selective use of 
a particular replacement algorithm on the set of eligible pages of a specific type 
is considered to be an extra advantage. Hence, concepts of this kind allow 
allocation and replacement algorithms to be tailored to the various types of 
reference behavior. 

An analysis of page-type-related reference behavior revealed the following 
characteristics, considering three different types of pages containing system data 
(DBTT/FPA), access path data (tables, pointer-arrays, B*-trees, etc.), and rec- 
ords. Here pages containing access path data are summarized as TABLE pages, 
whereas pages storing data records are called USER pages. 

distinct pages number of 
referenced (in %) references (in %) 

page types MIX40 MIX50 MIX40 MIX50 

system data (SYSTEM) 4.9 5.0 10.3 21.8 
access paths (TABLE) 39.6 39.5 22.5 33.9 
records (USER) 55.5 55.5 67.2 44.3 

When only two partitions were considered, access path data and records were 
put together into a single partition (called USER). 

Static partition allocation is straightforward; replacement is always done in 
the partition where the buffer fault occurs. The dynamic partition mechanism 
works as follows: With N as the total number of buffer frames, at most Np = 
0.8 N pages were allocated to partitions (working sets) at a time. Different 7s 
were assigned to determine the partition sizes dynamically, according to the 
following ratio: 

two partitions: ~S/ul = 15185 
three partitions: 7s/7& = 10/50/40. 

Np is used to determine the various 7s directly; for instance, for two partitions, 

7s = 15/100 * Np, ru = 85/100 * Np, 

with a suitable lower limit of each 7. For three partitions, a similar assignment 
was chosen. Hence, the number of buffer pages eligible for replacement was 
N,, L 0.2 * N. 

The influence of partition size with static buffer allocation is evaluated in 
Figure 19. The behavior of two static partitions for system and user data is shown 
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Fig. 19. The buffer fault rate for page-type-oriented allocation schemes with two partitions. 

for various ratios of partition sizes and LRU replacement in each partition. The 
different curves confirm the critical nature of the choice of partition size and the 
superiority of dynamic allocation. Furthermore, the results indicate the danger 
of congestion with small buffer partitions, due to pages being fixed. 
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With static partition schemes, the ratio of actual partition references seems to 
be a good indicator of appropriate relative partition sizes. The results for the 
dynamic scheme are approached according to the closeness of the partition size 
ratio to the reference ratio. Due to different reference ratios, their relative 
sequence is inverted (when comparing MIX40 to MIX50). 

The results presented in Figure 20 are derived with three partitions. The user 
partition of the previous allocation (Figure 19) was divided into access path pages 
and other data pages. LRU replacement was applied in each partition. The 
comparison of MIX40 and MIX50 also reveals the strong dependence of page- 
type-related reference behavior and partition size with respect to the buffer fault 
rate obtained. The closer the partition size ratio approximates the page-type 
reference ratio, the better the results. This causes a different approximation 
sequence of the various curves for MIX40 and MIX50. As in Figure 19, the 
results indicate the danger of mistaken partition choices with static schemes, 
and recommend dynamic partitioning for general use. 

The results of the static scheme having a partition size ratio of 10/20/70 for 
MIX40, which closely resembles the fractions of its actual page-type references, 
indicate that the parameters of our dynamic scheme (10/50/40) are not appro- 
priately chosen for the respective mix, because the static scheme produces the 
smallest buffer fault rate in the range of 100 to 160 buffers. This example shows 
that dynamic schemes of the given type are at least weakly dependent on their 
initialization parameters. An adaptation of these parameters to the actual refer- 
ence behavior should lead to an overall superiority of the dynamic scheme. 

For our DBMS, three dynamic partitions seem to be an appropriate choice. 
The buffer fault rate obtained was slightly better than the corresponding rates 
for two dynamic partitions and for global LRU. 

Further refinement is possible by explicitly regarding the locality and type of 
reference behavior. For example, typical mixes for our DBMS can be character- 
ized as follows: 

DBTT/FPA partition: 

index partition: 

data partition: 

random access to pages for which there is a high 
probability of rereference; 

random access to pages with a nonzero probability of 
cyclical rereference of some pages (e.g., index roots) 
or sequential reference cycles during tree traversal 
(e.g., B*-tree); 

random or sequential access to pages that will be 
rereferenced with a lower probability than DBTT/ 
FPA or index pages. 

The most important design decision is the determination of working-set param- 
eters. A large T value for the data partition provokes a large, but useless, partition 
to be kept as a working set, because locality of reference on data pages is assumed 
to be very low. Only a small 7 value (or none) should be assigned to the data 
partition, while sufficiently large ~3, which can be chosen as a function of buffer 
size, are needed for the remaining partitions in order to guarantee sizable working 
sets. 
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Fig. 20. The buffer fault rate for page-type-oriented allocation schemes with three partitions. 

Replacement should be treated as follows: For pages of DBTT/FPA type, LRU 
or CLOCK algorithms seem to be appropriate. Although these algorithms work 
well in cases of locality of a given type, they are bad for the other situations. If 
the reference cycle is larger than the number of buffer frames for index pages, 

ACM Transactions on Database Systems, Vol. 9, No. 4, December 1984. 



592 l W. Effelsberg and T. Haerder 

an LRU-type replacement is the worst possible strategy for the index partition. 
LRD or GCLOCK algorithms with page weights for the roots and upper-level 
index pages are better suited to choose the best replacement decision. For data 
pages, “toss immediately” or FIFO could be used. 

From the results derived in our experiments, it is at least debatable whether 
or not page-type-oriented schemes should be chosen. Even with a dynamic 
partitioning scheme, the parameters have to be determined to approximate the 
page-type reference ratio. In addition, the choice of tailored replacement algo- 
rithms becomes complex and susceptible to wrong assumptions. Hence, there is 
no convincing evidence that they are distinctly superior to global schemes. 

7. PROBLEMS RELATED TO DBMS BUFFER MANAGEMENT 

7.1 DBMS Buffer Management Under a Virtual OS 

Embedding a DBMS and an OS environment, in which it is usually treated like 
a normal application program, can result in aggravating effects on buffer man- 
agement. If the DBMS runs in a virtual address space, program code as well as 
the DBMS buffer are paged by OS memory management, unless they are made 
resident in main memory. While the replacement of buffer pages is done by the 
DBMS according to logical references, paging of main memory frames is per- 
formed by independent OS algorithms based on the addressing behavior within 
the main memory frames. In such an environment, the following kinds of faults 
can occur [20]: 

Page faults. The required page is contained in the DBMS buffer but is not 
currently in main memory. It has to be read by the OS from the paging device. 
A page fault can be provoked by a logical reference, as well as by an addressing 
operation during the FIX phase. 

Buffer faults. The requested page is not found within the buffer. The buffer 
page selected for replacement, however, is resident, allowing a direct exchange of 
pages. 

Double-page faults. A logical reference to a database page fails and the buffer 
page to be replaced is not in main memory. In this case the corresponding buffer 
frame has to be transferred from the paging device, before the replacement of 
the selected page and the read operation for the new page can be issued. 

When the OS itself is running in a virtual environment by use of a hypervisor, 
it is conceivable that the pathological situation resulting from distributed and 
uncoordinated resource management is extended to triple-page faults [ 121. 

The frequency of the various faults essentially determines whether or not the 
buffer manager becomes the bottleneck of the entire DBMS. The analysis of the 
double-paging problem is a difficult and complex task; for further discussion, we 
refer readers to [3,9, 10, 14, 20, 251. 

7.2 The Overload Behavior of Buffer Management 

Because the DBMS can keep several pages per transaction in FIX status, it is 
possible that a shortage of buffer frames will occur (a resource deadlock); an 
additional page is requested, yet no page in the buffer can be replaced if all are 
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flagged with FIX status. This situation is especially threatening with small buffer 
sizes. A solution to the problem is to undo the current operation of a transaction, 
thereby freeing buffer frames occupied by its (the transaction’s) associated pages. 

With a given buffer size, the number of available frames per transaction 
decreases as the number of active transactions increases. Unless there is a very 
high degree of intertransaction locality, the relative frequency of logical references 
leading to physical I/O grows with the number of parallel transactions. Although 
the cost of an I/O access remains constant, the total overhead is increased 
drastically by the increasing relative frequency of page replacement. In this case, 
so-called thrashing [ 71 can occur-a system state in which almost no useful work 
is done. To limit the danger of thrashing, a number of measures are proposed [9, 
111: 

- optimization of the replacement algorithm, 
- reduction of the costs for replacing a page, 
- program restructuring to optimize its reference behavior. 

These measures serve to reduce the system overhead and to safely increase the 
number of concurrent transactions that can be processed without provoking the 
thrashing phenomenon. No guarantee is given that thrashing cannot occur if the 
system’s concurrency is further extended. Hence, thrashing can be prevented, 
while achieving optimal throughput, only by dynamically limiting the number of 
transactions. This implies the close cooperation of transaction and buffer man- 
agement in a DBMS in order to perform effective scheduling of transactions and 
accurate load control. The same demand is stated for OS: “Memory management 
and process scheduling must be closely related activities.” [6] 

8. CONCLUSIONS 

We have explained the interface requirements of a DBMS buffer manager and 
introduced the concept of fixing pages in a buffer to prevent their uncontrolled 
replacement. The spectrum of possible strategies for searching the buffer was 
then discussed; hash techniques on buffer information tables with overflow 
chaining are recommended as the most efficient implementation alternative for 
the buffer search function. 

Initial experiments have shown that locality in DBMS reference behavior is 
much less significant than locality in the reference behavior of programs under 
virtual memory operating systems. This motivates the thorough analysis of buffer 
allocation and page replacement algorithms with respect to DBMS characteris- 
tics. 

We have classified different buffer allocation algorithms and explained their 
relationship to page replacement algorithms. Buffer allocation and page replace- 
ment are considered to be orthogonal, allowing the combination of each allocation 
algorithm with an arbitrary replacement algorithm. Since the buffer manager is 
implemented in software, it is not restricted to the use of hardware flags available 
in a specific virtual machine architecture. This leads to much more freedom in 
the design of replacement algorithms. Specifically, we have investigated new 
ways to combine the age of a page in the buffer, information about recent 
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references, and information about page contents (page type) into new replacement 
criteria. 

In order to evaluate the performance of various allocation and replacement 
algorithms in a DBMS environment, we have conducted an empirical study, 
using two reference strings from CODASYL DBMS applications. A comparison 
of local and global allocation algorithms shows that local allocation with dynamic 
partitions leads to buffer fault rates very similar to global LRU replacement; 
however, we recommend that local allocation algorithms in an on-line transaction 
processing environment not be used, because user think times would freeze pages 
in the buffer for long periods of time. 

With a global allocation scheme, the adaptation of the buffer contents to the 
particular reference behavior is left entirely to the replacement algorithm. LRU 
and CLOCK indicate a satisfactory overall behavior; nevertheless, it could be 
shown that the LRD and GCLOCK algorithms are also good candidates. Since 
none of these global schemes requires explicit buffer allocation, they are easy to 
understand and implement. In addition to global and local algorithms, we have 
investigated algorithms using page-type information. Different working-set sizes 
can be assigned to various page types to reflect their specific kind of reference 
behavior. 

As a general conclusion, we were able to show the optimization potential of 
some of the new algorithms. Since they are parameterized, they can be tailored 
to a specific DBMS and application environment. The basic trade-off is the 
conceptual simplicity of the old algorithms versus a potential improvement in 
performance with the new algorithms. 

The following problems are likely to be of interest for future research: 
- How can knowledge about the application program be made available for 

the prediction of future reference behavior? Some means have to be introduced 
to allow the buffer manager to accept “advice” from the query interpretation or 
compilation process in order to use the context information of high-level database 
languages. 

- How does the DBMS-specific locality depend on the degree of concurrency 
of transactions? What is the minimum buffer requirement, as a function of the 
degree of concurrency? 

- How can two-level storage management be generalized for DBMS use? What 
additional gain can be expected when another level is introduced in the storage 
hierarchy? 
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