
DB2® Spatial Extender and Geodetic Data Management Feature

User's Guide and Reference

Version 9

Linux, UNIX, and Windows

SC18-9749-00

���

DB2® Spatial Extender and Geodetic Data Management Feature

User's Guide and Reference

Version 9

Linux, UNIX, and Windows

SC18-9749-00

���

Note

Note: Before using this information and the product it supports, read the information in Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order.

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide.

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. About DB2 Spatial Extender 1

The purpose of DB2 Spatial Extender 1

How data represents geographic features 2

The nature of spatial data 3

The nature of geodetic data 4

Where spatial data comes from 4

How features, spatial information, spatial data, and

geometries fit together 5

Chapter 2. About geometries 7

Geometries 7

Properties of geometries 9

Type 9

Geometry coordinates 9

X and Y coordinates 10

Z coordinates 10

M coordinates 10

Interior, boundary, and exterior 10

Simple or non-simple 10

Closed 10

Empty or not empty 10

Minimum bounding rectangle (MBR) 10

Dimension 11

Spatial reference system identifier 11

Chapter 3. How to use DB2 Spatial

Extender 13

How to use DB2 Spatial Extender 13

Interfaces to DB2 Spatial Extender and associated

functionality 13

Tasks that you perform to set up DB2 Spatial

Extender and create projects 13

Chapter 4. Getting started with DB2

Spatial Extender 19

Setting up and installing Spatial Extender 19

System requirements for installing Spatial Extender 20

Installing DB2 Spatial Extender for Windows . . . 21

Installing DB2 Spatial Extender for AIX 22

DB2 Setup wizard 23

db2_install script 23

SMIT 23

Installing DB2 Spatial Extender for HP-UX 23

Install Spatial Extender for HP-UX using the DB2

Setup wizard 24

Install Spatial Extender for HP-UX using the

db2_install script 24

Install Spatial Extender for HP-UX using the

swinstall command 24

Installing DB2 Spatial Extender for Solaris

Operating Environment 25

Install DB2 Spatial Extender for Solaris Operating

Environments using the DB2 Setup wizard . . . 26

Install DB2 Spatial Extender using the db2_install

script 26

Install DB2 Spatial Extender for Solaris using the

pkgadd command 26

Installing DB2 Spatial Extender for Linux 27

Installing DB2 Spatial Extender using the DB2

Setup wizard 27

Install DB2 Spatial Extender using the db2_install

script 28

Creating the DB2 Spatial Extender instance

environment 28

Verifying the Spatial Extender installation 29

Post-Installation considerations 30

Downloading ArcExplorer for DB2 31

Chapter 5. Migrating the Spatial

Extender environment to a DB2 Version

9 database system 33

Migrating a spatially-enabled database 33

The db2se migrate command 33

Migrating from a 32-bit to a 64-bit environment . . 35

Chapter 6. Setting up a database . . . 37

Configuring a database to accommodate spatial data 37

Tuning transaction log characteristics 37

Tuning the application heap size 38

Tuning the application control heap size 39

Chapter 7. Setting up spatial resources

for a database 41

How to set up resources in your database 41

Inventory of resources supplied for your

database 41

Enabling a database for spatial operations . . . 42

How to work with reference data 42

Reference data 42

Setting up access to reference data 42

Registering a geocoder 43

Chapter 8. Setting up spatial resources

for a project 45

How to use coordinate systems 45

Coordinate systems 45

Geographic coordinate system 45

Projected coordinate systems 50

Selecting or creating coordinate systems 51

How to set up spatial reference systems 52

Spatial reference systems 52

Deciding whether to use a default spatial

reference system or create a new system 54

Spatial reference systems supplied with DB2

Spatial Extender 54

Conversion factors that transform coordinate data

into integers 56

© Copyright IBM Corp. 1998, 2006 iii

Creating a spatial reference system 58

Calculating scale factors 59

Conversion factors that transform coordinate data

into integers 60

Determining minimum and maximum

coordinates and measures 60

Calculating offset values 61

Creating a spatial reference system 62

Chapter 9. Setting up spatial columns 65

Spatial columns 65

Spatial columns with viewable content 65

Spatial data types 65

Creating spatial columns 67

Registering spatial columns 68

Chapter 10. Populating spatial columns 71

About importing and exporting spatial data . . . 71

Importing spatial data 72

Importing shape data to a new or existing table 72

Importing SDE transfer data to a new or existing

table 73

Exporting spatial data 74

Exporting data to a shapefile 74

Exporting data to an SDE transfer file 74

How to use a geocoder 75

Geocoders and geocoding 75

Setting up geocoding operations 77

Setting up a geocoder to run automatically . . . 79

Running a geocoder in batch mode 80

Chapter 11. Using indexes and views to

access spatial data 81

Types of spatial indexes 81

Spatial grid indexes 81

Generation of spatial grid indexes 82

Use of spatial functions in a query 82

How a query uses a spatial grid index 83

Considerations for number of index levels and grid

sizes 83

Number of grid levels 83

Grid cell sizes 84

Creating spatial grid indexes 88

Creating a spatial grid index using SQL CREATE

INDEX 89

CREATE INDEX statement for a spatial grid index 90

Tuning spatial grid indexes with the Index Advisor 91

Tuning spatial grid indexes with the Index

Advisor—Overview 91

Determining grid sizes for a spatial grid index . 91

Analyzing spatial grid index statistics 92

The gseidx command 97

Using views to access spatial columns 99

Chapter 12. Analyzing and Generating

spatial information 101

Environments for performing spatial analysis . . . 101

Examples of how spatial functions operate . . . 101

Functions that use indexes to optimize queries . . 102

Chapter 13. DB2 Spatial Extender

commands 105

Invoking commands for setting up DB2 Spatial

Extender and developing projects 105

Chapter 14. Writing applications and

using the sample program 113

Writing applications for DB2 Spatial Extender . . 113

Including the DB2 Spatial Extender header file in

spatial applications 113

Calling DB2 Spatial Extender stored procedures

from an application 113

The DB2 Spatial Extender sample program . . . 115

Chapter 15. Identifying DB2 Spatial

Extender problems 121

How to interpret DB2 Spatial Extender messages 121

DB2 Spatial Extender stored procedure output

parameters 123

DB2 Spatial Extender function messages 125

DB2 Spatial Extender CLP messages 126

DB2 Control Center messages 128

Tracing DB2 Spatial Extender problems with the

db2trc command 128

The administration notification file 129

Chapter 16. DB2 Geodetic Data

Management Feature 131

DB2 Geodetic Data Management Feature 131

When to use DB2 Geodetic Data Management

Feature and when to use DB2 Spatial Extender . . 131

Geodetic datums 132

Geodetic latitude and longitude 132

Geodesic distances 133

Geodetic regions 134

Chapter 17. Setting up DB2 Geodetic

Data Management Feature 137

Setting up and enabling DB2 Geodetic Data

Management Feature 137

Migrating from Informix Geodetic DataBlade to

DB2 Geodetic Data Management Feature 138

Populating spatial columns with geodetic data . . 144

Chapter 18. Geodetic Indexes 145

Geodetic Voronoi indexes 145

Voronoi cell structures 145

Considerations for selecting an alternate Voronoi

cell structure 146

Creating geodetic Voronoi indexes 147

CREATE INDEX statement for a geodetic Voronoi

index 148

Voronoi cell structures supplied with DB2 Geodetic

Data Management Feature 150

World, based on population density (Voronoi

ID: 1) 151

United States (Voronoi ID: 2) 152

Canada (Voronoi ID: 3) 153

India (Voronoi ID: 4) 154

iv IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Japan (Voronoi ID: 5) 155

Africa (Voronoi ID: 6) 156

Australia (Voronoi ID: 7) 157

Europe (Voronoi ID: 8) 158

North America (Voronoi ID: 9) 159

South America (Voronoi ID: 10) 160

Mediterranean (Voronoi ID: 11) 161

World, uniform data distribution, medium

resolution – dodeca04 (Voronoi ID: 12) 161

World, industrial nations – G7 nations (Voronoi

ID: 13) 163

World, uniform data distribution, low resolution

– isotype (Voronoi ID: 14) 163

Chapter 19. Differences in using

geodetic and spatial data 165

Minimum and maximum x and y attributes . . . 165

Differences in working with flat-Earth and

round-Earth representations 165

Line segments that cross the 180th meridian . . 166

Polygons that straddle the 180th meridian . . . 167

Polygons that enclose a pole 170

Polygons that represent hemispheres, equatorial

belts, and the whole Earth 171

Spatial functions supported by DB2 Geodetic Data

Management Feature 174

DB2 Geodetic Data Management Feature stored

procedures and catalog views 178

Datums supported by DB2 Geodetic Data

Management Feature 179

Geodetic spheroids 186

Chapter 20. Stored procedures 187

GSE_export_sde 188

GSE_import_sde 189

ST_alter_coordsys 192

ST_alter_srs 193

ST_create_coordsys 197

ST_create_srs 199

ST_disable_autogeocoding 205

ST_disable_db 207

ST_drop_coordsys 208

ST_drop_srs 209

ST_enable_autogeocoding 211

ST_enable_db 213

ST_export_shape 214

ST_import_shape 218

ST_register_geocoder 225

ST_register_spatial_column 229

ST_remove_geocoding_setup 231

ST_run_geocoding 233

ST_setup_geocoding 236

ST_unregister_geocoder 239

ST_unregister_spatial_column 240

Chapter 21. Catalog views 243

The DB2GSE.ST_GEOMETRY_COLUMNS catalog

view 243

The DB2GSE.SPATIAL_REF_SYS catalog view . . 244

The DB2GSE.ST_COORDINATE_SYSTEMS catalog

view 245

The DB2GSE.ST_GEOMETRY_COLUMNS catalog

view 246

The DB2GSE.ST_GEOCODER_PARAMETERS

catalog view 247

The DB2GSE.ST_GEOCODERS catalog view . . . 248

The DB2GSE.ST_GEOCODING catalog view . . . 249

The DB2GSE.ST_GEOCODING_PARAMETERS

catalog view 250

The DB2GSE.ST_SIZINGS catalog view 251

The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog view 252

The DB2GSE.ST_UNITS_OF_MEASURE catalog

view 254

Chapter 22. Spatial functions:

categories and uses 257

Spatial functions: categories and uses 257

Spatial functions that convert geometry values to

data exchange formats 257

Constructor functions 257

Functions that operate on data exchange

formats 258

A function that creates geometries from

coordinates 259

Examples 260

Conversion to well-known text (WKT)

representation 261

Conversion to well-known binary (WKB)

representation 262

Conversion to ESRI shape representation 263

Conversion to Geography Markup Language

(GML) representation 264

Functions that compare geographic features . . . 265

Comparison functions 265

Spatial comparison functions 267

Functions that check whether one geometry

contains another 267

ST_Contains 267

ST_Within 269

Functions that check intersections between

geometries 270

ST_Intersects 270

ST_Crosses 271

ST_Overlaps 273

ST_Touches 274

Functions that compare geometries’ envelopes . . 275

ST_EnvIntersects 275

ST_MBRIntersects 275

Functions that check whether two things are

identical 276

ST_EqualCoordsys 276

ST_Equals 276

ST_EqualSRS 277

Function that checks for no intersection between

two geometries 277

Function that compares geometries to the DE-9IM

pattern matrix string 278

Functions that return information about properties

of geometries 279

Contents v

Function that returns data-type information . . . 279

Functions that return coordinate and measure

information 279

ST_CoordDim 280

ST_IsMeasured 280

ST_IsValid 280

ST_Is3D 280

ST_M 280

ST_MaxM 280

ST_MaxX 280

ST_MaxY 280

ST_MaxZ 280

ST_MinM 280

ST_MinX 281

ST_MinY 281

ST_MinZ 281

ST_X 281

ST_Y 281

ST_Z 281

Functions that return information about geometries

within a geometry 281

ST_Centroid 281

ST_EndPoint 282

ST_GeometryN 282

ST_LineStringN 282

ST_MidPoint 282

ST_NumGeometries 282

ST_NumLineStrings 282

ST_NumPoints 282

ST_NumPolygons 282

ST_PointN 282

ST_PolygonN 282

ST_StartPoint 282

Functions that show information about boundaries,

envelopes, and rings 283

ST_Envelope 283

ST_EnvIntersects 283

ST_ExteriorRing 283

ST_InteriorRingN 283

ST_MBR 283

ST_MBRIntersects 283

ST_NumInteriorRing 283

ST_Perimeter 284

Functions that return information about a

geometry’s dimensions 284

ST_Area 284

ST_Dimension 284

ST_Length 284

Functions that reveal whether a geometry is closed,

empty, or simple 284

ST_IsClosed 284

ST_IsEmpty 284

ST_IsSimple 284

Functions that identify a geometry’s spatial

reference system 285

ST_SrsId (also called ST_SRID) 285

ST_SrsName 285

Functions that generate new geometries from

existing geometries 285

Functions that convert one geometry to another 285

ST_Polygon 285

ST_ToGeomColl 285

ST_ToLineString 286

ST_ToMultiLine 286

ST_ToMultiPoint 286

ST_ToMultiPolygon 286

ST_ToPoint 286

ST_ToPolygon 286

Functions that create new geometries with different

space configurations 286

ST_Buffer 286

ST_ConvexHull 287

ST_Difference 288

ST_Intersection 288

ST_SymDifference 289

Functions that derive one geometry from many 290

MBR Aggregate 290

ST_Union 290

Union Aggregate 290

Functions that derive new geometries based on

measures 290

ST_FindMeasure (also called ST_LocateAlong) 291

ST_MeasureBetween (also called

ST_LocateBetween) 291

Functions that create modified forms of existing

geometries 291

ST_AppendPoint 291

ST_ChangePoint 292

ST_Generalize 292

ST_M 292

ST_PerpPoints 292

ST_RemovePoint 292

ST_X 292

ST_Y 292

ST_Z 292

Function that returns distance information . . . 292

Function that returns index information 293

Conversions between coordinate systems 293

Chapter 23. Spatial functions: syntax

and parameters 295

Spatial functions: considerations and associated

data types 295

Factors to consider 296

Treating values of ST_Geometry as values of a

subtype 296

Spatial functions listed according to input type 297

EnvelopesIntersect 299

MBR Aggregate 301

ST_AppendPoint 303

ST_Area 304

ST_AsBinary 307

ST_AsGML 308

ST_AsShape 309

ST_AsText 310

ST_Boundary 312

ST_Buffer 313

ST_Centroid 316

ST_ChangePoint 317

ST_Contains 319

ST_ConvexHull 320

ST_CoordDim 322

vi IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_Crosses 323

ST_Difference 324

ST_Dimension 326

ST_Disjoint 327

ST_Distance 329

ST_Edge_GC_USA 332

ST_Endpoint 336

ST_Envelope 336

ST_EnvIntersects 338

ST_EqualCoordsys 339

ST_Equals 340

ST_EqualSRS 341

ST_ExteriorRing 342

ST_FindMeasure or ST_LocateAlong 343

ST_Generalize 345

ST_GeomCollection 347

ST_GeomCollFromTxt 349

ST_GeomCollFromWKB 350

ST_Geometry 351

ST_GeometryN 353

ST_GeometryType 354

ST_GeomFromText 355

ST_GeomFromWKB 356

ST_GetIndexParms 357

ST_InteriorRingN 360

ST_Intersection 361

ST_Intersects 362

ST_Is3d 364

ST_IsClosed 365

ST_IsEmpty 367

ST_IsMeasured 368

ST_IsRing 369

ST_IsSimple 370

ST_IsValid 371

ST_Length 372

ST_LineFromText 374

ST_LineFromWKB 375

ST_LineString 376

ST_LineStringN 377

ST_M 378

ST_MaxM 380

ST_MaxX 381

ST_MaxY 383

ST_MaxZ 384

ST_MBR 385

ST_MBRIntersects 387

ST_MeasureBetween, ST_LocateBetween 388

ST_MidPoint 390

ST_MinM 391

ST_MinX 392

ST_MinY 393

ST_MinZ 395

ST_MLineFromText 396

ST_MLineFromWKB 397

ST_MPointFromText 399

ST_MPointFromWKB 400

ST_MPolyFromText 401

ST_MPolyFromWKB 403

ST_MultiLineString 404

ST_MultiPoint 406

ST_MultiPolygon 407

ST_NumGeometries 409

ST_NumInteriorRing 409

ST_NumLineStrings 410

ST_NumPoints 411

ST_NumPolygons 412

ST_Overlaps 413

ST_Perimeter 415

ST_PerpPoints 417

ST_Point 419

ST_PointFromText 422

ST_PointFromWKB 423

ST_PointN 424

ST_PointOnSurface 425

ST_PolyFromText 426

ST_PolyFromWKB 427

ST_Polygon 428

ST_PolygonN 430

ST_Relate 431

ST_RemovePoint 432

ST_SrsId, ST_SRID 434

ST_SrsName 435

ST_StartPoint 436

ST_SymDifference 437

ST_ToGeomColl 439

ST_ToLineString 440

ST_ToMultiLine 441

ST_ToMultiPoint 442

ST_ToMultiPolygon 443

ST_ToPoint 444

ST_ToPolygon 445

ST_Touches 446

ST_Transform 448

ST_Union 450

ST_Within 452

ST_WKBToSQL 453

ST_WKTToSQL 454

ST_X 455

ST_Y 456

ST_Z 458

Union aggregate 459

Chapter 24. Transform groups 461

Transform groups 461

ST_WellKnownText transform group 461

ST_WellKnownBinary transform group 462

ST_Shape transform group 464

ST_GML transform group 465

Chapter 25. Supported data formats 467

Well-known text (WKT) representation 467

Well-known binary (WKB) representation 472

Shape representation 474

Geography Markup Language (GML)

representation 474

Chapter 26. Supported coordinate

systems 475

Coordinate systems syntax 475

Supported linear units 476

Supported angular units 477

Contents vii

Supported spheroids 478

Supported geodetic datums 479

Supported prime meridians 482

Supported map projections 483

Chapter 27. Spatial tasks from the

DB2 Control Center 485

Altering a coordinate system 485

Creating a coordinate system 485

Creating a spatial column 485

Creating a spatial index 486

Running geocoding 486

Setting up geocoding 486

Altering a spatial reference system 487

Importing spatial data 487

DB2 technical library in PDF format 489

Ordering printed DB2 books 493

DB2 troubleshooting information . . . 495

Notices 497

Contacting IBM 501

Index 503

viii IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 1. About DB2 Spatial Extender

This section introduces DB2 Spatial Extender by explaining its purpose, describing

the data that it supports, and explaining how its underlying concepts fit together.

The purpose of DB2 Spatial Extender

Use DB2® Spatial Extender to generate and analyze spatial information about

geographic features, and to store and manage the data on which this information is

based. A geographic feature (sometimes called feature in this discussion, for short)

is anything in the real world that has an identifiable location, or anything that

could be imagined as existing at an identifiable location. A feature can be:

v An object (that is, a concrete entity of any sort); for example, a river, forest, or

range of mountains.

v A space; for example, a safety zone around a hazardous site, or the marketing

area serviced by a particular business.

v An event that occurs at a definable location; for example, an auto accident that

occurred at a particular intersection, or a sales transaction at a specific store.

Features exist in multiple environments. For example, the objects mentioned in the

preceding list—river, forest, mountain range—belong to the natural environment.

Other objects, such as cities, buildings, and offices, belong to the cultural

environment. Still others, such as parks, zoos, and farmland, represent a

combination of the natural and cultural environments.

In this discussion, the term spatial information refers to the kind of information

that DB2 Spatial Extender makes available to its users—namely, facts and figures

about the locations of geographic features. Examples of spatial information are:

v Locations of geographic features on the map (for example, longitude and

latitude values that define where cities are situated)

v The location of geographic features with respect to one another (for example,

points within a city where hospitals and clinics are located, or the proximity of

the city’s residences to local earthquake zones)

v Ways in which geographic features are related to each other (for example,

information that a certain river system is enclosed within a specific region, or

that certain bridges in that region cross over the river system’s tributaries)

v Measurements that apply to one or more geographic features (for example, the

distance between an office building and its lot line, or the length of a bird

preserve’s perimeter)

Spatial information, either by itself or in combination with traditional relational

data, can help you with such activities as defining the areas in which you provide

services, and determining locations of possible markets. For example, suppose that

the manager of a county welfare district needs to verify which welfare applicants

and recipients actually live within the area that the district services. DB2 Spatial

Extender can derive this information from the serviced area’s location and from the

addresses of the applicants and recipients.

Or suppose that the owner of a restaurant chain wants to do business in nearby

cities. To determine where to open new restaurants, the owner needs answers to

© Copyright IBM Corp. 1998, 2006 1

such questions as: Where in these cities are concentrations of clientele who

typically frequent my restaurants? Where are the major highways? Where is the

crime rate lowest? Where are the competition’s restaurants located? DB2 Spatial

Extender and DB2 can produce information to answer these questions.

Furthermore, front-end tools, though not required, can play a part. To illustrate: a

visualization tool can put information produced by DB2 Spatial Extender—for

example, the location of concentrations of clientele and the proximity of major

highways to proposed restaurants—in graphic form on a map. Business

intelligence tools can put associated information—for example, names and

descriptions of competing restaurants—in report form.

How data represents geographic features

In DB2® Spatial Extender, a geographic feature can be represented by one or more

data items; for example, the data items in a row of a table. (A data item is the

value or values that occupy a cell of a relational table.) For example, consider office

buildings and residences. In Figure 1, each row of the BRANCHES table represents

a branch office of a bank. Similarly, each row of the CUSTOMERS table in Figure 1,

taken as a whole, represents a customer of the bank. However, a subset of each

row—specifically, the data items that constitute a customer’s address—represent

the customer’s residence.

The tables in Figure 1 contain data that identifies and describes the bank’s

branches and customers. This discussion refers to such data as business data.

A subset of the business data—the values that denote the branches’ and customers’

addresses—can be translated into values from which spatial information is

generated. For example, as shown in Figure 1, one branch office’s address is 92467

Airzone Blvd., San Jose, CA 95141, USA. A customer’s address is 9 Concourt Circle,

San Jose, CA 95141, USA. DB2 Spatial Extender can translate these addresses into

values that indicate where the branch and the customer’s home are located with

respect to one another. Figure 2 on page 3 shows the BRANCHES and

CUSTOMERS tables with new columns that are designated to contain such values.

Figure 1. Data that represents geographic features. The row of data in the BRANCHES table represents a branch

office of a bank. The address data in the CUSTOMERS table represents the residence of a customer. The names and

addresses in both tables are fictional.

2 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Because spatial information will be derived from the data items stored in the

LOCATION column, these data items are referred to in this discussion as spatial

data.

The nature of spatial data

Spatial data is made up of coordinates that identify a location. Spatial Extender

works with two-dimensional coordinates specified by x and y or longitude and

latitude values.

A coordinate is a number that denotes either:

v A position along an axis relative to an origin, given a unit of length.

v A direction relative to a base line or plane, given a unit of angular measure.

For example, latitude is a coordinate that denotes an angle relative to the

equatorial plane, usually in degrees. Longitude is a coordinate that denotes an

angle relative to the Greenwich meridian, also usually in degrees. Thus, on a map,

the position of Yellowstone National Park is defined by latitude 44.45 degrees

north of the equator and longitude 110.40 degrees west of the Greenwich meridian.

More precisely, these coordinates reference the center of Yellowstone National Park

in the USA.

The definitions of latitude and longitude, their points, lines, and planes of

reference, units of measure, and other associated parameters are referred to

collectively as a coordinate system. Coordinate systems can be based on values

other than latitude and longitude. These coordinate systems have their own points,

lines, and planes of reference, units of measure, and additional associated

parameters (such as the projection transformation).

The simplest spatial data item consists of a single coordinate pair that defines the

position of a single geographic location. A more extensive spatial data item consists

of several coordinates that define a linear path that a road or river might form. A

third kind consists of coordinates that define the boundary of an area; for example,

the boundary of a land parcel or flood plain.

Each spatial data item is an instance of a spatial data type. The data type for

coordinates that mark a single location is ST_Point; the data type for coordinates

that define a linear path is ST_LineString; and the data type for coordinates that

define the boundary of an area is ST_Polygon. These types, together with the other

spatial data types, are structured types that belong to a single hierarchy.

Figure 2. Tables with spatial columns added. In each table, the LOCATION column will contain coordinates that

correspond to the addresses.

Chapter 1. About DB2 Spatial Extender 3

The nature of geodetic data

Geodetic data is spatial data that is expressed in latitude and longitude

coordinates, in a coordinate system that describes a round, continuous, closed

surface.

DB2 Geodetic Data Management Feature uses the same data types and functions as

Spatial Extender to store geographic data in a DB2 database. Unlike Spatial

Extender, which treats the Earth as a flat map, Geodetic Data Management Feature

treats the Earth as a globe that has no edges or seams at the poles or the dateline.

A flat map requires projected coordinates to transform spherical coordinates to

planar coordinates. Whereas, Geodetic Data Management Feature uses latitude and

longitude on an ellipsoidal model of the Earth’s surface. Calculations such as line

intersection, area overlap, distance, and area, are accurate and precise, regardless of

location.

Where spatial data comes from

You can obtain spatial data by:

v Deriving it from business data

v Generating it from spatial functions

v Importing it from external sources

Using business data as source data

DB2 Spatial Extender can derive spatial data from business data, such as addresses

(as mentioned in “How data represents geographic features” on page 2). This

process is called geocoding. To see the sequence involved, consider Figure 2 on

page 3 as a “before” picture and Figure 3 as an “after” picture. Figure 2 on page 3

shows that the BRANCHES table and the CUSTOMERS table both have a column

designated for spatial data. Suppose that DB2 Spatial Extender geocodes the

addresses in these tables to obtain coordinates that correspond to the addresses,

and places the coordinates into the columns. Figure 3 illustrates this result.

 DB2 Spatial Extender uses a function, called a geocoder, to translate business data

into coordinates to allow spatial functions to operate on the data.

Using functions to generate spatial data

You can use functions to generate spatial data from input data.

Spatial data can be generated not only by geocoders, but by other functions as

well. For example, suppose that the bank whose branches are defined in the

Figure 3. Tables that include spatial data derived from source data. The LOCATION column in the CUSTOMERS table

contains coordinates that were derived from the address in the ADDRESS, CITY, POSTAL CODE, STATE_PROV, and

COUNTRY columns. Similarly, the LOCATION column in the BRANCHES table contains coordinates that were derived

from the address in this table’s ADDRESS, CITY, POSTAL CODE, STATE_PROV, and COUNTRY columns.

4 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

BRANCHES table wants to know how many customers are located within five

miles of each branch. Before the bank can obtain this information from the

database, it needs to define the zone that lies within a specified radius around each

branch. A DB2 Spatial Extender function, ST_Buffer, can create such a definition.

Using the coordinates of each branch as input, ST_Buffer can generate the

coordinates that demarcate the perimeters of the zones. Figure 4 shows the

BRANCHES table with information that is supplied by ST_Buffer.

In addition to ST_Buffer, DB2 Spatial Extender provides several other functions

that derive new spatial data from existing spatial data.

Importing spatial data

Spatial Extender provides services to import spatial data in Shapefile and SDE

Export formats.

Spatial data in Shapefile format is available from many sources through the

internet. You can download many datafiles for US and world-wide features such as

countries, states, cities, rivers, and more under the Downloads section of the

Spatial Extender web site.

You can import spatial data from files provided by external data sources. These

files typically contain data that is applied to maps: street networks, flood plains,

earthquake faults, and so on. By using such data in combination with spatial data

that you produce, you can augment the spatial information available to you. For

example, if a public works department needs to determine what hazards a

residential community is vulnerable to, it could use ST_Buffer to define a zone

around the community. The public works department could then import data on

flood plains and earthquake faults to see which of these problem areas overlap this

zone.

How features, spatial information, spatial data, and geometries fit

together

This section summarizes several basic concepts that underlie the operations of

DB2® Spatial Extender: geographic features, spatial information, spatial data, and

geometries.

DB2 Spatial Extender lets you obtain facts and figures that pertain to things that

can be defined geographically—that is, in terms of their location on earth, or

within a region of the earth. The DB2 documentation refers to such facts and

figures as spatial information, and to the things as geographic features (called features

here, for short).

Figure 4. Table that includes new spatial data derived from existing spatial data. The coordinates in the SALES_AREA

column were derived by the ST_Buffer function from the coordinates in the LOCATION column. Like the coordinates in

the LOCATION column, those in the SALES_AREA column are simulated; they are not actual.

Chapter 1. About DB2 Spatial Extender 5

For example, you could use DB2 Spatial Extender to determine whether any

populated areas overlap the proposed site for a landfill. The populated areas and

the proposed site are features. A finding as to whether any overlap exists would be

an example of spatial information. If overlap is found to exist, the extent of it

would also be an example of spatial information.

To produce spatial information, DB2 Spatial Extender must process data that

defines the locations of features. Such data, called spatial data, consists of

coordinates that reference the locations on a map or similar projection. For

example, to determine whether one feature overlaps another, DB2 Spatial Extender

must determine where the coordinates of one of the features are situated with

respect to the coordinates of the other.

In the world of spatial information technology, it is common to think of features as

being represented by symbols called geometries. Geometries are partly visual and

partly mathematical. Consider their visual aspect. The symbol for a feature that has

width and breadth, such as a park or town, is a multisided figure. Such a geometry

is called a polygon. The symbol for a linear feature, such as a river or a road, is a

line. Such a geometry is called a linestring.

A geometry has properties that correspond to facts about the feature that it

represents. Most of these properties can be expressed mathematically. For example,

the coordinates for a feature collectively constitute one of the properties of the

feature’s corresponding geometry. Another property, called dimension, is a

numerical value that indicates whether a feature has length or breadth.

Spatial data and certain spatial information can be viewed in terms of geometries.

Consider the example, described earlier, of the populated areas and the proposed

landfill site. The spatial data for the populated areas includes coordinates stored in

a column of a table in a DB2 database. The convention is to regard what is stored

not simply as data, but as actual geometries. Because populated areas have width

and breadth, you can see that these geometries are polygons.

Like spatial data, certain spatial information is also viewed in terms of geometries.

For example, to determine whether a populated area overlaps a proposed landfill

site, DB2 Spatial Extender must compare the coordinates in the polygon that

symbolizes the site with the coordinates of the polygons that represent populated

areas. The resulting information—that is, the areas of overlap—are themselves

regarded as polygons: geometries with coordinates, dimensions, and other

properties.

6 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 2. About geometries

This chapter discusses entities of information, called geometries, that consist of

coordinates and represent geographic features. The topics covered are:

v Geometries

v Properties of geometries

Geometries

Webster’s Revised Unabridged Dictionary defines geometry as “That branch of

mathematics which investigates the relations, properties, and measurement of

solids, surfaces, lines, and angles; the science which treats of the properties and

relations of magnitudes; the science of the relations of space.” The word geometry

has also been used to denote the geometric features that, for the past millennium

or more, cartographers have used to map the world. An abstract definition of this

new meaning of geometry is “a point or aggregate of points representing a feature

on the ground.”

In DB2 Spatial Extender, the operational definition of geometry is “a model of a

geographic feature.” The model can be expressed in terms of the feature’s

coordinates. The model conveys information; for example, the coordinates identify

the position of the feature with respect to fixed points of reference. Also, the model

can be used to produce information; for example, the ST_Overlaps function can

take the coordinates of two proximate regions as input and return information as

to whether the regions overlap or not.

The coordinates of a feature that a geometry represents are regarded as properties

of the geometry. Several kinds of geometries have other properties as well; for

example, area, length, and boundary.

The geometries supported by DB2 Spatial Extender form a hierarchy, which is

shown in the following figure. The geometry hierarchy is defined by the OpenGIS

Consortium, Inc. (OGC) document ″OpenGIS Simple Features Specification for

SQL″. Seven members of the hierarchy are instantiable. That is, they can be defined

with specific coordinate values and rendered visually as the figure shows.

© Copyright IBM Corp. 1998, 2006 7

The spatial data types supported by DB2 Spatial Extender are implementations of

the geometries shown in the figure.

As the figure indicates, a superclass called geometry is the root of the hierarchy.

The root type and other proper subtypes in the hierarchy are not instantiable.

Additionally, users can define their own instantiable or not instantiable proper

subtypes.

The subtypes are divided into two categories: the base geometry subtypes, and the

homogeneous collection subtypes.

The base geometries include:

Points A single point. Points represent discrete features that are perceived as

occupying the locus where an east-west coordinate line (such as a parallel)

intersects a north-south coordinate line (such as a meridian). For example,

suppose that the notation on a world map shows that each city on the map

is located at the intersection of a parallel and a meridian. A point could

represent each city.

Linestrings

A line between two or more points. It does not have to be a straight line.

Linestrings represent linear geographic features (for example, streets,

canals, and pipelines).

Polygons

A polygon or surface within a polygon. Polygons represent multisided

geographic features (for example, welfare districts, forests, and wildlife

habitats).

The homogeneous collections include:

Figure 5. Hierarchy of geometries supported by DB2 Spatial Extender. Instantiable geometries in this figure include

examples of how they might be rendered visually.

8 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Multipoints

A multiple point geometry collection. Multipoints represent multipart

features whose components are each located at the intersection of an

east-west coordinate line and a north-south coordinate line (for example,

an island chain whose members are each situated at an intersection of a

parallel and meridian).

Multilinestrings

A multiple curve geometry collection with multiple strings.

Multilinestrings represent multipart features that are made up (for

example, river systems and highway systems).

Multipolygons

A multiple surface geometry collection with multiple polygons.

Multipolygons represent multipart features made up of multisided units or

components (for example, the collective farmlands in a specific region, or a

system of lakes).

As their names imply, the homogeneous collections are collections of base

geometries. In addition to sharing base geometry properties, homogeneous

collections have some of their own properties as well.

Properties of geometries

This topic describes geometries’ properties. These properties are:

v The type that a geometry belongs to

v Geometry coordinates

v A geometry’s interior, boundary, and exterior

v The quality of being simple or non-simple

v The quality of being empty or not empty

v A geometry’s minimum bounding rectangle or envelope

v Dimension

v The identifier of the spatial reference system with which a geometry is

associated

Type

Each geometry belongs to a type in the hierarchy of geometries supported by DB2

Spatial Extender. Seven types in the hierarchy—points, linestrings, polygons,

geometry collections, multipoints, multilinestrings, and multipolygons—can be

defined with specific coordinate values.

Geometry coordinates

All geometries include at least one X coordinate and one Y coordinate, unless they

are empty geometries, in which case they contain no coordinates at all. In addition,

a geometry can include one or more Z coordinates and M coordinates. X, Y, Z, and

M coordinates are represented as double–precision numbers. The following

subsections explain:

v X and Y coordinates

v Z coordinates

v M coordinates

Chapter 2. About geometries 9

X and Y coordinates

An X coordinate value denotes a location that is relative to a point of reference to

the east or west. A Y coordinate value denotes a location that is relative to a point

of reference to the north or south.

Z coordinates

Some geometries have an associated altitude or depth. Each of the points that form

the geometry of a feature can include an optional Z coordinate that represents an

altitude or depth normal to the earth’s surface.

M coordinates

An M coordinate (measure) is a value that conveys information about a geographic

feature and that is stored together with the coordinates that define the feature’s

location. For example, suppose that you are representing highways in your

application. If you want your application to process values that denote linear

distances or mileposts, you can store these values along with the coordinates that

define locations along the highway. M coordinates are represented as

double–precision numbers.

Interior, boundary, and exterior

All geometries occupy a position in space defined by their interiors, boundaries,

and exteriors. The exterior of a geometry is all space not occupied by the geometry.

The boundary of a geometry serves as the interface between its interior and

exterior. The interior is the space occupied by the geometry.

Simple or non-simple

The values of some geometry subtypes (linestrings, multipoints, and

multilinestrings) are either simple or non-simple. A geometry is simple if it obeys

all the topological rules imposed on its subtype and non-simple if it doesn’t. A

linestring is simple if it does not intersect its interior. A multipoint is simple if

none of its elements occupy the same coordinate space. Points, surfaces,

multisurfaces, and empty geometries are always simple.

Closed

A curve is closed if its start and end points are the same. A multicurve is closed if

all of its elements are closed. A ring is a simple, closed curve.

Empty or not empty

A geometry is empty if it does not have any points. The envelope, boundary,

interior, and exterior of an empty geometry are not defined and will be represented

as null. An empty geometry is always simple. Empty polygons and multipolygons

have an area of 0.

Minimum bounding rectangle (MBR)

The MBR of a geometry is the bounding geometry formed by the minimum and

maximum (X,Y) coordinates. Except for the following special cases, the MBRs of

geometries form a boundary rectangle:

v The MBR of any point is the point itself, because its minimum and maximum X

coordinates are the same and its minimum and maximum Y coordinates are the

same.

10 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v The MBR of a horizontal or vertical linestring is a linestring represented by the

boundary (the endpoints) of the source linestring.

Dimension

A geometry can have a dimension of –1, 0, 1, or 2. The dimensions are listed as

follows:

–1 Is empty

0 Has no length and an area of 0 (zero)

1 Has a length larger than 0 (zero) and an area of 0 (zero)

2 Has an area that is larger than 0 (zero)

The point and multipoint subtypes have a dimension of zero. Points represent

dimensional features that can be modeled with a single tuple of coordinates, while

multipoint subtypes represent data that must be modeled with a set of points.

The linestring and multilinestring subtypes have a dimension of one. They store

road segments, branching river systems and any other features that are linear in

nature.

Polygon and multipolygon subtypes have a dimension of two. Features whose

perimeter encloses a definable area, such as forests, parcels of land, and lakes, can

be represented by either the polygon or multipolygon data type.

Spatial reference system identifier

The numeric identifier for a spatial reference system determines which spatial

reference system is used to represent the geometry.

All spatial reference systems known to the database can be accessed through the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Chapter 2. About geometries 11

12 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 3. How to use DB2 Spatial Extender

How to use DB2 Spatial Extender

Support and use of DB2® Spatial Extender involves two main activities: setting up

DB2 Spatial Extender and working on projects that use spatial data. This topic

introduces the interfaces you can use to perform spatial tasks.

Interfaces to DB2 Spatial Extender and associated

functionality

Several interfaces let you set up DB2 Spatial Extender and create projects that use

spatial data. These interfaces are:

v Open source projects that include support for DB2 Spatial and Geodetic Data

Management Features. Some open source projects with this support include:

– GeoTools (http://www.geotools.org/), a Java library for building spatial

applications

– GeoServer (http://docs.codehaus.org/displaly/GEOS/Home), a Web map

server and Web feature server

– uDIG (http://udig.refractions.net/confluence/display/UDIG/Home), a

desktop spatial data visualization and analysis application
v The DB2 Control Center, a graphical-user interface that includes windows,

notebooks, and menu choices that support DB2 Spatial Extender.

v A command line processor (CLP) provided by DB2 Spatial Extender. It is called

the db2se CLP.

v Application programs that call DB2 Spatial Extender’s stored procedures.

Other interfaces let you generate spatial information. They include:

v SQL queries that you submit from the DB2 CLP, from a query window in the

DB2 Control Center, or from an application program.

v Visualization tools that render spatial information in graphical form. An example

is ArcExplorer for DB2, which was created by the Environmental Systems

Research Institute (ESRI) for IBM. ArcExplorer for DB2 can be downloaded from

the DB2 Spatial Extender Web site: http://www.ibm.com/software/data/
spatial/.

Tasks that you perform to set up DB2 Spatial Extender and

create projects

This section provides an overview of the tasks you perform to set up DB2 Spatial

Extender and work on projects that use spatial data. It includes a scenario that

illustrates the tasks. The tasks fall into two categories:

v Setting up DB2 Spatial Extender

v Creating projects that use spatial data

Setting up DB2 Spatial Extender

This section lists the tasks that you perform to set up DB2 Spatial Extender and

uses a scenario to illustrate how a fictional company might approach each task.

© Copyright IBM Corp. 1998, 2006 13

http://www.geotools.org/
http://docs.codehaus.org/displaly/GEOS/Home
http://udig.refractions.net/confluence/display/UDIG/Home
http://www.ibm.com/software/data/spatial/
http://www.ibm.com/software/data/spatial/

To set up DB2 Spatial Extender:

1. Plan and make preparations (decide what projects to create, decide what

interface or interfaces to use, select personnel to administer DB2 Spatial

Extender and create the projects, and so on).

Scenario: The Safe Harbor Real Estate Insurance Company’s information

systems environment includes a DB2 database system and a separate file

system for spatial data only. To an extent, query results can include

combinations of data from both systems. For example, a DB2 table stores

information about revenue, and a file in the file system contains locations of the

company’s branch offices. Therefore, it is possible to find out which offices

bring in revenues of specified amounts, and then to determine where these

offices are located. But data from the two systems cannot be integrated (for

example, users cannot join DB2 columns with file system records, and DB2

services such as query optimization are unavailable to the file system.) To

overcome these disadvantages, Safe Harbor acquires DB2 Spatial Extender and

establishes a new Spatial Development department (called a Spatial

department, for short).

The Spatial department’s first mission is to include DB2 Spatial Extender in

Safe Harbor’s DB2 environment:

v The department’s management team appoints a spatial administration team

to install and implement DB2 Spatial Extender, and a spatial analysis team to

generate and analyze spatial information.

v Because the administration team has a strong UNIX® background, it decides

to use the db2se CLP to administer DB2 Spatial Extender.

v Because Safe Harbor’s business decisions are driven primarily by customers’

requirements, the management team decides to install DB2 Spatial Extender

in the database that contains information about its customers. Most of this

information is stored in a table called CUSTOMERS.
2. Install DB2 Spatial Extender.

Scenario: The spatial administration team installs DB2 Spatial Extender on a

UNIX machine in a DB2 environment.

3. If you have DB2 Spatial Extender Version 8, migrate your spatial data to DB2

Version 9.

Scenario: The Version 9 release is the first one that Safe Harbor has acquired.

No migration is needed.

4. Configure your database to accommodate spatial data. You adjust configuration

parameters to ensure that your database has enough memory and space for

spatial functions, log files, and DB2 Spatial Extender applications.

Scenario: A member of the spatial administration team adjusts the transaction

log characteristics, application heap size, and application control heap size to

values suited to DB2 Spatial Extender’s requirements.

5. Set up spatial resources for your database. These resources include a system

catalog, spatial data types, spatial functions, a geocoder, and other objects. The

task of setting up these resources is referred to as enabling the database for

spatial operations.

The geocoder supplied by DB2 Spatial Extender translates United States

addresses into spatial data. It is called DB2SE_USA_GEOCODER. Your

organization and others can provide geocoders that translate addresses inside

or outside the United States, as well as other kinds of data, into spatial data.

Scenario: The spatial administration team sets up resources that will be

required by the projects that it is planning.

14 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v A member of the team issues a command to obtain the resources that enable

the database for spatial operations. These resources include the DB2 Spatial

Extender catalog, spatial data types, spatial functions, and so on.

v Because Safe Harbor is starting to extend its business into Canada, the spatial

administration team begins soliciting Canadian vendors for geocoders that

translate Canadian addresses into spatial data. Safe Harbor does not expect

to acquire such geocoders for a few months yet. Therefore, the first locations

on which it will gather data will be in the United States.

Creating projects that use spatial data

After you set up DB2 Spatial Extender, you are ready to undertake projects that

use spatial data. This section lists the tasks involved in creating such a project and

continues the scenario in which the Safe Harbor Real Estate Insurance Company

seeks to integrate business and spatial data.

To create a project that uses spatial data:

1. Plan and make preparations (set goals for the project, decide what tables and

data you need, determine what coordinate system or systems to use, and so

on).

Scenario: The Spatial department prepares to develop a project; for example:

v The management team sets these goals for the project:

– To determine where to establish new branch offices

– To adjust premiums on the basis of customers’ proximity to hazardous

areas (areas with high rates of traffic accidents, areas with high rates of

crime, flood zones, earthquake faults, and so on)
v This particular project will be concerned with customers and offices in the

United States. Therefore, the spatial administration team decides to:

– Use a coordinate system for the United States that DB2 Spatial Extender

provides. It is called GCS_NORTH_AMERICAN_1983.

– Use DB2SE_USA_GEOCODER, because it is designed to geocode United

States addresses.
v The spatial administration team decides what data is needed to meet the

project’s goals and what tables will contain this data.
2. Create a coordinate system if you need to do so.

Scenario: Because Safe Harbor has decided to use

GCS_NORTH_AMERICAN_1983, the company can ignore this step.

3. Decide whether an existing spatial reference system meets your needs. If none

does, create one.

A spatial reference system is a set of parameter values that includes:

v Coordinates that define the maximum possible extent of space referenced by

a given range of coordinates. You need to determine the maximum possible

range of coordinates that can be determined from the coordinate system that

you are using, and to select or create a spatial reference system that reflects

this range.

v The name of the coordinate system from which the coordinates are derived.

v Numbers used in mathematical operations to convert coordinates received as

input into values that can be processed with maximum efficiency. The

coordinates are stored in their converted form and returned to the user in

their original form.

Chapter 3. How to use DB2 Spatial Extender 15

Scenario: DB2 Spatial Extender provides a spatial reference system,

NAD83_SRS_1, that is designed to be used with

GCS_NORTH_AMERICAN_1983. The spatial administration team decides to

use NAD83_SRS_1.

4. Create spatial columns as needed. Note that in many cases, if data in a spatial

column is to be read by a visualization tool, the column must be the only

spatial column in the table or view to which it belongs. Alternatively, if the

column is one of multiple spatial columns in a table, it could be included in a

view that has no other spatial columns, and visualization tools could read the

data from this view.

Scenario: The spatial administration team defines columns to contain spatial

data.

v The team adds a LOCATION column to the CUSTOMERS table. The table

already contains customers’ addresses. DB2SE_USA_GEOCODER will

translate them into spatial data. Then DB2 will store this data in the

LOCATION column.

v The team creates an OFFICE_LOCATIONS table and an OFFICE_SALES table

to contain data that is now stored in the separate file system. This data

includes the addresses of Safe Harbor’s branch offices, spatial data that was

derived from these addresses by a geocoder, and spatial data that defines a

zone within a five-mile radius around each office. The data derived by the

geocoder will go into a LOCATION column in the OFFICE_LOCATIONS

table, and the data that defines the zones will go into a SALES_AREA

column in the OFFICE_SALES table.
5. Set up spatial columns for access by visualization tools, as needed. You do this

by registering the columns in the DB2 Spatial Extender catalog. When you

register a spatial column, DB2 Spatial Extender imposes a constraint that all

data in the column must belong to the same spatial reference system. This

constraint enforces integrity of the data—a requirement of most visualization

tools.

Scenario: The spatial administration team expects to use visualization tools to

render the content of the LOCATION columns and the SALES_AREA column

graphically on a map. Therefore, the team registers all three columns.

6. Populate spatial columns:

For a project that requires spatial data to be imported, import the data.

For a project that requires a geocoder:

v Set, in advance, the control information needed when a geocoder is invoked.

v As an option, set up the geocoder to run automatically each time a new

address is added to the database, or an existing address is updated.
Run the geocoder in batch mode, as needed.

For a project that requires spatial data to be created by a spatial function,

execute this function.

Scenario: The spatial administration team populates the CUSTOMER table’s

LOCATION column, the OFFICE_LOCATIONS table, the OFFICE_SALES table,

and a new HAZARD_ZONES table:

v The team uses DB2SE_USA_GEOCODER to geocode addresses in the

CUSTOMER table. The coordinates produced by the geocoding are set in the

table’s LOCATION column.

v The team uses a utility to load office data from the file system into a file.

Then the team imports this data to the new OFFICE_LOCATIONS table.

v The team creates a HAZARD_ZONES table, registers its spatial columns, and

imports data to it. The data comes from a file supplied by a map vendor.

16 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

7. Facilitate access to spatial columns, as needed. This involves defining indexes

that enable DB2 to access spatial data quickly, and defining views that enable

users to retrieve interrelated data efficiently. If you want visualization tools to

access the views’ spatial columns, you might need to register these columns

with DB2 Spatial Extender as well.

Scenario: The spatial administration team creates indexes for the registered

columns. It then creates a view that joins columns from the CUSTOMERS and

HAZARD ZONES tables. Next, it registers the spatial columns in this view.

8. Generate spatial information and related business information. Analyze the

information. This task involves querying spatial columns and related

non-spatial columns. In such queries, you can include DB2 Spatial Extender

functions that return a wide variety of information; for example, coordinates

that define a proposed safety zone around a hazardous waste site, or the

minimum distance between this site and the nearest public building.

Scenario: The spatial analysis team runs queries to obtain information that will

help it meet the original goals: to determine where to establish new branch

offices, and to adjust premiums on the basis of customers’ proximity to hazard

areas.

Chapter 3. How to use DB2 Spatial Extender 17

18 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 4. Getting started with DB2 Spatial Extender

This chapter provides instructions for installing and configuring Spatial Extender

for AIX, HP-UX, Windows, Linux, Linux on IBM System z, and Solaris Operating

Environments. This chapter also explains how to trouble shoot some of the

installation and configuration problems that you might encounter as you invoke

Spatial Extender.

Setting up and installing Spatial Extender

Prerequisites

Before you set up DB2 Spatial Extender, you must have DB2 software installed and

configured on the client and the server.

A DB2 Spatial Extender system consists of a DB2 database system, DB2 Spatial

Extender, and, for most applications, a geobrowser. A geobrowser is not required

but is useful for visually rendering the results of spatial queries, generally in the

form of maps. Databases enabled for spatial operations are located on the server.

You can use client applications to access spatial data through the DB2 Spatial

Extender stored procedures and spatial queries. You can also configure DB2 Spatial

Extender in a stand–alone environment, which is a configuration where both the

client and server reside on the same machine. In both client-server and stand–alone

configurations, you can view spatial data with a geobrowser, such as an open

source geobrowser, ArcExplorer for DB2, or ESRI’s ArcGIS tool suites running with

ArcSDE.

You can download a free copy of ArcExplorer for DB2 from IBM’s DB2 Spatial

Extender Web site:

http://www.ibm.com/software/data/spatial/

To do this task... :

1. Ensure that your system meets all software requirements.

2. Install Spatial Extender. The steps vary depending on your operating system:

v Windows

v AIX

v HP-UX

v Solaris Operating Environment

v Linux
3. For UNIX platforms: Create a DB2 Spatial Extender instance environment.

4. Verify the installation.

5. If necessary, see the troubleshooting tips and take appropriate actions to correct

any problems.

6. If you want to access DB2 documentation on your computer and you have not

yet installed the DB2 Information Center, then refer to either Installing the DB2

Information Center (UNIX)″ or Installing the DB2 Information Center

(Windows).The DB2 Information Center contains documentation for the DB2

database system and DB2 database related products.

© Copyright IBM Corp. 1998, 2006 19

http://www.ibm.com/software/data/spatial/

Related tasks

 “Creating the DB2 Spatial Extender instance environment” on page 28

System requirements for installing Spatial Extender

Before you install DB2 Spatial Extender, ensure that your system meets all the

software and disk space requirements described below.

Operating systems

You can install DB2 Spatial Extender on 32–bit Windows or Linux on Intel-based

systems. You can also install DB2 Spatial Extender on 64–bit UNIX systems such as

AIX, HP-UX, Solaris Operating Environment, Linux, and Linux for System z.

Software requirements

To install Spatial Extender, you must have the following DB2 software installed

and configured on the server:

Server software

You must install DB2 before you install DB2 Spatial Extender. If you plan to

use the DB2 Control Center, create and configure the DB2 Administration

Server (DAS). For more information on creating and configuring DAS, see

the IBM DB2 Administration Guide: Implementation.

Spatial client software

If you install DB2 Spatial Extender on Windows, the default installation for

Spatial Extender includes the spatial client. For DB2 Spatial Extender on

AIX, HP-UX, Solaris Operating Environment, Linux for Intel, or Linux on

System z, you can install the spatial client when you install the DB2 server

with the administration or application development client. If you do not

install these clients, you must install the spatial client manually by

choosing the Custom installation option.

Disk space requirements

To install Spatial Extender, your system must meet the disk space requirements

listed in the following table. The library code for DB2 Spatial Extender integrates

the code for DB2 Geodetic Data Management Feature but not the Geodetic license

key.

 Table 1. Disk space requirements for DB2 Spatial Extender

DB2 Spatial Extender software Disk space

Server software for DB2 Spatial Extender: 596 MB total disk space:

v Spatial Extender and Geodetic Data

Management Feature server library code,

and documentation

v 33 MB

Table 1 specifies the disk space required when you install a DB2 database system

and DB2 Spatial Extender in a typical installation for Windows or with pre-selected

components in AIX, HP-UX, Solaris Operating Environment, Linux for Intel, and

Linux for System z. If you are installing DB2 Spatial Extender or have installed

DB2 database with a different installation type, your disk space calculations will

differ.

20 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

When your system meets all the software and disk space requirements, you can

install Spatial Extender.

Installing DB2 Spatial Extender for Windows

Before you install the DB2 Spatial Extender feature, you must have a DB2 server

product installed.

This task is part of the larger task of Setting up DB2 Spatial Extender.

You can install DB2 Spatial Extender on Windows operating systems by using the

DB2 Setup wizard or a response file.

Recommendation:

Use the DB2 Setup wizard to install Spatial Extender. The setup wizard provides

an easy-to-use graphical interface with installation help, automated user and group

creation, protocol configuration, and instance creation.

If you are using the DB2 Setup wizard to install Spatial Extender, you can click

Cancel at any point during the installation to exit the process.

To do this task... :

1. To install Spatial Extender for Windows using the DB2 Setup wizard:

a. Insert the Spatial Extender CD into the CD drive. The DB2 Setup

Launchpad, an interface from which you can install DB2 Spatial Extender,

opens.

b. Click Install a Product.

c. Select DB2 Spatial Extender as the product you want to install and click

NEXT. The DB2 Setup wizard launches. Click NEXT. Use the DB2 Setup

wizard to guide you through setup, and through the remaining installation

steps. At any time during the installation, you can click Help to launch the

online installation help.
2. To install Spatial Extender for Windows using the response file:

a. Log on to the system with the user account that you want to use to perform

the installation.

b. Insert the Spatial Extender CD. See the DB2 Installation and Configuration

Supplement for more information.

c. Run the setup program by issuing db2setup command from a command

prompt.

d. After the installation is complete, check the messages in the log file.

db2setup command

�� db2setup

-f

-i

language

-l

log_file

-t

trace_file
 �

�
-u

response_file

-?

-h

 ��

Where:

-f Forces any DB2 processes to stop before installing.

Chapter 4. Getting started with DB2 Spatial Extender 21

-i (language)

Is the two letter language code of the language in which to perform the

installation.

-l (log_file)

Is the full path and file name of the log file to use.

-t (trace_file)

Generates a fully qualified file with install trace information.

-u (response_file)

Specifies the fully qualified response file name. If you changed and

renamed the sample response file that is provided, make sure that this

parameter matches the new name. This parameter is required. The

response file is located at db2\Windows\samples\db2gse.rsp on your DB2

Spatial Extender installation CD.

-?, -h Generates usage information.

Installing DB2 Spatial Extender for AIX

Prerequisites

Before you install Spatial Extender on AIX:

v Ensure your system meets all software, memory, and disk space requirements.

v Update the configuration parameters and restart the system for all DB2 clients

and servers on AIX.

v You must have a DB2 Version 9 server product installed if you are installing in a

server or standalone environment.

Note: Check if the DB2 Spatial Client is already installed. The Spatial Extender

client and sample components are available with the DB2 client and

server. You can install these spatial components when you use the DB2

custom installation type, and you select the Spatial Extender Client

feature under Client Support, and you select the Spatial Extender

Samples feature under Application Development Tools. If you only need

spatial client functionality and have already installed these spatial

components with DB2, you do not need to perform the following DB2

Spatial Extender installation procedure.

v You must have root authority.

You can install DB2 Spatial Extender for AIX by using the DB2 Setup wizard, by

using the db2_install script, or by using the System Management Interface Tool

(SMIT).

Recommendation: Use the DB2 Setup wizard to install Spatial Extender. The Setup

wizard provides an easy-to-use graphical interface with installation help,

automated user and group creation, protocol configuration, and instance creation.

If you choose not to use the wizard, you can install Spatial Extender by using the

db2_install script or by using AIX’s System Management Interface Tool (SMIT).

Using SMIT to install Spatial Extender is only recommended for advanced users in

situations where greater manual control over the setup process is required.

Spatial Extender is installed in the /usr/opt/db2_09_01 directory along with your

other DB2 products. After you install Spatial Extender, create your DB2 instance

environment if you did not already do so, and then verify the installation.

22 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 Setup wizard

1. Log in as a user with root authority.

2. Insert and mount the Spatial Extender CD. The DB2 Setup Launchpad, an

interface from which you can install DB2 Spatial Extender, opens. For

information on how to mount a CD, see the DB2 Installation and Configuration

Supplement.

3. Select DB2 Spatial Extender as the product you want to install and click NEXT.

4. The DB2 Setup wizard window opens. Use the DB2 Setup wizard to guide you

through setup and through the remaining installation steps. At any time during

the installation, you can click Help to launch the online installation help.

db2_install script

1. Log in as a user with root authority.

2. Insert and mount the appropriate CD.

3. Enter the ./db2_install command to start the db2_install script. The db2_install

script can be found in the root directory on your DB2 product CD. The

db2_install script prompts you for the product keyword.

4. Type GSE to install DB2 Spatial Extender.

SMIT

1. Log in as a user with root authority.

2. Insert and mount the Spatial Extender CD.

3. Enter the smit install_latest command.

4. Type /cdrom/db2 in the INPUT device/directory for the software field.

5. Click DO or press Enter to verify that the installation directory exists.

6. In the Software to install field, identify whether to install the client or server

components. Refer to the ComponentList.htm file on the DB2 Spatial Extender

CD for a complete list of the components that you should install for DB2

Spatial Extender.

7. Click DO or press Enter. You are prompted to confirm the installation

parameters. Press Enter to confirm.Log out.

Installing DB2 Spatial Extender for HP-UX

Before you install the DB2 Spatial Extender product for HP-UX:

v Ensure your system meets all hardware, software, and memory requirements.

v You must have a DB2 server product installed.

Note: Check if the DB2 Spatial Client is already installed. The Spatial Extender

client and sample components are available with the DB2 client and

server. You can install these spatial components when you use the DB2

custom installation type, and you select the Spatial Extender Client

feature under Client Support, and you select the Spatial Extender

Samples feature under Application Development Tools. If you only need

spatial client functionality and have already installed these spatial

components with DB2, you do not need to perform the following DB2

Spatial Extender installation procedure.

v Update the configuration parameters and restart the system for all DB2 clients

and servers on HP-UX

v You must have root authority.

Chapter 4. Getting started with DB2 Spatial Extender 23

You can install Spatial Extender using the DB2® Setup wizard, by using the

db2_install script, or by using the swinstall command.

Recommendation:

Use the DB2 Setup wizard to install Spatial Extender. The setup wizard provides

an easy-to-use graphical interface with installation help, automated user and group

creation, protocol configuration, and instance creation. If you choose not to use the

wizard, you can install Spatial Extender for HP-UX by using the db2_install script

or by using the swinstall command. Using the HP-UX swinstall command to install

Spatial Extender is only recommended for advanced users in situations where

greater manual control over the setup process is required.

To do this task... :

Install Spatial Extender for HP-UX using the DB2 Setup wizard

1. Insert and mount the DB2 Spatial Extender CD. The DB2 Setup Launchpad, an

interface from which you can install DB2 Spatial Extender, opens.

2. Select DB2 Spatial Extender as the product you want to install and click NEXT.

The DB2 Setup wizard launches. Click NEXT. Use the DB2 Setup wizard to

guide you through setup, and through the remaining installation steps. At any

time during the installation, you can click Help to launch the online installation

help.

Install Spatial Extender for HP-UX using the db2_install script

1. Log in as a user with root authority.

2. Insert and mount the appropriate CD.

3. Enter the ./db2_install command to start the db2_install script. The db2_install

script can be found in the root directory on your DB2 product CD. The

db2_install script prompts you for the product keyword.

4. Type GSE to install DB2 Spatial Extender.

Install Spatial Extender for HP-UX using the swinstall

command

 1. Log in as a user with root authority.

 2. Insert and mount the Spatial Extender CD.

 3. Run the swinstall program. Use the following command:

swinstall -x autoselect_dependencies=true

This command opens the Software Selection window and the Specify Source

window. If necessary, change the value in the Source host name field in the

Specify Source window.

 4. In the Source Depot Path field, enter /cdrom/db2/hpux, where /cdrom

represents the CD mount directory.

 5. Click OK to return to the Software Selection window. The Software Selection

window contains a list of available software to install.

 6. Select the products you are licensed to install.

 7. Select Mark for Install from the Actions menu to choose the product to be

installed. A message appears:

In addition to the software you just marked, other software was

automatically marked to resolve dependencies. This message will

not appear again.

24 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

8. Select OK.

 9. Select Install (analysis) from the Actions menu to begin installing the product

and to open the Install Analysis window.

10. Select OK in the Install Analysis window when the Status field displays a

Ready message.

11. Select Yes in the Confirmation windows to confirm that you want to install

the software.

View the Install window to read processing data while the software is being

installed, until the Status field indicates Ready and the Note window opens.

The swinstall program loads the file set, and runs the control scripts for the

file set.

12. Select Exit from the File menu to exit from swinstall.

13. When the installation is complete, Spatial Extender will be installed in the

/opt/ibm/db2/V9.1 directory along with your other DB2 products.

14. After you install Spatial Extender, create your DB2 instance environment if

you did not already do so, and then verify the installation.

Installing DB2 Spatial Extender for Solaris Operating Environment

Before you install the DB2 Spatial Extender product for the Solaris Operating

Environment:

v Ensure your system meets all hardware, software, and memory requirements.

v You must have a DB2 Version 9 server product installed if you are installing in a

server or stand-alone environment.

Note: Check if the DB2 Spatial Client is already installed. The Spatial Extender

client and sample components are available with the DB2 client and

server. You can install these spatial components when you use the DB2

custom installation type, and you select the Spatial Extender Client

feature under Client Support, and you select the Spatial Extender

Samples feature under Application Development Tools. If you only need

spatial client functionality and have already installed these spatial

components with DB2, you do not need to do the following procedure.

v Update the configuration parameters and restart the system for all DB2 clients

and servers in the Solaris Operating Environment.

v You must have root authority.

You can install Spatial Extender using the DB2® Setup wizard, by using the

db2_install script, or by using the pkgadd command.

Recommendation: Use the DB2 Setup wizard to install DB2 Spatial Extender.

The setup wizard provides an easy-to-use graphical interface with installation help,

automated user and group creation, protocol configuration, and instance creation.

If you choose not to use the wizard, you can install Spatial Extender using the

db2_install script or by using the Solaris Operating Environment pkgadd

command. Using the Solaris Operating Environment pkgadd command is only

recommended for advanced users in situations where greater manual control over

the setup process is required.

DB2 Spatial Extender is made up of different functions and components that are

referred to as packages in the Solaris Operating Environment. When you install

Spatial Extender using the pkgadd command, you must install each required

Chapter 4. Getting started with DB2 Spatial Extender 25

package and each associated package for the optional functions that you want to

use. The ComponentList.htm file on your DB2 Spatial Extender CD has a complete

list of the packages that you should install for DB2 Spatial Extender. The

ComponentList.htm file is located in /cdrom/db2/solaris, where /cdrom is the

mount point for your DB2 Spatial Extender CD.

Create your DB2 instance environment if you did not already do so, and then

verify the installation.

To do this task... :

Install DB2 Spatial Extender for Solaris Operating

Environments using the DB2 Setup wizard

1. Log in as a user with root authority.

2. Insert and mount your DB2 Spatial Extender CD. The DB2 Setup Launchpad,

an interface from which you can install DB2 Spatial Extender, opens. For

information on how to mount a CD, see DB2 for UNIX Quick Beginnings.

3. Select Spatial Extender as the product you want to install and click NEXT.

4. The DB2 Setup wizard launches. Use the DB2 Setup wizard to guide you

through the setup, and through the remaining installation steps. At any time

during the installation, you can click HELP to launch the online installation

help.

When the installation is complete, your Spatial Extender software will be installed

in the /opt/ibm/db2/V9.1 directory.

Install DB2 Spatial Extender using the db2_install script

1. Log in as a user with root authority.

2. Insert and mount the appropriate CD.

3. Enter the ./db2_install command to start the db2_install script. The db2_install

script can be found in the root directory on your DB2 product CD. The

db2_install script prompts you for the product keyword.

4. Type GSE to install DB2 Spatial Extender. You can install both DB2 Spatial

Extender and the DB2 Administration Client by typing SPATIAL_EXTENDER

CLIENT.

When the installation is complete, your Spatial Extender software will be installed

in the /opt/ibm/db2/V9.1 directory.

Install DB2 Spatial Extender for Solaris using the pkgadd

command

1. Log in as a user with root authority.

2. Insert and mount the DB2 Spatial Extender CD.

3. Identify the required packages and optional packages that you want to install.

See the ComponentList.htm file on your CD for a complete list of the

components that you should install for DB2 Spatial Extender.

4. Run the pkgadd command for each package that you want to install:

pkgadd package_name

26 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

In this command, package_name is the package that you want to install. For

example, if you want to install the Spatial Extender Base Server Support, you

would need to install the db2gssg81 package by entering the following

command:

pkgadd db2gssg91

When the installation is complete, your Spatial Extender software will be installed

in the /opt/ibm/db2/V9.1 directory.

Installing DB2 Spatial Extender for Linux

You can install DB2 Spatial Extender for Linux by using the DB2 Setup wizard, by

using the db2_install script, or by using the rpm command.

When the installation is complete, Spatial Extender will be installed in the

/opt/ibm/db2/V9.1 directory along with your other DB2 products. After you

install Spatial Extender, create your DB2 instance environment if you did not

already do so, and then verify the installation.

Installing DB2 Spatial Extender using the DB2 Setup wizard

Before you install the DB2 Spatial Extender product for Linux:

v Ensure your system meets all hardware, software, and memory requirements.

v Ensure that you have a DB2 server product installed if you are installing in a

server environment or a stand–alone environment.

Note:

v Check if the DB2 Spatial Client is already installed. The DB2 Spatial Extender

client and sample components are available with the DB2 client and server.You

can install these spatial components when you use the DB2 custom installation

type, and you select the Spatial Extender Client feature under Client Support,

and you select the Spatial Extender Samples feature under Application

Development Tools. If you only need spatial client functionality and have

already installed these spatial components with DB2, you do not need to

perform the following DB2 Spatial Extender installation procedure.

v Update the configuration parameters and restart the system for all DB2 clients

and servers on Linux.

v Ensure that you have root authority.

Tip: Use the DB2 Setup wizard to install Spatial Extender. The setup wizard

provides an easy-to-use graphical interface with installation help, automated

user and group creation, protocol configuration, and instance creation. If you

choose not to use the wizard, you can install Spatial Extender by using the

db2_install script or by using the rpm command. Using the Linux rpm

command to install Spatial Extender is only recommended for advanced users

in situations where greater manual control over the setup process is required.

1. Log in as a user with root authority.

2. Insert and mount your DB2 Spatial Extender CD. The DB2 Setup Launchpad,

an interface from which you can install DB2 Spatial Extender, opens. For

information on how to mount a CD, see the DB2 Installation and Configuration

Supplement.

3. Click Install a Product.

4. Select Spatial Extender as the product you want to install and click NEXT.

Chapter 4. Getting started with DB2 Spatial Extender 27

5. Select the option that you want on the DB2 Setup wizard window. You have

the option to install either DB2 Spatial Extender or DB2 Application

Development Client.

Use the DB2 Setup wizard to guide you through setup and through the

remaining installation steps.

Install DB2 Spatial Extender using the db2_install script

1. Log in as a user with root authority.

2. Insert and mount the appropriate CD.

3. Enter the ./db2_install command to start the db2_install script. The db2_install

script can be found in the root directory of DB2. The db2_install script prompts

you for the product keyword.

4. Type SPATIAL_EXTENDER to install DB2 Spatial Extender. You can install

both DB2 Spatial Extender and the DB2 Administration Client by typing

SPATIAL_EXTENDER CLIENT.

Creating the DB2 Spatial Extender instance environment

This task is part of the larger task of setting up Spatial Extender.

Restriction: This section applies to UNIX systems.

DB2 instances created before you install Spatial Extender do not include DB2

Spatial Extender in their instance environments. To update existing DB2 instances,

use the db2iupdt command. If you are using the DB2 Control Center and created

an instance for the DB2 Administration server prior to installing DB2 Spatial

Extender, then you must update this instance.

To do this task... :

1. To update an instance using the db2iupdt command:

a. Log in as a user with root authority.

b. Run the following command:

DB2DIR/instance/db2iupdt -a AuthType -u FencedID InstName

Where:

DB2DIR

The DB2 installation directory.

v On AIX, the DB2 installation directory is /usr/opt/db2_09_01

v On all other UNIX-based operating systems, the installation

directory is /opt/ibm/db2/V9.1

-a AuthType

Represents the authentication type for the instance. AuthType can

be one of SERVER, CLIENT, DCS, SERVER_ENCRYPT,

DCS_ENCRYPT. SERVER is the default. This parameter is optional.

-u FencedID

Represents the name of the user under which fenced user defined

functions (UDFs) and fenced stored procedures will run. This flag is

not required if you are creating an instance on a DB2 client. Specify

the name of the fenced user you created.

28 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

InstName

Represents the name of instance. The name of the instance must be

the same as the name of the instance owning user. Specify the name

of the instance owning user you created. The instance will be

created in the instance owning user’s home directory.
2. To create an instance using db2icrt: After you create an instance you might

want to configure notification for health monitoring. This task can be

performed using the Health Center or CLP. See the DB2 Installation and

Configuration Supplement for more information.

a. Log in as user with root authority.

b. Run the following command:

DB2DIR/instance/db2icrt -a AuthType -u FencedID InstName

Where:

DB2DIR

the DB2 installation directory.

v On AIX, the DB2 installation directory is /usr/opt/db2_09_01

v On all other UNIX-based operating systems, the installation

directory is /opt/ibm/db2/V9.1

-a AuthType

Represents the authentication type for the instance. AuthType can

be one of SERVER, CLIENT, DCS, SERVER_ENCRYPT,

DCS_ENCRYPT. SERVER is the default. This parameter is optional.

-u FencedID

Represents the name of the user under which fenced user defined

functions (UDFs) and fenced stored procedures will run. This flag is

not required if you are creating an instance on a DB2 client. Specify

the name of the fenced user you created.

InstName

Represents the name of instance. The name of the instance must be

the same as the name of the instance owning user. Specify the name

of the instance owning user you created. The instance will be

created in the instance owning user’s home directory.

For example, if you are using server authentication, the fenced user is

db2fenc1, and the instance owning user is db2inst1. Use the following

command to create an instance on an AIX system:

 /usr/opt/db2_09_01/instance/db2icrt -a server -u db2fenc1 db2inst1

Verifying the Spatial Extender installation

Before you execute the runGseDemo program:

v Be sure that you installed the DB2 Spatial Extender product in the appropriate

environments.

v Use a new database that does not have any spatial operations associated with it.

v For UNIX (AIX, HP-UX, Solaris Operating Environments, Linux for Intel, and

Linux for System z) installations, check that you established the DB2 Spatial

Extender instance environment. See the DB2 Installation and Configuration

Supplement for information on how to run the db2ilist program to check your

instances. You might need to run the db2start command to start the DB2

instance.

Chapter 4. Getting started with DB2 Spatial Extender 29

v Increase the application heap size. For more information, see “Configuring a

database to accommodate spatial data” on page 37.

This task is part of a larger task of setting up and configuring Spatial Extender.

After you install DB2 Spatial Extender, you can create a database and run the

installation check program to verify that DB2 Spatial Extender is installed and

configured correctly.

You can verify the installation by using the DB2 Spatial Extender sample program,

runGseDemo. The runGseDemo program is designed to surface problems with

your installation. During the installation verification, you might receive error

messages that can help you diagnose specific system problems. Most of the error

messages are caused by a small number of typical problems. To avoid these errors,

see ″Prerequisites.″

The verification steps in this section apply to the following operating systems:

Windows, AIX, HP-UX, Solaris Operating Environments, Linux for Intel, and Linux

for System z.

To do this task... :

1. UNIX only: Log on as the instance owner.

2. Create a database. Open the DB2 Command Window and enter:

db2 create database mydb

where mydb is the database name.

3. If you receive error messages during the verification process, you need to

troubleshoot the installation.

4. Locate the installation check program.

v For UNIX operating systems, enter:

cd $HOME/sqllib/samples/extenders/spatial

where $HOME is the instance owner’s home directory.

v For Windows, enter:

cd c:\Program Files\IBM\sqllib\samples\extenders\spatial

where c:\Program Files\IBM\sqllib is the directory in which you installed DB2

Spatial Extender.
5. Run the installation check program. At the DB2 command line, enter the

runGseDemo command:

runGseDemo mydb userID password

where mydb is the database name.

Post-Installation considerations

After you install Spatial Extender, consider the following:

v Downloading ArcExplorer

v Accessing geocoder reference data

30 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Downloading ArcExplorer for DB2

IBM provides a browser, produced by Environmental Systems Research Institute

(ESRI) for IBM, that can directly produce visual results of queries of DB2 Spatial

Extender data without requiring an intermediate data server. This browser is

ArcExplorer for DB2. You can download a free copy of ArcExplorer for DB2 from

IBM’s Spatial Extender Web site at the following location:

http://www.ibm.com/software/data/spatial/

For more information on installing and using ArcExplorer for DB2, see Using

ArcExplorer, which is also available as part of the ArcExplorer for DB2 product

download on the DB2 Spatial Extender Web site.

Important: Install ArcExplorer for DB2, to a directory that is separate from DB2.

Chapter 4. Getting started with DB2 Spatial Extender 31

http://www.ibm.com/software/data/spatial/

32 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 5. Migrating the Spatial Extender environment to a

DB2 Version 9 database system

This section explains how you migrate DB2 Spatial Extender from Version 8 to

Version 9. It also explains how you use the migration utility to migrate from a

32-bit environment to a 64-bit environment.

Migrating a spatially-enabled database

Prerequisites

Before you start the migration process:

v Terminate all connections to the database before you run the migration utility.

v Ensure that your system meets the installation requirements for DB2 Spatial

Extender Version 9.1.

v To back up a database, you must have SYSADM, SYSCTRL, or SYSMAINT

authority for the database.

v To migrate a database, you must have SYSADM authority.

If you have been using DB2 Spatial Extender Version 8, you must complete the

following steps before using an existing spatially-enabled database with DB2

Spatial Extender Version 9.1 or DB2 Geodetic Data Management Feature Version

9.1. This topic describes the steps required to migrate spatially-enabled databases

from a previous version of DB2 Spatial Extender.

To do this task... :

1. Migrate your DB2 server to Version 9.1 as described in the DB2 Migration Guide.

2. Migrate your spatially-enabled databases from Version 8 to Version 9.1 using

the Spatial Extender command db2se migrate.

Check the messages file for details on any errors you receive. The messages file

also contains useful information such as indexes, views, and the geocoding setup

that was migrated.

The db2se migrate command

Use the db2se migrate command to migrate a spatially-enabled database from

Version 8 to Version 9.

This command might drop and re-create spatial indexes to complete the migration,

which can take a significant amount of time depending on the sizes of your tables.

For example, your indexes will be dropped and re-created if your data is moving

from a 32-bit instance to a 64-bit instance, or if your data is on DB2 Version 8

Fixpack 6 or earlier.

Tip: Run the db2se migrate command with the option -force 0 and specify a

messages file to find out which indexes must be migrated without performing

additional migration processing.

© Copyright IBM Corp. 1998, 2006 33

db2se migrate command

�� db2se migrate database_name

-userId

user_id

-pw

password
 �

�
-tableCreationParameters

table_creation_parameters
 �

�
-force

force_value

-messagesFile

messages_filename
 ��

Where:

database_name

The name of the database to be migrated.

user_id

The database user ID which has either SYSADM or DBADM authority on

the database that is being migrated.

password

Your user password.

table_creation_parameters

The parameters to be used in the creation of the Spatial Extender catalog

tables.

force_value

v 0: Default value. Attempt migration, but stop if any application-defined

objects such as views, functions, triggers, or spatial indexes have been

based on Spatial Extender objects.

v 1: Automatically saves and restores application-defined objects. Saves

and restores spatial indexes if necessary.

v Saves and restores spatial indexes.

v 2: Automatically saves and restores application-defined objects. Saves

spatial index information, but does not automatically restore spatial

indexes.

messages_filename

The file name containing the report of migration actions. The file name you

provide must be a fully-qualified file name on the server.

 Tip: Specify this parameter to help you troubleshoot migration problems.

 Restriction: You cannot specify an existing file.

You might receive one or more of the following errors during migration:

v Database is not currently spatially enabled.

v Database name is not valid.

v Other connections to the database exist. Cannot be run.

v Spatial catalog is not consistent.

v User is not authorized.

v Password is not valid.

v Some user objects could not be migrated.

34 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Migrating from a 32-bit to a 64-bit environment

If you have spatial indexes that were created in a 32-bit environment and you want

to migrate to a 64-bit environment, complete the following steps.

If you are migrating from a 32-bit Version 8 environment to a 64-bit Version 9

environment, the db2se migrate command migrates the indexes, and you do not

need to perform this task.

To do this task... :

1. Back up your database.

2. Save the spatial indexes that are defined by typing the db2se save_indexes

command from an operating-system command prompt.

db2se save_indexes command

�� db2se save_indexes database_name �

�
-userId

user_id

-pw

password

-messagesFile

messages_filename
 ��

Where:

database_name

The name of the database to be migrated.

user_id

The database user ID which has either SYSADM or DBADM authority

on the database that is being migrated.

password

Your user password.

messages_filename

The file name containing the report of migration actions. The file name

you provide must be a fully-qualified file name on the server.
3. Migrate your V8 database from a 32-bit to a 64-bit environment. For more

information on switching from a 32-bit environment to a 64-bit environment see

DB2 Migration Guide.

4. Restore the spatial indexes by using the db2se restore_indexes command from

an operating-system prompt.

db2se restore_indexes command

�� db2se restore_indexes database_name �

�
-userId

user_id

-pw

password

-messagesFile

messages_filename
 ��

Where:

database_name

The name of the database to be migrated.

user_id

The database user ID which has either SYSADM or DBADM authority

on the database that is being migrated.

password

Your user password.

Chapter 5. Migrating the Spatial Extender environment to a DB2 Version 9 database system 35

messages_filename

The file name containing the report of migration actions. The file name

you provide must be a fully-qualified file name on the server.

36 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 6. Setting up a database

This chapter discusses how to configure a database to accommodate spatial data.

Configuring a database to accommodate spatial data

This topic identifies the DB2 configuration parameters that influence the operations

of DB2 Spatial Extender.

DB2 Spatial Extender, which runs in the DB2 database environment, works with

most default DB2 configuration values. However, several configuration parameters

affect spatial operations. You must tune these parameters so that your spatial

applications perform as efficiently as possible. When you modify the values of

these parameters for a database, the change affects only that database. In certain

cases, choosing a value other than the default value is required for spatial

operations. In other cases, doing so is recommended, depending on your

applications and your overall DB2 environment.

The following sections explain how to tune the DB2 database manager and

database configuration parameters that affect DB2 Spatial Extender operations.

Tuning transaction log characteristics

.

Before you enable a database for spatial operations, ensure that you have enough

transaction log capacity. The default values for the transaction log configuration

parameters do not provide sufficient transaction log capacity if your plans include:

v Enabling a database for spatial operations in a Windows environment

v Using the ST_import_shape stored procedure to import from shape files

v Using geocoding with a large commit scope

v Running concurrent transactions

If your plans include any of these uses now or in the future, you need to increase

the capacity of your transaction log for the database by increasing one or more of

the transaction log configuration parameters. Otherwise, you can use the default

characteristics.

Recommendation: Refer to the following table for the recommended minimum

values for the three transaction log configuration parameters.

 Table 2. Recommended minimum values for transaction configuration parameters

Parameter Description Default value

Recommended

minimum value

LOGFILSIZ Specifies the log file

size as a number of

4-KB blocks

1000 1000

LOGPRIMARY Specifies how many

primary log files are

to be preallocated to

the recovery log files

3 10

© Copyright IBM Corp. 1998, 2006 37

Table 2. Recommended minimum values for transaction configuration parameters (continued)

Parameter Description Default value

Recommended

minimum value

LOGSECOND Specifies the number

of secondary log files

2 2

If the capacity of your transaction log is inadequate, the following error message is

issued when you try to enable a database for spatial operations:

GSE0010N Not enough log space is available to DB2.

To increase the value of one or more configuration parameters:

1. Issue the command GET DATABASE CONFIGURATION to find the current

value for the LOGFILSIZ, LOGPRIMARY, and LOGSECOND parameters or

view the Configure Database window of the DB2 Control Center.

2. Decide whether to change one, two, or three of the values as indicated in the

table above.

3. Change each value that you want to modify. You can change the values by

issuing one or more of the following commands, where db_name identifies your

database:

UPDATE DATABASE CONFIGURATION FOR db_name USING LOGFILSZ 1000

UPDATE DATABASE CONFIGURATION FOR db_name USING LOGPRIMARY 10

UPDATE DATABASE CONFIGURATION FOR db_name USING LOGSECOND 2

If the only parameter that you change is LOGSECOND, the change takes effect

immediately.

If you change the LOGFILSIZ or LOGPRIMARY parameter, or both:

1. Disconnect all applications from the database.

2. If the database was explicitly activated, deactivate the database.

The changes to the LOGFILSIZ or LOGPRIMARY parameters, or both, take effect

the next time either the database is activated or a connection to the database is

established.

Tuning the application heap size

You use the database configuration parameter APPLHEAPSZ to specify the size of

the application heap (in number of 4-KB pages). This parameter defines the

number of private memory pages that are available for use by the database

manager on behalf of a specific agent or subagent. The heap is allocated when an

agent or subagent is initialized for an application. The allocated amount is the

minimum amount that is needed to process the request to the agent or subagent.

As the agent or subagent requires more heap space to process larger SQL

statements, the database manager allocates memory as needed, up to the

maximum that is specified on this parameter. The application heap is allocated out

of the agent’s private memory.

The default value for the APPLHEAPSZ parameter is 128 (4-KB pages). When you

run the ST_enable_db stored procedure, this value must be at least 2048.

38 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Recommendation: For most DB2 Spatial Extender applications, especially those

that import from or export to shape files, use an APPLHEAPSZ

parameter value of at least 2048.

If the APPLHEAPSZ is set to an inadequate value, the following error message is

issued when you try to enable a database for spatial operations:

GSE0009N Not enough space is available in DB2’s application heap.

GSE0213N A bind operation failed. SQLERROR = "SQL0001N Binding or

precompilation did not complete successfully. SQLSTATE=00000".

To change the application heap size:

1. Issue the command GET DATABASE CONFIGURATION to find the current

value for the APPLHEAPSZ parameter or view the Configure Database

window of the DB2 Control Center.

2. Change the value to the recommended value of 2048 or higher. You can change

the value to 2048 by issuing the following command, where db_name identifies

your database:

UPDATE DATABASE CONFIGURATION FOR db_name USING APPLHEAPSZ 2048

3. Disconnect all applications from the database.

4. If the database was explicitly activated, deactivate the database.

The change takes effect the next time either the database is activated or a

connection to the database is established.

Tuning the application control heap size

To modify any database configuration parameter, you must be connected to the

database. When you modify a value for a database parameter, the change affects

only that database.

All DB2 Spatial Extender applications, especially those that import from or export

to shape files, can benefit from using the recommended value for the application

control heap size. You specify this characteristic with the APP_CTL_HEAP_SZ

parameter. This parameter specifies the maximum size, in 4-KB pages, for the

application control shared memory. Application control heaps are allocated from

this shared memory. One application control heap is allocated for each application

at the database where the application is active (or, in the case of a partitioned

database system, at each database partition where the application is active). The

heap is allocated during connect processing by the first agent that receives a

request for the application at the database (or at the database partition). The heap

is used for sharing information between agents that work on behalf of the same

application. (In a partitioned database environment, the sharing occurs at the

database partition level; sharing does not occur across database partitions.) The

default value for the APP_CTL_HEAP_SZ parameter is 128.

Recommendation: For most DB2 Spatial Extender applications, use an

APP_CTL_HEAP_SZ parameter value of at least 1024 (4-KB

pages).

If the APP_CTL_HEAP_SZ is set to an inadequate value, the following error

message is issued when you import data into a database from shape files:

GSE0214N An INSERT statement failed. SQLERROR = "SQL0973N Not enough storage

 is available in the "APP_CTL_HEAP" heap to process the statement.

Chapter 6. Setting up a database 39

1. Issue the command GET DATABASE CONFIGURATION to find the current

value for the APP_CTL_HEAP_SZ parameter or view the Configure Database

window of the DB2 Control Center.

2. Change the value to the recommended value of 1024 (4-KB pages) or higher.

Issue the following command, where db_name identifies your database, to

increase the application control heap to 1024 KB:

UPDATE DATABASE CONFIGURATION FOR db_name USING APP_CTL_HEAP_SZ 1024

3. Disconnect all applications from the database.

4. If the database was explicitly activated, deactivate the database.

The change takes effect the next time either the database is activated or a

connection to the database is established.

40 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 7. Setting up spatial resources for a database

After you set up your database to accommodate spatial data, you are ready to

supply the database with resources that you will need when you create and

manage spatial columns and analyze spatial data. These resources include:

v Objects provided by Spatial Extender to support spatial operations; for example,

stored procedures to administrate a database, spatial data types, and spatial

utilities for geocoding and importing or exporting spatial data.

v Reference data: Ranges of addresses that DB2SE_USA_GEOCODER uses to

convert individual addresses to coordinates.

v Any geocoders that users or vendors provide.

This chapter describes these resources and introduces the tasks through which you

make them available: enabling your database for spatial operations, setting up

access to reference data, and registering non-default gecoders.

How to set up resources in your database

The first task that you perform after setting up your database to accommodate

spatial data is to render the database capable of supporting spatial

operations—operations such as populating tables with spatial data and processing

spatial queries. This task involves loading the database with certain resources

supplied by DB2 Spatial Extender. This section describes these resources and

outlines the task.

Inventory of resources supplied for your database

To enable a database to support spatial operations, DB2® Spatial Extender provides

the database with the following resources:

v Stored procedures. When you request a spatial operation—for example, when

you issue a command to import spatial data—DB2 Spatial Extender invokes one

of these stored procedures to perform the operation.

v Spatial data types. You must assign a spatial data type to each table or view

column that is to contain spatial data.

v DB2 Spatial Extender’s catalog. Certain operations depend on this catalog. For

example, before you can access a spatial column from the visualization tools, the

tool might require that the spatial column be registered in the catalog.

v A spatial grid index. It lets you to define grid indexes on spatial columns.

v Spatial functions. You use these to work with spatial data in a number of ways;

for example, to determine relationships between geometries and to generate

more spatial data.

v Definitions of coordinate systems.

v Default spatial reference systems.

v Two schemas: DB2GSE and ST_INFORMTN_SCHEMA. DB2GSE contains the

objects just listed: stored procedures, spatial data types, the DB2 Spatial Extender

catalog, and so on. Views in the catalog are available also in

ST_INFORMTN_SCHEMA to conform with the SQL/MM standard..

© Copyright IBM Corp. 1998, 2006 41

Enabling a database for spatial operations

Before you enable a database for spatial operations, your user ID must have either

SYSADM or DBADM authority on the database.

You can enable a database for spatial operations in any of the following ways:

v Use the Enable Database window from the DB2 Spatial Extender menu option.

The menu option is available from the database object of the DB2 Control

Center.

v Issue the db2se enable_db command.

v Run an application that calls the db2gse.ST_enable_db stored procedure.

You can explicitly choose the table space in which you want the DB2 Spatial

Extender catalog to reside. If you do not do so, DB2 will use the default table

space.

The task of having DB2 Spatial Extender supply a database with resources for

creating spatial columns and manipulating spatial data is generally referred to as

“enabling the database for spatial operations”.

How to work with reference data

This section explains what reference data is and states what you need to do in

order to access it.

Reference data

Reference data is range of addresses that DB2SE_USA_GEOCODER uses to convert

individual addresses into coordinates. This data consists of ranges of the most

recent addresses that the United States Census Bureau has collected. When

DB2SE_USA_GEOCODER reads an address from the database, it searches the

reference data for:

v Names of certain streets within the area designated by the address’s zip code.

The geocoder looks for names that match the name of the street in the address

to a specified degree, or to a degree higher than the specified one; for example,

80 percent or higher.

v The address range that corresponds to the address number.

If a match is found and does not have the requested score, the geocoder returns

the coordinates of the address it has read. If a match is not found or does not have

the requested score, the geocoder returns a null.

An advanced configuration file called the locator file can be used to further

influence the processing performed by the geocoder, DB2SE_USA_GEOCODER.

The default configuration provided by DB2® Spatial Extender usually does not not

need to be changed in this file.

Setting up access to reference data

The reference data for DB2SE_USA_GEOCODER is on one of the CDs on which

Spatial Extender is shipped. This section describes how to prepare to access it.

To do this task... :

42 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

1. Decide whether to keep the reference data on the CD or to store it on your

hard drive. If you keep it on the CD, then you save the space (about 700

megabytes’ worth) that it would occupy on the hard drive. If you store it on

hard drive, you will be able to retrieve it faster than you can retrieve it from

the CD.

2. Store the reference data on your hard drive

a. Verify that the hard drive has enough space to contain the data (about 700

MB).

b. Copy the data to the hard drive. For instructions, see the README that

accompanies the reference data.

c. Determine whether the copy was successful: To verify on UNIX that the

data was loaded properly, look in the $DB2INSTANCE/sqllib/gse/refdata/

directory. To verify on Windows that the data was loaded properly, look in

the %DB2PATH%\gse\refdata\ directory.
3. Tell DB2SE_USA_GEOCODER the name and location of the locator file and the

base map. You do this by setting DB2SE_USA_GEOCODER’s base_map and

locator_file parameters to the appropriate values. For more information, see

your database administrator or contact your IBM representative.

Registering a geocoder

Before you can register a geocoder, your user ID must hold either SYSADM or

DBADM authority on the database in which the geocoder resides.

DB2SE_USA_GEOCODER is registered to DB2 Spatial Extender automatically

when a database is enabled for spatial operations. Before other geocoders can be

used, they also must be registered.

To do this task... :

You can register a geocoder in any of the following ways:

v Register it from the Register Geocoder window of the DB2 Control Center.

v Issue the db2se register_gc command.

v Run an application that calls the db2gse.ST_register_geocoder stored procedure.

Chapter 7. Setting up spatial resources for a database 43

44 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 8. Setting up spatial resources for a project

After your database is enabled for spatial operations, you are ready to create

projects that use spatial data. Among the resources that each project requires are a

coordinate system to which spatial data conforms and a spatial reference system

that defines the extent of the geographical area that is referenced by the data. This

chapter:

v Discusses the nature of coordinate systems and tells how to create them

v Explains what spatial reference systems are and tells how to create them

How to use coordinate systems

When you plan a project that uses spatial data, you need to determine whether the

data should be based on one of the coordinate systems that are registered to the

Spatial Extender catalog. If none of these coordinate systems meet your

requirements, you can create one that does. This discussion explains the concept of

coordinate systems and introduces the tasks of selecting one to use and creating a

new one.

Coordinate systems

A coordinate system is a framework for defining the relative locations of things in

a given area; for example, an area on the earth’s surface or the earth’s surface as a

whole. DB2® Spatial Extender supports the following types of coordinate systems

to determine the location of a geographic feature:

Geographic coordinate system

A geographic coordinate system is a reference system that uses a

three-dimensional spherical surface to determine locations on the earth.

Any location on earth can be referenced by a point with latitude and

longitude coordinates based on angular units of measure.

Projected coordinate system

A projected coordinate system is a flat, two-dimensional representation of the

earth. It uses rectilinear (Cartesian) coordinates based on linear units of

measure. It is based on a spherical (or spheroidal) earth model, and its

coordinates are related to geographic coordinates by a projection

transformation.

Geographic coordinate system

A geographic coordinate system is a that uses a three-dimensional spherical surface to

determine locations on the earth. Any location on earth can be referenced by a

point with longitude and latitude coordinates. The values for the points can have

the following units of measurement:

v Linear units when the geographic coordinate system has a spatial reference

system identifier (SRID) that DB2® Geodetic Data Management Feature

recognizes.

v Any of the following units when the geographic coordinate system has an SRID

that DB2 Geodetic Data Management Feature does not recognize.

– Decimal degrees

– Decimal minutes

© Copyright IBM Corp. 1998, 2006 45

– Decimal seconds

– Gradians

– Radians

For example, Figure 6 shows a geographic coordinate system where a location is

represented by the coordinates longitude 80 degree East and latitude 55 degree

North.

 The lines that run east and west each have a constant latitude value and are called

parallels. They are equidistant and parallel to one another, and form concentric

circles around the earth. The equator is the largest circle and divides the earth in

half. It is equal in distance from each of the poles, and the value of this latitude

line is zero. Locations north of the equator have positive latitudes that range from

0 to +90 degrees, while locations south of the equator have negative latitudes that

range from 0 to -90 degrees.

Figure 7 on page 47 illustrates latitude lines.

Figure 6. A geographic coordinate system

46 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The lines that run north and south each have a constant longitude value and are

called meridians. They form circles of the same size around the earth, and intersect

at the poles. The prime meridian is the line of longitude that defines the origin (zero

degrees) for longitude coordinates. One of the most commonly used prime

meridian locations is the line that passes through Greenwich, England. However,

other longitude lines, such as those that pass through Bern, Bogota, and Paris, have

also been used as the prime meridian. Locations east of the prime meridian up to

its antipodal meridian (the continuation of the prime meridian on the other side of

the globe) have positive longitudes ranging from 0 to +180 degrees. Locations west

of the prime meridian have negative longitudes ranging from 0 to –180 degrees.

Figure 8 illustrates longitude lines.

Figure 7. Latitude lines

Figure 8. Longitude lines

Chapter 8. Setting up spatial resources for a project 47

The latitude and longitude lines can cover the globe to form a grid, called a

graticule. The point of origin of the graticule is (0,0), where the equator and the

prime meridian intersect. The equator is the only place on the graticule where the

linear distance corresponding to one degree latitude is approximately equal the

distance corresponding to one degree longitude. Because the longitude lines

converge at the poles, the distance between two meridians is different at every

parallel. Therefore, as you move closer to the poles, the distance corresponding to

one degree latitude will be much greater than that corresponding to one degree

longitude.

It is also difficult to determine the lengths of the latitude lines using the graticule.

The latitude lines are concentric circles that become smaller near the poles. They

form a single point at the poles where the meridians begin. At the equator, one

degree of longitude is approximately 111.321 kilometers, while at 60 degrees of

latitude, one degree of longitude is only 55.802 km (this approximation is based on

the Clarke 1866 spheroid). Therefore, because there is no uniform length of degrees

of latitude and longitude, the distance between points cannot be measured

accurately by using angular units of measure.

Figure 9 shows the different dimensions between locations on the graticule.

 A coordinate system can be defined by either a sphere or a spheroid approximation

of the earth’s shape. Because the earth is not perfectly round, a spheroid can help

maintain accuracy for a map, depending on the location on the earth. A spheroid is

an ellipsoid, that is based on an ellipse, whereas a sphere is based on a circle.

The shape of the ellipse is determined by two radii. The longer radius is called the

semimajor axis, and the shorter radius is called the semiminor axis. An ellipsoid is

a three-dimensional shape formed by rotating an ellipse around one of its axes.

Figure 9. Different dimensions between locations on the graticule

48 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Figure 10 shows the sphere and spheroid approximations of the earth and the

major and minor axes of an ellipse.

 A datum is a set of values that defines the position of the spheroid relative to the

center of the earth. The datum provides a frame of reference for measuring

locations and defines the origin and orientation of latitude and longitude lines.

Some datums are global and intend to provide good average accuracy around the

world. A local datum aligns its spheroid to closely fit the earth’s surface in a

particular area. Therefore, the coordinate system’s measurements are not be

accurate if they are used with an area other than the one that they were designed.

Figure 11 on page 50 shows how different datums align with the earth’s surface.

The local datum, NAD27, more closely aligns with Earth’s surface than the

Earth-centered datum, WGS84, at this particular location.

Figure 10. Sphere and spheroid approximations

Chapter 8. Setting up spatial resources for a project 49

Whenever you change the datum, the geographic coordinate system is altered and

the coordinate values will change. For example, the coordinates in DMS of a

control point in Redlands, California using the North American Datum of 1983

(NAD 1983) are: ″-117 12 57.75961 34 01 43.77884″ The coordinates of the same

point on the North American Datum of 1927 (NAD 1927) are: ″-117 12 54.61539 34

01 43.72995″.

Projected coordinate systems

A projected coordinate system is a flat, two-dimensional representation of the Earth. It

is based on a sphere or spheroid geographic coordinate system, but it uses linear

units of measure for coordinates, so that calculations of distance and area are easily

done in terms of those same units.

The latitude and longitude coordinates are converted to x, y coordinates on the flat

projection. The x coordinate is usually the eastward direction of a point, and the y

coordinate is usually the northward direction of a point. The center line that runs

east and west is referred to as the x axis, and the center line that runs north and

south is referred to as the y axis.

The intersection of the x and y axes is the origin and usually has a coordinate of

(0,0). The values above the x axis are positive, and the values below the x axis are

negative. The lines parallel to the x axis are equidistant from each other. The

values to the right of the y axis are positive, and the values to the left of the y axis

are negative. The lines parallel to the y axis are equidistant.

Mathematical formulas are used to convert a three-dimensional geographic

coordinate system to a two-dimensional flat projected coordinate system. The

transformation is referred to as a map projection. Map projections usually are

classified by the projection surface used, such as conic, cylindrical, and planar

Figure 11. Datum alignments

50 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

surfaces. Depending on the projection used, different spatial properties will appear

distorted. Projections are designed to minimize the distortion of one or two of the

data’s characteristics, yet the distance, area, shape, direction, or a combination of

these properties might not be accurate representations of the data that is being

modeled. There are several types of projections available. While most map

projections attempt to preserve some accuracy of the spatial properties, there are

others that attempt to minimize overall distortion instead, such as the Robinson

projection. The most common types of map projections include:

Equal area projections

These projections preserve the area of specific features. These projections

distort shape, angle, and scale. The Albers Equal Area Conic projection is an

example of an equal area projection.

Conformal projections

These projections preserve local shape for small areas. These projections

preserve individual angles to describe spatial relationships by showing

perpendicular graticule lines that intersect at 90 degree angles on the map.

All of the angles are preserved; however, the area of the map is distorted.

The Mercator and Lambert Conformal Conic projections are examples of

conformal projections.

Equidistant projections

These projections preserve the distances between certain points by

maintaining the scale of a given data set. Some of the distances will be true

distances, which are the same distances at the same scale as the globe. If

you go outside the data set, the scale will become more distorted. The

Sinusoidal projection and the Equidistant Conic projection are examples of

equidistant projections.

True-direction or azimuthal projections

These projections preserve the direction from one point to all other points

by maintaining some of the great circle arcs. These projections give the

directions or azimuths of all points on the map correctly with respect to

the center. Azimuthal maps can be combined with equal area, conformal,

and equidistant projections. The Lambert Equal Area Azimuthal projection

and the Azimuthal Equidistant projection are examples of azimuthal

projections.

Selecting or creating coordinate systems

A first step in planning a project is to determine what coordinate system to use.

Before you create a coordinate system, your user ID must have either SYSADM or

DBADM authority on the database that has been enabled for spatial operations. No

authorization is required to use an existing coordinate system.

After you enable a database for spatial operations, you are ready to plan projects

that use spatial data. You can use a coordinate system that was shipped with DB2

Spatial Extender or one that was created by elsewhere. Over 2000 coordinate

systems are shipped with DB2 Spatial Extender. Among them are:

v A coordinate system that DB2 Spatial Extender refers to as Unspecified. Use this

coordinate system when:

– You need to define locations that have no direct relationship to the earth’s

surface; for example, locations of offices within an office building or locations

of shelves within a storage room.

– You can define these locations in terms of positive coordinates that include

few or no decimal values.

Chapter 8. Setting up spatial resources for a project 51

v GCS_NORTH_AMERICAN_1983. Use this coordinate system when you need to

define locations in the United States; for example:

– When you import spatial data for the United States from the Maps and Data

CDs that are shipped with DB2 Spatial Extender.

– When you plan to use the geocoder shipped with DB2 Spatial Extender to

geocode addresses within the United States.

To find out more about these coordinate systems, and to determine what other

coordinate systems were shipped with DB2 Spatial Extender, and what (if any)

coordinate systems have been created by other users, consult the

DB2SE.ST_COORDINATE_SYSTEMS catalog view.

To do this task... :

Choose which method to use to create a coordinate system:

v Create it from the Create Coordinate System window of the DB2 Control Center.

v Issue the db2se create_cs command from the db2se command line processor.

v Run an application that invokes the db2se.ST_create_coordsys stored procedure.

How to set up spatial reference systems

When you plan a project that uses spatial data, you need to determine whether

any of the spatial reference systems available to you can be used for this data. If

none of the available systems are appropriate for the data, you can create one that

is. This section explains the concept of spatial reference systems and describes the

tasks of selecting which one to use and creating one.

Spatial reference systems

A spatial reference system is a set of parameters that includes:

v The name of the coordinate system from which the coordinates are derived.

v The numeric identifier that uniquely identifies the spatial reference system.

v Coordinates that define the maximum possible extent of space that is referenced

by a given range of coordinates.

v Numbers that, when applied in certain mathematical operations, convert

coordinates received as input into values that can be processed with maximum

efficiency.

The following sections discuss the parameter values that define an identifier, a

maximum extent of space, and conversion factors.

Spatial reference system identifier

The spatial reference system identifier (SRID) is used as an input parameter for

various spatial functions.

For a geodetic spatial reference system, the SRID value must be in the range

2000000000 to 2000001000. DB2® Geodetic Data Management Feature provides 318

predefined geodetic spatial reference systems (SRS).

52 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Defining the space that encompasses coordinates stored in a

spatial column

The coordinates in a spatial column typically define locations that span across part

of the Earth. The space over which the span extends—from east to west and from

north to south—is called a spatial extent. For example, consider a body of flood

plains whose coordinates are stored in a spatial column. Suppose that the

westernmost and easternmost of these coordinates are latitude values of –24.556

and –19.338, respectively, and that the northernmost and southernmost of the

coordinates are longitude values of 18.819 and 15.809 degrees, respectively. The

spatial extent of the flood plains is a space that extends on a west-east plane

between the two latitudes and on a north-south plane between the two longitudes.

You can include these values in a spatial reference system by assigning them to

certain parameters. If the spatial column includes Z coordinates and measures, you

would need to include the highest and lowest Z coordinates and measures in the

spatial reference system as well.

The term spatial extent can refer not only to an actual span of locations, as in the

previous paragraph; but also to a potential one. Suppose that the flood plains in

the preceding example were expected to broaden over the next five years. You

could estimate what the westernmost, easternmost, northernmost, and

southernmost coordinates of the planes would be at the end of the fifth year. You

could then assign these estimates, rather than the current coordinates, to the

parameters for a spatial extent. That way, you could retain the spatial reference

system as the plains expand and their wider latitudes and longitudes are added to

the spatial column. Otherwise, if the spatial reference system is limited to the

original latitudes and longitudes, it would need to be altered or replaced as the

flood planes grew.

Converting to values that improve performance

Typically, most coordinates in a coordinate system are decimal values; some are

integers. In addition, coordinates to the east of the origin are positive; those to the

west are negative. Before being stored by Spatial Extender, the negative coordinates

are converted to positive values, and the decimal coordinates are converted into

integers. As a result, all coordinates are stored by Spatial Extender as positive

integers. The purpose is to enhance performance when the coordinates are

processed.

Certain parameters in a spatial reference system are used to make the conversions

described in the preceding paragraph. One parameter, called an offset, is subtracted

from each negative coordinate, which leaves a positive value as a remainder. Each

decimal coordinate is multiplied by another parameter, called a scale factor, which

results in an integer whose precision is the same as that of the decimal coordinate.

(The offset is subtracted from positive coordinates as well as negative; and the

nondecimal coordinates, as well as the decimal coordinates, are multiplied by the

scale factor. This way, all positive and non-decimal coordinates remain

commensurate with the negative and decimal ones.)

These conversions take place internally, and remain in effect only until coordinates

are retrieved. Input and query results always contain coordinates in their original,

unconverted form.

Chapter 8. Setting up spatial resources for a project 53

Deciding whether to use a default spatial reference system or

create a new system

After you determine what coordinate system to use, you are ready to provide a

spatial reference system that suits the coordinate data that you are working with.

DB2 Spatial Extender provides five spatial reference systems for spatial data, and

DB2 Geodetic Data Management Feature provides 318 geodetic spatial reference

systems for geodetic data.

Answer the following questions to determine whether you can use one of the

default spatial reference systems or predefined geodetic reference systems.

1. Does the coordinate system on which the default spatial reference system is

based cover the geographic area that you are working with? These coordinate

systems are shown in “Spatial reference systems supplied with DB2 Spatial

Extender.”

2. Is your data in a geographic coordinate system that uses either Decimal

Degrees or Grads as the unit of measure? Does your data span a large portion

of the Earth’s surface? Do you need to make accurate distance, length and area

calculations? Is any of your data near the north pole, south pole, or the

international dateline? If you answer yes to any of these questions, you might

want to use one of the predefined 318 geodetic spatial reference systems. For

information on these predefined geodetic spatial reference systems, see

“Datums supported by DB2 Geodetic Data Management Feature” on page 179.

3. Do the conversion factors associated with one of the default spatial reference

systems work with your coordinate data?

Spatial Extender uses offset values and scale factors to convert the coordinate

data that you provide to positive integers. To determine if your coordinate data

works with the given offset values and scale factors for one of the default

spatial reference systems:

a. Review the information in “Conversion factors that transform coordinate

data into integers” on page 56.

b. Look at how these factors are defined for the default spatial reference

systems. If, after applying the offset value to the minimum X and Y

coordinates, these coordinates are not both greater than 0, you must create a

new spatial reference system and define the offsets yourself. For more

information about how to create a new spatial reference system, see

“Creating a spatial reference system” on page 58.
4. Does the data that you are working with include height and depth coordinates

(Z coordinates) or measures (M coordinates)? If you are working with Z or M

coordinates, you might need to create a new spatial reference system with Z or

M offsets and scale factors suitable to your data.

5. If the existing spatial reference systems or geodetic reference systems do not

work with your data, you need to “Creating a spatial reference system” on

page 58.

After you decide which spatial reference system you need, you specify this choice

to Spatial Extender when you do one of the following tasks:

v “Spatial reference systems supplied with DB2 Spatial Extender”

v “Datums supported by DB2 Geodetic Data Management Feature” on page 179

Spatial reference systems supplied with DB2 Spatial Extender

The spatial reference system converts the coordinate data to positive integers.

54 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 Spatial Extender provides the spatial reference systems that are shown in the

table below, along with the coordinate system on which each spatial reference

system is based and the offset values and scale factors that DB2 Spatial Extender

uses to convert the coordinate data to positive integers. You can find information

about these spatial reference systems in the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

If you are working with decimal-degrees (all the data on the DB2 Spatial Extender

sample data CDs is in decimal-degrees), the offset values and scale factors for the

default spatial reference systems support the full range of latitude-longitude

coordinates and preserve 6 decimal positions, equivalent to approximately 10 cm.

If you plan to use the geocoder which works only with U.S. addresses, ensure that

you select or create a spatial reference system that handles U.S. coordinates, such

as the GCS_NORTH_AMERICAN_1983 coordinate system. If you do not specify

what coordinate system your spatial data should derive from, Spatial Extender

uses the DEFAULT_SRS spatial reference system.

If none of the default spatial reference systems meet your needs, you can create a

new spatial reference system.

 Table 3. Spatial reference systems provided with DB2 Spatial Extender

Spatial

reference

system

SRS

ID

Coordinate

system

Offset values Scale factors When to use

 DEFAULT

_SRS

0 None

 xOffset = 0

yOffset = 0

zOffset = 0

mOffset = 0

 xScale = 1

yScale = 1

zScale = 1

mScale = 1

You can select this

system when your

data is

independent of a

coordinate system

or you cannot or

do not need to

specify one.

 NAD83_

SRS_1

1

 GCS_NORTH

_AMERICAN

_1983

 xOffset = –180

yOffset = –90

zOffset = 0

mOffset = 0

 xScale =

 1,000,000

yScale =

 1,000,000

zScale = 1

mScale = 1

You can select this

spatial reference

system if you plan

to use the U.S.

sample data

shipped with DB2

Spatial Extender.

If the coordinate

data that you are

working with was

collected after

1983, use this

system instead of

NAD27_SRS_1002.

Chapter 8. Setting up spatial resources for a project 55

Table 3. Spatial reference systems provided with DB2 Spatial Extender (continued)

Spatial

reference

system

SRS

ID

Coordinate

system

Offset values Scale factors When to use

 NAD27_

SRS_1002

1002

 GCS_NORTH

_AMERICAN

_1927

 xOffset = –180

yOffset = –90

zOffset = 0

mOffset = 0

 xScale =

 5,965,232

yScale =

 5,965,232

zScale = 1

mScale = 1

You can select this

spatial reference

system if you plan

to use the U.S.

sample data

shipped with DB2

Spatial Extender.

If the coordinate

data that you are

working with was

collected before

1983, use this

system instead of

NAD83_SRS_1.

This system

provides a greater

degree of

precision than the

other default

spatial reference

systems.

 WGS84_

SRS_1003

1003

 GCS_WGS

_1984

 xOffset = –180

yOffset = –90

zOffset = 0

mOffset = 0

 xScale =

 5,965,232

yScale =

 5,965,232

zScale = 1

mScale = 1

You can select this

spatial reference

system if you are

working with data

outside the U.S.

(This system

handles

worldwide

coordinates.) Do

not use this

system if you plan

to use the default

geocoder shipped

with DB2 Spatial

Extender, because

the geocoder is

only for U.S.

addresses.

 DE_HDN

_SRS_1004

1004

 GCSW

_DEUTSCHE

_HAUPTDRE

IECKSNETZ

 xOffset = –180

yOffset = –90

zOffset = 0

mOffset = 0

 xScale =

 5,965,232

yScale =

 5,965,232

zScale = 1

mScale = 1

This spatial

reference system

is based on a

coordinate system

for German

addresses.

Conversion factors that transform coordinate data into

integers

DB2 Spatial Extender uses offset values and scale factors to convert the coordinate

data that you provide to positive integers. The default spatial reference systems

already have offset value and scale factors associated with them. If you are

56 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

creating a new spatial reference system, determine the scale factors and, optionally,

the offset values that work best with your data.

Offset values

An offset value is a number that is subtracted from all coordinates, leaving only

positive values as a remainder. Spatial Extender converts your coordinate data

using the following formulas to ensure that all adjusted coordinate values are

greater than 0.

Formula notation: In these formulas, the notation “min” represents “the minimum

of all”. For example, “min(x)” means “the minimum of all x coordinates”. The

offset for each geographic direction is represented as dimensionOffset. For

example, xOffset is the offset value applied to all X coordinates.

min(x) – xOffset ≥ 0

min(y) – yOffset ≥ 0

min(z) – zOffset ≥ 0

min(m) – mOffset ≥ 0

Scale factors

A scale factor is a value that, when multiplied by decimal coordinates and

measures, yields integers with at least the same number of significant digits as the

original coordinates and measures. Spatial Extender converts your decimal

coordinate data using the following formulas to ensure that all adjusted coordinate

values are positive integers. The converted values cannot exceed 253

(approximately 9 * 1015).

Formula notation: In these formulas, the notation “max” represents “the maximum

of all”. The offset for each geographic dimension is represented as dimensionOffset

(for example, xOffset is the offset value applied to all X coordinates). The scale

factor for each geographic dimension is represented as dimensionScale (for

example, xScale is the scale factor applied to X coordinates).

(max(x) – xOffset) * xScale ≤ 253

(max(y) – yOffset) * yScale ≤ 253

(max(z) – zOffset) * zScale ≤ 253

(max(m) – mOffset) * mScale ≤ 253

When you choose which scale factors work best with your coordinate data, ensure

that:

v You use the same scale factor for X and Y coordinates.

v When multiplied by a decimal X coordinate or a decimal Y coordinate, the scale

factor yields a value less than 253. One common technique is to make the scale

factor a power of 10. That is, the scale factor should be 10 to the first power (10),

10 to the second power (100), 10 to the third power (1000), or, if necessary, a

larger factor.

v The scale factor is large enough to ensure that the number of significant digits in

the new integer is the same as the number of significant digits in the original

decimal coordinate.

Example

Suppose that the ST_Point function is given input that consists of an X coordinate

of 10.01, a Y coordinate of 20.03, and the identifier of a spatial reference system.

When ST_Point is invoked, it multiplies the value of 10.01 and the value of 20.03

by the spatial reference system’s scale factor for X and Y coordinates. If this scale

factor is 10, the resulting integers that Spatial Extender stores will be 100 and 200,

respectively. Because the number of significant digits in these integers (3) is less

Chapter 8. Setting up spatial resources for a project 57

than the number of significant digits in the coordinates (4), Spatial Extender will

not be able to convert these integers back to the original coordinates, or to derive

from them values that are consistent with the coordinate system to which these

coordinates belong. But if the scale factor is 100, the resulting integers that DB2

Spatial Extender stores will be 1001 and 2003—values that can be converted back

to the original coordinates or from which compatible coordinates can be derived.

Units for offset values and scale factors

Whether you use an existing spatial reference system or create a new one, the units

for the offset values and scale factors will vary depending on the type of

coordinate system that you are using. For example, if you are using a geographic

coordinate system, the values are in angular units such as decimal degrees; if you

are using a projected coordinate system, the values are in linear units such as

meters or feet.

Creating a spatial reference system

Create a new spatial reference system if none of the spatial reference systems that

are provided with DB2 Spatial Extender work with your data.

To do this task... :

1. Choose the interface.

You can create a spatial reference system in any of the following ways:

v Use the Create Spatial Reference System window in the DB2 Control Center.

See the online help for more information about how to use this window.

v Issue the db2se create_srs command from the db2se command–line processor.

v Run an application that invokes the db2se.ST_create_srs stored procedure.
2. Specify an appropriate spatial reference system ID (SRID).

v For geodetic data in a round-earth representation, specify an SRID value in

the range of 200000318 to 2000001000.

v For spatial data in a flat-earth representation, specify an SRID that is not

already defined.
3. Decide on the degree of precision that you want.

You can either:

v Specify the extents of the geographical area that you are working with and

the scale factors that you want to use with your coordinate data. Spatial

Extender takes the extents that you specify and calculates the offset for you.

You can specify extents in one of the following ways:

– Choose Extents in the Create Spatial Reference System window of the

Control Center.

– Provide the appropriate parameters for the db2se create_srs command or

db2se.ST_create_srs stored procedure.
v Specify both the offset values (required for Spatial Extender to convert

negative values to positive values) and scale factors (required for Spatial

Extender to convert decimal values to integers). Use this method when you

need to follow strict criteria for accuracy or precision. You can specify offset

values and scale factors in one of the following ways:

– Choose Offset in the Create Spatial Reference System window of the

Control Center

– Provide the appropriate parameters for the db2se create_srs command or

db2se.ST_create_srs stored procedure.

58 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

4. Calculate the conversion information that Spatial Extender needs to convert

coordinate data to positive integers, and provide this information to the

interface that you chose.

This information differs according to the method that you chose in step 3.

v If you chose the Extents method in step 3, you need to calculate the

following information:

– Scale factors. If any of the coordinates that you are working with are

decimal values, calculate scale factors. Scale factors are numbers that,

when multiplied by decimal coordinates and measures, yields integers

with at least the same number of significant digits as the original

coordinates and measures. If the coordinates are integers, the scale factors

can be set to 1. If the coordinates are decimal values, the scale factor

should be set to a number that converts the decimal portion to an integer

value. For example, if the coordinate units are meters and the accuracy of

the data is 1 cm., you would need a scale factor of 100.

– Minimum and maximum values for your coordinates and measures.
v If you chose the Offset method in step 3, you need to calculate the following

information:

– Offset values

If your coordinate data includes negative numbers or measures, you need

to specify the offset values that you want to use. An offset is a number

that is subtracted from all coordinates, leaving only positive values as a

remainder. If you are working with positive coordinates, set all offset

values to 0. If you are not working with positive coordinates, select an

offset that, when applied against the coordinate data, results in integers

that are less than the largest positive integer value (9,007,199,254,740,992).

– Scale factors

If any of the coordinates for the locations that you are representing are

decimal numbers, determine what scale factors to use and enter these

scale factors in the Create Spatial Reference System window.
5. Submit the db2se create_srs command or the db2se.ST_create_srs stored

procedure to create the stored procedure.

For example, the following command creates a spatial reference system named

mysrs:

db2se create_srs mydb -srsName \"mysrs\"

 -srsID 100 -xScale 10 -coordsysName

\"GCS_North_American_1983\"

Calculating scale factors

Prerequisites

If you create a spatial reference system and any of the coordinates that you are

working with are decimal values, calculate the appropriate scale factors for your

coordinates and measures. Scale factors are numbers that, when multiplied by

decimal coordinates and measures, yields integers with at least the same number

of significant digits as the original coordinates and measures.

After you calculate scale factors, you need to determine the extent values. Then

submit the db2se create_srs command or db2se.ST_create_srs stored procedure.

To calculate the scale factors:

Chapter 8. Setting up spatial resources for a project 59

1. Determine which X and Y coordinates are, or are likely to be, decimal numbers.

For example, suppose that of the various X and Y coordinates that you will be

dealing with, you determine that three of them are decimal numbers: 1.23,

5.1235, and 6.789.

2. Find the decimal coordinate that has the longest decimal precision. Then

determine by what power of 10 this coordinate can be multiplied to yield an

integer of equal precision. For example, of the three decimal coordinates in the

current example, 5.1235 has the longest decimal precision. Multiplying it by 10

to the fourth power (10000) yields the integer 51235.

3. Determine whether the integer produced by the multiplication just described is

less than 2

53. 51235 is not too large. But suppose that, in addition to 1.23,

5.11235, and 6.789, your range of X and Y coordinates includes a fourth decimal

value, 10000000006.789876. Because this coordinate’s decimal precision is longer

than that of the other three, you would multiply this coordinate—not

5.1235—by a power of 10. To convert it to an integer, you could multiply it by

10 to the sixth power (1000000). But the resulting value, 10000000006789876, is

greater than 2

53. If DB2 Spatial Extender tried to store it, the results would be

unpredictable.

To avoid this problem, select a power of 10 that, when multiplied by the

original coordinate, yields a decimal number that DB2 Spatial Extender can

truncate to a storable integer, with minimum loss of precision. In this case, you

could select 10 to the fifth power (100000). Multiplying 100000 by

10000000006.789876 yields 1000000000678987.6. DB2 Spatial Extender would

round this number to 1000000000678988, reducing its accuracy slightly.

Conversion factors that transform coordinate data into

integers

DB2 Spatial Extender uses offset values and scale factors to convert the coordinate

data that you provide to positive integers. The default spatial reference systems

already have offset value and scale factors associated with them. If you are

creating a new spatial reference system, determine the scale factors and, optionally,

the offset values that work best with your data.

Determining minimum and maximum coordinates and

measures

Use this procedure to determine minimum and maximum coordinates and

measures if you:

v Decide to create a new spatial reference system because none of the spatial

reference systems provided with DB2 Spatial Extender work with your data.

v Decide to use extent transformations to convert your coordinates.

Determine minimum and maximum coordinates and measures if you decide to

specify extent transformations when you create a spatial reference system.

After you determine the extent values, if any of the coordinates are decimal values,

you need to calculate scale factors. Otherwise, submit the db2se create_srs

command or db2se.ST_create_srs stored procedure.

To determine the minimum and maximum coordinates and measures of the

locations that you want to represent:

60 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

1. Determine the minimum and maximum X coordinates. To find the minimum X

coordinate, identify the X coordinate in your domain that is furthest west. (If

the location lies to the west of the point of origin, this coordinate will be a

negative value.) To find the maximum X coordinate, identify the X coordinate

in your domain that is furthest east. For example, if you are representing oil

wells, and each one is defined by a pair of X and Y coordinates, the X

coordinate that indicates the location of the oil well that is furthest west is the

minimum X coordinate, and the X coordinate that indicates the location of the

oil well that is furthest east is the maximum X coordinate.

Tip: For multifeature types, such as multipolygons, ensure that you pick the

furthest point on the furthest polygon in the direction that you are

calculating. For example, if you are trying to identify the minimum X

coordinate, identify the westernmost X coordinate of the polygon that is

furthest west in the multipolygon.

2. Determine the minimum and maximum Y coordinates. To find the minimum Y

coordinate, identify the Y coordinate in your domain that is furthest south. (If

the location lies to the south of the point of origin, this coordinate will be a

negative value.) To determine the maximum Y coordinate, find the Y coordinate

in your domain that is furthest north.

3. Determine the minimum and maximum Z coordinates. The minimum Z

coordinate is the greatest of the depth coordinates and the maximum Z

coordinate is the greatest of the height coordinates.

4. Determine the minimum and maximum measures. If you are going to include

measures in your spatial data, determine which measure has the highest

numerical value and which has the lowest.

Calculating offset values

You specify offset values if your coordinate data includes negative numbers or

measures.

If you create a spatial reference system and your coordinate data includes negative

numbers or measures, you need to specify the offset values that you want to use.

An offset is a number that is subtracted from all coordinates, leaving only positive

values as a remainder. You can improve the performance of spatial operations

when the coordinates are positive integers instead of negative numbers or

measures.

To calculate the offset values for the coordinates that you are working with:

1. Determine the lowest negative X, Y, and Z coordinates within the range of

coordinates for the locations that you want to represent. If your data is to

include negative measures, determine the lowest of these measures.

2. Optional but recommended: Indicate to DB2 Spatial Extender that the domain

that encompasses the locations that you are concerned with is larger than it

actually is. Thus, after you write data about these locations to a spatial column,

you can add data about locations of new features as they are added to outer

reaches of the domain, without having to replace your spatial reference system

with another one.

For each coordinate and measure that you identified in step 1, add an amount

equal to five to ten percent of the coordinate or measure. The result is referred

to as an augmented value. For example, if the lowest negative X coordinate is

–100, you could add –5 to it, yielding an augmented value of –105. Later, when

you create the spatial reference system, you will indicate that the lowest X

Chapter 8. Setting up spatial resources for a project 61

coordinate is –105, rather than the true value of –100. DB2 Spatial Extender will

then interpret –105 as the westernmost limit of your domain.

3. Find a value that, when subtracted from your augmented X value, leaves zero;

this is the offset value for X coordinates. DB2 Spatial Extender subtracts this

number from all X coordinates to produce only positive values.

For example, if the augmented X value is –105, you need to subtract –105 from

it to get 0. DB2 Spatial Extender will then subtract –105 from all X coordinates

that are associated with the features that you are representing. Because none of

these coordinates is greater than –100, all the values that result from the

subtraction will be positive.

4. Repeat step 3 for the augmented Y value, augmented Z value, and augmented

measure.

Creating a spatial reference system

Create a new spatial reference system if none of the spatial reference systems that

are provided with DB2 Spatial Extender work with your data.

To do this task... :

1. Choose the interface.

You can create a spatial reference system in any of the following ways:

v Use the Create Spatial Reference System window in the DB2 Control Center.

See the online help for more information about how to use this window.

v Issue the db2se create_srs command from the db2se command–line processor.

v Run an application that invokes the db2se.ST_create_srs stored procedure.
2. Specify an appropriate spatial reference system ID (SRID).

v For geodetic data in a round-earth representation, specify an SRID value in

the range of 200000318 to 2000001000.

v For spatial data in a flat-earth representation, specify an SRID that is not

already defined.
3. Decide on the degree of precision that you want.

You can either:

v Specify the extents of the geographical area that you are working with and

the scale factors that you want to use with your coordinate data. Spatial

Extender takes the extents that you specify and calculates the offset for you.

You can specify extents in one of the following ways:

– Choose Extents in the Create Spatial Reference System window of the

Control Center.

– Provide the appropriate parameters for the db2se create_srs command or

db2se.ST_create_srs stored procedure.
v Specify both the offset values (required for Spatial Extender to convert

negative values to positive values) and scale factors (required for Spatial

Extender to convert decimal values to integers). Use this method when you

need to follow strict criteria for accuracy or precision. You can specify offset

values and scale factors in one of the following ways:

– Choose Offset in the Create Spatial Reference System window of the

Control Center

– Provide the appropriate parameters for the db2se create_srs command or

db2se.ST_create_srs stored procedure.

62 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

4. Calculate the conversion information that Spatial Extender needs to convert

coordinate data to positive integers, and provide this information to the

interface that you chose.

This information differs according to the method that you chose in step 3.

v If you chose the Extents method in step 3, you need to calculate the

following information:

– Scale factors. If any of the coordinates that you are working with are

decimal values, calculate scale factors. Scale factors are numbers that,

when multiplied by decimal coordinates and measures, yields integers

with at least the same number of significant digits as the original

coordinates and measures. If the coordinates are integers, the scale factors

can be set to 1. If the coordinates are decimal values, the scale factor

should be set to a number that converts the decimal portion to an integer

value. For example, if the coordinate units are meters and the accuracy of

the data is 1 cm., you would need a scale factor of 100.

– Minimum and maximum values for your coordinates and measures.
v If you chose the Offset method in step 3, you need to calculate the following

information:

– Offset values

If your coordinate data includes negative numbers or measures, you need

to specify the offset values that you want to use. An offset is a number

that is subtracted from all coordinates, leaving only positive values as a

remainder. If you are working with positive coordinates, set all offset

values to 0. If you are not working with positive coordinates, select an

offset that, when applied against the coordinate data, results in integers

that are less than the largest positive integer value (9,007,199,254,740,992).

– Scale factors

If any of the coordinates for the locations that you are representing are

decimal numbers, determine what scale factors to use and enter these

scale factors in the Create Spatial Reference System window.
5. Submit the db2se create_srs command or the db2se.ST_create_srs stored

procedure to create the stored procedure.

For example, the following command creates a spatial reference system named

mysrs:

db2se create_srs mydb -srsName \"mysrs\"

 -srsID 100 -xScale 10 -coordsysName

\"GCS_North_American_1983\"

Chapter 8. Setting up spatial resources for a project 63

64 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 9. Setting up spatial columns

In preparing to obtain spatial data for a project, you not only choose or create a

coordinate system and spatial reference system; you also provide one or more table

columns to contain the data. This chapter:

v Notes that results of queries of the columns can be rendered graphically, and

provides guidelines for choosing data types for the columns

v Describes the task of providing the columns

v Describes the task of making the columns accessible to tools that can display

their content in graphical form

Spatial columns

Spatial columns with viewable content

When you use a visualization tool, such as ArcExplorer for DB2®, to query a

spatial column, the tool returns results in the form of a graphical display; for

example, a map of parcel boundaries or the layout of a road system. Some

visualization tools require all rows of the column to use the same spatial reference

system. The way you enforce this constraint is to register the column with a spatial

reference system.

Spatial data types

When you enable a database for spatial operations, DB2 Spatial Extender supplies

the database with a hierarchy of structured data types.

Figure 12 on page 66 presents this hierarchy. In this figure, the instantiable types

have a white background; the uninstantiable types have a shaded background.

Instantiable data types are ST_Point, ST_LineString, ST_Polygon,

ST_GeomCollection, ST_MultiPoint, ST_MultiPolygon, and ST_MultiLineString.

Data types that are not instantiable are ST_Geometry, ST_Curve, ST_Surface,

ST_MultiSurface, and ST_MultiCurve.

© Copyright IBM Corp. 1998, 2006 65

The hierarchy in Figure 12 includes:

v Data types for geographic features that can be perceived as forming a single

unit; for example, individual residences and isolated lakes.

v Data types for geographic features that are made up of multiple units or

components; for example, canal systems and groups of islands in a lake.

v A data type for geographic features of all kinds.

Data types for single-unit features

Use ST_Point, ST_LineString, and ST_Polygon to store coordinates that define the

space occupied by features that can be perceived as forming a single unit.

v Use ST_Point when you want to indicate the point in space that is occupied by a

discrete geographic feature. The feature might be a very small one, such as a

water well; a very large one, such as a city; or one of intermediate size, such as

a building complex or park. In each case, the point in space can be located at the

intersection of an east-west coordinate line (for example, a parallel) and a

north-south coordinate line (for example, a meridian). An ST_Point data item

includes an X coordinate and a Y coordinate that define such an intersection.

The X coordinate indicates where the intersection lies on the east-west line; the Y

coordinate indicates where the intersection lies on the north-south line.

v Use ST_Linestring for coordinates that define the space that is occupied by linear

features; for example, streets, canals, and pipelines.

v Use ST_Polygon when you want to indicate the extent of space covered by a

multi-sided feature; for example, a voting district, a forest, or a wildlife habitat.

An ST_Polygon data item consists of the coordinates that define the boundary of

such a feature.

In some cases, ST_Polygon and ST_Point can be used for the same feature. For

example, suppose that you need spatial information about an apartment complex.

If you want to represent the point in space where each building in the complex is

located, you would use ST_Point to store the X and Y coordinates that define each

such point. Otherwise, if you want to represent the area occupied by the complex

as a whole, you would use ST_Polygon to store the coordinates that define the

boundary of this area.

Data types for multi-unit features

Use ST_MultiPoint, ST_MultiLineString, and ST_MultiPolygon to store coordinates

that define spaces occupied by features that are made up of multiple units.

Figure 12. Hierarchy of spatial data types. Data types named in white boxes are instantiable.

Data types named in shaded boxes are not instantiable.

66 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v Use ST_MultiPoint when you are representing features made up of units whose

locations are each referenced by an X coordinate and a Y coordinate. For

example, consider a table whose rows represent island chains. The X coordinate

and Y coordinate for each island has been identified. If you want the table to

include these coordinates and the coordinates for each chain as a whole, define

an ST_MultiPoint column to hold these coordinates.

v Use ST_MultiLineString when you are representing features made up of linear

units, and you want to store the coordinates for the locations of these units and

the location of each feature as a whole. For example, consider a table whose

rows represent river systems. If you want the table to include coordinates for the

locations of the systems and their components, define an ST_MultiLineString

column to hold these coordinates.

v Use ST_MultiPolygon when you are representing features made up of

multi-sided units, and you want to store the coordinates for the locations of

these units and the location of each feature as a whole. For example, consider a

table whose rows represent rural counties and the farms in each county. If you

want the table to include coordinates for the locations of the counties and farms,

define an ST_MultiPolygon column to hold these coordinates.

Multi-unit is not meant as a collection of individual entities. Rather, multi-unit

refers to an aggregate of the parts that makes up the whole.

A data type for all features

You can use ST_Geometry when you are not sure which of the other data types to

use.

Because ST_Geometry is the root of the hierarchy to which the other data types

belong, an ST_Geometry column can contain the same kinds of data items that

columns of the other data types can contain.

 Attention: If you plan to use the supplied geocoder, DB2SE_USA_GEOCODER,

to produce data for a spatial column, the column must be of type ST_Point or

ST_Geometry. Certain visualization tools, however, do not support ST_Geometry

columns, but only columns to which a proper subtype of ST_Geometry has been

assigned.

Creating spatial columns

You must create spatial columns to store and retrieve spatial data.

Before you create a spatial column, your user ID must hold the authorizations that

are needed for the DB2 SQL CREATE TABLE or ALTER TABLE statement. The

user ID must have at least one of the following authorities or privileges:

v SYSADM or DBADM authority on the database where the table that has the

column resides

v CREATETAB authority on the database and USE privilege on the table space as

well as one of the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema of the index does not exist

– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v ALTER privilege on the table to be altered

v CONTROL privilege on the table to be altered

v ALTERIN privilege on the schema of the table

Chapter 9. Setting up spatial columns 67

This task is part of a larger task ″Setting up spatial resources for a project.″ After

you choose a coordinate system and determine which spatial reference system to

use for your data, you create a spatial column in an existing table or import spatial

data into a new table.

To do this task... :

You can provide your database with spatial columns in one of several ways:

v Use DB2’s CREATE TABLE statement to create a table and to include a spatial

column within that table.

v Use DB2’s ALTER TABLE statement to add a spatial column to an existing table.

v Use the Create Spatial Column window in the DB2 Control Center. Open the

Spatial Columns window from a table.

v If you are importing spatial data from a shape file, use DB2 Spatial Extender to

create a table and to provide this table with a column to hold the data. See

″Importing shape data to a new or existing table.″

v If you are importing spatial data from an SDE transfer file, use DB2 Spatial

Extender to create a table, to provide this table with a column to hold the data,

and to make the column accessible to visualization tools. See ″Importing SDE

transfer data to a new or existing table.″

The next task in setting up spatial resources is “Registering spatial columns.”

Registering spatial columns

Registering a spatial column creates a constraint on the table, if possible, to ensure

that all geometries use the specified spatial reference system.

Prerequisites

You might want to register a spatial column in the following situations:

v Access by visualization tools

If you want certain visualization tools—for example, ArcExplorer for DB2—to

generate graphical displays of the data in a spatial column, you need to ensure

the integrity of the column’s data. You do this by imposing a constraint that

requires all rows of the column to use the same spatial reference system. To

impose this constraint, register the column, specifying both its name and the

spatial reference system that applies to it.

v Access by spatial indexes

Use the same coordinate system for all data in a spatial column on which you

want to create an index to ensure that the spatial index returns the correct

results. You register a spatial column to constrain all data to use the same spatial

reference system and, correspondingly, the same coordinate system.

Before you register a spatial column, your user ID must hold one of the following

forms of authorization:

If you are using the db2se command–line processor or an application program to

import data from an SDE transfer file, you can have DB2 Spatial Extender

automatically create and register a column to hold the data. In that case, your user

ID must hold SYSADM or DBADM authority on the database.

To do this task... :

68 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

1. You can register a spatial column in any of the following ways: Use the Spatial

Columns and Select Spatial Reference System windows of the DB2 Control

Center to register the column. Issue the db2se register_spatial_column

command. Run an application that invokes the

db2gse.ST_register_spatial_column stored procedure. If you want to import

spatial data from an SDE transfer file, you can use the Import Spatial Data

window of the Control Center, the import_sde command, or the

db2gse.ST_import_sde stored procedure to create a table with a spatial column,

to register this column, and to import the data into the column.

2. Refer to the SRS_NAME column in the DB2GSE.GSE_GEOMETRY_COLUMNS

view to check the spatial reference system you chose for a particular column

after you register the column.

Chapter 9. Setting up spatial columns 69

70 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 10. Populating spatial columns

After you create spatial columns, and register the ones to be accessed by these

visualization tools, you are ready to populate the columns with spatial data. There

are three ways to supply the data: import it; use a geocoder to derive it from

business data; or use spatial functions to create it or to derive it from business data

or other spatial data.

About importing and exporting spatial data

You can use DB2® Spatial Extender to exchange spatial data between your

database and external data sources. More precisely, you can import spatial data

from external sources by transferring it to your database in files, called data

exchange files. You also can export spatial data from your database to data

exchange files, from which external sources can acquire it. This section suggests

some of the reasons for importing and exporting spatial data, and describes the

nature of the data exchange files that DB2 Spatial Extender supports.

Reasons for importing and exporting spatial data

By importing spatial data, you can obtain a great deal of spatial information that is

already available in the industry. By exporting it, you can make it available in a

standard file format to existing applications. Consider these scenarios:

v Your database contains spatial data that represents your sales offices, customers,

and other business concerns. You want to supplement this data with spatial data

that represents your organization’s cultural environment—cities, streets, points

of interest, and so on. The data that you want is available from a map vendor.

You can use DB2 Spatial Extender to import it from a data exchange file that the

vendor supplies.

v You want to migrate spatial data from an Oracle system to your DB2

environment. You proceed by using an Oracle utility to write the data to a data

exchange file. You then use DB2 Spatial Extender to import the data from this

file to the database that you have enabled for spatial operations.

v You are not connected to DB2, and want to use a geobrowser to show visual

presentations of spatial information to customers. The browser needs only files

to work from; it does not need to be connected to a database. You could use DB2

Spatial Extender to export the data to a data exchange file, and then use a

browser to render the data in visual form.

Shape files and SDE transfer files

DB2 Spatial Extender supports two types of data exchange files: shape files and

SDE transfer files. The term shape file actually refers to a collection of files with

the same file name but different file extensions. The collection can include up to

four files. They are:

v A file that contains spatial data in shape format, a de facto industry-standard

format developed by ESRI. Such data is often called shape data. The extension of

a file containing shape data is .shp.

v A file that contains business data that pertains to locations defined by shape

data. This file’s extension is .dbf.

v A file that contains an index to shape data. This file’s extension is .shx.

© Copyright IBM Corp. 1998, 2006 71

v A file that contains a specification of the coordinate system on which the data in

a .shp file is based. This file’s extension is .prj.

Shape files are often used for importing data that originates in file systems, and for

exporting data to files within file systems.

When you use DB2 Spatial Extender to import shape data, you receive at least one

.shp file. In most cases, you receive one or more of the other three kinds of shape

files as well.

SDE transfer files are often used for importing data that originates in ESRI

databases. Each file includes spatial data, a spatial reference system for this data,

and business data. The spatial data, whose format is proprietary to ESRI, is

intended for a table column that has been registered to the DB2 Spatial Extender

catalog. The business data is targeted for other columns in the table to which the

registered column belongs.

Importing spatial data

This section provides an overview of the tasks of importing shape data and SDE

transfer data to your database. The section includes cross-references to specifics

that you need to know (for example, processes and parameters) in order to

perform these tasks.

Importing shape data to a new or existing table

You can import shape data to an existing table or view, or you can create a table

and import shape data to it in a single operation.

Before you import shape data to an existing table or view, your user ID must hold

one of the following forms of authorization:

v SYSADM or DBADM authority on the database that contains the table or view

v CONTROL privilege on the table or view

v The INSERT privilege on the table or view

v The SELECT privilege on the table or view (required only if the table includes

an ID column that is not an IDENTITY column)

v Privileges to access the directories to which input files and error files belong

v Read privileges on the input files and write privileges on the error files

Before you begin to create a table automatically and import shape data to it, your

user ID must hold the following forms of authorization:

v SYSADM, DBADM, or CREATETAB authority on the database that contains the

table

v One of the following permissions:

– CREATEIN privilege on the schema to which the table belongs (required

when the schema already exists)

– IMPLICIT_SCHEMA authority on the database that contains the table

(required when the schema specified for the table does not actually exist)
v Privileges to access the directories to which input files and error files belong

v Read privileges on the input files and write privileges on the error files

Choose one of the following methods to import shape data:

72 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v Import the shape data to a spatial column in an existing table, an existing

updateable view, or an existing view on which an INSTEAD OF trigger for

INSERTs is defined.

v Automatically create a table with a spatial column and import the shape data to

this column.

To do this task... :

Choose the method that you want to use to import shape data:

v Use the Import Shape Data window of the DB2 Control Center.

v Issue the db2se import_shape command.

v Run an application that calls the db2gse.ST_import_shape stored procedure.

Importing SDE transfer data to a new or existing table

You can import SDE transfer data to an existing table, or you can create a table

and import SDE transfer data to it in a single operation.

Before you import data to a column in an existing table or view, your user ID must

hold one of the following forms of authorization:

v SYSADM or DBADM authority on the database that contains the table or view

v CONTROL privilege on the table or view

v Both the INSERT and SELECT privileges on the table or view

Before you initiate the operation to create a table automatically and import shape

data to it, your user ID must hold the following forms of authorization:

v Either SYSADM, DBADM, or CREATETAB authority on the database that

contains the table

v One of the following permissions:

– CREATEIN privilege on the schema to which the table belongs (required

when the schema already exists)

– IMPLICIT_SCHEMA authority on the database that contains the table

(required when the schema specified for the table does not actually exist)

Choose one of the following methods to import SDE transfer data:

v Import SDE transfer data to an existing table that includes a spatial column that

is already registered to the DB2 Spatial Extender catalog. The transfer data can

include spatial data for the column and business data for other columns in the

table.

v Automatically create a table that has a spatial column, register this column to

the catalog, and import SDE transfer data to this column as well as to the table’s

other columns.

To do this task... :

Choose which method to use to import SDE transfer data:

v Use the Import window of the DB2 Control Center.

v Issue the db2se import_sde command.

v Run an application that calls the db2gse.GSE_import_sde stored procedure.

Chapter 10. Populating spatial columns 73

Exporting spatial data

This section provides an overview of the tasks of exporting spatial data to shape

and SDE transfer files. The section includes cross-references to specifics that you

need to know (for example, processes and parameters) in order to perform these

tasks.

Exporting data to a shapefile

You can export spatial data returned in query results to a shapefile.

Before you can export data to a shapefile, your user ID must hold the following

privileges:

v The privilege to execute a subselect that returns the results that you want to

export

v The privilege to write to the directory where the file to which you will be

exporting data resides

v The privilege to create a file to contain the exported data (required if such a file

does not already exist)

To find out what these privileges are and how to obtain them, consult your

database administrator.

The spatial data that you export to a shapefile might come from sources such as a

base table, a join or union of multiple tables, result sets returned when you query

views, or output of a spatial function.

If a file to which you want to export data exists, DB2 Spatial Extender can append

the data to this file. If such a file does not exist, you can use DB2 Spatial Extender

to create one.

To do this task... :

Choose a method to export data to a shapefile:

v Initiate the export from the Export Shape File window of the DB2 Control

Center.

v Issue the db2se export_shape command from the db2se command line processor.

v Run an application that calls the db2gse.ST_export_shape stored procedure.

Exporting data to an SDE transfer file

You can export a table that contains spatial data to an SDE transfer file.

Before you can export data to an SDE transfer file, your user ID must hold the

following permissions:

v Either SYSADM OR DBADM authority.

v The SELECT privilege on the table that is to be exported.

v The privilege to write to the directory where the file to which you will be

exporting data resides

Restrictions:

v You can export only one spatial column in each export operation.

v The columns that you export must have data types that the SDE

format supports.

74 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v The table must contain exactly one spatial column.

v This column must be registered to the DB2 Spatial Extender

catalog.

v You cannot append to existing SDE files.

The table that you export cannot contain more than one spatial column. Moreover,

this column must be registered to the DB2 Spatial Extender catalog. If the table

contains business data, this data will be exported along with the spatial data. You

can export either all rows in the table or a subset of rows. To export a subset,

specify a WHERE clause that identifies the subset.

To do this task... :

Choose a method to export spatial and business data to an SDE transfer file:

v Use the Export SDE Files window of the DB2 Control Center.

v Issue the db2se export_sde command.

v Run an application that calls the db2gse.GSE_export_sde stored procedure.

How to use a geocoder

This section discusses the concept of geocoding and introduces the following tasks:

v Defining the work that you want a geocoder to do; for example, specifying how

may records the geocoder should process before a commit is issued

v Setting up a geocoder to geocode data as soon as the data is added to, or

updated in, a table.

v Running a geocoder in batch mode

Geocoders and geocoding

The terms geocoder and geocoding are used in several contexts. This discussion

sorts out these contexts, so that the terms’ meanings can be clear each time you

come across the terms. The discussion defines geocoder and geocoding, describes

the modes in which a geocoder operates, describes a larger activity to which

geocoding belongs, and summarizes users’ tasks that pertain to geocoding.

In DB2® Spatial Extender, a geocoder is a scalar function that translates existing

data (the function’s input) into data that you can understand in spatial terms (the

function’s output). Typically, the existing data is relational data that describes or

names a location. For example, the geocoder that is shipped with DB2 Spatial

Extender, DB2SE_USA_GEOCODER, translates United States addresses into

ST_Point data. DB2 Spatial Extender can support vendor-supplied and

user-supplied geocoders as well; and their input and output need not be like that

of DB2SE_USA_GEOCODER. To illustrate: One vendor-supplied geocoder might

translate addresses into coordinates that DB2 does not store, but rather writes to a

file. Another might be able to translate the number of an office in a commercial

building into coordinates that define office’s location in the building, or to translate

the identifier of a shelf in a warehouse into coordinates that define the shelf’s

location in the warehouse.

In other cases, the existing data that a geocoder translates might be spatial data.

For example, a user-supplied geocoder might translate X and Y coordinates into

data that conforms to one of DB2 Spatial Extender’s data types.

Chapter 10. Populating spatial columns 75

In DB2 Spatial Extender, geocoding is simply the operation in which a geocoder

translates its input into output—translating addresses into coordinates, for

example.

Modes

A geocoder operates in two modes:

v In batch mode, a geocoder attempts, in a single operation, to translate all its

input from a single table. For example, in batch mode,

DB2SE_USA_GEOCODER attempts to translate all the addresses in a single table

(or, alternatively, all addresses in a specified subset of rows in the table).

v In automatic mode, a geocoder translates data as soon as it is inserted or

updated in a table. The geocoder is activated by INSERT and UPDATE triggers

that are defined on the table.

Geocoding processes

Geocoding is one of several operations by which the contents of a spatial column

in a DB2 table are derived from other data. This discussion refers to these

operations collectively as a geocoding process. Geocoding processes can vary from

geocoder to geocoder. For example, DB2SE_USA_GEOCODER searches files of

known addresses to determine whether each address it receives as input matches a

known address to a given degree. Because the known addresses are like reference

material that people look up when they do research, these addresses are

collectively called reference data. Other geocoders might not need reference data;

they might verify their input in other ways. The geocoding process that

DB2SE_USA_GEOCODER participates in is as follows:

1. DB2SE_USA_GEOCODER performs operations that it has been designed to

carry out:

a. DB2SE_USA_GEOCODER parses each address that it receives as input.

b. DB2SE_USA_GEOCODER searches the reference data for street names that,

to a certain degree, resemble the street name in the parsed address. It

confines its search to streets within the area designated by the address’s zip

code.

c. If the search is successful, DB2SE_USA_GEOCODER determines whether

any address on the streets it has found match the parsed address to a

certain degree.

d. If DB2SE_USA_GEOCODER finds a match, it geocodes the parsed address.

Otherwise, it returns a null.
2. If DB2SE_USA_GEOCODER geocodes the parsed address, DB2 puts the

resulting coordinates in a designated spatial column.

3. If DB2SE_USA_GEOCODER is geocoding in batch mode, DB2 Spatial Extender

issues a commit either (a) every time DB2SE_USA_GEOCODER finishes

processing a certain number of input records or (b) after

DB2SE_USA_GEOCODER finishes processing all of its input.

The user’s tasks

In DB2 Spatial Extender, the tasks that pertain to geocoding are:

v Prescribing how certain parts of the geocoding process should be executed for a

given spatial column; for example, setting the minimum degree to which street

names in input records and street names in reference data should match; setting

the minimum degree to which addresses in input records and addresses in

76 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

reference data should match; and determining how many records should be

processed before each commit. This task can be referred to as setting up

geocoding or setting up geocoding operations.

v Specifying that data should be automatically geocoded each time that it is added

to, or updated in, a table. When automatic geocoding occurs, the instructions

that the user specified when he or she set up geocoding operations will take

effect (except for the instructions involving commits; they apply only to batch

geocoding). This task is referred to as setting up a geocoder to run automatically.

v Running a geocoder in batch mode. If the user has set up geocoding operations

already, his or her instructions will remain in effect during each batch session,

unless the user overrides them. If the user has not set up geocoding operations

before a given session, the user can specify that they should take effect set them

up for that particular session. This task can be referred to as running a geocoder

in batch mode and running geocoding in batch mode.

Setting up geocoding operations

DB2 Spatial Extender lets you set, in advance, the work that must be done when a

geocoder is invoked.

Before you can set geocoding operations for a particular geocoder, your user ID

must hold one of the following forms of authorization:

v SYSADM or DBADM authority on the database that contains the tables that the

geocoder will operate on

v The SELECT privilege and the CONTROL or UPDATE privilege on each table

that the geocoder operates on

You can specify the following parameters when a geocoder is invoked:

v What column the geocoder is to provide data for.

v Whether the input that the geocoder reads from a table or view should be

limited to a subset of rows in the table or view.

v The range or number of records that the geocoder should geocode in batch

sessions within a unit of work.

v Requirements for geocoder-specific operations. For example,

DB2SE_USA_GEOCODER can geocode only those records that match their

counterparts in the reference data to a specified degree or higher. This degree is

called the minimum match score.

You must specify the parameters in the list above before you set up the geocoder

to run in automatic mode. From then on, each time the geocoder is invoked (not

only automatically, but also for batch runs), geocoding operations will be

performed in accordance with your specifications. For example, if you specify that

45 records should be geocoded in batch mode within each unit of work, a commit

will be issued after every forty-fifth record is geocoded. (Exception: You can

override your specifications for individual sessions of batch geocoding.)

You do not have to establish defaults for geocoding operations before you run the

geocoder in batch mode. Rather, at the time that you initiate a batch session, you

can specify how the operations are to be performed for the length of the run. If

you do establish defaults for batch sessions, you can override them, as needed, for

individual sessions.

To do this task... :

Chapter 10. Populating spatial columns 77

Choose which way you want to set up geocoding operations:

v Invoke it from the Set Up Geocoding window of the DB2 Control Center.

v Issue the db2se setup_gc command.

v Run an application that calls the db2gse.ST_setup_geocoding stored procedure.

Recommendations: When DB2SE_USA_GEOCODER reads a record of address

data, it tries to match that record with a counterpart in the

reference data. In broad outline, the way it proceeds is as

follows: First, it searches the reference data for streets whose

zip code is the same as the zip code in the record. If it finds a

street name that is similar to the one in the record to a certain

minimum degree, or to a degree higher than this minimum, it

goes on to look for an entire address. If it finds an entire

address that is similar to the one in the record to a certain

minimum degree, or to a degree higher than this minimum, it

geocodes the record. If it does not find such an address, it

returns a null.

The minimum degree to which the street names must match is referred to as

spelling sensitivity. The minimum degree to which the entire addresses must match

is called the minimum match score. For example, if the spelling sensitivity is 80,

then the match between the street names must be at least 80 percent accurate

before the geocoder will search for the entire address. If the minimum match score

is 60, then the match between the addresses must be at least 60 percent accurate

before the geocoder will geocode the record.

You can specify what the spelling sensitivity and minimum match score should be.

Be aware that you might need to adjust them. For example, suppose that the

spelling sensitivity and minimum match score are both 95. If the addresses that

you want geocoded have not been carefully validated, matches of 95 percent

accuracy are highly unlikely. As a result, the geocoder is likely to return a null

when it processes these records. In such a case, it is advisable to lower the spelling

sensitivity and minimum match score, and run the geocoder again. Recommended

scores for spelling sensitivity and the minimum match score are 70 and 60,

respectively.

As noted at the start of this discussion, you can determine whether the input that

the geocoder reads from a table or view should be limited to a subset of rows in

the table or view. For example, consider the following scenarios :

v You invoke the geocoder to geocode addresses in a table in batch mode.

Unfortunately, the minimum match score is too high, causing the geocoder to

return a null when it processes most of the addresses. You reduce the minimum

match score when you run the geocoder again. To limit its input to those

addresses that were not geocoded, you specify that it should select only those

rows that contain the null that it had returned earlier.

v The geocoder selects only rows that were added after a certain date.

v The geocoder selects only rows that contain addresses in a particular area; for

example, a block of counties or a state.

As noted at the start of this discussion, you can determine the number of records

that the geocoder should process in batch sessions within a unit of work. You can

have the geocoder process the same number of records in each unit of work, or

you can have it process all the records of a table within a single unit of work. If

you choose the latter alternative, be aware that:

78 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v You have less control over the size of the unit of work than the former

alternative affords. Consequently, you cannot control how many locks are held

or how many log entries are made as the geocoder operates.

v If the geocoder encounters an error that necessitates a rollback, you need to run

the geocoder to run against all the records again. The resulting cost in resources

can be expensive if the table is extremely large and the error and rollback occur

after most records have been processed.

Setting up a geocoder to run automatically

You can set up a geocoder to automatically translate data as soon as the data is

added to, or updated in, a table.

Before you can set up a geocoder to run automatically:

v You must set up geocoding operations for each spatial column that is to be

populated by output from the geocoder.

v Your user ID must hold the following forms of authorization:

– SYSADM or DBADM authority on the database that contains the table on

which triggers to invoke the geocoder will be defined

– One or more privileges on this table:

- The CONTROL privilege.

- If you do not have the CONTROL privilege, you need the ALTER, SELECT,

and UPDATE privileges.
– The privileges required to create triggers on this table.

You can set up a geocoder to run automatically before you invoke it in batch

mode. Therefore, it is possible for automatic geocoding to precede batch geocoding.

If that happens, the batch geocoding is likely to involve processing the same data

that was processed automatically. This redundancy will not result in duplicate

data, because when spatial data is produced twice, the second yield of data

overrides the first. However, it can degrade performance.

Before you decide whether to geocode the address data within a table in batch

mode or automatic mode, consider that:

v Performance is better in batch geocoding than in automatic geocoding. A batch

session opens with one initialization and ends with one cleanup. In automatic

geocoding, each data item is geocoded in a single operation that begins with

initialization and concludes with cleanup.

v On the whole, a spatial column populated by means of automatic geocoding is

likely to be more up to date than a spatial column populated by means of batch

geocoding. After a batch session, address data can accumulate and remain

ungeocoded until the next session. But if automatic geocoding is already

enabled, address data is geocoded as soon as it is stored in the database.

To do this task... :

Choose which method to use to set up automatic geocoding:

v Do so from either the Set Up Geocoding window or the Geocoding window of

the DB2 Control Center.

v Issue the db2se enable_autogc command.

v Run an application that calls the db2gse.ST_enable_autogeocoding stored

procedure.

Chapter 10. Populating spatial columns 79

Running a geocoder in batch mode

When you run a geocoder in batch mode, you translate multiple records into

spatial data that goes into a specific column.

Before you can run a geocoder in batch mode, your user ID must hold one of the

following forms of authorization:

v SYSADM or DBADM authority on the database that contains the table whose

data is to be geocoded

v The CONTROL or UPDATE privilege on this table

v

You also need the SELECT privilege on this table, so that you can specify the

number of records to be processed before each commit. If you specify WHERE

clauses to limit the rows on which the geocoder is to operate, you might also

require the SELECT privilege on any tables and views that you reference in these

clauses. Ask your database administrator.

At any time before you run a geocoder to populate a particular spatial column,

you can set up geocoding operations for that column. Setting up the operations

involves specifying how certain requirements are to be met when the geocoder is

run. For example, suppose that you require DB2 Spatial Extender to issue a

commit after every 100 input records are processed by the geocoder. When you set

up the operations, you would specify 100 as the required number.

When you are ready to run the geocoder, you can override any of the values that

you specified when you set up operations. Your overrides will remain in effect

only for the length of the run.

If you do not set up operations, you must, each time you are ready to run the

geocoder, specify how the requirements are to be met during the run.

To do this task... :

Choose how to invoke a geocoder to run in batch mode:

v Invoke it from the Run Geocoding window of the DB2 Control Center.

v Issue the db2se run_gc command.

v Run an application that calls the db2gse.ST_run_geocoding stored procedure.

80 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 11. Using indexes and views to access spatial data

Before you query spatial columns, you can create indexes and views that will

facilitate access to them. This chapter:

v Describes the nature of the indexes that Spatial Extender uses to expedite access

to spatial data

v Explains how to create such indexes

v Explains how to use views to access spatial data

Types of spatial indexes

Good query performance is related to having efficient indexes defined on the

columns of the base tables in a database. The performance of the query is directly

related to how quickly values in the column can be found during the query.

Queries that use an index can execute more quickly and can provide a significant

performance improvement.

Spatial queries are typically queries that involve two or more dimensions. For

example, in a spatial query you might want to know if a point is included within

an area (polygon). Due to the multidimensional nature of spatial queries, the DB2®

native B-tree indexing is inefficient for these queries.

Spatial queries can use the following types of indexes:

v Spatial grid indexes

DB2 Spatial Extender’s indexing technology utilizes grid indexing, which is

designed to index multi-dimensional spatial data, to index spatial columns. DB2

Spatial Extender provides a grid index that is optimized for two-dimensional

data on a flat projection of the Earth.

v Geodetic Voronoi indexes

DB2 Geodetic Data Management Feature provides support for a new spatial

access method that enables you to create indexes on columns containing

multi-dimensional geodetic data. A geodetic Voronoi index is more suitable than

a grid index for geodetic data because it treats the Earth as a continuous sphere

with no distortions around the poles or edges at the 180th meridian.

Spatial grid indexes

Indexes improve application query performance, especially when the queried table

or tables contain many rows. If you create appropriate indexes that the query

optimizer chooses to run your query, you can greatly reduce the number of rows

to process.

DB2 Spatial Extender provides a grid index that is optimized for two dimensional

data. The index is created on the X and Y dimensions of a geometry.

The following aspects of a grid index are helpful to understand:

v The generation of the index

v The use of spatial functions in a query

v How a query uses a spatial grid index

© Copyright IBM Corp. 1998, 2006 81

Generation of spatial grid indexes

Spatial Extender generates a spatial grid index using the minimum bounding

rectangle (MBR) of a geometry.

For most geometries, the MBR is a rectangle that surrounds the geometry.

A spatial grid index divides a region into logical square grids with a fixed size that

you specify when you create the index. The spatial index is constructed on a

spatial column by making one or more entries for the intersections of each

geometry’s MBR with the grid cells. An index entry consists of the grid cell

identifier, the geometry MBR, and the internal identifier of the row that contains

the geometry.

You can define up to three spatial index levels (grid levels). Using several grid

levels is beneficial because it allows you to optimize the index for different sizes of

spatial data.

If a geometry intersects four or more grid cells, the geometry is promoted to the

next larger level. In general, the larger geometrys will be indexed at the larger

levels. If a geometry intersects 10 or more grid cells at the largest grid size, a

system-defined overflow index level is used. This overflow level prevents the

generation of too many index entries. For best performance, define your grid sizes

to avoid the use of this overflow level.

For example, if multiple grid levels exist, the indexing algorithm attempts to use

the lowest grid level possible to provide the finest resolution for the indexed data.

When a geometry intersects more than four grid cells at a given level, it is

promoted to the next higher level, (provided that there is another level). Therefore,

a spatial index that has the three grid levels of 10.0, 100.0, and 1000.0 will first

intersect each geometry with the level 10.0 grid. If a geometry intersects with more

than four grid cells of size 10.0, it is promoted and intersected with the level 100.0

grid. If more than four intersections result at the 100.0 level, the geometry is

promoted to the 1000.0 level. If more than 10 intersections result at the 1000.0 level,

the geometry is indexed in the overflow level.

Use of spatial functions in a query

The DB2 optimizer considers a spatial grid index for use when a query contains

one the following functions in its WHERE clause:

v ST_Contains

v ST_Crosses

v ST_Distance

v ST_EnvIntersects

v EnvelopesIntersect

v ST_Equals

v ST_Intersects

v ST_MBRIntersects

v ST_Overlaps

v ST_Touches

v ST_Within

82 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

How a query uses a spatial grid index

When the query optimizer chooses a spatial grid index, the query execution uses a

multiple-step filter process.

The filter process includes the following steps:

1. Determine the grid cells that intersect the query window. The query window is

the geometry that you are interested in and that you specify as the second

parameter in a spatial function (see examples below).

2. Scan the index for entries that have matching grid cell identifiers.

3. Compare the geometry MBR values in the index entries with the query window

and discard any values that are outside the query window.

4. Perform further analysis as appropriate. The candidate set of geometries from

the previous steps might undergo further analysis to determine if they satisfy

the spatial function (ST_Contains, ST_Distance, and so on). The spatial function

EnvelopesIntersect omits this step and typically has the best performance.

The following examples of spatial queries have a spatial grid index on the column

C.GEOMETRY:

SELECT name

FROM counties AS c

WHERE EnvelopesIntersect(c.geometry, -73.0, 42.0, -72.0, 43.0, 1) = 1

SELECT name

FROM counties AS c

WHERE ST_Intersects(c.geometry, :geometry2) = 1

In the first example, the four coordinate values define the query window. These

coordinate values specify the lower-left and upper-right corners (42.0 –73.0 and

43.0 –72.0) of a rectangle.

In the second example, Spatial Extender computes the MBR of the geometry

specified by the host variable :geometry2 and uses it as the query window.

When you create a spatial grid index, you should specify appropriate grid sizes for

the most common query window sizes that your spatial application is likely to use.

If a grid size is larger, index entries for geometries that are outside of the query

window must be scanned because they reside in grid cells that intersect the query

window, and these extra scans degrade performance. However, a smaller grid size

might generate more index entries for each geometry and more index entries must

be scanned, which also degrades query performance.

DB2 Spatial Extender provides an Index Advisor utility that analyzes the spatial

column data and suggests appropriate grid sizes for typical query window sizes.

Considerations for number of index levels and grid sizes

Use the Index Advisor to determine appropriate grid sizes for your spatial grid

indexes because it is the best way to tune the indexes and make your spatial

queries most efficient.

Number of grid levels

You can have up to three grid levels.

Chapter 11. Using indexes and views to access spatial data 83

For each grid level in a spatial grid index, a separate index search is performed

during a spatial query. Therefore, if you have more grid levels, your query is less

efficient.

If the values in the spatial column are about the same relative size, use a single

grid level. However, a typical spatial column does not contain geometries of the

same relative size, but geometries in a spatial column can be grouped according to

size. You should correspond your grid levels with these geometry groupings.

For example, suppose you have a table of county land parcels with a spatial

column that contains groupings of small urban parcels surrounded by larger rural

parcels. Because the sizes of the parcels can be grouped into two groups (small

urban ones and larger rural ones), you would specify two grid levels for the spatial

grid index.

Grid cell sizes

The general rule is to decrease the grid sizes as much as possible to get the finest

resolution while minimizing the number of index entries.

v A small value should be used for the finest grid size to optimize the overall

index for small geometries in the column. This avoids the overhead of

evaluating geometries that are not within the search area. However, the finest

grid size also produces the highest number of index entries. Consequently, the

number of index entries processed at query time increases, as does the amount

of storage needed for the index. These factors reduce overall performance.

v Using larger grid sizes, the index can be optimized further for larger geometries.

The larger grid sizes produce fewer index entries for large geometries than the

finest grid size would. Consequently, storage requirements for the index are

reduced, increasing overall performance.

The following figures show the effects of different grid sizes.

Figure 13 on page 85 shows a map of land parcels, each parcel represented by a

polygon geometry. The black rectangle represents a query window. Suppose you

want to find all of the geometries whose MBR intersects the query window.

Figure 13 on page 85 shows that 28 geometries (highlighted in pink) have an MBR

that intersects the query window.

84 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Figure 14 on page 86 shows a small grid size (25) that provides a close fit to the

query window.

v The query returns only the 28 geometries that are highlighted, but the query

must examine and discard three additional geometries whose MBRs intersect the

query window.

v This small grid size results in many index entries per geometry. During

execution, the query accesses all index entries for these 31 geometries. Figure 14

on page 86 shows 256 grid cells that overlay the query window. However, the

query execution accesses 578 index entries because many geometries are indexed

with the same grid cells.

For this query window, this small grid size results in an excessive number of index

entries to scan.

Figure 13. Land parcels in a neighborhood

Chapter 11. Using indexes and views to access spatial data 85

Figure 15 on page 87 shows a large grid size (400) that encompasses a considerably

larger area with many more geometries than the query window.

v This large grid size results in only one index entry per geometry, but the query

must examine and discard 59 additional geometries whose MBRs intersect the

grid cell.

v During execution, the query accesses all index entries for the 28 geometries that

intersect the query window, plus the index entries for the 59 additional

geometries, for a total of 112 index entries.

For this query window, this large grid size results in an excessive number of

geometries to examine.

Figure 14. Small grid size (25) on land parcels

86 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Figure 16 on page 88 shows a medium grid size (100) that provides a close fit to

the query window.

v The query returns only the 28 geometries that are highlighted, but the query

must examine and discard five additional geometries whose MBRs intersect the

query window.

v During execution, the query accesses all index entries for the 28 geometries that

intersect the query window, plus the index entries for the 5 additional

geometries, for a total of 91 index entries.

For this query window, this medium grid size is the best because it results in

significantly fewer index entries than the small grid size and the query examines

fewer additional geometries than the large grid size.

Figure 15. Large grid size (400) on land parcels

Chapter 11. Using indexes and views to access spatial data 87

Creating spatial grid indexes

Create spatial grid indexes to define two-dimensional grid indexes on spatial

columns to help optimize spatial queries.

Before you create a spatial grid index:

v Your user ID must hold the authorizations that are needed for the DB2 SQL

CREATE INDEX statement. The user ID must have at least one of the following

authorities or privileges:

– SYSADM or DBADM authority on the database where the table that has the

column resides

– Both of the following authorities or privileges:

- One of the following table privileges:

v CONTROL privilege on the table

v INDEX privilege on the table
- One of the following authorizations or privileges on the schema:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema of the index does not exist

v CREATEIN privilege on the schema, if the schema name of the index

refers to an existing schema
v You must know the values that you want to specify for the fully qualified spatial

grid index name and the three grid sizes that the index will use.

Recommendations:

Figure 16. Medium grid size (100) on land parcels

88 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v Before you create a spatial grid index on a column, use the Index Advisor to

determine the parameters for the index. The Index Advisor can analyze the

spatial column data and suggest appropriate grid sizes for your spatial grid

index.

v If you plan to do an initial load of data into the column, you should create the

spatial grid index after you complete the load process. That way, you can choose

optimal grid cell sizes that are based on the characteristics of the data by using

the Index Advisor. In addition, loading the data before creating the index will

improve the performance of the load process because then the spatial grid index

does not need to be maintained during the load process.

Restriction:

The same restrictions for creating indexes using the CREATE INDEX statement are

in effect when you create a spatial grid index. That is, the column on which you

create an index must be a base table column, not a view column or a nickname

column. The DB2 database system will resolve aliases in the process.

You create spatial grid indexes to improve the performance of queries on spatial

columns.

When you create a spatial grid index, you give it the following information:

v A name

v The name of the spatial column on which it is to be defined

v The combination of the three grid sizes helps optimize performance by

minimizing the total number of index entries and the number of index entries

that need to be scanned to satisfy a query.

You can create a spatial grid index in one of the following ways:

v Use the Spatial Extender window of the DB2 Control Center.

v Use the SQL CREATE INDEX statement with the db2gse.spatial_index extension

in the EXTEND USING clause.

v Use a GIS tool that works with DB2 Spatial Extender. If you use such a tool to

create the index, the tool will issue the appropriate SQL CREATE INDEX

statement.

This topic presents the steps for the first two methods. For information about using

a GIS tool to create a spatial grid index, see the documentation that comes with

that tool.

To do this task... :

Creating a spatial grid index using SQL CREATE INDEX

1. Determine the CREATE INDEX statement using the EXTEND USING clause

and the db2gse.spatial_index grid index extension. For example, the following

statement creates the spatial grid index TERRIDX for table BRANCHES that

has a spatial column TERRITORY.

CREATE INDEX terridx

 ON branches (territory)

 EXTEND USING db2gse.spatial_index (1.0, 10.0, 100.0)

2. Issue the CREATE INDEX command on the DB2 Command Editor, the DB2

Command Window, or the DB2 command line processor.

Chapter 11. Using indexes and views to access spatial data 89

CREATE INDEX statement for a spatial grid index

Use the CREATE INDEX statement with the EXTEND USING clause to create a

spatial grid index.

Syntax

�� CREATE INDEX index_name

index_schema.
 ON �

� table_name

table_schema.
 (column_name) EXTEND USING �

� db2gse.spatial_index (finest_grid_size , middle_grid_size �

� , coarsest_grid_size) ��

Parameters

index_schema.

Name of the schema to which the index that you are creating is to belong.

If you do not specify a name, the DB2 database system uses the schema

name that is stored in the CURRENT SCHEMA special register.

index_name

Unqualified name of the grid index that you are creating.

table_schema.

Name of the schema to which the table that contains column_name belongs.

If you do not specify a name, DB2 uses the schema name that is stored in

the CURRENT SCHEMA special register.

table_name

Unqualified name of the table that contains column_name.

column_name

Name of the spatial column on which the spatial grid index is created.

finest_grid_size, middle_grid_size, coarsest_grid_size

Grid sizes for the spatial grid index. These parameters must adhere to the

following conditions:

v finest_grid_size must be larger than 0.

v middle_grid_size must either be larger than finest_grid_size or be 0.

v coarsest_grid_size must either be larger than middle_grid_size or be 0.

Whether you create the spatial grid index using the Control Center or the CREATE

INDEX statement, the validity of the grid sizes are checked when the first

geometry is indexed. Therefore, if the grid sizes that you specify do not meet the

conditions of their values, an error condition is raised at the times described in

these situations:

v If all of the geometries in the spatial column are null, Spatial Extender

successfully creates the index without verifying the validity of the grid sizes.

Spatial Extender validates the grid sizes when you insert or update a non-null

geometry in that spatial column. If the specified grid sizes are not valid, an error

occurs when you insert or update the non-null geometry.

90 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v If non-null geometries exist in the spatial column when you create the index,

Spatial Extender validates the grid sizes at that time. If the specified grid sizes

are not valid, an error occurs immediately, and the spatial grid index is not

created.

Example

The following example CREATE INDEX statement creates the TERRIDX spatial

grid index on the spatial column TERRITORY in the BRANCHES table:

CREATE INDEX terridx

 ON branches (territory)

 EXTEND USING db2gse.spatial_index (1.0, 10.0, 100.0)

Tuning spatial grid indexes with the Index Advisor

Tuning spatial grid indexes with the Index Advisor—Overview

DB2® Spatial Extender provides a utility, called the Index Advisor, that you can use

to:

v Determine appropriate grid sizes for your spatial grid indexes.

The Index Advisor analyzes the geometries in a spatial column and recommends

optimal grid sizes for your spatial grid index.

v Analyze an existing grid index.

The Index Advisor can collect and display statistics from which you can

determine how well the current grid cell sizes facilitate retrieval of the spatial

data.

Determining grid sizes for a spatial grid index

Prerequisites

Before you can analyze the data that you want to index:

v Your user ID must hold the SELECT privilege on this table.

v If your table has more than one million rows, you might want to use the

ANALYZE clause to analyze a subset of the rows to have reasonable processing

time. You must have a USER TEMPORARY table space available to use the

ANALYZE clause. Set the page size of this table space to at least 8 KB and

ensure that you have USE privileges on it. For example, the following DDL

statements create a buffer pool with the same page size as the user temporary

table space and grant the USE privilege to anyone:

CREATE BUFFERPOOL bp8k SIZE 1000 PAGESIZE 8 K;

CREATE USER TEMPORARY TABLESPACE usertempts

 PAGESIZE 8K

 MANAGED BY SYSTEM USING (’c:\tempts’)

 BUFFERPOOL bp8k

GRANT USE OF TABLESPACE usertempts TO PUBLIC;

Alternatively, you can use the DB2 Control Center to create a user table space

and the corresponding buffer pool.

Before you create a spatial grid index on a column, you can use the Index Advisor

to determine appropriate grid sizes.

To do this task... :

Chapter 11. Using indexes and views to access spatial data 91

To determine appropriate grid sizes for a spatial grid index:

1. Ask the Index Advisor to recommend grid cell sizes for the index that you

want to create.

a. Enter the command that invokes the Index Advisor with the ADVISE

keyword to request grid cell sizes. For example, to invoke the Index

Advisor for the SHAPE column in the COUNTIES table, enter:

gseidx CONNECT TO mydb USER userID USING password GET GEOMETRY

STATISTICS FOR COLUMN userID.counties(shape) ADVISE

Restriction: If you enter the above gseidx command from an operating

system prompt, you must type the entire command on a single line.

Alternatively, you can run gseidx commands from a CLP file, which allows

you to split the command over multiple lines.

The Index Advisor returns recommended grid cell sizes. For example, the

above gseidx command with the ADVISE keyword returns the following

recommended cell sizes for the SHAPE column:

Query Window Size Suggested Grid Sizes Cost

----------------- -------------------------- ----

 0.1 0.7, 2.8, 14.0 2.7

 0.2 0.7, 2.8, 14.0 2.9

 0.5 1.4, 3.5, 14.0 3.5

 1 1.4, 3.5, 14.0 4.8

 2 1.4, 3.5, 14.0 8.2

 5 1.4, 3.5, 14.0 24

 10 2.8, 8.4, 21.0 66

 20 4.2, 14.7, 37.0 190

 50 7.0, 14.0, 70.0 900

 100 42.0, 0, 0 2800

b. Choose an appropriate query window size from the gseidx output, based on

the width of the coordinates that you display on your screen.

In this example, latitude and longitude values in decimal degrees represent

the coordinates. If your typical map display has a width of about 0.5

degrees (approximately 55 kilometers), go to the row that has the value 0.5

in the Query Window Size column. This row has suggested grid sizes of 1.4,

3.5, and 14.0.
2. Create the index with the suggested grid sizes. For the example in the previous

step, you can execute the following SQL statement:

CREATE INDEX counties_shape_idx ON userID.counties(shape)

EXTEND USING DB2GSE.SPATIAL_INDEX(1.4,3.5,14.0);

Analyzing spatial grid index statistics

Prerequisites

Before you can analyze the data that you want to index:

v Your user ID must hold the SELECT privilege on this table.

v If your table has more than one million rows, you might want to use the

ANALYZE clause to analyze a subset of the rows to have reasonable processing

time. You must have a USER TEMPORARY table space available to use the

ANALYZE clause. Set the page size of this table space to at least 8 KB and

ensure that you have USE privileges on it. For example, the following DDL

statements create a buffer pool with the same page size as the user temporary

table space and grant the USE privilege to anyone:

CREATE BUFFERPOOL bp8k SIZE 1000 PAGESIZE 8 K;

CREATE USER TEMPORARY TABLESPACE usertempts

 PAGESIZE 8K

92 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

MANAGED BY SYSTEM USING (’c:\tempts’)

 BUFFERPOOL bp8k

GRANT USE OF TABLESPACE usertempts TO PUBLIC;

Alternatively, you can use the DB2 Control Center to create a user table space

and the corresponding buffer pool.

Statistics on an existing spatial grid index can tell you whether the index is

efficient, or whether it should be replaced by a more efficient index. Use the Index

Advisor to obtain these statistics and, if necessary, to replace the index.

Tip: Equally important to tuning your index is verifying that it is being used by

your queries. To determine if a spatial index is being used, run Visual Explain

in the DB2 Control Center or a command line tool such db2exfmt on your

query. In the “Access Plan” section of the explain output, if you see an

EISCAN operator and the name of your spatial index, then the query uses

your index.

To do this task... :

Obtain statistics on a spatial grid index and, if necessary, to replace the index:

1. Have the Index Advisor collect statistics based on the grid cell sizes of the

existing index. You can ask for statistics on either a subset of the indexed data

or all of the data.

v To obtain statistics on indexed data in a subset of rows, enter the gseidx

command and specify the ANALYZE keyword and its parameters in addition

to the existing-index clause and DETAIL keyword. You can specify either the

number or percentage of rows that the Index Advisor is to analyze to obtain

statistics. For example, to obtain statistics on a subset of the data indexed by

the COUNTIES_SHAPE_IDX index, enter:

gseidx CONNECT TO mydb USER userID USING password GET GEOMETRY

STATISTICS FOR INDEX userID.counties_shape_idx DETAIL ANALYZE 25 PERCENT

 ADVISE

v To obtain statistics on all indexed data, enter the gseidx command and

specify its existing-index clause. Include the DETAIL keyword. For example,

to invoke the Index Advisor for the COUNTIES_SHAPE_IDX index, enter:

gseidx CONNECT TO mydb USER userID USING password GET GEOMETRY

STATISTICS FOR INDEX userID.counties_shape_idx DETAIL SHOW HISTOGRAM ADVISE

The Index Advisor returns statistics, a histogram of the data, and recommended

cell sizes for the existing index. For example, the above gseidx command for all

data indexed by COUNTIES_SHAPE_IDX returns the following statistics:

Grid Level 1

Grid Size : 0.5

Number of Geometries : 2936

Number of Index Entries : 12197

Number of occupied Grid Cells : 2922

Index Entry/Geometry ratio : 4.154292

Geometry/Grid Cell ratio : 1.004791

Maximum number of Geometries per Grid Cell: 14

Minimum number of Geometries per Grid Cell: 1

Index Entries : 1 2 3 4 10

--------------- ------ ------ ------ ------ ------

Absolute : 86 564 72 1519 695

Percentage (%): 2.93 19.21 2.45 51.74 23.67

Chapter 11. Using indexes and views to access spatial data 93

Grid Level 2

Grid Size : 0.0

No geometries indexed on this level.

Grid Level 3

Grid Size : 0.0

No geometries indexed on this level.

Grid Level X

Number of Geometries : 205

Number of Index Entries : 205

2. Determine how well the grid cell sizes of the existing index facilitate retrieval.

Assess the statistics returned in the previous step.

Tip:

v The statistic “Index Entry/Geometry ratio” should be a value in the

range of 1 to 4, preferably values closer to 1.

v The number of index entries per geometry should be less that 10 at the

largest grid size to avoid the overflow level.

The appearance of the “Grid Level X” section in the Index Advisor

output indicates that an overflow level exists.
The index statistics obtained in the previous step for the

COUNTIES_SHAPE_IDX indicate that the grid sizes (0.5, 0, 0) are not

appropriate for the data in this column because:

v For Grid Level 1, the “Index Entry/Geometry ratio”value 4.154292 is greater

than the guideline of 4.

The “Index Entries” line has the values 1, 2, 3, 4, and 10, which indicates the

number of index entries per geometry. The “Absolute” values below each

“Index Entries” column indicates the number of geometries that have that

specific number of index entries. For example, the output in the previous

step shows 1519 geometries have 4 index entries. The “Absolute” value for

10 index entries is 695 which indicates that 695 geometries have between 5

and 10 index entries.

v The appearance of the “Grid Level X” section indicates that an overflow

index level exists. The statistics show that 205 geometries have more than 10

index entries each.
3. If the statistics are not satisfactory, look at the Histogram section and the

appropriate rows in the Query Window Size and Suggested Grid Sizes columns

in the Index Advisor output.

a. Find the MBR size with the largest number of geometries. The “Histogram”

section lists the MBR sizes and the number of geometries that have that

MBR size. In the following sample histogram, the largest number of

geometries (437) is in MBR size 0.5.

Histogram:

 MBR Size Geometry Count

94 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

-------------------- --------------------

 0.040000 1

 0.045000 3

 0.050000 1

 0.055000 3

 0.060000 3

 0.070000 4

 0.075000 3

 0.080000 4

 0.085000 1

 0.090000 2

 0.095000 1

 0.150000 10

 0.200000 9

 0.250000 15

 0.300000 23

 0.350000 83

 0.400000 156

 0.450000 282

 0.500000 437

 0.550000 397

 0.600000 341

 0.650000 246

 0.700000 201

 0.750000 154

 0.800000 120

 0.850000 66

 0.900000 79

 0.950000 59

 1.000000 47

 1.500000 230

 2.000000 89

 2.500000 34

 3.000000 10

 3.500000 5

 4.000000 3

 5.000000 3

 5.500000 2

 6.000000 2

 6.500000 3

 7.000000 2

 8.000000 1

 15.000000 3

 25.000000 2

 30.000000 1

b. Go to the Query Window Size row with the value 0.5 to obtain the

suggested grid sizes (1.4, 3.5, 14.0).

Query Window Size Suggested Grid Sizes Cost

----------------- -------------------------- ----

 0.1 0.7, 2.8, 14.0 2.7

 0.2 0.7, 2.8, 14.0 2.9

 0.5 1.4, 3.5, 14.0 3.5

 1 1.4, 3.5, 14.0 4.8

 2 1.4, 3.5, 14.0 8.2

 5 1.4, 3.5, 14.0 24

 10 2.8, 8.4, 21.0 66

 20 4.2, 14.7, 37.0 190

 50 7.0, 14.0, 70.0 900

 100 42.0, 0, 0 2800

4. Verify that the recommended sizes meet the guidelines in step 2. Run the

gseidx command with the suggested grid sizes:

gseidx CONNECT TO mydb USER userID USING password GET GEOMETRY

 STATISTICS FOR COLUMN userID.counties(shape) USING GRID SIZES (1.4, 3.5, 14.0)

Chapter 11. Using indexes and views to access spatial data 95

Grid Level 1

Grid Size : 1.4

Number of Geometries : 3065

Number of Index Entries : 5951

Number of occupied Grid Cells : 513

Index Entry/Geometry ratio : 1.941599

Geometry/Grid Cell ratio : 5.974659

Maximum number of Geometries per Grid Cell: 42

Minimum number of Geometries per Grid Cell: 1

Index Entries : 1 2 3 4 10

--------------- ------ ------ ------ ------ ------

Absolute : 1180 1377 15 493 0

Percentage (%): 38.50 44.93 0.49 16.08 0.00

Grid Level 2

Grid Size : 3.5

Number of Geometries : 61

Number of Index Entries : 143

Number of occupied Grid Cells : 56

Index Entry/Geometry ratio : 2.344262

Geometry/Grid Cell ratio : 1.089286

Maximum number of Geometries per Grid Cell: 10

Minimum number of Geometries per Grid Cell: 1

Index Entries : 1 2 3 4 10

--------------- ------ ------ ------ ------ ------

Absolute : 15 28 0 18 0

Percentage (%): 24.59 45.90 0.00 29.51 0.00

Grid Level 3

Grid Size : 14.0

Number of Geometries : 15

Number of Index Entries : 28

Number of occupied Grid Cells : 9

Index Entry/Geometry ratio : 1.866667

Geometry/Grid Cell ratio : 1.666667

Maximum number of Geometries per Grid Cell: 10

Minimum number of Geometries per Grid Cell: 1

Index Entries : 1 2 3 4 10

--------------- ------ ------ ------ ------ ------

Absolute : 7 5 1 2 0

Percentage (%): 46.67 33.33 6.67 13.33 0.00

The statistics now show values within the guidelines:

v The “Index Entry/Geometry ratio” values are 1.941599 for Grid Level 1,

2.344262 for Grid Level 2, and 1.866667 for Grid Level 3. These values are all

within the guideline value range of 1 to 4.

v The absence of the “Grid Level X” section indicates that no index entries are

in the overflow level.

96 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

5. Drop the existing index and replace it with an index that specifies the advised

grid sizes. For the sample in the previous step, run the following DDL

statements:

DROP INDEX userID.counties_shape_idx;

CREATE INDEX counties_shape_idx ON userID.counties(shape) EXTEND USING

 DB2GSE.SPATIAL_INDEX(1.4,3.5,14.0);

The gseidx command

Use the gseidx command to invoke the Index Advisor for spatial grid indexes.

Syntax

�� gseidx CONNECT TO database_name

USER

userid

USING

password
 �

� GET GEOMETRY STATISTICS existing-index

simulated-index
 �

�
ONLY

ANALYZE

number

ROWS

(1)

PERCENT

 �

�
MINIMUM BOUNDING RECTANGLE

SHOW

HISTOGRAM

WITH

n

BUCKETS

 �

�
CELL

GRID

SIZES

ADVISE

 ��

existing-index:

 FOR INDEX index-name

index-schema

.

DETAIL

simulated-index:

 FOR COLUMN table-name (column-name)

table-schema

.
 �

�

�

,

CELL

(2)

USING GRID

SIZES

(

grid-size

)

Notes:

1 Instead of the PERCENT keyword, you can specify a percentage sign (%).

2 You can specify cell sizes for one, two, or three grid levels.

Parameters

database_name

The name of the database in which the spatial table resides.

Chapter 11. Using indexes and views to access spatial data 97

userid The user ID that has either SYSADM or DBADM authority on the database

in which the index or table resides or SELECT authority on the table. If

you log on to the DB2 command environment with the user ID of the

database owner, you do not need to specify userid and password in the

gseidx command.

password

Password for the user ID.

existing-index

References an existing index to gather statistics on.

index-schema

Name of the schema that includes the existing index.

index-name

Unqualified name of the existing index.

DETAIL

Shows the following information about each grid level:

v The size of the grid cells

v The number of geometries indexed

v The number of index entries

v The number of grid cells that contain geometries

v The average number of index entries per geometry

v The average number of geometries per grid cell

v The number of geometries in the cell that contains the most geometries

v The number of geometries in the cell that contains the fewest geometries

simulated-index

References a table column and a simulated index for this column.

table-schema

Name of the schema that includes the table with the column for which the

simulated index is intended.

table-name

Unqualified name of the table with the column for which the simulated

index is intended.

column-name

Unqualified name of the table column for which the simulated index is

intended.

grid-size

Sizes of the cells in each grid level (finest level, middle level, and coarsest

level) of a simulated index. You must specify a cell size for at least one

level. If you do not want to include a level, either do not specify a grid cell

size for it or specify a grid cell size of zero (0.0) for it.

 When you specify the grid-size parameter, the Index Adviser returns the

same kinds of statistics that it returns when you include the DETAIL

keyword in the existing-index clause.

ANALYZE number ROWS | PERCENT ONLY

Gathers statistics on data in a subset of table rows. If your table has more than

one million rows, you might want to use the ANALYZE clause to have

98 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

reasonable processing time. Specify the approximate quantity or approximate

percentage of the rows to be included in this subset.

SHOW MINIMUM BOUNDING RECTANGLE HISTOGRAM

Displays a chart that shows the sizes of the geometries’ minimum bounding

rectangles (MBRs) and the number of geometries whose MBRs are of the same

size.

WITH n BUCKETS

Specifies to the number of groupings for the MBRs of all analyzed geometries.

Small MBRs are grouped together with other small geometries. The larger

MBRs are grouped with other larger geometries.

 If you do not specify this parameter or specify 0 buckets, the Index Advisor

displays logarithmic bucket sizes. For example, the MBR sizes might be

logarithmic values such as 1.0, 2.0, 3.0,... 10.0, 20.0, 30.0,... 100.0, 200.0, 300.0,...

 If you specify a number of buckets greater than 0, the Index Advisor displays

equal–sized values. For example, the MBR sizes might be equal–sized values

such as 8.0, 16.0, 24.0,... 320.0, 328.0, 334.0.

 The default is to use logarithmic–sized buckets.

ADVISE GRID CELL SIZES

Computes close-to-optimal grid cell sizes.

Usage note

If you enter the gseidx command from an operating system prompt, you must type

the entire command on a single line.

Example

The following example is a request to return detailed information about an existing

grid index whose name is COUNTIES_SHAPE_IDX and suggest appropriate grid

index sizes:

gseidx CONNECT TO mydb USER user ID USING password GET GEOMETRY

STATISTICS FOR INDEX userID.counties_shape_idx DETAIL ADVISE

Using views to access spatial columns

You can define a view that uses a spatial column in the same way as you define

views in DB2 for other data types.

If you have a table that has a spatial column and you want a view to use it, use

the following sources of information.

Chapter 11. Using indexes and views to access spatial data 99

100 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 12. Analyzing and Generating spatial information

After you populate spatial columns, you are ready to query them. This chapter:

v Describes the environments in which you can submit queries

v Provides examples of the various types of spatial functions that you can invoke

in a query

v Provides guidelines on using spatial functions in conjunction with spatial

indexes

Environments for performing spatial analysis

You can perform spatial analysis by using SQL and spatial functions in the

following programming environments:

v Interactive SQL statements.

You can enter interactive SQL statements from the DB2® Command Editor, the

DB2 Command Window, or the DB2 command line processor.

v Application programs in all languages supported by DB2.

Examples of how spatial functions operate

DB2 Spatial Extender provides functions that perform various operations on spatial

data. Generally speaking, these functions can be categorized according to the type

of operation that they perform. Table 4 lists these categories, along with examples.

The text following Table 4 shows coding for these examples.

 Table 4. Spatial functions and operations

Category of function Example of operation

Returns information about

specific geometries.

Return the extent, in square miles, of the sales area of Store

10.

Makes comparisons. Determine whether the location of a customer’s home lies

within the sales area of Store 10.

Derives new geometries

from existing ones.

Derive the sales area of a store from its location.

Converts geometries to and

from data exchange formats.

Convert customer information in GML format into a

geometry, so that the information can be added to a DB2

database.

Example 1: Returns information about specific geometries

In this example, the ST_Area function returns a numeric value that represents the

sales area of store 10. The function will return the area in the same units as the

units of the coordinate system that is being used to define the area’s location.

SELECT db2gse.ST_Area(sales_area)

FROM stores

WHERE id = 10

The following example shows the same operation as the preceding one, but with

ST_Area invoked as a method and returning the area in units of square miles.

© Copyright IBM Corp. 1998, 2006 101

SELECT saleas_area..ST_Area(’STATUTE MILE’)

FROM stores

WHERE id = 10

Example 2: Makes comparisons

In this example, the ST_Within function compares the coordinates of the geometry

representing a customer’s residence with the coordinates of a geometry

representing the sales area of store 10. The function’s output will signify whether

the residence lies within the sales area.

SELECT c.first_name, c.last_name, db2gse.ST_Within(c.location, s.sales_area)

FROM customers as c. stores AS s

WHERE s.id = 10

Example 3: Derives new geometries from existing ones

In this example, the function ST_Buffer derives a geometry representing a store’s

sales area from a geometry representing the store’s location.

UPDATE stores

SET sales_area = db2gse.ST_Buffer(location, 10, ’KILOMETERS’)

WHERE id = 10

The following example shows the same operation as the preceding one, but with

ST_Buffer invoked as a method.

UPDATE stores

SET sales_area = location..ST_Buffer(10, ’KILOMETERS’)

WHERE id = 10

Example 4: Converts geometries to and from data exchange

formats.

In this example, customer information coded in GML is converted into a geometry,

so that it can be stored in a DB2 database.

INSERT

INTO c.name,c.phoneNo,c.address

VALUES (123, ’Mary Anne’, Smith’, db2gse.ST_Point(’

<gml:Point><gml:coord><gml=X>-130.876</gml:X>

<gml:Y>41.120’</gml:Y></gml:coord></gml:Point>, 1))

Functions that use indexes to optimize queries

A specialized group of spatial functions, called comparison functions, can improve

query performance by exploiting either a spatial grid index or a geodetic Voronoi

index (both known as spatial indexes). Each of these functions compares two

geometries with one another. If the results of the comparison meet certain criteria,

the function returns a value of 1; if the results fail to meet the criteria, the function

returns a value of 0. If the comparison cannot be performed, the function can

return a null value.

For example, the function ST_Overlaps compares two geometries that have the

same dimension (for example, two linestrings or two polygons). If the geometries

overlap partway, and if the space covered by the overlap has the same dimension

as the geometries, ST_Overlaps returns a value of 1.

Table 5 on page 103 shows which comparison functions can use a spatial grid

index and which ones can use a geodetic Voronoi index:

102 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 5. Comparison functions that can use a spatial grid index or a geodetic Voronoi index

Comparison function

Can use spatial

grid index

Can use

geodetic

Voronoi index

EnvelopesIntersect Yes Yes

ST_Contains Yes Yes

ST_Crosses Yes No

ST_Distance Yes Yes

ST_EnvIntersects Yes Yes

ST_Equals Yes No

ST_Intersects Yes Yes

ST_MBRIntersects Yes Yes

ST_Overlaps Yes No

ST_Touches Yes No

ST_Within Yes Yes

Because of the time and memory required to execute a function, such execution

can involve considerable processing. Furthermore, the more complex the

geometries that are being compared, the more complex and time-intensive the

comparison will be. The specialized functions listed above can complete their

operations more quickly if they can use a spatial index to locate geometries. To

enable such a function to use a spatial index, observe all of the following rules:

v The function must be specified in a WHERE clause. If it is specified in a

SELECT, HAVING, or GROUP BY clause, a spatial index cannot be used.

v The function must be the expression on left of the predicate.

v The operator that is used in the predicate that compares the result of the

function with another expression must be an equal sign, with one exception: the

ST_Distance function must use the less than operator.

v The expression on the right of the predicate must be the constant 1, except when

ST_Distance is the function on the left.

v The operation must involve a search in a spatial column on which a spatial

index is defined.

For example:

SELECT c.name, c.address, c.phone

FROM customers AS c, bank_branches AS b

WHERE db2gse.ST_Distance(c.location, b.location) < 10000

 and b.branch_id = 3

Table 6 shows correct and incorrect ways of creating spatial queries to utilize a

spatial index.

 Table 6. Demonstration of how spatial functions can adhere to and violate rules for utilizing a

spatial index.

Queries that reference spatial functions Rules violated

SELECT *

FROM stores AS s

WHERE db2gse.ST_Contains(s.sales_zone,

 ST_Point(-121.8,37.3, 1)) = 1

No condition is

violated in this

example.

Chapter 12. Analyzing and Generating spatial information 103

Table 6. Demonstration of how spatial functions can adhere to and violate rules for utilizing a

spatial index. (continued)

Queries that reference spatial functions Rules violated

SELECT *

FROM stores AS s

WHERE db2gse.ST_Length(s.location) > 10

The spatial function

ST_Length does not

compare geometries

and cannot utilize a

spatial index.

SELECT *

FROM stores AS s

WHERE 1=db2gse.ST_Within(s.location,:BayArea)

The function must

be an expression on

the left side of the

predicate.

SELECT *

FROM stores AS s

WHERE db2gse.ST_Contains(s.sales_zone,

 ST_Point(-121.8,37.3, 1)) <> 0

Equality

comparisons must

use the integer

constant 1.

SELECT *

FROM stores AS s

WHERE db2gse.ST_Contains(ST_Polygon

 (’polygon((10 10, 10 20, 20 20, 20 10, 10 10))’, 1),

 ST_Point(-121.8, 37.3, 1) = 1

No spatial index

exists on either of

the arguments for

the function, so no

index can be

utilized.

104 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 13. DB2 Spatial Extender commands

This chapter explains the commands used to set up DB2 Spatial Extender. It also

explains how you use these commands to develop projects.

Invoking commands for setting up DB2 Spatial Extender and

developing projects

Use a command–line processor (CLP), called db2se, to set up Spatial Extender and

create projects that use spatial data. This topic explains how to use db2se to run

DB2 Spatial Extender commands.

Prerequisites

Before you can issue db2se commands, you must be authorized to do so. To find

out what authorization is required for a given command, consult Table 7 on page

106 for the associated stored procedure topic for the command. For example, the

db2se create_srs command requires the same authorities as the db2.ST_create_srs

stored procedure.

Exception: The db2se shape_info command does not call a stored procedure.

Rather, it displays information about the contents of shape files.

Enter db2se commands from an operating system prompt.

To find out what subcommands and parameters you can specify:

v Type db2se or db2se -h; then press Enter. A list of db2se subcommands is

displayed.

v Type db2se and a subcommand, or db2se and a subcommand followed by -h.

Then press Enter. The syntax required for the subcommand is displayed. In this

syntax:

– Each parameter is preceded by a dash and followed by a placeholder for a

parameter value.

– Parameters enclosed by brackets are optional. The other parameters are

required.

Important: For your convenience, command syntax can be retrieved interactively

on your monitor; you do not need to look up the syntax elsewhere.

To issue a db2se command, type db2se. Then type a subcommand, followed by the

parameters and parameter values that the subcommand requires. Finally, press

Enter.

You might need to type the user ID and password that give you access to the

database that you just specified. For example, type the ID and password if you

want to connect to the database as a user other than yourself. Always precede the

ID with the parameter userId and precede the password with the parameter pw.

If you do not specify a user ID and password, your current user ID and password

will be used by default. Values that you enter are not case–sensitive by default. To

© Copyright IBM Corp. 1998, 2006 105

make them case-sensitive, enclose them in double quotation marks. For example, to

specify the lowercase table name mytable type the following: ″mytable″.

You might have to escape the quotation marks to ensure they are not interpreted

by the system prompt (shell), for example, specify the following: \″mytable\″ If a

case-sensitive value is qualified by another case-sensitive value, delimit the two

values individually; for example: ″myschema″.″mytable″ Enclose strings in double

quotation marks; for example: ″select * from newtable″

When the db2se command is executed, the stored procedure that corresponds to

the command will be invoked, and the operation that you requested will be

performed.

Overview of db2se commands

The following table indicates what db2se commands to issue to perform the tasks

involved in setting up Spatial Extender and creating projects that use spatial data.

This table also provides examples of db2se commands and refers you to

information about authorizations and command-specific parameters. To the right of

the task, in the second column, you will see a link or reference to information

about a stored procedure. This stored procedure is called when the command is

issued. Authorization to use the stored procedure is the same as the authorization

to use the command; also, the command and stored procedure share the same

parameters. For more information about authorization and the meanings of the

parameters, see the section identified by the reference.

 Table 7. db2se commands indexed by task

Task Command and example

Create a coordinate

system.

db2se create_cs

Command-specific parameters and required authorizations are the

same as those for the db2gse.ST_create_coordsys stored procedure.

The following example creates a coordinate system named

“mycoordsys”.

db2se create_cs mydb -coordsysName \"mycoordsys\"

-definition GEOCS[\"GCS_NORTH_AMERICAN_1983\",

DATUM["D_North_American_1983\",

SPHEROID[\"GRS_1980\",6387137,298.257222101]],

PRIMEM[\"Greenwich\",0],UNIT["Degree\",

0.0174532925199432955]]

Create a spatial

reference system.

db2se create_srs

Command-specific parameters are the same as those for the stored

procedure. No authorization is required.

The following example creates a spatial reference system named

“mysrs”.

db2se create_srs mydb -srsName \"mysrs\"

 -srsID 100 -xScale 10 -coordsysName

\"GCS_North_American_1983\"

106 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 7. db2se commands indexed by task (continued)

Task Command and example

Drop a spatial

reference system.

db2se drop_srs

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example drops a spatial reference system named

“mysrs”.

db2se drop_srs mydb -srsName \"mysrs\"

Delete a coordinate

system definition.

db2se drop_cs

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example drops a coordinate system named

“mycoordsys”.

db2se drop_cs mydb -coordsysName \"mycoordsys\"

Disable a setup to

geocode data

automatically.

db2se disable_autogc

Command-specific parameters and required authorizations are the

same as those for the db2gse.ST_disable_autogeocoding stored

procedure.

The following example disables the automatic geocoding for a

geocoded column named MYCOLUMN in table MYTABLE.

db2se disable_autogc mydb -tableName \"mytable\"

-columnName \"mycolumn\"

Enable a database for

spatial operations.

db2se enable_db

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example enables a database named MYDB for spatial

operations.

db2se enable_db mydb

Export data to an SDE

transfer file.

db2se export_sde

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example exports data from table MYSDETABLE,

which contains spatial column MYSPATIALCOLUMN, to an SDE

transfer file named mysdefile.

db2se export_sde mydb -tableName

\"mySDEtable\" -columnName \"mySpatialcolumn\"

 -fileName /home/myaccount/mysdefile

The next example exports data from a table named SPATIALTABLE

to an SDE file named sdex, which will be created on the DB2 client.

Errors and informational messages (for example, time the export

started and finished and how many rows were exported) are

written to a file called sdex.export.log.

db2se export_sde mydb -client -fileName sdex

-selectStatement "SELECT * FROM spatialTable"

-messagesFile sdex.export.log

Chapter 13. DB2 Spatial Extender commands 107

Table 7. db2se commands indexed by task (continued)

Task Command and example

Export data to shape

files.

db2se export_shape

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example exports a spatial column named

MYCOLUMN and its associated table, MYTABLE, to a shape file

named myshapefile.

db2se export_shape mydb -fileName

/home/myaccount/myshapefile -selectStatement

"select * from mytable"

Import an SDE

transfer file.

db2se import_sde

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example imports an SDE transfer file named

mysdefile to table MYSDETABLE, which contains a spatial column

named MYSPATIALCOLUMN. A commit is to be issued for every

ten records.

db2se import_sde mydb -tableName \"mysdetable\"

-columnName \"mySpatialcolumn\" -fileName

/home/myaccount/"mysdefile" -commitScope 10

The next example shows how to import an SDE file named sdex,

which resides on the DB2 client. In this example, the data is

imported into a table named SDETABLE (to a column named ID)

and a commit is issued every 100 records. Any errors are written to

a file called sdex.exceptions.

db2se import_sde mydb -client -filename sdex

-srsId 1234 -tableName sdeTable -idColumn id

-commitScope 100 -messagesFile sdex.exceptions

Import shape files. db2se import_shape

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following command imports a shape file named myfile to a

table named MYTABLE. During the import, the spatial data in

myfile is inserted into a MYTABLE column named MYCOLUMN.

db2se import_shape mydb -fileName \"myfile\"

-srsName NAD83_SRS_1 -tableName \"mytable\"

-spatialColumnName \"mycolumn\"

Register a geocoder. db2se register_gc

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example registers a geocoder named “mygeocoder”,

which is implemented by a function named

“myschema.myfunction”.

db2se register_gc mydb -geocoderName \"mygeocoder"\

-functionSchema \"myschema\" -functionName \"myfnction\"

-defaultParameterValues "1,

’string’,,cast(null as varchar(50))"

-vendor myvendor -description "myvendor geocoder

returning well-known text"

108 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 7. db2se commands indexed by task (continued)

Task Command and example

Register a spatial

column.

db2se register_spatial_column

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example registers a spatial column named

MYCOLUMN in table MYTABLE, with spatial reference system

“USA_SRS_1”.

db2se register_spatial_column mydb -tableName

 \"mytable\" -columnName \"mycolumn\" -srsName USA_SRS_1

Remove the resources

that enable a database

for spatial operations.

db2se disable_db

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example removes the resources that enable database

MYDB for spatial operations.

db2se disable_db mydb

Remove a setup for

geocoding operations.

db2se remove_gc_setup

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example removes a setup for geocoding operations

that apply to a spatial column named MYCOLUMN in table

MYTABLE.

db2se remove_geocoding_setup mydb -tableName

 \"mytable\" -columnName \"mycolumn\"

Run a geocoder in

batch mode.

db2se run_gc

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example runs a geocoder in batch mode to populate

a column named MYCOLUMN in a table named MYTABLE.

db2se run_gc mydb -tableName \"mytable\"

-columnName \"mycolumn\"

Set up a geocoder to

run automatically.

db2se enable_autogeocoding

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example sets up automatic geocoding for a column

named MYCOLUMN in table MYTABLE

db2se enable_autogeocoding mydb -tableName

 \"mytable\" -columnName \"mycolumn\"

Chapter 13. DB2 Spatial Extender commands 109

Table 7. db2se commands indexed by task (continued)

Task Command and example

Set up geocoding

operations.

db2se setup_gc

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example sets up geocoding operations to populate a

spatial column named MYCOLUMN in table MYTABLE.

db2se setup_gc mydb -tableName \"mytable\"

-columnName \"mycolumn\" -geocoderName

\"db2se_USA_GEOCODER\" -parameterValues

"address,city,state,zip,2,90,70,20,1.1,’meter’,4.."

-autogeocodingColumns address,city,state,zip

commitScope 10

Show information

about a shape file and

its contents.

db2se shape_info

To use this command, you must:

v Have permission to read the file that the command references.

v Be able to connect to the database that contains this file (if you

use the –database parameter, which specifies that the system

searches the named database for compatible coordinate systems

and spatial reference systems).

The following example shows information about a shape file named

myfile, which is located in the current directory.

db2se shape_info -fileName myfile

The following example shows information about a sample UNIX

shape file named offices. The –database parameter finds all

compatible coordinate systems and spatial reference systems in the

named database (in this case, MYDB).

db2se shape_info

 -fileName ~/sqllib/samples/extenders/spatial/data/offices

 -database myDB

Show information

about an SDE file and

its contents.

db2se sde_info

To use this command, you must:

v Have permission to read the file that the command refers to.

v Be able to connect to the database that contains this file (if you

use the –database parameter, which specifies that the system

searches the named database for compatible coordinate systems

and spatial reference systems).

The following example shows information about an SDE file named

sdefile, which is located in the current directory.

db2se sde_info -fileName myfile

The next example shows information about an SDE file named sdex

and searches a database named MYDB for all compatible coordinate

systems and spatial reference systems.

db2se sde_info -fileName data/sdex -database myDB

110 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 7. db2se commands indexed by task (continued)

Task Command and example

Unregister a geocoder. db2se unregister_gc

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example unregisters a geocoder named

“mygeocoder”.

db2se unregister_gc mydb -geocoderName \"mygeoco

der\"

Unregister a spatial

column.

db2se unregister_spatial_column

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example unregisters a spatial column named

MYCOLUMN in table MYTABLE.

db2se unregister_spatial_column mydb -tableName

 \"mytable\" -columnName \"mycolumn\"

Update a coordinate

system definition.

db2se alter_cs

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example updates the definition of a coordinate

system named “mycoordsys” with a new organization name.

db2se alter_cs mydb -coordsysName \"mycoordsys\"

-organization myNeworganizationb -tableName

 \"mytable\"

Update a spatial

reference system

definition.

db2se alter_srs

Command-specific parameters and required authorizations are the

same as those for the stored procedure.

The following example alters a spatial reference system named

“mysrs” with a different xOffset and description.

db2se alter_srs mydb -srsName \"mysrs\"

-xOffset 35 -description "This is my

own spatial reference system."

Chapter 13. DB2 Spatial Extender commands 111

112 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 14. Writing applications and using the sample

program

This chapter explains how you write Spatial Extender applications.

Writing applications for DB2 Spatial Extender

If you plan to write application programs that invoke DB2 Spatial Extender stored

procedures or functions, read the following task and reference information.

To do this task... :

Including the DB2 Spatial Extender header file in spatial applications

DB2 Spatial Extender provides a header file that defines constants that can be used

with the stored procedures and functions of the DB2 Spatial Extender.

Recommendation:

If you plan to call DB2 Spatial Extender stored procedures or functions from C or

C++ programs, include this header file in your spatial applications.

To do this task... :

1. Ensure that your DB2 Spatial Extender applications can use the necessary

definitions in this header file.

a. Include the DB2 Spatial Extender header file in your application program.

The header file has the following name:

db2gse.h

The header file is located in the db2path/include directory, where db2path is

the installation directory where the DB2 database system is installed.

b. Ensure that the path of the include directory is specified in your makefile

with the compilation option.
2. If you are building Windows 64-bit applications on a Windows 32-bit system,

change the DB2_LIBS parameter in the samples/extenders/spatial/
makefile.nt file to accommodate 64–bit applications. The necessary changes are

highlighted below:

DB2_LIBS = $(DB2_DIR)\lib\Win64\db2api.lib

Calling DB2 Spatial Extender stored procedures from an application

If you plan to write application programs that call any of the DB2 Spatial Extender

stored procedures, you use the SQL CALL statement and specify the name of the

stored procedure.

DB2 Spatial Extender stored procedures are created when you enable the database

for spatial operations.

To do this task... :

1. Call the ST_enable_db stored procedure to enable a database for spatial

operations.

Specify the stored procedure name as follows:

© Copyright IBM Corp. 1998, 2006 113

CALL db2gse!ST_enable_db

The db2gse! in this call represents the DB2 Spatial Extender library name. The

ST_enable_db stored procedure is the only one in which you need to include an

exclamation mark in the call (that is, db2gse!).

2. Call other DB2 Spatial Extender stored procedures. Specify the stored procedure

name in the following form, where db2gse is the schema name for all DB2

Spatial Extender stored procedures, and spatial_procedure_name is the name of

the stored procedure. Do not include an exclamation mark in the call.

CALL db2gse.spatial_procedure_name

The DB2 Spatial Extender stored procedures are shown in the following table.

 Table 8.

Stored procedure Description

GSE_export_sde Exports a spatial column and its associated

table to an SDE transfer file.

GSE_import_sde Imports an SDE transfer file to a database.

ST_alter_coordsys Updates an attribute of a coordinate system

in the database.

ST_alter_srs Updates an attribute of a spatial reference

system in the database.

ST_create_coordsys Creates a coordinate system in the database.

ST_create_srs Creates a spatial reference system in the

database.

ST_disable_autogeocoding Specifies that DB2 Spatial Extender is to stop

synchronizing a geocoded column with its

associated geocoding columns.

ST_disable_db Removes resources that allow DB2 Spatial

Extender to store spatial data and to support

operations that are performed on this data.

ST_drop_coordsys Deletes a coordinate system from the

database.

ST_drop_srs Deletes a spatial reference system from the

database.

ST_enable_autogeocoding Specifies that DB2 Spatial Extender is to

synchronize a geocoded column with its

associated geocoding columns.

ST_enable_db Supplies a database with the resources that it

needs to store spatial data and to support

operations.

ST_export_shape Exports selected data in the database to a

shape file.

ST_import_shape Imports a shape file to a database.

ST_register_geocoder Registers a geocoder other than

DB2SE_USA_GEOCODER, which is part of

the DB2 Spatial Extender product.

ST_register_spatial_column Registers a spatial column and associates a

spatial reference system with it.

ST_remove_geocoding_setup Removes all the geocoding setup information

for the geocoded column.

ST_run_geocoding Runs a geocoder in batch mode.

114 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 8. (continued)

Stored procedure Description

ST_setup_geocoding Associates a column that is to be geocoded

with a geocoder and sets up the

corresponding geocoding parameter values.

ST_unregister_geocoder Unregisters a geocoder other than

DB2SE_USA_GEOCODER.

ST_unregister_spatial_column Removes the registration of a spatial column.

The DB2 Spatial Extender sample program

The DB2® Spatial Extender sample program, runGseDemo, has two purposes. You

can use the sample program to become familiar with application programming for

DB2 Spatial Extender, and you can use the program to verify the DB2 Spatial

Extender installation.

v On UNIX®, you can locate the runGseDemo program in the following path:

$HOME/sqllib/samples/extenders/spatial

where $HOME is the instance owner’s home directory.

v On Windows®, you can locate the runGseDemo program in the following path:

c:\Program Files\IBM\sqllib\samples\extenders\spatial

where c:\Program Files\IBM\sqllib is the directory in which you installed DB2

Spatial Extender.

The DB2 Spatial Extender runGseDemo sample program makes application

programming easier. Using this sample program, you can enable a database for

spatial operations and perform spatial analysis on data in that database. This

database will contain tables with fictitious information about customers and flood

zones. From this information you can experiment with Spatial Extender and

determine which customers are at risk of suffering damage from a flood.

With the sample program, you can:

v See the steps typically required to create and maintain a spatially-enabled

database.

v Understand how to call spatial stored procedures from an application program.

v Cut and paste sample code into your own applications.

Use the following sample program to code tasks for DB2 Spatial Extender. For

example, suppose that you write an application that uses the database interface to

call DB2 Spatial Extender stored procedures. From the sample program, you can

copy code to customize your application. If you are unfamiliar with the

programming steps for DB2 Spatial Extender, you can run the sample program,

which shows each step in detail. For instructions on running the sample program,

see “Related tasks” at the end of this topic.

The following table describes each step in the sample program. In each step you

will perform an action and, in many cases, reverse or undo that action. For

example, in the first step you will enable the spatial database and then disable the

spatial database. In this way, you will become familiar with many of the Spatial

Extender stored procedures.

Chapter 14. Writing applications and using the sample program 115

Table 9. DB2 Spatial Extender sample program steps

Steps Action and description

Enable or disable the

spatial database

v Enable the spatial database

This is the first step needed to use DB2 Spatial Extender. A

database that has been enabled for spatial operations has a set

of spatial types, a set of spatial functions, a set of spatial

predicates, new index types, and a set of spatial catalog tables

and views.

v Disable the spatial database

This step is usually performed when you have enabled spatial

capabilities for the wrong database, or you no longer need to

perform spatial operations in this database. When you disable

a spatial database, you remove the set of spatial types, the set

of spatial functions, the set of spatial predicates, new index

types, and the set of spatial catalog tables and views

associated with that database.

v Enable the spatial database

Same as above.

Create or drop a

coordinate system

v Create a coordinate system named NORTH_AMERICAN

This step creates a new coordinate system in the database.

v Drop the coordinate system named NORTH_AMERICAN

This step drops the coordinate system NORTH_AMERICAN

from the database.

v Create a coordinate system named KY_STATE_PLANE

This step creates a new coordinate system,

KY_STATE_PLANE, which will be used by the spatial

reference system created in the next step.

Create or drop a spatial

reference system

v Create a spatial reference system named SRSDEMO1

This step defines a new spatial reference system (SRS) that is

used to interpret the coordinates. The SRS includes geometry

data in a form that can be stored in a column of a

spatially-enabled database. After the SRS is registered to a

specific spatial column, the coordinates that are applicable to

that spatial column can be stored in the associated column of

the CUSTOMERS table.

v Drop the SRS named SRSDEMO1

This step is performed if you no longer need the SRS in the

database. When you drop an SRS, you remove the SRS

definition from the database.

v Create the SRS named KY_STATE_SRS

116 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 9. DB2 Spatial Extender sample program steps (continued)

Steps Action and description

Create and populate the

spatial tables

v Create the CUSTOMERS table

v Populate the CUSTOMERS table

The CUSTOMERS table represents business data that has been

stored in the database for several years.

v Alter the CUSTOMERS table by adding the LOCATION

column

The ALTER TABLE statement adds a new column

(LOCATION) of type ST_Point. This column will be

populated by geocoding the address columns in a subsequent

step.

v Create the OFFICES table

The OFFICES table represents, among other data, the sales

zone for each office of an insurance company. The entire table

will be populated with the attribute data from a non-DB2

database in a subsequent step. This subsequent step involves

importing attribute data into the OFFICES table from a shape

file.

Populate the columns v Geocode the addresses data for the LOCATION column of the

CUSTOMERS table with the geocoder named KY_STATE_GC

This step performs batch spatial geocoding by invoking the

geocoder utility. Batch geocoding is usually performed when a

significant portion of the table needs to be geocoded or

re-geocoded.

v Load the previously-created OFFICES table from the shape file

using spatial reference system KY_STATE_SRS

This step loads the OFFICES table with existing spatial data in

the form of a shape file. Because the OFFICES table exists, the

LOAD utility will append the new records to an existing

table.

v Create and load the FLOODZONES table from the shape file

using spatial reference system KY_STATE_SRS

This step loads the FLOODZONES table with existing data in

the form of a shape file. Because the table does not exist, the

LOAD utility will create the table before the data is loaded.

v Create and load the REGIONS table from the shape file using

spatial reference system KY_STATE_SRS

Register or unregister the

geocoder

v Register the geocoder named SAMPLEGC

v Unregister the geocoder named SAMPLEGC

v Register the geocoder KY_STATE_GC

These steps register and unregister the geocoder named

SAMPLEGC and then create a new geocoder, KY_STATE_GC, to

use in the sample program.

Chapter 14. Writing applications and using the sample program 117

Table 9. DB2 Spatial Extender sample program steps (continued)

Steps Action and description

Create spatial indexes v Create the spatial grid index for the LOCATION column of

the CUSTOMERS table

v Drop the spatial grid index for the LOCATION column of the

CUSTOMERS table

v Create the spatial grid index for the LOCATION column of

the CUSTOMERS table

v Create the spatial grid index for the LOCATION column of

the OFFICES table

v Create the spatial grid index for the LOCATION column of

the FLOODZONES table

v Create the spatial grid index for the LOCATION column of

the REGIONS table

These steps create the spatial grid index for the CUSTOMERS,

OFFICES, FLOODZONES, and REGIONS tables.

Enable automatic

geocoding

v Set up geocoding for the LOCATION column of the

CUSTOMERS table with geocoder KY_STATE_GC

This step associates the LOCATION column of the

CUSTOMERS table with geocoder KY_STATE_GC and sets up

the corresponding values for geocoding parameters.

v Enable automatic geocoding for the LOCATION column of

the CUSTOMERS table

This step turns on the automatic invocation of the geocoder.

Using automatic geocoding causes the LOCATION, STREET,

CITY, STATE, and ZIP columns of the CUSTOMERS table to

be synchronized with each other for subsequent insert and

update operations.

Perform insert, update,

and delete operations on

the CUSTOMERS table

v Insert some records with a different street

v Update some records with a new address

v Delete all records from the table

These steps demonstrate insert, update, and delete operations on

the STREET, CITY, STATE, and ZIP columns of the CUSTOMERS

table. After the automatic geocoding is enabled, data that is

inserted or updated in these columns is automatically geocoded

into the LOCATION column. This process was enabled in the

previous step.

Disable automatic

geocoding

v Disable automatic geocoding for the LOCATION column in

the CUSTOMERS table

v Remove the geocoding setup for the LOCATION column of

the CUSTOMERS table

v Drop the spatial index for the LOCATION column of the

CUSTOMERS table

These steps disable the automatic invocation of the geocoder

and the spatial index in preparation for the next step. The next

step involves re-geocoding the entire CUSTOMERS table.

Recommendation: If you are loading a large amount of geodata,

drop the spatial index before you load the data, and then

recreate it after the data is loaded.

118 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 9. DB2 Spatial Extender sample program steps (continued)

Steps Action and description

Re-geocode the

CUSTOMERS table

v Geocode the LOCATION column of the CUSTOMERS table

again with a lower precision level: 90% instead of 100%

v Recreate the spatial index for the LOCATION column of the

CUSTOMERS table

v Re-enable automatic geocoding with a lower precision level:

90% instead of 100%

These steps run the geocoder in batch mode, recreate the spatial

index, and re-enable the automatic geocoding with a new

precision level. This action is recommended when a spatial

administrator notices a high failure rate in the geocoding

process. If the precision level is set to 100%, it might fail to

geocode an address because it cannot find a matching address in

the reference data. By reducing the precision level, the geocoder

might be more successful in finding matching data. After the

table is re-geocoded in batch mode, the automatic geocoding is

re-enabled and the spatial index is recreated. This allows you to

incrementally maintain the spatial index and the spatial column

for subsequent insert and update operations.

Create a view and register

the spatial column in the

view

v Create a view called HIGHRISKCUSTOMERS based on the

join of the CUSTOMERS table and the FLOODZONES table

v Register the view’s spatial column

These steps create a view and register its spatial column.

Perform spatial analysis v Find the number of customers served by each region

(ST_Within)

v For offices and customers with the same region, find the

number of customers that are within a specific distance of

each office (ST_Within, ST_Distance)

v For each region, find the average income and premium of

each customer (ST_Within)

v Find the number of flood zones that each office zone overlaps

(ST_Overlaps)

v Find the nearest office from a specific customer location,

assuming that the office is located in the centroid of the office

zone (ST_Distance)

v Find the customers whose location is close to the boundary of

a specific flood zone (ST_Buffer, ST_Intersects)

v Find those high-risk customers within a specified distance

from a specific office (ST_Within)

All of these steps use the sqlRunSpatialQueries stored

procedure.

These steps perform spatial analysis using the spatial predicates

and functions in DB2 SQL. The DB2 query optimizer exploits the

spatial index on the spatial columns to improve the query

performance whenever possible.

Chapter 14. Writing applications and using the sample program 119

Table 9. DB2 Spatial Extender sample program steps (continued)

Steps Action and description

Export spatial data into

shape files

v Export the HIGHRISKCUSTOMERS view to shape files

This step shows an example of exporting the

HIGHRISKCUSTOMERS view to shape files. Exporting data

from a database format to another file format enables the

information to be used by other tools (such as ArcExplorer for

DB2).

This step is included in the runGseDemo.c program but is

commented out for reference only. You can modify the sample

program to specify the location for the export shape file, and

rerun the sample program.

Export and import SDE

files

v Export the CUSTOMERS table to an SDE transfer file

v Import data from the newly exported SDE transfer file

These steps show examples of exporting and importing SDE

transfer files.

These steps are included in the runGseDemo.c program but are

commented out for reference only. You can modify the sample

program to specify the location for the export SDE file, and

rerun the sample program.

120 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 15. Identifying DB2 Spatial Extender problems

If you encounter a problem working with DB2 Spatial Extender, you need to

determine the cause of the problem.

You can troubleshoot problems with DB2 Spatial Extender in these ways:

v You can use message information to diagnose the problem.

v When working with Spatial Extender stored procedures and functions, DB2

returns information about the success or failure of the stored procedure or

function. The information returned will be a message code (in the form of an

integer), message text, or both depending on the interface that you use to work

with DB2 Spatial Extender.

v You can view the DB2 administration notification file, which records diagnostic

information about errors.

v If you have a recurring and reproducible Spatial Extender problem, an IBM

customer support representative might ask you to use the DB2 trace facility to

help them diagnose the problem.

How to interpret DB2 Spatial Extender messages

You can work with DB2® Spatial Extender through four different interfaces:

v DB2 Spatial Extender stored procedures

v DB2 Spatial Extender functions

v DB2 Spatial Extender Command Line Processor (CLP)

v DB2 Control Center

All interfaces return DB2 Spatial Extender messages to help you determine

whether the spatial operation that you requested completed successfully or

resulted in an error.

The following table explains each part of this sample DB2 Spatial Extender

message text:

GSE0000I: The operation was completed successfully.

 Table 10. The parts of the DB2 Spatial Extender message text

Message text part Description

GSE The message identifier. All DB2 Spatial Extender messages

begin with the three-letter prefix GSE.

0000 The message number. A four digit number that ranges from

0000 through 9999.

I The message type. A single letter that indicates the severity of

message:

C Critical error messages

N Non-critical error messages

W Warning messages

I Informational messages

The operation was

completed successfully.

The message explanation.

© Copyright IBM Corp. 1998, 2006 121

The explanation that appears in the message text is the brief explanation. You can

retrieve additional information about the message that includes the detailed

explanation and suggestions to avoid or correct the problem. To display this

additional information:

1. Open an operating system command prompt.

2. Enter the DB2 help command with the message identifier and message number

to display additional information about the message. For example:

DB2 "? GSEnnnn"

where nnnn is the message number.

You can type the GSE message identifier and letter indicating the message type in

uppercase or lowercase. Typing DB2 ″? GSE0000I″ will yield the same result as

typing db2 ″? gse0000i″.

You can omit the letter after the message number when you type the command.

For example, typing DB2 ″? GSE0000″ will yield the same result as typing DB2 ″?

GSE0000I″.

Suppose the message code is GSE4107N. When you type DB2 ″? GSE4107N″ at the

command prompt, the following information is displayed:

GSE4107N Grid size value "<grid-size>" is not valid where it is used.

Explanation: The specified grid size "<grid-size>" is not valid.

 One of the following invalid specifications was made when the grid index

 was created with the CREATE INDEX statement:

 - A number less than 0 (zero) was specified as the grid size for the

 first, second, or third grid level.

 - 0 (zero) was specified as the grid size for the first grid level.

 - The grid size specified for the second grid level is less than the grid

 size of the first grid level but it is not 0 (zero).

 - The grid size specified for the third grid level is less than the grid

 size of the second grid level but it is not 0 (zero).

 - The grid size specified for the third grid level is greater than 0 (zero)

 but the grid size specified for the second grid level is 0 (zero).

User Response: Specify a valid value for the grid size.

msgcode: -4107

sqlstate: 38SC7

If the information is too long to display on a single screen and your operating

system supports the more executable program and pipes, type this command:

db2 "? GSEnnnn" | more

Using the more program will force the display to pause after each screen of data

so that you can read the information.

122 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 Spatial Extender stored procedure output parameters

DB2® Spatial Extender stored procedures are invoked implicitly when you enable

and use Spatial Extender from the DB2 Control Center or when you use the DB2

Spatial Extender CLP (db2se). You can invoke stored procedures explicitly in an

application program or from the DB2 command line.

This topic describes how to diagnose problems when stored procedures are

invoked explicitly in application programs or from the DB2 command line. To

diagnose stored procedures invoked implicitly, you use the messages returned by

the DB2 Spatial Extender CLP or the messages returned by the DB2 Control Center.

These messages are discussed in separate topics.

DB2 Spatial Extender stored procedures have two output parameters: the message

code (msg_code) and the message text (msg_text). The parameter values indicate

the success or failure of a stored procedure.

msg_code

The msg_code parameter is an integer, which can be positive, negative, or

zero (0). Positive numbers are used for warnings, negative numbers are

used for errors (both critical and non-critical), and zero (0) is used for

informational messages.

 The absolute value of the msg_code is included in the msg_text as the

message number. For example

v If the msg_code is 0, the message number is 0000.

v If the msg_code is –219 , the message number is 0219. The negative

msg_code indicates that the message is a critical or non-critical error.

v If the msg_code is +1036, the message number is 1036. The positive

msg_code number indicates that the message is a warning.

 The msg_code numbers for Spatial Extender stored procedures are divided

into the three categories shown in the following table:

 Table 11. Stored procedure message codes

Codes Category

0000 – 0999 Common messages

1000 – 1999 Administrative messages

2000 – 2999 Import and export messages

msg_text

The msg_text parameter is comprised of the message identifier, the

message number, the message type, and the explanation. An example of a

stored procedure msg_text value is:

 GSE0219N An EXECUTE IMMEDIATE statement

 failed. SQLERROR = "<sql-error>".

The explanation that appears in the msg_text parameter is the brief

explanation. You can retrieve additional information about the message

that includes the detailed explanation and suggestions to avoid or correct

the problem.

 For a detailed explanation of the parts of the msg_text parameter, and

information on how to retrieve additional information about the message,

see the topic: How to interpret DB2 Spatial Extender messages.

Chapter 15. Identifying DB2 Spatial Extender problems 123

Working with stored procedures in applications

When you call a DB2 Spatial Extender stored procedure from an application, you

will receive the msg_code and msg_text as output parameters. You can:

v Program your application to return the output parameter values to the

application user.

v Perform some action based on the type of msg_code value returned.

Working with stored procedures from the DB2 command line

When you invoke a DB2 Spatial Extender stored procedure from the DB2

command line, you receive the msg_code and the msg_text output parameters.

These output parameters indicate the success or failure of the stored procedure.

Suppose you connect to a database and want to invoke the ST_disable_db stored

procedure. The example below uses a DB2 CALL command to disable the database

for spatial operations and shows the output value results. A force parameter value

of 0 is used, along with two question marks at the end of the CALL command to

represent the msg_code and msg_text output parameters. The values for these

output parameters are displayed after the stored procedure runs.

call db2gse.st_disable_db(0, ?, ?)

 Value of output parameters

 Parameter Name : MSGCODE

 Parameter Value : 0

 Parameter Name : MSGTEXT

 Parameter Value : GSE0000I The operation was completed successfully.

 Return Status = 0

Suppose the msg_text returned is GSE2110N. Use the DB2 help command to

display more information about the message. For example:

"? GSE2110"

The following information is displayed:

GSE2110N The spatial reference system for the

 geomentry in row "<row-number>" is invalid.

 The spatial reference system’s

 numerical identifier is "<srs-id>".

Explanation: In row row-number, the geometry that is

to be exported uses an invalid spatial reference system.

The geometry cannot be exported.

User Response: Correct the indicated geometry or

exclude the row from the export operation by

modifying the SELECT statement accordingly.

msg_code: -2110

sqlstate: 38S9A

124 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 Spatial Extender function messages

The messages returned by DB2® Spatial Extender functions are typically embedded

in an SQL message. The SQLCODE returned in the message indicates if an error

occurred with the function or that a warning is associated with the function. For

example:

v The SQLCODE –443 (message number SQL0443) indicates that an error occurred

with the function.

v The SQLCODE +462 (message number SQL0462) indicates that a warning is

associated with the function.

The following table explains the significant parts of this sample message:

DB21034E The command was processed as an SQL statement because it was

not a valid Command Line Processor command. During SQL processing it

returned: SQL0443N Routine "DB2GSE.GSEGEOMFROMWKT"

(specific name "GSEGEOMWKT1") has returned an error

SQLSTATE with diagnostic text "GSE3421N Polygon is not closed.".

SQLSTATE=38SSL

 Table 12. The significant parts of DB2 Spatial Extender function messages

Message part Description

SQL0443N The SQLCODE indicates the type of problem.

GSE3421N The DB2 Spatial Extender message number and message type.

The message numbers for functions range from GSE3000 to

GSE3999. Additionally, common messages can be returned

when you work with DB2 Spatial Extender functions. The

message numbers for common messages range from GSE0001

to GSE0999.

Polygon is not closed The DB2 Spatial Extender message explanation.

SQLSTATE=38SSL An SQLSTATE code that further identifies the error. An

SQLSTATE code is returned for each statement or row.

v The SQLSTATE codes for Spatial Extender function errors

are 38Sxx, where each x is a character letter or number.

v The SQLSTATE codes for Spatial Extender function

warnings are 01HSx, where the x is a character letter or

number.

An example of an SQL0443 error message

Suppose that you attempt to insert the values for a polygon into the table

POLYGON_TABLE, as shown below:

INSERT INTO polygon_table (geometry)

VALUES (ST_Polygon (’polygon ((0 0, 0 2, 2 2, 1 2)) ’))

This results in an error message because you did not provide the end value to

close the polygon. The error message returned is:

DB21034E The command was processed as an SQL statement because it was

not a valid Command Line Processor command. During SQL processing it

returned: SQL0443N Routine "DB2GSE.GSEGEOMFROMWKT"

(specific name "GSEGEOMWKT1") has returned an error

SQLSTATE with diagnostic text "GSE3421N Polygon is not closed.".

SQLSTATE=38SSL

Chapter 15. Identifying DB2 Spatial Extender problems 125

The SQL message number SQL0443N indicates that an error occurred and the

message includes the Spatial Extender message text GSE3421N Polygon is not

closed.

When you receive this type of message:

1. Locate the GSE message number within the DB2 or SQL error message.

2. Use the DB2 help command (DB2 ?) to see the Spatial Extender message

explanation and user response. Using the above example, type the following

command in an operating system command line prompt:

DB2 "? GSE3421"

The message is repeated, along with a detailed explanation and recommended user

response.

DB2 Spatial Extender CLP messages

The DB2® Spatial Extender CLP (db2se) returns messages for:

v Stored procedures, if invoked implicitly.

v Shape information, if you have invoked the shape_info subcommand program

from the DB2 Spatial Extender CLP. These are informational messages.

v Migration operations.

v Import and export shape operations to and from the client.

Examples of stored procedure messages returned by the DB2

Spatial Extender CLP

Most of the messages returned through the DB2 Spatial Extender CLP are for DB2

Spatial Extender stored procedures. When you invoke a stored procedure from the

DB2 Spatial Extender CLP, you will receive message text that indicates the success

or failure of the stored procedure.

The message text is comprised of the message identifier, the message number, the

message type, and the explanation. For example, if you enable a database using the

command db2se enable_db testdb, the message text returned by the Spatial

Extender CLP is:

Enabling database. Please wait ...

GSE1036W The operation was successful. But

 values of certain database manager and

 database configuration parameters

 should be increased.

Likewise, if you disable a database using the command db2se disable_db testdb

the message text returned by the Spatial Extender CLP is:

GSE0000I The operation was completed successfully.

The explanation that appears in the message text is the brief explanation. You can

retrieve additional information about the message that includes the detailed

explanation and suggestions to avoid or correct the problem. The steps to retrieve

this information, and a detailed explanation of how to interpret the parts of the

message text, are discussed in a separate topic.

126 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If you are invoking stored procedures through an application program or from the

DB2 command line, there is a separate topic that discusses diagnosing the output

parameters.

Example of shape information messages returned by the Spatial

Extender CLP

Suppose you decide to display information for a shape file named office. Through

the Spatial Extender CLP (db2se) you would issue this command:

db2se shape_info -fileName /tmp/offices

This is an example of the information that displays:

Shape file information

File code = 9994

File length (16-bit words) = 484

Shape file version = 1000

Shape type = 1 (ST_POINT)

Number of records = 31

Minimum X coordinate = -87.053834

Maximum X coordinate = -83.408752

Minimum Y coordinate = 36.939628

Maximum Y coordinate = 39.016477

Shapes do not have Z coordinates.

Shapes do not have M coordinates.

Shape index file (extension .shx) is present.

Attribute file information

dBase file code = 3

Date of last update = 1901-08-15

Number of records = 31

Number of bytes in header = 129

Number of bytes in each record = 39

Number of columns = 3

Column Number Column Name Data Type Length Decimal

 1 NAME C (Character) 16 0

 2 EMPLOYEES N (Numeric™) 11 0

 3 ID N (Numeric) 11 0

Coordinate system definition: "GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]"

Examples of migration messages returned by the Spatial

Extender CLP

When you invoke commands that perform migration operations, messages are

returned that indicate the success or failure of that operation.

Suppose you invoke the migration of the database mydb using the command db2se

migrate mydb -messagesFile /tmp/migrate.msg. The message text returned by the

Spatial Extender CLP is:

Migrating database. Please wait ...

GSE0000I The operation was completed successfully.

Chapter 15. Identifying DB2 Spatial Extender problems 127

DB2 Control Center messages

DB2 Spatial Extender messages

When you work with DB2® Spatial Extender through the DB2 Control Center,

messages will appear in the DB2 Message window. Most of the messages that you

will encounter will be DB2 Spatial Extender messages. Occasionally, you will

receive an SQL message. The SQL messages are returned when an error involves

licensing, locking, or when a DAS service is not available. The following sections

provide examples of how DB2 Spatial Extender messages and SQL messages will

appear in the DB2 Control Center.

When you receive a DB2 Spatial Extender message through the Control Center, the

entire message text appears in the text area of DB2 Message window, for example:

GSE0219N An EXECUTE IMMEDIATE statement

 failed. SQLERROR = "<sql-error>".

SQL messages

When you receive an SQL message through the Control Center that pertains to

DB2 Spatial Extender:

v The message identifier, message number, and message type appear on the left

side of the DB2 Message window, for example: SQL0612N.

v The message text appears in the text area of the DB2 Message window.

The message text that appears in the DB2 Message window might contain the SQL

message text and the SQLSTATE, or it might contain the message text and the

detailed explanation and user response.

An example of an SQL message that contains the SQL message text and the

SQLSTATE is:

[IBM][CLI Driver][DB2/NT] SQL0612N "<name>" is a duplicate name. SQLSTATE=42711

An example of an SQL message that contains the message text and the detailed

explanation and user response is:

SQL8008N

The product "DB2 Spatial Extender" does not have a valid

license key installed and the evaluation period has expired.

Explanation:

A valid license key could not be found and the evaluation

period has expired.

User Response:

Install a license key for the fully entitled version of the

product. You can obtain a license key for the product by

contacting your IBM® representative or authorized dealer.

Tracing DB2 Spatial Extender problems with the db2trc command

When you have a recurring and reproducible DB2 Spatial Extender problem, you

can use the DB2 trace facility to capture information about the problem.

The DB2 trace facility is activated by the db2trc system command. The DB2 trace

facility can:

128 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v Trace events

v Dump the trace data to a file

v Format trace data into a readable format

Restriction:

v Activate this facility only when directed by a DB2 technical support

representative.

v On UNIX operating systems, you must have SYSADM, SYSCTRL, or SYSMAINT

authorization to trace a DB2 instance.

v On Windows operating systems, no special authorization is required.

To do this task... :

1. Shut down all other applications.

2. Turn the trace on.

The DB2 Support technical support representative will provide you with the

specific parameters for this step. The basic command is:

db2trc on

Restriction: The db2trc command must be entered at a operating–system

command prompt or in a shell script. It cannot be used in the DB2 Spatial

Extender command–line interface (db2se) or in the DB2 CLP.

You can trace to memory or to a file. The preferred method for tracing is to

trace to memory. If the problem being recreated suspends the workstation and

prevents you from dumping the trace, trace to a file.

3. Reproduce the problem.

4. Dump the trace to a file immediately after the problem occurs.

For example:

db2trc dump january23trace.dmp

This command creates a file (january23trace.dmp) in the current directory with

the name that you specify, and dumps the trace information in that file. You

can specify a different directory by including the file path. For example, to

place the dump file in the /tmp/spatial/errors directory, the syntax is:

db2trc dump /tmp/spatial/errors/january23trace.dmp

5. Turn the trace off.

For example:

db2trc off

6. Format the data as an ASCII file. You can sort the data two ways:

v Use the flw option to sort the data by process or thread. For example:

db2trc flw january23trace.dmp january23trace.flw

v Use the fmt option to list every event chronologically. For example:

db2trc fmt january23trace.dmp january23trace.fmt

The administration notification file

Diagnostic information about errors is recorded in the administration notification

file. This information is used for problem determination and is intended for DB2®

technical support.

The administration notification file contains text information logged by DB2 as well

as DB2 Spatial Extender. It is located in the directory specified by the DIAGPATH

database manager configuration parameter. On Windows® NT, Windows 2000, and

Chapter 15. Identifying DB2 Spatial Extender problems 129

Windows XP systems, the DB2 administration notification file is found in the event

log and can be reviewed through the Windows Event Viewer.

The information that DB2 records in the administration log is determined by the

DIAGLEVEL and NOTIFYLEVEL settings.

Use a text editor to view the file on the machine where you suspect a problem to

have occurred. The most recent events recorded are the furthest down the file.

Generally, each entry contains the following parts:

v A timestamp.

v The location reporting the error. Application identifiers allow you to match up

entries pertaining to an application on the logs of servers and clients.

v A diagnostic message (usually beginning with ″DIA″ or ″ADM″) explaining the

error.

v Any available supporting data, such as SQLCA data structures and pointers to

the location of any extra dump or trap files.

If the database is behaving normally, this type of information is not important and

can be ignored.

The administration notification file grows continuously. When it gets too large,

back it up and then erase the file. A new file is generated automatically the next

time it is required by the system.

130 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 16. DB2 Geodetic Data Management Feature

This chapter introduces DB2 Geodetic Data Management Feature by explaining its

purpose, describing when to use it, and explaining geodetic concepts.

DB2 Geodetic Data Management Feature

The DB2® Geodetic Data Management Feature enables you to treat the Earth as a

globe. Using the same spatial data types and functions as for any other Spatial

Extender operations, you can use Geodetic Data Management Feature to run

seamless queries of data around the poles and data that crosses the 180th meridian.

You can maintain data that is referenced to a precise location on the surface of the

Earth.

Geodetic Data Management Feature is named for the discipline known as geodesy.

Geodesy is the study of the size and shape of the Earth (or any body modeled by

an ellipsoid, such as the Sun or a celestial sphere). Geodetic Data Management

Feature is designed to handle objects defined on the Earth’s surface with a high

degree of precision.

To obtain this precision, Geodetic Data Management Feature uses a latitude and

longitude coordinate system on an ellipsoidal Earth model, or geodetic datum, rather

than a planar, x- and y-coordinate system. An ellipsoidal model avoids distortions,

inaccuracies, and imprecision that can be introduced using flat-plane projections.

To access geodetic rather than spatial operations, you must define a geodetic

spatial reference system for your data. These systems have spatial reference system

IDs (SRIDs) in the range 2000000000 to 2000001000. DB2 Geodetic Data

Management Feature provides 318 predefined geodetic spatial reference systems.

DB2 Spatial Extender must be installed before you can use DB2 Geodetic Data

Management Feature. To enable the Geodetic Data Management Feature, you must

purchase a separate license.

When to use DB2 Geodetic Data Management Feature and when to use

DB2 Spatial Extender

DB2® Spatial Extender and DB2 Geodetic Data Management Feature both manage

geographic information system (GIS) data in a DB2 database. Each extender uses

different core technologies that solve different problems and complement each

other:

v Geodetic Data Management Feature treats the Earth as a globe. It uses a latitude

and longitude coordinate system on an ellipsoidal Earth model. Geometric

operations are precise, regardless of location. It is built on the Hipparchus

library, which is licensed from Geodyssey Limited. Refer to http://
www.geodyssey.com for more geodetic information.

Geodetic Data Management Feature is best used for global data sets and

applications that cover large areas on the Earth, where a single map projection

cannot provide the accuracy required by the application.

© Copyright IBM Corp. 1998, 2006 131

http://www.geodyssey.com
http://www.geodyssey.com

v Spatial Extender treats the Earth as a flat map. It uses planimetric (flat-plane)

geometry, which means that it approximates the round surface of the Earth by

projecting it onto a flat plane. This projection causes distortions, which can vary

across the extent of the data, but the distortions generally increase toward the

edges of the projected region. Every flat-map projection has distortions of some

kind. Spatial Extender is built on the ESRI shape library, which is licensed from

ESRI. Refer to http://www.esri.com for more spatial information.

Spatial Extender is best used for local and regional data sets that are well

represented in projected coordinates, and for applications where location

accuracy is not important. For example, a medical insurance company might

want to know the locations of hospitals and clinics within a state or province.

Geodetic datums

A geodetic datum is a reference system that describes the surface of the Earth.

Many such reference systems have been developed over the centuries as science

has developed new tools for measuring the Earth. Both ground and satellite

measurements have been used to create datums, which in turn are used to create

flat-map projections.

Geodetic datums are based on an approximation of the general shape of the Earth

by an ellipsoid of rotation (also called a spheroid). A spheroid is the

three-dimensional shape described by an ellipse when it is rotated around one of

its axes.

Every spatial object that you define must be referenced to a specific datum. You

specify a datum by its spatial reference system identifier (SRID). You can choose

any datum that is supported by DB2® Geodetic Data Management Feature. These

systems have SRIDs in the range 2000000000 to 2000001000.

v ″Datums supported by DB2 Geodetic Data Management Feature″ lists the 318

predefined geodetic spatial reference systems that Geodetic Data Management

Feature provides.

v You can also define a new datum by creating a spatial reference system with an

ID in the range of 2000000318 to 2000001000.

Restriction: Functions that take more than one geo-spatial object as arguments

cannot handle combinations of datums. Geodetic Data Management

Feature does not perform datum conversions.

Geodetic latitude and longitude

DB2 Geodetic Data Management Feature’s coordinate reference system uses geodetic

latitude and longitude to describe locations relative to the Earth. Geodetic latitude

and longitude are always based on a specific datum.

Geodetic latitude

The geodetic latitude of a point is the angle between the equatorial plane

and the perpendicular line that intersects the normal line at the point on

the surface of the Earth.

Geodetic longitude

Geodetic longitude is the angle in the equatorial plane between the line a

that connects the Earth’s center with the prime meridian and the line b that

132 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

http://www.esri.com

connects the center with the meridian on which the point lies. A meridian is

a direct path on the surface of the datum that is the shortest distance

between the poles.

The ellipsoid in Figure 17 shows the angles that represent geodetic latitude and

longitude. The angle for the geodetic latitude does not start at the very center

because of the Earth’s ellipsoidal shape.

Latitude and longitude coordinates are expressed in degrees with a decimal

fraction. There are 360 degrees of longitude, starting at the prime meridian (0°

longitude) and proceeding eastward in a positive direction through 180° and west

in negative values through –180°. Latitude degrees begin at the equator (0°

latitude) and proceed to the North Pole (90° latitude) and South Pole (–90°

latitude).

Geodesic distances

DB2® Geodetic Data Management Feature measures distance between two points

along a geodesic. A geodesic is the shortest path between two points on the

ellipsoidal shape of the Earth, and this shortest path might not follow a line of

constant latitude even though the two end points are at the same latitude.

Because line segments are computed as geodesics, a four-point polygon with

widely separated points, as Figure 18 on page 134 shows, might not enclose the

intended region. This polygon covers a region with longitude lines that are about

120 degrees apart, and the top two points have the same latitude values and the

bottom two points have the same latitude values. The geodesic between the two

longitude lines follows the curve on the ellipsoidal shape of the Earth. The latitude

Figure 17. Geodetic latitude and longitude angles

Chapter 16. DB2 Geodetic Data Management Feature 133

increases along the geodesic to 20 degrees more in the middle than on either end

of the geodesic.

To represent a path that is not a geodesic, for example, if you want a line segment

to follow a constant latitude, you need to insert additional intermediate points.

Geodetic regions

A geodetic region (polygon) is an area on the Earth’s surface that has some

characteristic specific to an application. Examples of regions include an area of

market influence or an area seen by a satellite over a specified time.

Geodetic Data Management Feature defines a region by an ordered sequence of

points that form a closed ring. The order in which you specify points in a polygon

is significant. As you follow a polygon from vertex to vertex in the order defined,

the area to the left is inside the polygon.

You can use an ST_Polygon data type to define a region enclosed by one or more

rings, as Figure 19 on page 135 shows. Define the polygon by the latitude and

longitude coordinates of the points (vertices) that make up its rings.

Figure 18. Region enclosed by a polygon with widely separated points

134 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

A ring divides the surface of the Earth into two regions: one region inside the

polygon and one outside the polygon. The left side of Figure 19 shows a ring with

vertices specified in counter-clockwise sequence so that all points to the left are

inside the ring. The right side of the figure shows a ring with vertices in clockwise

sequence so that all points to the left are outside the ring.

To define a region as a polygon, you must specify the order of the vertices of each

ring such that the interior of the polygon is on your left when you traverse the

ring. To define an excluded region, you must specify the vertices of the ring in the

opposite order, as Figure 20 on page 136 illustrates. The interior of the polygon is

always to the left. Figure 20 on page 136 shows two rings, one inside the other. The

larger ring defines the outer boundary of the polygon and is drawn

counter-clockwise. The smaller ring defines the inner boundary and is drawn

clockwise.

Figure 19. Defining and excluding areas

Chapter 16. DB2 Geodetic Data Management Feature 135

If you create a polygon that is larger than a hemisphere, the following warning

message is returned. You might actually want this large polygon, but the warning

is for cases where you inadvertently specify the wrong vertex order and a large

polygon results when you want a small polygon.

GSE3733W "Polygon covers more than half the earth. Verify counter-clockwise

 orientation of the vertex points."

Figure 20. Defining an area with multiple rings

136 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 17. Setting up DB2 Geodetic Data Management

Feature

This section provides instructions for setting up DB2 Geodetic Data Management

Feature, migrating from Informix Geodetic DataBlade, and populating spatial

columns with geodetic data.

Setting up and enabling DB2 Geodetic Data Management Feature

Before you enable DB2 Geodetic Data Management Feature, you must:

v Install and configure DB2 Version 9.1.

You must install the DB2 database on your system before you install DB2 Spatial

Extender and DB2 Geodetic Data Management Feature. If you plan to use the

DB2 Control Center, create and configure the DB2 Administration Server (DAS).

For more information on creating and configuring DAS, see the IBM DB2

Administration Guide: Implementation

v Install and configure DB2 Spatial Extender.

DB2 Geodetic Data Management Feature is integrated into the same library code

as DB2 Spatial Extender. Therefore, the installation CD for Spatial Extender

includes Geodetic Data Management Feature. The disk space requirements for

Spatial Extender include Geodetic Data Management Feature. However, you

cannot use Geodetic Data Management Feature until you purchase and enable a

Geodetic Data Management Feature license.

v Purchase a license for DB2 Geodetic Data Management Feature.

When you purchase a DB2 Geodetic Data Management Feature license, you can

enable the Geodetic license key. Contact your Sales Representative if you want to

purchase DB2 Geodetic Data Management Feature.

Restriction:

v DB2 Geodetic Data Management Feature is licensed only for DB2

Version 9.1 Enterprise Server Edition.

v DB2 Geodetic Data Management Feature treats the Earth as a globe;

whereas, Spatial Extender treats the round surface of the Earth as a

flat map. If you install the Geodetic Data Management Feature, you

can analyze spatial data with more accuracy than a flat map.

v A DB2 Geodetic Data Management Feature system consists of DB2

database system, DB2 Spatial Extender, DB2 Geodetic Data

Management Feature, and, for most applications, a geobrowser.

For any additional or changed information to enable DB2 Geodetic Data

Management Feature, refer to the DB2 Release Notes.

After you enable the DB2 Geodetic Data Management Feature license, you

populate spatial columns with geodetic data.

To do this task... :

Enable the DB2 Geodetic Data Management Feature license in one of the following

ways:

© Copyright IBM Corp. 1998, 2006 137

v Use the License Center on the DB2 Control Center. See the online help on the

DB2 License Center for more information on how to enable the Geodetic license.

v Run the db2licm command.

Migrating from Informix Geodetic DataBlade to DB2 Geodetic Data

Management Feature

Prerequisites

You must port your Geodetic DataBlade applications to use DB2 Geodetic Data

Management Feature data types and functions.

Restrictions

If you currently use the Informix Geodetic DataBlade, you might be able to

migrate to DB2 Geodetic Data Management Feature if you meet the following

criteria:

v Use only GeoPoint, GeoLineseg, GeoString, GeoRing and GeoPolygon data

types.

v Use only Geodetic DataBlade functions that have equivalent or near-equivalent

counterparts in DB2 Geodetic Data Management Feature, as the tables below

describe.

v Index only the spatial component of GeoObjects; in other words, you do not

index time ranges or altitude ranges.

If you use the IBM Informix Geodetic DataBlade to store and manipulate

geospatial objects in a database, you can migrate your data and applications to

IBM DB2 Geodetic Data Management Feature with some restrictions.

To do this task... :

 1. To migrate from IBM Informix Geodetic DataBlade to IBM DB2 Geodetic Data

Management Feature:

 Table 13. Corresponding data types in Informix Geodetic DataBlade and Geodetic Data

Management Feature

Data type in

Informix

Geodetic

DataBlade

Corresponding data

type in DB2

Geodetic Data

Management

Feature

Comments for near-equivalent data types

GeoEllipse First convert to a GeoPolygon, then migrate to

ST_Polygon

GeoLineseg ST_LineString

GeoObject ST_Geometry ST_Geometry and its subtypes do not support the

GeoAltRange and GeoTimeRange data types

GeoPoint ST_Point

GeoPolygon ST_MultiPolygon,

ST_Polygon

ST_MultiPolygon requires an explicit closure point

for each ring. If a GeoPolygon has one outer ring,

it can be mapped to a ST_Polygon.

GeoRing ST_LineString

GeoString ST_LineString

The following Geodetic DataBlade data types do not have a corresponding

data type in Geodetic Data Management Feature:

138 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v GeoAltitude

v GeoAltRange

v GeoAngle

v GeoAzimuth

v GeoCoords

v GeoDistance

v GeoEllipse

v GeoLatitude

v GeoLongitude

v GeoTimeRange

v GeoVoronoi
a. Rewrite your SQL statements to use DB2 Geodetic Data Management

Feature data types and functions.

b. Load or import your data into DB2 Geodetic Data Management Feature.

c. Rewrite applications which use Informix ODBC, ESQL/C, and JDBC.

Table 23 on page 144 shows the corresponding client connectivity in

Geodetic DataBlade and Geodetic Data Management Feature.

 Table 14. Corresponding predicate functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

Contains ST_Contains

Inside ST_Within

Intersect ST_Intersects

Outside ST_Disjoint

Within ST_Distance

 2. The following Geodetic DataBlade predicate functions do not have a

corresponding function in Geodetic Data Management Feature:

v Beyond

v Equal

v Nearest

 Table 15. Corresponding production functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix

Geodetic DataBlade

Corresponding function in

DB2 Geodetic Data

Management Feature

Comments for

near-equivalent functions

Difference ST_Difference ST_Difference supports points

in addition to polygons

Generalize ST_Generalize

Intersection ST_Intersection ST_Intersection(line,line)

might result in a multipoint.

ST_Intersection (line,poly)

might result in a

multlinestring. Returns

Empty for disjoint objects.

Chapter 17. Setting up DB2 Geodetic Data Management Feature 139

Table 15. Corresponding production functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature (continued)

Function in Informix

Geodetic DataBlade

Corresponding function in

DB2 Geodetic Data

Management Feature

Comments for

near-equivalent functions

SymDifference ST_SymDifference ST_SymDifference supports

points in addition to

polygons

Union ST_Union ST_Union supports points

and lines in addition to

polygons

 Table 16. Corresponding accessor functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix

Geodetic DataBlade

Corresponding function in

DB2 Geodetic Data

Management Feature

Comments for

near-equivalent functions

Center ST_MidPoint,

ST_PointOnSurface

ST_MidPoint is a near

substitute for lines.

ST_PointOnSurface is a near

substitute for polygons.

Coords ST_PointN

Dimension ST_Dimension

HasZValue ST_Is3d

IsGeoBox Use IS OF expression or

ST_GeometryType

IsGeoCircle Use IS OF expression or

ST_GeometryType

IsGeoEllipse Use IS OF expression or

ST_GeometryType

IsGeoLineseg Use IS OF expression or

ST_GeometryType

IsGeoPoint Use IS OF expression or

ST_GeometryType

IsGeoPolygon Use IS OF expression or

ST_GeometryType

IsGeoRing Use IS OF expression or

ST_GeometryType

IsGeoString Use IS OF expression or

ST_GeometryType

Latitude ST_Y

Longitude ST_X

NPoints ST_NumPoints

NRings ST_NumGeometries,

ST_NumInteriorRing

Use ST_NumGeometries to

obtain total number of outer

rings, and sum

ST_NumInteriorRings for

each polygon in the

multipolygon set

140 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 16. Corresponding accessor functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature (continued)

Function in Informix

Geodetic DataBlade

Corresponding function in

DB2 Geodetic Data

Management Feature

Comments for

near-equivalent functions

Ring ST_GeometryN,

ST_ExteriorRing,

ST_InteriorRingN

Use ST_GeometryN in

conjunction with

ST_ExteriorRing and

ST_InteriorRingN

SRID ST_SRID

Zvalue ST_Z

 3. The following Geodetic DataBlade accessor functions do not have a

corresponding function in Geodetic Data Management Feature:

v IsLarge

v IsSmallArea

 Table 17. Corresponding modifier functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

SetSRID ST_SRID

 4. The following Geodetic DataBlade modifier functions do not have a

corresponding function in Geodetic Data Management Feature:

v SetAltRange

v SetAltRangeZ

v SetDist

v SetTimeRange

 Table 18. Corresponding measurement functions in Informix Geodetic DataBlade and

Geodetic Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

Area ST_Area

Distance ST_Distance

Length ST_Length, ST_Perimeter

 5. The VoronoiResolution measurement function does not have a corresponding

function in Geodetic Data Management Feature.

 Table 19. Corresponding downcast functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

GeoBox Use SQL TREAT expression

GeoCircle Use SQL TREAT expression

GeoEllipse Use SQL TREAT expression

GeoLineseg Use SQL TREAT expression

GeoPoint Use SQL TREAT expression

Chapter 17. Setting up DB2 Geodetic Data Management Feature 141

Table 19. Corresponding downcast functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature (continued)

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

GeoPolygon Use SQL TREAT expression

GeoRing Use SQL TREAT expression

GeoString Use SQL TREAT expression

 Table 20. Corresponding constructor functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

GeoCoords ST_Point

GeoPoint ST_Point

 6. The following Geodetic DataBlade constructor functions do not have a

corresponding function in Geodetic Data Management Feature:

v GeoBox

v GeoCircle

v GeoEllipse

v GeoLineseg

 Table 21. Corresponding diagnostic functions in Informix Geodetic DataBlade and Geodetic

Data Management Feature

Function in Informix Geodetic DataBlade

Corresponding function in DB2 Geodetic

Data Management Feature

GeoTraceLevel DB2 Trace Facility

IsValidGeometry ST_IsValid

 7. The following Geodetic DataBlade diagnostic functions do not have a

corresponding function in Geodetic Data Management Feature:

v GeoInRowSize

v GeoOutOfRowSize

v GeoRelease

v GeoTotalSize

v GeoTraceLevelSet

v GeoWarningLevel

v GeoWarningLevelSet

v IsValidSDTS

 Table 22. Corresponding system catalog tables in Informix Geodetic DataBlade and Geodetic

Data Management Feature

System catalog table in Informix Geodetic

DataBlade

Corresponding catalog view in DB2

Geodetic Data Management Feature

GeoLenUnit DB2GSE.ST_UNITS_OF_MEASURE

GeoSpatialRef DB2GSE.SPATIAL_REF_SYS

 8. The following Geodetic DataBlade system catalog tables do not have a

corresponding table or view in Geodetic Data Management Feature:

142 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v GeoEllipsoid

v GeoParam

v GeoVoronoi
 9. The following Geodetic DataBlade user–settable parameter functions do not

have a corresponding function in Geodetic Data Management Feature:

v GeoParamSessionGet

v GeoParamSessionSet
10. The following Geodetic DataBlade AltRange functions do not have a

corresponding function in Geodetic Data Management Feature:

v AltRange

v Bottom

v Contains

v Equal

v Inside

v Intersect

v IsAny

v Outside

v Top
11. The following Geodetic DataBlade TimeRange functions do not have a

corresponding function in Geodetic Data Management Feature:

v Begin

v Contains

v End

v Equal

v IsAny

v Inside

v Intersect

v Outside

v TimeRange
12. The following Geodetic DataBlade ellipse functions do not have a

corresponding function in Geodetic Data Management Feature:

v Azimuth

v Coords

v Major

v Minor
13. The following Geodetic DataBlade circle functions do not have a

corresponding function in Geodetic Data Management Feature:

v Coords

v Radius
14. The following Geodetic DataBlade angle arithmetic functions do not have a

corresponding function in Geodetic Data Management Feature:

v Divide

v Minus

v Negate

v Plus

v Times

Chapter 17. Setting up DB2 Geodetic Data Management Feature 143

15. The following Geodetic DataBlade client connectivity do not have a

corresponding client connectivity in Geodetic Data Management Feature:

v Java API

v LIBMI

 Table 23. Corresponding client connectivity products in Geodetic DataBlade and DB2

Geodetic Data Management Feature

Client connectivity in Informix Geodetic

DataBlade

Corresponding client connectivity in DB2

Geodetic Data Management Feature

ESQLC SQC

ODBC ODBC

JDBC JDBC

Populating spatial columns with geodetic data

After you create spatial columns and register the columns on which you plan to

create a spatial index, you are ready to populate the columns with geodetic data.

You can supply geodetic data in the following ways:

v Import the following data formats to a new or existing table:

– Shape

– SDE
v Insert or update values in the following data formats:

– Shape

– SDE

– Well-known text (WKT)

– Well-known binary (WKB)

– GML (Geography Markup Language)

Restriction:

v For Spatial Extender, you cannot use the geocoder commands or stored

procedures to translate data into geodetic data.

v For geodetic behavior, use spatial reference systems that have SRIDs in the range

2,000,000,000 to 2,000,001,000.

v Shape data and SDE transfer data must be in a geographic coordinate system.

The procedure to import geodetic data is the same as with spatial data.

144 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 18. Geodetic Indexes

You can create geodetic Voronoi indexes that can improve performance when you

query geodetic data. This chapter:

v Describes Geodetic Voronoi indexes

v Describes Voronoi cell structures and when you might select an alternate

structure.

v Explains how to create a Geodetic Voronoi index.

Geodetic Voronoi indexes

DB2® Geodetic Data Management Feature provides a geodetic Voronoi index that

speeds access to geodetic data. This index organizes access to geodetic data by

using Voronoi tessellations of the Earth’s surface.

Geodetic Data Management Feature calculates the minimum bounding circle

(MBC) for each geometry. The MBC is a circle that surrounds a geodetic geometry.

The Voronoi index uses this MBC information to organize data in a cell structure.

A search using a Voronoi index can quickly descend within the organized data to

find objects in the general area of interest and then perform more exact tests on the

objects themselves. A Voronoi index can improve performance because it eliminates

the need to examine objects outside the area of interest. Without a Voronoi index, a

query would need to evaluate every object to find those that match the query

criteria.

The optimizer considers a geodetic Voronoi index for use by all queries that

contain the following functions in their WHERE clause:

v EnvelopesIntersect

v ST_Contains

v ST_Distance

v ST_EnvIntersects

v ST_Intersects

v ST_MBRIntersects

v ST_Within

When you create a geodetic Voronoi index, you can choose an alternate Voronoi

cell structure.

Voronoi cell structures

To perform computations efficiently, DB2® Geodetic Data Management Feature

subdivides the surface of the Earth into smaller, more manageable, honeycomb-like

cells. This subdivision is known as a Voronoi tessellation, and the data structure that

describes it is called a Voronoi cell structure. A Voronoi tessellation is a cell structure

where each cell’s interior consists of all points that are closer to a particular lattice

point than to any other lattice point. The cells in a Voronoi cell structure are convex

hulls. A convex hull of a set of points is the smallest convex set that includes the

points (or, the smallest polygon that defines the ″outside″ of a group of points).

© Copyright IBM Corp. 1998, 2006 145

Voronoi cell structures tend to be irregularly shaped polygons; the number and

location of cells can be tuned to match the density and location of your spatial

data.

For example, a Voronoi cell structure can subdivide the Earth into polygons based

on human population. Where the population (and the data) is dense, there are

small polygons. Where the population is sparse, there are large polygons.

Figure 21 shows the Voronoi structure that is based on world population density.

Geodetic Data Management Feature uses this cell structure in its spatial

computations.

Considerations for selecting an alternate Voronoi cell structure

All operations on geodetic geometries use a Voronoi ID of 1 that specifies the

Voronoi cell structure based on world population density. When you create an

index, if your data is clustered in one or more areas of the Earth, such as street

data for one or more countries, you can choose an alternate Voronoi cell structure

that has smaller cells in the areas where your data is located (because resolution is

inversely proportional to cell size). DB2® Geodetic Data Management Feature

provides a number of Voronoi cell structures for indexing that might be better

suited to your data.

Figure 21. Voronoi structure based on world population density

146 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Restriction:

You can choose an alternate Voronoi cell structure only when you create a geodetic

Voronoi index.

The dodeca04 structure (Voronoi ID 12) is best suited for data that is uniformly

distributed over the entire surface of the Earth, such as satellite imagery. The cells

are all roughly uniform in size and the worst-case resolution is approximately 10

centimeters. Consider using a different Voronoi cell structure than the default

world population stucture (Voronoi ID 1) or the dodeca04 structure, if any of the

following conditions apply to your data or your application:

High resolution

If you need to determine if objects less than 10 centimeters apart intersect,

you must use a Voronoi cell structure that has smaller cells in the regions

where your data is located. Resolution is inversely proportional to cell size.

Polygons with many vertexes

If your data consist of polygons that have relatively large numbers of

vertexes and are relatively small in area, you might want to switch to a

Voronoi cell structure that has more cells in your regions of interest. If

most of your polygons have 50 or fewer vertexes, you might not need to

switch. If the only polygons in your data set that have many vertexes are

continent-sized, you also might not need to switch.

 If you have many 3000-vertex polygons that are the size of U.S. counties,

you might be able to substantially improve query performance by

switching to a different Voronoi cell structure, particularly if your

application performs a number of polygon-intersect-polygon queries.

Very dense data

If your data is concentrated in very small regions (for example, you have

hundreds of objects per square kilometer) you might be able to improve

query performance by using a Voronoi cell structure whose cell density

matches your data density.

Creating geodetic Voronoi indexes

Prerequisites

Before you create a geodetic Voronoi index, your user ID must hold the same

authorizations and privileges as when you create a spatial grid index.

Restriction:

The same restrictions for creating indexes using the CREATE INDEX statement are

in effect when you create a geodetic Voronoi index. That is, the column on which

you create an index must be a base table column, not a view column or a

nickname column. The DB2 database system will resolve aliases in the process.

DB2 Geodetic Data Management Feature provides a new spatial access method

that enables you to create indexes on columns containing geodetic data. Queries

that use an index can execute more quickly.

You can create a geodetic Voronoi index in one of the following ways:

v Use the Create Index window of the DB2 Control Center.

v Use the SQL CREATE INDEX statement with the db2gse.spatial_index extension

in the EXTEND USING clause.

Chapter 18. Geodetic Indexes 147

Create a geodetic Voronoi index using the DB2 Control Center or the command

line processor.

v To create a geodetic Voronoi index using the Control Center, right-click the table

that has the spatial column on which you want to create a geodetic Voronoi

index, and click Spatial Extender —� Spatial Indexes from the menu. The

Spatial Indexes window opens. Follow the prompts to complete the task.

v To create a geodetic Voronoi index using the SQL CREATE INDEX statement,

issue the CREATE INDEX statement using the EXTEND USING clause and the

db2gse.spatial_index grid index extension.

In the following example, CREATE INDEX statement creates the STORESX1

geodetic index on the spatial column LOCATION in the CUSTOMERS table:

CREATE INDEX storesx1

 ON customers (location)

 EXTEND USING db2gse.spatial_index (-1, -1, 1)

For a geodetic Voronoi index, you must specify the value –1 in the first two

parameters of the USING db2gse.spatial_index clause.

CREATE INDEX statement for a geodetic Voronoi index

Use the CREATE INDEX statement with the EXTEND USING clause to create a

geodetic Voronoi index.

Syntax:

�� CREATE INDEX index_name

index_schema.
 ON �

� table_name

table_schema.
 (column_name) EXTEND USING �

� db2gse.spatial_index (-1 , -1 , Voronoi_ID) ��

Where:

index_schema

Name of the schema to which the index that you are creating is to belong.

If you do not specify a name, the DB2 database system uses the schema

name that is stored in the CURRENT SCHEMA special register.

index_name

Unqualified name of the geodetic index that you are creating.

table_schema

Name of the schema to which the table that contains column_name belongs.

If you do not specify a name, the DB2 database system uses the schema

name that is stored in the CURRENT SCHEMA special register.

table_name

Unqualified name of the table that contains column_name.

column_name

Name of the spatial column on which the geodetic Voronoi index is

created.

Voronoi_ID

An integer that identifies the Voronoi cell structure ID. Fourteen Voronoi

148 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

cell structures are available. A Voronoi ID of 1 specifies the Voronoi cell

structure that is based on world population density that is also used for all

spatial operations by DB2 Geodetic Data Management Feature.

Examples

The following example CREATE INDEX statement creates the STORESX1 geodetic

index on the spatial column LOCATION in the CUSTOMERS table:

CREATE INDEX storesx1

 ON customers (location)

 EXTEND USING db2gse.spatial_index (-1, -1, 1)

The optimizer considers a Voronoi index for use by all queries that contain the

following functions in their WHERE clause:

v ST_Contains

v ST_Distance

v ST_Intersects

v ST_MBRIntersects

v ST_EnvIntersects

v EnvelopesIntersect

v ST_Within

The following statements demonstrate the use of a Voronoi index. First, insert data

into the CUSTOMER table. You can enter values directly, as shown in this first

INSERT statement:

INSERT INTO customer

(id, last_name, first_name, address, city, state, zip,

location)

VALUES

(’123-456789’, ’Duck’, ’Donald’,

’123 Mallard Way’, ’Wetland Marsh’, ’ND’, ’55555-5555’,

db2gse.ST_GeomFromWKT(’POINT(123.123, 45.67)’, 2000000000))

Alternatively, you can use variables in an application, as the next query shows, to

insert values into a table:

INSERT INTO customer

(id, last_name, first_name,

address, city, state, zip,

location)

VALUES

(:mid, :mlast, :mfirst,

:maddress, :mcity, :mstate, :mzip,

db2gse.ST_GeomFromWKB(:mlocation))

The following UPDATE statement modifies the inserted data. It does not use the

STORESX1 index because it does not use the ST_Contains, ST_Distance,

ST_Intersects, ST_MBRIntersects, ST_EnvIntersects, EnvelopesIntersect, or

ST_Within function in its WHERE clause.

UPDATE customer

SET location = db2gse.ST_GeomFromWKT(’POINT(123.123, 45.67)’,

2000000000)

WHERE id = ’123-456789’;

The following DELETE statements can use the STORESX1 index, if the optimizer

determines that the index improves performance because the DELETE statements

use the ST_Within function and ST_Intersects functions in their WHERE clauses,

respectively:

Chapter 18. Geodetic Indexes 149

DELETE FROM customers

WHERE db2gse.ST_Within(location, :BayArea) = 1;

DELETE FROM customers

WHERE db2gse.ST_Intersects(c.location, :BayArea) = 1

The following two SELECT statements can also use the STORESX1 index:

SELECT s.id, AVG(c.location..ST_Distance(s.location))

FROM customers c, stores s

WHERE db2gse.ST_Within(c.location, s.zone) = 1

GROUP BY s.id;

SELECT c.location..ST_AsText()

FROM customers c

WHERE db2gse.ST_Within(c.location, :BayArea) = 1

Voronoi cell structures supplied with DB2 Geodetic Data Management

Feature

Each Voronoi cell structure covers the entire Earth. In the illustrations that follow,

only those portions of the Earth in the area where cells are dense for that Voronoi

cell structure are shown. When you select a Voronoi cell structure, keep in mind

that the cells outside the illustrated areas will be large, with correspondingly lower

resolution. If your data is located in these sparse areas, query performance might

be degraded.

The following table lists the Voronoi cell structures that DB2 Geodetic Data

Management Feature supplies. These Voronoi cell structures are provided by

Geodyssey Ltd.

 Table 24. Voronoi cell structures

Description Voronoi ID Illustration

World, based on

population density

1 Figure 22 on page 151

United States 2 Figure 23 on page 152

Canada 3 Figure 24 on page 153

India 4 Figure 25 on page 154

Japan 5 Figure 26 on page 155

Africa 6 Figure 27 on page 156

Australia 7 Figure 28 on page 157

Europe 8 Figure 29 on page 158

North America 9 Figure 30 on page 159

South America 10 Figure 31 on page 160

Mediterranean 11 Figure 32 on page 161

World, uniform data

distribution, medium

resolution (dodeca04)

12 Figure 33 on page 162

World, based on industrial

output (G7 nations)

13 Figure 34 on page 163

World, uniform data

distribution, low

resolution (isotype)

14 Figure 35 on page 164

150 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

World, based on population density (Voronoi ID: 1)

Voronoi cells subdivide the Earth based on world population density.

Figure 22. Voronoi cell structure for the world (population)

Chapter 18. Geodetic Indexes 151

United States (Voronoi ID: 2)

Voronoi cells subdivide the USA based on population density.

Figure 23. Voronoi cell structure for the USA

152 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Canada (Voronoi ID: 3)

Voronoi cells subdivide Canada based on population density.

Figure 24. Voronoi cell structure for Canada

Chapter 18. Geodetic Indexes 153

India (Voronoi ID: 4)

Voronoi cells subdivide India based on population density.

Figure 25. Voronoi cell structure for India

154 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Japan (Voronoi ID: 5)

Voronoi cells subdivide Japan based on population density.

Figure 26. Voronoi cell structure for Japan

Chapter 18. Geodetic Indexes 155

Africa (Voronoi ID: 6)

Voronoi cells subdivide Africa based on population density.

Figure 27. Voronoi cell structure for Africa

156 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Australia (Voronoi ID: 7)

Voronoi cells subdivide Australia based on population density.

Figure 28. Voronoi cell structure for Australia

Chapter 18. Geodetic Indexes 157

Europe (Voronoi ID: 8)

Voronoi cells subdivide Europe based on population density.

Figure 29. Voronoi cell structure for Europe

158 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

North America (Voronoi ID: 9)

Voronoi cells subdivide North America based on population density.

Figure 30. Voronoi cell structure for North America

Chapter 18. Geodetic Indexes 159

South America (Voronoi ID: 10)

Voronoi cells subdivide South America based on population density.

Figure 31. Voronoi cell structure for South America

160 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Mediterranean (Voronoi ID: 11)

Voronoi cells subdivide the Mediterranean area based on population density.

World, uniform data distribution, medium resolution –

dodeca04 (Voronoi ID: 12)

Voronoi cells subdivide the world with uniform data distribution and medium

resolution.

Figure 32. Voronoi cell structure for the Mediterranean area

Chapter 18. Geodetic Indexes 161

Figure 33. Voronoi cell structure for the world (dodeca04)

162 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

World, industrial nations – G7 nations (Voronoi ID: 13)

Voronoi cells subdivide the world based on industrial output of the nations.

World, uniform data distribution, low resolution – isotype

(Voronoi ID: 14)

Voronoi cells subdivide the world with uniform data distribution and low

resolution.

Figure 34. Voronoi cell structure for (g7nations)

Chapter 18. Geodetic Indexes 163

Figure 35. Voronoi cell structure for the world (isotype)

164 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 19. Differences in using geodetic and spatial data

This chapter describes the following differences in using geodetic and spatial data:

v Minimum and maximum x and y attributes for ST_Geometry data types

v Differences in working with flat-Earth and round-Earth representations

v Spatial functions supported by DB2 Geodetic Data Management Feature and

differences in function behavior

v Stored procedures and catalog views supported by DB2 Geodetic Data

Management Feature

v Additional geodetic spatial references systems (datums) and geodetic ellipsoids

Minimum and maximum x and y attributes

DB2® Geodetic Data Management Feature uses a minimum bounding circle (MBC)

instead of a minimum bounding rectangle to organize data into cell structures for

the geodetic Voronoi index.

For geodetic geometries, the MBC is a circle that surrounds the geometries, and the

minimum and maximum x and y have the following internal values:

xmin The i term of the direction cosine of the center of the bounding circle.

xmax The j term of the direction cosine of the center of the bounding circle.

ymin The k term of the direction cosine of the center of the bounding circle.

ymax The arc_radius of the bounding circle.

For geodetic geometries, the ST_MinX, ST_MaxX, ST_MinY and ST_MaxY functions

display points along the MBC. The results of these functions still produce

longitude and latitude values similar to spatial geometries, but the results can

differ for geodetic geometries as follows:

v If the MBC crosses the dateline, the ST_MinX value is greater than the ST_MaxX

value. For example, if the center of a MBC is at the dateline and has a radius of

5 degrees, then the ST_MinX value is 175, and the ST_MaxX value is –175.

v If the MBC includes the North pole or the South pole, ST_MinX is –180 and

ST_MaxX is 180.

v If the MBC includes the North pole, the ST_MaxY value is 90.

v If the MBC includes the South pole, the ST_MinY value is –90.

Differences in working with flat-Earth and round-Earth representations

DB2 Spatial Extender and DB2 Geodetic Data Management Feature use different

core technologies:

v Spatial Extender uses a flat (or planar) map, based on projected coordinates.

However, no map projection can faithfully represent the entire Earth because

every map has edges; whereas, the Earth does not have edges.

v Geodetic Data Management Feature uses an ellipsoid as its model to treat the

Earth as a seamless globe that has no distortions at the poles or edges at the

180th meridian.

© Copyright IBM Corp. 1998, 2006 165

In this section, the term ″flat-Earth″ refers to the use of a projection to represent the

entire Earth. The term ″round-Earth″ referes to the use of a reference system that

uses an ellipsoid as its Earth model.

The different technologies lead to differences in how geometries are handled in

certain situations, especially those illustrated in this topic:

v Line segments (and measured distances) that cross the 180th meridian.

v Polygons that straddle the 180th meridian.

v Minimum bounding rectangles that cross the 180th meridian.

v Polygons that enclose a pole.

v Polygons that represent hemispheres, equatorial belts, or the whole Earth.

Geodetic Data Management Feature has particular advantages when you are

working with geometries that cross the 180th meridian, or are close to a pole,

where the flat-Earth representation used by Spatial Extender encounters

limitations.

Line segments that cross the 180th meridian

A round-Earth representation gives a shorter path than a flat-Earth projection.

Figure 36 on page 167 shows the different ways that Spatial Extender and Geodetic

Data Management Feature handle a line segment that crosses the 180th meridian.

In this example, the line segment is used to measure the distance between

Anchorage and Tokyo. Geodetic Data Management Feature measures distance

between two points along a geodesic, the shortest path between two points on the

ellipsoid. The two points can be located anywhere on the globe, and Geodetic Data

Management Feature correctly chooses a line segment that travels west from

Anchorage to Tokyo because it uses the round-Earth representation. However,

because Spatial Extender uses flat-map projection, Spatial Extender is unaware that

a line segment could connect Anchorage and Tokyo that way, and it chooses a

much longer line segment that travels eastwards to Tokyo. The flat-map projection

has the –180th meridian at the left edge and the 180th meridian at the right edge.

To obtain a correct result using Spatial Extender, you need to take one of the

following actions:

v Split the line segment into two line segments, one east of the 180th meridian and

the other west of it.

v Reproject the data in such a way that the 180th meridian is not at an edge.

166 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Polygons that straddle the 180th meridian

To handle a polygon that straddles the 180th meridian, the flat-Earth representation

(Spatial Extender) requires that you split the polygon into two parts.

The following example shows a polygon for the portion to the east of the 180th

meridian, and a polygon for the portion to the west of the meridian:

 MULTIPOLYGON(

((–180 30, –165 30, –165 40, –180 40, –180 30)),

((180 30, 180 40, 165 40, 165 30, 180 30)))

As Figure 37 on page 168 shows, the round-Earth representation (Geodetic Data

Management Feature) requires no such split, and you can use a single, unaltered

polygon:

 POLYGON((165 30, –165 30, –165 40, 165 40, 165 30))

Figure 36. Lines that cross the 180th meridian

Chapter 19. Differences in using geodetic and spatial data 167

If you did not create two separate polygons while using Spatial Extender, it would

actually reorder the vertices of the polygon so that it defined a different area, as

Figure 38 on page 169 shows. The top part of Figure 38 on page 169 shows the

correct vertices of a polygon straddling the 180th meridian:

POLYGON((90 0, –90 0, –90 40, 90 40, 90 0))

The bottom part of Figure 38 on page 169 shows the reordered vertices which

results in a polygon that no longer straddles the 180th meridian, but now straddles

the 0th meridian.

POLYGON((–90 0, 90 0, 90 40, –90 40, –90 0))

Figure 37. Polygons that straddle the 180th meridian—create two separate polygons

168 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The area defined would be the complementary area of the Earth, and not the

intended area, as shown in Figure 39 on page 170. Similar to the line segment

example above, another way to handle this situation is to reproject the data in such

a way that the 180th meridian is not at an edge.

Figure 38. Polygons that straddle the 180th meridian—reordered vertices

Chapter 19. Differences in using geodetic and spatial data 169

Polygons that enclose a pole

Because you are working right at the edge of the flat-map projection with Spatial

Extender, the map’s distortion of the Earth’s surface requires you to add extra

edges and vertices to represent the pole within a polygon.

Figure 40 on page 171 shows how you could work with a polygon that encloses

the South pole with Spatial Extender or with Geodetic Data Management Feature:

POLYGON((–180 –90, 180 –90, 180 –60, –180 –60, –180 –90))

The round-Earth representation (Geodetic Data Management Feature) shows the

polygon around the South Pole as a circle that follows the –60° South parallel:

POLYGON((0 –60, –1 –60, –2 –60, ..., –179 –60, 180 –60, 179 –60, ..., 1 –60, 0 –60))

A better way to represent this circle is to reproject the data in such a way that the

entire South Pole and surrounding area are visible on the map.

Figure 39. Polygons that straddle the 180th meridian—complementary area

170 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

In the examples above, you can obtain accurate results if you choose an

appropriate projected spatial reference system. However, no one projection can

solve them all simultaneously. For example, a projection that does not have the

180th meridian at the edge puts the edge somewhere else and shifts the problem

area.

Polygons that represent hemispheres, equatorial belts, and

the whole Earth

A round-Earth representation gives better results for distance and area calculations

over a large area of the Earth’s surface.

When you must use a polygon to represent large areas of the Earth’s surface, such

as one of the hemispheres, the equatorial belts, or the whole Earth itself, be aware

of the different ways that Spatial Extender and Geodetic Data Management Feature

handle these cases. In these situations, a round-Earth representation obtains

accurate results for distance and area calculations; whereas, a careful choice of

projection cannot.

For example, Figure 41 on page 172, shows the polygons that define the Western

hemisphere in a flat-Earth representation (Spatial Extender) and a round-Earth

representation (Geodetic Data Management Feature).

v In the flat-Earth representation in the top part of Figure 41 on page 172, four

coordinates represent the Western hemisphere in well-known text format as

’POLYGON((0 -90, 0 90, -180 90, 180 -90, 0 -90))’.

v In the round-Earth representation, four coordinates represent the Western

hemisphere in well-known text format as ’POLYGON((0 0, 0 90, 180 0, 0 -90, 0

0))’. These four coordinates define a ring around the Earth along the 0th

meridian and its antipodal line, the 180th meridian.

When you specify the same four points in the opposite order, you define the

Eastern hemisphere:

Figure 40. Polygons that enclose a pole

Chapter 19. Differences in using geodetic and spatial data 171

v In a flat-Earth representation, the Eastern hemisphere is ’POLYGON((0 -90, 180

-90, 180 90, 0 90, 0 -90))’.

v In a round-Earth representation, the Eastern hemisphere is ’POLYGON((0 -90,

180 0, 0 90, 0 0, 0 -90))’.

Figure 42 on page 173, shows the coordinates of polygons that define the

equatorial belt in a flat-Earth representation (Spatial Extender) and a round-Earth

representation (Geodetic Data Management Feature).

Figure 41. Polygons that represent hemispheres

172 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v The top part of Figure 42 shows the flat-earth representation of the equatorial

belt with coordinates in well-known text format as ’POLYGON((180 –60, 180 60,

–180 60, –180 –60, 180 –60))’.

v In the round-earth representation in the bottom part of Figure 42, you define the

exclusion area of two rings to represent the equatorial belt:

’MULTIPOLYGON(((0 60, -120 60, 120 60, 0 60)),

 ((0 -60, 120 -60, -120 -60, 0 -60)))’

Only three points in each ring are shown for clarity. In reality, if you want the

rings to more closely follow the 60 or –60 latitude line, you need to add more

intermediate points. The first ring ((0 60, -120 60, 120 60, 0 60)) specifies the

vertices in the order that defines the area south of the 60th latitude line. The

second ring ((0 -60, 120 -60, -120 -60, 0 -60)) specifies the area north of the –60

latitude line.

Figure 42. Polygons that represent Equatorial belts

Chapter 19. Differences in using geodetic and spatial data 173

Figure 43, shows polygons that define the whole Earth in a flat-Earth

representation (Spatial Extender) and a round-earth representation (Geodetic Data

Management Feature). Both representations represent the whole Earth with the

same polygon in well-known text format as ’POLYGON((-180 -90, 180 -90, 180 90,

-180 90, -180 -90))’.

Spatial functions supported by DB2 Geodetic Data Management

Feature

DB2 Spatial Extender is built on the function library provided by ESRI, and DB2

Geodetic Data Management Feature is built on the Hipparchus function library.

Differences between functionality in the ESRI and Hipparchus libraries lead to

minor differences in how some functions behave. The following table shows

Spatial Extender functions that Geodetic Data Management Feature supports and it

notes any differences in behavior. For information about the usage and syntax of

spatial functions, see the appropriate spatial function topic.

 Table 25. Function support for Geodetic Data Management Feature

Function

Supported by DB2

Geodetic Data

Management

Feature?

Difference in behavior for DB2 Geodetic Data

Management Feature

EnvelopesIntersect Yes None

MBR Aggregate No Not applicable

ST_AppendPoint No Not applicable

ST_Area Yes Default unit of measure is meters.

ST_AsBinary Yes None

Figure 43. Polygons that represent the whole Earth

174 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 25. Function support for Geodetic Data Management Feature (continued)

Function

Supported by DB2

Geodetic Data

Management

Feature?

Difference in behavior for DB2 Geodetic Data

Management Feature

ST_AsGML Yes None

ST_AsShape Yes None

ST_AsText Yes None

ST_Boundary No Not applicable

ST_Buffer Yes Supported with points and multipoints only.

Distance can be a negative value. Default unit

of measure is meters.

ST_Centroid No Not applicable

ST_ChangePoint No Not applicable

ST_Contains Yes Both geometries must be in the same geodetic

spatial reference system (SRS).

ST_ConvexHull No Not applicable

ST_CoordDim Yes None

ST_Crosses No Not applicable

ST_Difference Yes Not supported with linestrings and

multilinestrings. Both geometries must be in

the same geodetic SRS. Dimension of returned

geometry is the same as that of the input

geometries.

ST_Dimension Yes None

ST_Disjoint Yes None

ST_Distance Yes Returns the geodesic distance. Both geometries

must be in the same geodetic SRS. Default unit

of measure is meters.

ST_Edge_GC_USA Yes None

ST_Endpoint Yes None

ST_Envelope Yes Envelope is a polygon that encloses the

minimum bounding circle (MBC) of the

geometry.

ST_EnvIntersects Yes None

ST_EqualCoordsys Yes None

ST_Equals No Not applicable

ST_EqualSRS Yes None

ST_ExteriorRing Yes None

ST_FindMeasure or ST_LocateAlong No Not applicable

ST_Generalize Yes Unit for threshold is meters.

ST_GeomCollection No Not applicable

ST_GeomCollFromTxt No Not applicable

ST_GeomCollFromWKB No Not applicable

ST_Geometry Yes None

ST_GeometryN Yes None

Chapter 19. Differences in using geodetic and spatial data 175

Table 25. Function support for Geodetic Data Management Feature (continued)

Function

Supported by DB2

Geodetic Data

Management

Feature?

Difference in behavior for DB2 Geodetic Data

Management Feature

ST_GeometryType Yes None

ST_GeomFromText Yes None

ST_GeomFromWKB Yes None

ST_GetIndexParms No Not applicable

ST_InteriorRingN Yes None

ST_Intersection Yes Dimension of returned geometry is that of the

input with the lower dimension, except the

dimension of the intersection of two linestrings

is 0.

ST_Intersects Yes Both geometries must be in the same geodetic

SRS.

ST_Is3d Yes None

ST_IsClosed Yes None

ST_IsEmpty Yes None

ST_IsMeasured Yes None

ST_IsRing No Not applicable

ST_IsSimple No Not applicable

ST_IsValid Yes None

ST_Length Yes Default unit of measure is meters.

ST_LineFromText Yes None

ST_LineFromWKB Yes None

ST_LineString Yes None

ST_LineStringN Yes None

ST_M Yes None

ST_MaxM Yes None

ST_MaxX Yes Returns the maximum X value of the

minimum bounding circle (MBC).

Note: If the MBC crosses the dateline, the

ST_MaxX value is less than the ST_MinX. If the

MBC includes the North pole, or the South

pole, ST_MinX is –180 and ST_MaxX is 180.

ST_MaxY Yes Returns the maximum Y value of the MBC.

Note: If the MBC includes the North pole, the

ST_MaxY value is 90.

ST_MaxZ Yes None

ST_MBR Yes MBR is a geometry that encloses the MBC of

the geometry.

ST_MBRIntersects Yes None

ST_MeasureBetween or ST_LocateBetween No Not applicable

ST_MidPoint Yes None

ST_MinM Yes None

176 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 25. Function support for Geodetic Data Management Feature (continued)

Function

Supported by DB2

Geodetic Data

Management

Feature?

Difference in behavior for DB2 Geodetic Data

Management Feature

ST_MinX Yes Returns the minimum X value of the MBC.

Note: If the MBC crosses the dateline, the

ST_MinX value is greater than the ST_MaxX

value. If the MBC includes the North pole, or

the South pole, ST_MinX is –180 and ST_MaxX

is 180.

ST_MinY Yes Returns the minimum Y value of the MBC.

Note: If the MBC includes the South pole, the

ST_MinY value is –90.

ST_MinZ Yes None

ST_MLineFromText Yes None

ST_MLineFromWKB Yes None

ST_MPointFromText Yes None

ST_MPointFromWKB Yes None

ST_MPolyFromText Yes None

ST_MPolyFromWKB Yes None

ST_MultiLineString Yes None

ST_MultiPoint Yes None

ST_MultiPolygon Yes None

ST_NumGeometries Yes None

ST_NumInteriorRing Yes None

ST_NumLineStrings Yes None

ST_NumPoints Yes None

ST_NumPolygons Yes None

ST_Overlaps No Not applicable

ST_Perimeter Yes Default unit of measure is meters.

ST_PerpPoints No Not applicable

ST_Point Yes None

ST_PointFromText Yes None

ST_PointFromWKB Yes None

ST_PointN Yes None

ST_PolyFromText Yes None

ST_PolyFromWKB Yes None

ST_PointOnSurface Yes None

ST_Polygon Yes None

ST_PolygonN Yes None

ST_Relate No Not applicable

ST_RemovePoint No Not applicable

ST_SrsId or ST_SRID Yes None

ST_SrsName Yes None

Chapter 19. Differences in using geodetic and spatial data 177

Table 25. Function support for Geodetic Data Management Feature (continued)

Function

Supported by DB2

Geodetic Data

Management

Feature?

Difference in behavior for DB2 Geodetic Data

Management Feature

ST_StartPoint Yes None

ST_SymDifference Yes Not supported with linestrings and

multi-linestrings. Dimension of returned

geometry is same as that of input geometries.

Both geometries must be in the same geodetic

SRS.

ST_ToGeomColl No Not applicable

ST_ToLineString Yes None

ST_ToMultiLine Yes None

ST_ToMultiPoint Yes None

ST_ToPoint Yes None

ST_ToPolygon Yes None

ST_Touches No Not applicable

ST_Transform Yes None. Note: Coordinate transformations are

done point-by-point. When transforming

between geodetic coordinate systems and

non-projected planar coordinate systems, check

carefully any polygons and linestrings that

straddle the 180th meridian or enclose one or

both poles. Because Spatial Extender and

Geodetic Data Management Feature handle

these cases differently, it is possible that

geometries that are valid in a flat-Earth

coordinate system will not be valid in a

round-Earth system and vice-versa. For more

information, see “Differences in working with

flat-Earth and round-Earth representations” on

page 165.

ST_Union Yes Both geometries must be in the same geodetic

SRS.

ST_Within Yes Both geometries must be in the same geodetic

SRS.

ST_WKBToSQL Yes None

ST_WKTToSQL Yes None

ST_X Yes None

ST_Y Yes None

ST_Z Yes None

Union Aggregate No Not applicable

DB2 Geodetic Data Management Feature stored procedures and

catalog views

DB2 Geodetic Data Management Feature supports the same catalog views as DB2

Spatial Extender and supports a subset of the spatial stored procedures.

178 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Geodetic Data Management Feature does not support the following stored

procedures:

v ST_disable_autogeocoding

v ST_enable_autogeocoding

v ST_register_geocoder

v ST_remove_geocoding_setup

v ST_run_geocoding

v ST_setup_geocoding

v ST_unregister_geocoder

Geodetic Data Management Feature provides 318 predefined geodetic spatial

reference systems that appear in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog view. See for a complete list.

Datums supported by DB2 Geodetic Data Management Feature

As describes, a datum is a set of values that defines the position of an ellipsoid

relative to the center of the earth. A spatial reference system (SRS) is a set of

parameters that associate a datum with an ellipsoid and is identified with a spatial

reference system identifier (SRID). Table 27 on page 180 lists the predefined datums

that DB2 Geodetic Data Management Feature provides. The offset values and scale

factors for all of the predefined geodetic SRSs are the same, and the following table

shows their values.

 Table 26. Offset and scale values for predefined geodetic SRSs

SRS Parameter Value

xOffset

–180

yOffset

–90

zOffset

–50000

mOffset

–1000

xScale

5965232

yScale

5965232

zScale 1000

mScale 1000

The yScale is always the same as the xScale.

You can choose any datum listed in Table 27 on page 180 for your spatial reference

system. Ideally, choose the one that best suits your data. For example, one of the

most commonly used datums, World Geodetic System 1984 (WGS 1984), takes the

center of the Earth as its point of origin and maps the whole of the globe; it is an

Earth-centered datum. In contrast, a regional datum, such as the North American

1927 datum, maps North America starting from a point on the ground. A regional

datum is accurate for the region it aims to model, but an Earth-centered geodetic

datum is necessary to handle locations over the entire globe.

Chapter 19. Differences in using geodetic and spatial data 179

Table 27. SRIDs with associated datum and ellipsoid

SRID Datum name Reference ellipsoid

2000000000 WGS 1984 WGS 1984

2000000001 Abidjan 1987 Clarke 1880 (RGS)

2000000002 Accra War Office

2000000003 Adindan Clarke 1880 (RGS)

2000000004 Afgooye Krasovsky 1940

2000000005 Agadez Clarke 1880 (IGN)

2000000006 Australian Geodetic Datum 1966 Australian

2000000007 Australian Geodetic Datum 1984 Australian

2000000008 Ain el Abd 1970 International 1924

2000000009 Airy 1830 Airy 1830

2000000010 Airy Modified Airy Modified

2000000011 Alaskan Islands Clarke 1866

2000000012 Amersfoort Bessel 1841

2000000013 Anguilla 1957 Clarke 1880 (RGS)

2000000014 Anna 1 Astro 1965 Australian

2000000015 Antigua Astro 1943 Clarke 1880 (RGS)

2000000016 Aratu International 1924

2000000017 Arc 1950 Clarke 1880 (Arc)

2000000018 Arc 1960 Clarke 1880 (RGS)

2000000019 Ascension Island 1958 International 1924

2000000020 Assumed Geographic (NAD27 for shapefiles

without a PRJ)

Clarke 1866

2000000021 Astronomical Station 1952 International 1924

2000000022 ATF (Paris) Plessis 1817

2000000023 Average Terrestrial System 1977 ATS 1977

2000000024 Australian National Australian

2000000025 Ayabelle Lighthouse Clarke 1880 (RGS)

2000000026 Bab South Astro (Bablethuap Is, Republic of

Palau)

Clarke 1866

2000000027 Barbados 1938 Clarke 1880 (RGS)

2000000028 Batavia Bessel 1841

2000000029 Batavia (Jakarta) Bessel 1841

2000000030 Astro Beacon E 1945 International 1924

2000000031 Beduaram Clarke 1880 (IGN)

2000000032 Beijing 1954 Krasovsky 1940

2000000033 Reseau National Belge 1950 International 1924

2000000034 Belge 1950 (Brussels) International 1924

2000000035 Reseau National Belge 1972 International 1924

2000000036 Bellevue (IGN) International 1924

2000000037 Bermuda 1957 Clarke 1866

2000000038 Bern 1898 Bessel 1841

2000000039 Bern 1898 (Bern) Bessel 1841

2000000040 Bern 1938 Bessel 1841

2000000041 Bessel 1841 Bessel 1841

2000000042 Bessel Modified Bessel Modified

2000000043 Bessel Namibia Bessel Namibia

2000000044 Bissau International 1924

2000000045 Bogota International 1924

2000000046 Bogota (Bogota) International 1924

2000000047 Bukit Rimpah Bessel 1841

2000000048 Camacupa Clarke 1880 (RGS)

2000000049 Campo Inchauspe International 1924

2000000050 Camp Area Astro International 1924

180 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000051 Canton Astro 1966 International 1924

2000000052 Cape Clarke 1880 (Arc)

2000000053 Cape Canaveral Clarke 1866

2000000054 Carthage Clarke 1880 (IGN)

2000000055 Carthage (degrees) Clarke 1880 (IGN)

2000000056 Carthage (Paris) Clarke 1880 (IGN)

2000000057 CH 1903 Bessel 1841

2000000058 CH 1903+ Bessel 1841

2000000059 Chatham Island Astro 1971 International 1924

2000000060 Chos Malal 1914 International 1924

2000000061 Swiss Terrestrial Ref. Frame 1995 GRS 1980

2000000062 Chua International 1924

2000000063 Clarke 1858 Clarke 1858

2000000064 Clarke 1866 Clarke 1866

2000000065 Clarke 1866 (Michigan) Clarke 1866

(Michigan)

2000000066 Clarke 1880 Clarke 1880

2000000067 Clarke 1880 (Arc) Clarke 1880 (Arc)

2000000068 Clarke 1880 (Benoit) Clarke 1880 (Benoit)

2000000069 Clarke 1880 (IGN) Clarke 1880 (IGN)

2000000070 Clarke 1880 (RGS) Clarke 1880 (RGS)

2000000071 Clarke 1880 (SGA) Clarke 1880 (SGA)

2000000072 Conakry 1905 Clarke 1880 (IGN)

2000000073 Corrego Alegre International 1924

2000000074 Cote d’Ivoire Clarke 1880 (IGN)

2000000075 Dabola 1981 Clarke 1880 (RGS)

2000000076 Datum 73 International 1924

2000000077 Dealul Piscului 1933 (Romania) International 1924

2000000078 Dealul Piscului 1970 (Romania) Krasovsky 1940

2000000079 Deception Island Clarke 1880 (RGS)

2000000080 Deir ez Zor Clarke 1880 (IGN)

2000000081 Deutsche Hauptdreiecksnetz Bessel 1841

2000000082 Dominica 1945 Clarke 1880 (RGS)

2000000083 DOS 1968 International 1924

2000000084 Astro DOS 71/4 International 1924

2000000085 Douala Clarke 1880 (IGN)

2000000086 Easter Island 1967 International 1924

2000000087 European Datum 1950 International 1924

2000000088 European Datum 1950 (ED77) International 1924

2000000089 European Datum 1987 International 1924

2000000090 Egypt 1907 Helmert 1906

2000000091 Estonia 1937 Bessel 1841

2000000092 Estonia 1992 GRS 1980

2000000093 European Terrestrial Ref. Frame 1989 WGS 1984

2000000094 European 1979 International 1924

2000000095 European Libyan Datum 1979 International 1924

2000000096 Everest 1830 Everest 1830

2000000097 Everest (Bangladesh) Everest Adjustment

1937

2000000098 Everest (Definition 1962) Everest (Definition

1962)

2000000099 Everest (Definition 1967) Everest (Definition

1967)

Chapter 19. Differences in using geodetic and spatial data 181

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000100 Everest (Definition 1975) Everest (Definition

1975)

2000000101 Everest (India and Nepal) Everest (Definition

1962)

2000000102 Everest 1830 Modified Everest 1830 Modified

2000000103 Everest Modified 1969 Everest Modified 1969

2000000104 Fahud Clarke 1880 (RGS)

2000000105 Final Datum 1958 Clarke 1880 (RGS)

2000000106 Fischer 1960 Fischer 1960

2000000107 Fischer 1968 Fischer 1968

2000000108 Fischer Modified Fischer Modified

2000000109 Fort Thomas 1955 Clarke 1880 (RGS)

2000000110 Gandajika 1970 International 1924

2000000111 Gan 1970 International 1924

2000000112 Garoua Clarke 1880 (IGN)

2000000113 Geocentric Datum of Australia 1994 GRS 1980

2000000114 GEM 10C Gravity Potential Model GEM 10C

2000000115 Greek Geodetic Ref. System 1987 GRS 1980

2000000116 Graciosa Base SW 1948 International 1924

2000000117 Greek Bessel 1841

2000000118 Greek (Athens) Bessel 1841

2000000119 Grenada 1953 Clarke 1880 (RGS)

2000000120 GRS 1967 GRS 1967

2000000121 GRS 1980 GRS 1980

2000000122 Guam 1963 Clarke 1866

2000000123 Gunung Segara Bessel 1841

2000000124 GUX 1 Astro International 1924

2000000125 Guyane Francaise International 1924

2000000126 Hanoi 1972 Krasovsky 1940

2000000127 Hartebeesthoek 1994 WGS 1984

2000000128 Helmert 1906 Helmert 1906

2000000129 Herat North International 1924

2000000130 Hermannskogel Bessel 1841

2000000131 Hito XVIII 1963 International 1924

2000000132 Hjorsey 1955 International 1924

2000000133 Hong Kong 1963 International 1924

2000000134 Hong Kong 1980 International 1924

2000000135 Hough 1960 Hough 1960

2000000136 Hungarian Datum 1972 GRS 1967

2000000137 Hu Tzu Shan International 1924

2000000138 Indian 1954 Everest Adjustment

1937

2000000139 Indian 1960 Everest Adjustment

1937

2000000140 Indian 1975 Everest Adjustment

1937

2000000141 Indonesian National Indonesian National

2000000142 Indonesian Datum 1974 Indonesian

2000000143 International 1927 International 1924

2000000144 International 1967 International 1967

2000000145 IRENET95 GRS 1980

2000000146 Israel GRS 1980

2000000147 ISTS 061 Astro 1968 International 1924

182 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000148 ISTS 073 Astro 1969 International 1924

2000000149 Jamaica 1875 Clarke 1880

2000000150 Jamaica 1969 Clarke 1866

2000000151 Japan Geodetic Datum 2000 GRS 1980

2000000152 Johnston Island 1961 International 1924

2000000153 Kalianpur 1880 Everest 1830

2000000154 Kalianpur 1937 Everest Adjustment

1937

2000000155 Kalianpur 1962 Everest (Definition

1962)

2000000156 Kalianpur 1975 Everest (Definition

1975)

2000000157 Kandawala Everest Adjustment

1937

2000000158 Kerguelen Island 1949 International 1924

2000000159 Kertau Everest 1830 Modified

2000000160 Kartastokoordinaattijarjestelma International 1924

2000000161 Kuwait Oil Company Clarke 1880 (RGS)

2000000162 Korean Datum 1985 Bessel 1841

2000000163 Korean Datum 1995 WGS 1984

2000000164 Krasovsky 1940 Krasovsky 1940

2000000165 Kuwait Utility GRS 1980

2000000166 Kusaie Astro 1951 International 1924

2000000167 Lake International 1924

2000000168 La Canoa International 1924

2000000169 L.C. 5 Astro 1961 Clarke 1866

2000000170 Leigon Clarke 1880 (RGS)

2000000171 Liberia 1964 Clarke 1880 (RGS)

2000000172 Datum Lisboa Bessel Bessel 1841

2000000173 Datum Lisboa Hayford International 1924

2000000174 Lisbon International 1924

2000000175 Lisbon (Lisbon) International 1924

2000000176 LKS 1994 GRS 1980

2000000177 Locodjo 1965 Clarke 1880 (RGS)

2000000178 Loma Quintana International 1924

2000000179 Lome Clarke 1880 (IGN)

2000000180 Luzon 1911 Clarke 1866

2000000181 Madrid 1870 (Madrid Prime Merid.) Struve 1860

2000000182 Madzansua Clarke 1866

2000000183 Mahe 1971 Clarke 1880 (RGS)

2000000184 Majuro (Republic of Marshall Is.) Clarke 1866

2000000185 Makassar Bessel 1841

2000000186 Makassar (Jakarta) Bessel 1841

2000000187 Malongo 1987 International 1924

2000000188 Manoca Clarke 1880 (RGS)

2000000189 Massawa Bessel 1841

2000000190 Merchich Clarke 1880 (IGN)

2000000191 Merchich (degrees) Clarke 1880 (IGN)

2000000192 Militar-Geographische Institut Bessel 1841

2000000193 MGI (Ferro) Bessel 1841

2000000194 Mhast International 1924

2000000195 Midway Astro 1961 International 1924

2000000196 Minna Clarke 1880 (RGS)

Chapter 19. Differences in using geodetic and spatial data 183

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000197 Monte Mario International 1924

2000000198 Monte Mario (Rome) International 1924

2000000199 Montserrat Astro 1958 Clarke 1880 (RGS)

2000000200 Mount Dillon Clarke 1858

2000000201 Moznet WGS 1984

2000000202 M’poraloko Clarke 1880 (IGN)

2000000203 North American Datum 1927 Clarke 1866

2000000204 NAD 1927 CGQ77 Clarke 1866

2000000205 NAD 1927 (1976) Clarke 1866

2000000206 North American Datum 1983 GRS 1980

2000000207 NAD 1983 (Canadian Spatial Ref. System) GRS 1980

2000000208 North American Datum 1983 (HARN) GRS 1980

2000000209 NAD Michigan Clarke 1866

(Michigan)

2000000210 Nahrwan 1967 Clarke 1880 (RGS)

2000000211 Naparima 1955 International 1924

2000000212 Naparima 1972 International 1924

2000000213 Nord de Guerre (Paris) Plessis 1817

2000000214 National Geodetic Network (Kuwait) WGS 1984

2000000215 NGO 1948 Bessel Modified

2000000216 NGO 1948 (Oslo) Bessel Modified

2000000217 Nord Sahara 1959 Clarke 1880 (RGS)

2000000218 NSWC 9Z-2 NWL 9D

2000000219 Nouvelle Triangulation Francaise (degrees) Clarke 1880 (IGN)

2000000220 NTF (Paris) (grads) Clarke 1880 (IGN)

2000000221 NWL 9D Transit Precise Ephemeris NWL 9D

2000000222 New Zealand Geodetic Datum 1949 International 1924

2000000223 New Zealand Geodetic Datum 2000 GRS 1980

2000000224 Observatario Clarke 1866

2000000225 Observ. Meteorologico 1939 International 1924

2000000226 Old Hawaiian Clarke 1866

2000000227 Oman Clarke 1880 (RGS)

2000000228 OSGB 1936 Airy 1830

2000000229 OSGB 1970 (SN) Airy 1830

2000000230 OSU 1986 Geoidal Model OSU 86F

2000000231 OSU 1991 Geoidal Model OSU 91A

2000000232 OS (SN) 1980 Airy 1830

2000000233 Padang 1884 Bessel 1841

2000000234 Padang 1884 (Jakarta) Bessel 1841

2000000235 Palestine 1923 Clarke 1880 (Benoit)

2000000236 Pampa del Castillo International 1924

2000000237 PDO Survey Datum 1993 Clarke 1880 (RGS)

2000000238 Pico de Las Nieves International 1924

2000000239 Pitcairn Astro 1967 International 1924

2000000240 Plessis 1817 Plessis 1817

2000000241 Pohnpei (Fed. States of Micronesia) Clarke 1866

2000000242 Point 58 Clarke 1880 (RGS)

2000000243 Pointe Noire Clarke 1880 (IGN)

2000000244 Porto Santo 1936 International 1924

2000000245 POSGAR GRS 1980

2000000246 Provisional South Amer. Datum 1956 International 1924

2000000247 Puerto Rico Clarke 1866

2000000248 Pulkovo 1942 Krasovsky 1940

184 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000249 Pulkovo 1995 Krasovsky 1940

2000000250 Qatar 1974 International 1924

2000000251 Qatar 1948 Helmert 1906

2000000252 Qornoq International 1924

2000000253 Rassadiran International 1924

2000000254 REGVEN GRS 1980

2000000255 Reunion International 1924

2000000256 Reseau Geodesique Francais 1993 GRS 1980

2000000257 RT38 Bessel 1841

2000000258 RT38 (Stockholm) Bessel 1841

2000000259 RT 1990 Bessel 1841

2000000260 S-42 Hungary Krasovsky 1940

2000000261 South American Datum 1969 GRS 1967 Truncated

2000000262 Samboja Bessel 1841

2000000263 American Samoa 1962 Clarke 1866

2000000264 Santo DOS 1965 International 1924

2000000265 Sao Braz International 1924

2000000266 Sapper Hill 1943 International 1924

2000000267 Schwarzeck Bessel Namibia

2000000268 Segora Bessel 1841

2000000269 Selvagem Grande 1938 International 1924

2000000270 Serindung Bessel 1841

2000000271 Sierra Leone 1924 War Office

2000000272 Sierra Leone 1960 Clarke 1880 (RGS)

2000000273 Sierra Leone 1968 Clarke 1880 (RGS)

2000000274 SIRGAS GRS 1980

2000000275 South Yemen Krasovsky 1940

2000000276 Authalic sphere Sphere

2000000277 Authalic sphere (ARC/INFO) Sphere ARC INFO

2000000278 Struve 1860 Struve 1860

2000000279 St. George Island (Alaska) Clarke 1866

2000000280 St. Kitts 1955 Clarke 1880 (RGS)

2000000281 St. Lawrence Island (Alaska) Clarke 1866

2000000282 St. Lucia 1955 Clarke 1880 (RGS)

2000000283 St. Paul Island (Alaska) Clarke 1866

2000000284 St. Vincent 1945 Clarke 1880 (RGS)

2000000285 Sudan Clarke 1880 (IGN)

2000000286 South Asia Singapore Fischer Modified

2000000287 S-JTSK Bessel 1841

2000000288 S-JTSK (Ferro) Bessel 1841

2000000289 Tananarive 1925 International 1924

2000000290 Tananarive 1925 (Paris) International 1924

2000000291 Tern Island Astro 1961 International 1924

2000000292 Tete Clarke 1866

2000000293 Timbalai 1948 Everest (Definition

1967)

2000000294 TM65 Airy Modified

2000000295 TM75 Airy Modified

2000000296 Tokyo Bessel 1841

2000000297 Trinidad 1903 Clarke 1858

2000000298 Tristan Astro 1968 International 1924

2000000299 Trucial Coast 1948 Helmert 1906

2000000300 Viti Levu 1916 Clarke 1880 (RGS)

Chapter 19. Differences in using geodetic and spatial data 185

Table 27. SRIDs with associated datum and ellipsoid (continued)

SRID Datum name Reference ellipsoid

2000000301 Voirol 1875 Clarke 1880 (IGN)

2000000302 Voirol 1875 (degrees) Clarke 1880 (IGN)

2000000303 Voirol 1875 (Paris) Clarke 1880 (IGN)

2000000304 Voirol Unifie 1960 Clarke 1880 (RGS)

2000000305 Voirol Unifie 1960 (degrees) Clarke 1880 (RGS)

2000000306 Voirol Unifie 1960 (Paris) Clarke 1880 (RGS)

2000000307 Wake-Eniwetok 1960 Hough 1960

2000000308 Wake Island Astro 1952 International 1924

2000000309 Walbeck Walbeck

2000000310 War Office War Office

2000000311 WGS 1966 WGS 1966

2000000312 WGS 1972 WGS 1972

2000000313 WGS 1972 Transit Broadcast Ephemeris WGS 1972

2000000314 Yacare International 1924

2000000315 Yemen Nat’l Geodetic Network 1996 WGS 1984

2000000316 Yoff Clarke 1880 (IGN)

2000000317 Zanderij International 1924

Geodetic spheroids

A spheroid (also known as an ellipsoid) is the part of a geographic coordinate

system that defines the shape of the Earth’s surface at a specific location.

The definition of a coordinate system includes the definition of an ellipsoid in the

SPHEROID definition which is part of the DATUM definition, as the following

example shows:

GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199432955]]

You can use the DB2GSE.ST_COORDINATE_SYSTEMS catalog view to retrieve this

information. The DEFINITION column in the

DB2GSE.ST_COORDINATE_SYSTEMS catalog view contains the values in the

Name, Semi-major axis, and Flattening columns in the table.

186 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 20. Stored procedures

This section provides reference information about the stored procedures that you

can use to set up DB2 Spatial Extender and create projects that use spatial data.

When you set up DB2 Spatial Extender or create projects from the DB2 Control

Center or the DB2 command line processor, you invoke these stored procedures

implicitly. For example, when you click OK from a DB2 Spatial Extender window

in the DB2 Control Center, DB2 calls the stored procedure that is associated with

that window.

Alternatively, you can invoke the stored procedures explicitly in an application

program.

Before invoking most DB2 Spatial Extender stored procedures on a database, you

must enable that database for spatial operations by invoking the ST_enable_db

stored procedure, either directly or by using the DB2 Control Center. (You can read

about invoking this stored procedure in the topic about ST_enable_db, later in this

section.)

After a database is enabled for spatial operations, you can invoke any DB2 Spatial

Extender stored procedure, either implicitly or explicitly, on that database if you

are connected to that database.

This chapter provides topics for all the DB2 Spatial Extender stored procedures, as

follows:

v “GSE_export_sde” on page 188

v “GSE_import_sde” on page 189

v “ST_alter_coordsys” on page 192

v “ST_alter_srs” on page 193

v “ST_create_coordsys” on page 197

v “ST_create_srs” on page 199

v “ST_disable_autogeocoding” on page 205

v “ST_disable_db” on page 207

v “ST_drop_coordsys” on page 208

v “ST_drop_srs” on page 209

v “ST_enable_autogeocoding” on page 211

v “ST_enable_db” on page 213

v “ST_export_shape” on page 214

v “ST_import_shape” on page 218

v “ST_register_geocoder” on page 225

v “ST_register_spatial_column” on page 229

v “ST_remove_geocoding_setup” on page 231

v “ST_run_geocoding” on page 233

v “ST_setup_geocoding” on page 236

v “ST_unregister_geocoder” on page 239

v “ST_unregister_spatial_column” on page 240

© Copyright IBM Corp. 1998, 2006 187

The implementations of the stored procedures are archived in the db2gse library

on the DB2 Spatial Extender server.

GSE_export_sde

Use this stored procedure to export a spatial column and its associated table to an

SDE transfer file.

Restriction:

v Exactly one spatial column must exist in the table or view.

v The spatial column must be registered.

v You cannot append to existing SDE files.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority. In addition, this user ID under must hold the

SELECT privilege on the table that is to be exported.

Syntax

�� db2gse.GSE_export_sde (table_schema

null
 , table_name , column_name �

� , file_name , where_clause

null
) ��

Parameter descriptions

table_schema

Names the schema to which the table that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table that you are exporting. You must

specify a non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the registered spatial column that you are exporting. You must specify

a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

188 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

file_name

Names the SDE transfer file to which the specified spatial column and its

associated table are to be exported. You must specify a non-null value for this

parameter.

 The data type of this parameter is VARCHAR(256).

where_clause

Specifies the body of the SQL WHERE clause, which defines a restriction on

the set of records that are to be exported. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, no

restrictions are defined in the WHERE clause.

 If this parameter is specified, the value can reference any attribute column in

the table that you are exporting.

 The data type of this parameter is VARCHAR(1024).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

GSE_export_sde stored procedure. This example uses a DB2 CALL command to

export data from a table named CUSTOMERS to SDE files:

call db2gse.GSE_export_sde(NULL,’CUSTOMERS’,’LOCATION’,’/tmp/export_sde_file’,

 NULL,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

GSE_import_sde

Use this stored procedure to import an SDE transfer file to a database that is

enabled for spatial operations.

The stored procedure can operate in either of two ways:

Chapter 20. Stored procedures 189

v If the SDE transfer file is targeted for an existing table that has a registered

spatial column, DB2 Spatial Extender loads the table with the file’s data.

v Otherwise, DB2 Spatial Extender creates a table that has a spatial column,

registers this column, and loads the spatial column and the table’s other

columns with the file’s data.

The spatial reference system that is specified in the SDE transfer file is compared

with the spatial reference systems that are registered to DB2 Spatial Extender. If the

specified system matches a registered system, all data values in the transfer data,

when loaded, are modified in the way that the registered system specifies. If the

specified system matches none of the registered systems, DB2 Spatial Extender

creates a new spatial reference system to specify the modifications.

Authorization

When you import data to an existing table, the user ID under which this stored

procedure is invoked must hold one of the following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table to which

data is to be imported

v CONTROL privilege on this table

When the table to which you want to import data must be created, the user ID

under which this stored procedure is invoked must hold either SYSADM or

DBADM authority on the database that contains the table that is to be created.

Syntax

�� db2gse.GSE_import_sde (table_schema

null
 , table_name , column_name �

� , file_name , commit_scope

null
) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table into which the SDE transfer data is

to be loaded. You must specify a non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

190 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

column_name

Names the registered column into which the SDE transfer file’s spatial data is

to be loaded. You must specify a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

file_name

Names the SDE transfer file that is to be imported. You must specify a

non-null value for this parameter.

 The data type of this parameter is VARCHAR(256).

commit_scope

Specifies the number of records that are to be imported before a COMMIT is

issued. Although you must specify a value for this parameter, the value can be

null. If this parameter is null, a value of 0 (zero) is used and no records are

committed.

 The data type of this parameter is INTEGER.

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

GSE_import_sde stored procedure. This example uses a DB2 CALL command to

import an SDE file named tmp/customerSDE into a table named CUSTOMERS. This

CALL command specifies that a COMMIT is to be performed after every 5 records

are imported:

call db2gse.GSE_import_sde(NULL,’CUSTOMERS’,’LOCATION’,

 ’/tmp/customerSde’, 5, ?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

Chapter 20. Stored procedures 191

ST_alter_coordsys

Use this stored procedure to update a coordinate system definition in the database.

When this stored procedure is processed, information about the coordinate system

is updated in the DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

Attention: Use care with this stored procedure. If you use this stored procedure

to change the definition of the coordinate system and you have existing spatial

data that is associated with a spatial reference system that is based on this

coordinate system, you might inadvertently change the spatial data. If spatial data

is affected, you are responsible for ensuring that the changed spatial data is still

accurate and valid.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority.

Syntax

�� db2gse.ST_alter_coordsys (coordsys_name , definition

null
 , �

� organization

null
 , organization_coordsys_id

null
 , description

null
) ��

Parameter descriptions

coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value

for this parameter.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

definition

Defines the coordinate system. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the definition of the

coordinate system is not changed.

 The data type of this parameter is VARCHAR(2048).

organization

Names the organization that defined the coordinate system and provided the

definition for it; for example, ″European Petroleum Survey Group (EPSG).″

Although you must specify a value for this parameter, the value can be null.

 If this parameter is null, the organization of the coordinate system is not

changed. If this parameter is not null, the organization_coordsys_id parameter

cannot be null; in this case, the combination of the organization and

organization_coordsys_id parameters uniquely identifies the coordinate system.

 The data type of this parameter is VARCHAR(128).

organization_coordsys_id

Specifies a numeric identifier that is assigned to this coordinate system by the

192 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

entity listed in the organization parameter. Although you must specify a value

for this parameter, the value can be null.

 If this parameter is null, the organization parameter must also be null; in this

case, the organization’s coordinate system identifier is not changed. If this

parameter is not null, the organization parameter cannot be null; in this case,

the combination of the organization and organization_coordsys_id parameters

uniquely identifies the coordinate system.

 The data type of this parameter is INTEGER.

description

Describes the coordinate system by explaining its application. Although you

must specify a value for this parameter, the value can be null. If this parameter

is null, the description information about the coordinate system is not changed.

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_alter_coordsys stored procedure. This example uses a DB2 CALL command to

update a coordinate system named NORTH_AMERICAN_TEST. This CALL

command assigns a value of 1002 to the coordsys_id parameter:

call db2gse.ST_alter_coordsys(’NORTH_AMERICAN_TEST’,NULL,NULL,1002,NULL,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_alter_srs

Use this stored procedure to update a spatial reference system definition in the

database. When this stored procedure is processed, information about the spatial

reference system is updated in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog view.

Internally, DB2 Spatial Extender stores the coordinate values as positive integers.

Thus during computation, the impact of rounding errors (which are heavily

Chapter 20. Stored procedures 193

dependent on the actual value for floating-point operations) can be reduced.

Performance of the spatial operations can also improve significantly.

Restriction: You cannot alter a spatial reference system if a registered spatial

column uses that spatial reference system.

Attention: Use care with this stored procedure. If you use this stored procedure

to change offset, scale, or coordsys_name parameters of the spatial reference system,

and if you have existing spatial data that is associated with the spatial reference

system, you might inadvertently change the spatial data. If spatial data is affected,

you are responsible for ensuring that the changed spatial data is still accurate and

valid.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority.

Syntax

�� db2gse.ST_alter_srs (srs_name , srs_id

null
 , x_offset

null
 , �

� x_scale

null
 , y_offset

null
 , y_scale

null
 , z_offset

null
 , �

� z_scale

null
 , m_offset

null
 , m_scale

null
 , coordsys_name

null
 , �

� description

null
) ��

Parameter descriptions

srs_name

Identifies the spatial reference system. You must specify a non-null value for

this parameter.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

srs_id

Uniquely identifies the spatial reference system. This identifier is used as an

input parameter for various spatial functions. Although you must specify a

value for this parameter, the value can be null. If this parameter is null, the

numeric identifier of the spatial reference system is not changed.

 The data type of this parameter is INTEGER.

x_offset

Specifies the offset for all X coordinates of geometries that are represented in

this spatial reference system. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the value for this

parameter in the definition of the spatial reference system is not changed.

194 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The offset is subtracted before the scale factor x_scale is applied when

geometries are converted from external representations (WKT, WKB, shape) to

the DB2 Spatial Extender internal representation. (WKT is well-known text, and

WKB is well-known binary.)

 The data type of this parameter is DOUBLE.

x_scale

Specifies the scale factor for all X coordinates of geometries that are

represented in this spatial reference system. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, the value for

this parameter in the definition of the spatial reference system is not changed.

 The scale factor is applied (multiplication) after the offset x_offset is subtracted

when geometries are converted from external representations (WKT, WKB,

shape) to the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

y_offset

Specifies the offset for all Y coordinates of geometries that are represented in

this spatial reference system. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the value for this

parameter in the definition of the spatial reference system is not changed.

 The offset is subtracted before the scale factor y_scale is applied when

geometries are converted from external representations (WKT, WKB, shape) to

the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

y_scale

Specifies the scale factor for all Y coordinates of geometries that are

represented in this spatial reference system. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, the value for

this parameter in the definition of the spatial reference system is not changed.

 The scale factor is applied (multiplication) after the offset y_offset is subtracted

when geometries are converted from external representations (WKT, WKB,

shape) to the DB2 Spatial Extender internal representation. This scale factor

must be the same as x_scale.

 The data type of this parameter is DOUBLE.

z_offset

Specifies the offset for all Z coordinates of geometries that are represented in

this spatial reference system. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the value for this

parameter in the definition of the spatial reference system is not changed.

 The offset is subtracted before the scale factor z_scale is applied when

geometries are converted from external representations (WKT, WKB, shape) to

the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

z_scale

Specifies the scale factor for all Z coordinates of geometries that are

represented in this spatial reference system. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, the value for

this parameter in the definition of the spatial reference system is not changed.

Chapter 20. Stored procedures 195

The scale factor is applied (multiplication) after the offset z_offset is subtracted

when geometries are converted from external representations (WKT, WKB,

shape) to the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

m_offset

Specifies the offset for all M coordinates of geometries that are represented in

this spatial reference system. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the value for this

parameter in the definition of the spatial reference system is not changed.

 The offset is subtracted before the scale factor m_scale is applied when

geometries are converted from external representations (WKT, WKB, shape) to

the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

m_scale

Specifies the scale factor for all M coordinates of geometries that are

represented in this spatial reference system. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, the value for

this parameter in the definition of the spatial reference system is not changed.

 The scale factor is applied (multiplication) after the offset m_offset is subtracted

when geometries are converted from external representations (WKT, WKB,

shape) to the DB2 Spatial Extender internal representation.

 The data type of this parameter is DOUBLE.

coordsys_name

Uniquely identifies the coordinate system on which this spatial reference

system is based. The coordinate system must be listed in the view

ST_COORDINATE_SYSTEMS. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, the coordinate

system that is used for this spatial reference system is not changed.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

description

Describes the spatial reference system by explaining its application. Although

you must specify a value for this parameter, the value can be null. If this

parameter is null, the description information about the spatial reference

system is not changed.

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

196 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_alter_srs stored procedure. This example uses a DB2 CALL command to change

the description parameter value of a spatial reference system named SRSDEMO:

call db2gse.ST_alter_srs(’SRSDEMO’,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 NULL,NULL,’SRS for GSE Demo Program: offices table’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_create_coordsys

Use this stored procedure to store information in the database about a new

coordinate system. When this stored procedure is processed, information about the

coordinate system is added to the DB2GSE.ST_COORDINATE_SYSTEMS catalog

view.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority.

Syntax

�� db2gse.ST_create_coordsys (coordsys_name , definition , �

� organization

null
 , organization_coordsys_id

null
 , description

null
) ��

Parameter descriptions

coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value

for this parameter.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

definition

Defines the coordinate system. You must specify a non-null value for this

parameter. The vendor that supplies the coordinate system usually provides

the information for this parameter.

 The data type of this parameter is VARCHAR(2048).

Chapter 20. Stored procedures 197

organization

Names the organization that defined the coordinate system and provided the

definition for it; for example, ″European Petroleum Survey Group (EPSG).″

Although you must specify a value for this parameter, the value can be null.

 If this parameter is null, the organization_coordsys_id parameter must also be

null. If this parameter is not null, the organization_coordsys_id parameter cannot

be null; in this case, the combination of the organization and

organization_coordsys_id parameters uniquely identifies the coordinate system.

 The data type of this parameter is VARCHAR(128).

organization_coordsys_id

Specifies a numeric identifier. The entity that is specified in the organization

parameter assigns this value. This value is not necessarily unique across all

coordinate systems. Although you must specify a value for this parameter, the

value can be null.

 If this parameter is null, the organization parameter must also be null. If this

parameter is not null, the organization parameter cannot be null; in this case,

the combination of the organization and organization_coordsys_id parameters

uniquely identifies the coordinate system.

 The data type of this parameter is INTEGER.

description

Describes the coordinate system by explaining its application. Although you

must specify a value for this parameter, the value can be null. If this parameter

is null, no description information about the coordinate system is recorded.

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_create_coordsys stored procedure. This example uses a DB2 CALL command to

create a coordinate system with the following parameter values:

v coordsys_name parameter: NORTH_AMERICAN_TEST

v definition parameter:

198 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],

UNIT["Degree",0.0174532925199433]]

v organization parameter: EPSG

v organization_coordsys_id parameter: 1001

v description parameter: Test Coordinate Systems
call db2gse.ST_create_coordsys(’NORTH_AMERICAN_TEST’,

 ’GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",

 SPHEROID["GRS_1980",6378137.0,298.257222101]],

 PRIMEM["Greenwich",0.0],UNIT["Degree",

 0.0174532925199433]]’,’EPSG’,1001,’Test Coordinate Systems’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_create_srs

Use the stored procedures to create a spatial reference system.

A spatial reference system is defined by the coordinate system, the precision, and

the extents of coordinates that are represented in this spatial reference system. The

extents are the minimum and maximum possible coordinate values for the X, Y, Z,

and M coordinates.

Internally, DB2 Spatial Extender stores the coordinate values as positive integers.

Thus during computation, the impact of rounding errors (which are heavily

dependent on the actual value for floating-point operations) can be reduced.

Performance of the spatial operations can also improve significantly.

This stored procedure has two variations:

v The first variation takes the conversion factors (offsets and scale factors) as input

parameters.

v The second variation takes the extents and the precision as input parameters and

calculates the conversion factors internally.

This stored procedure replaces db2gse.gse_enable_sref.

Authorization

None required.

Syntax

With conversion factors (version 1)

�� db2gse.ST_create_srs (srs_name , srs_id , x_offset

null
 , x_scale �

� , y_offset

null
 , y_scale

null
 , z_offset

null
 , z_scale

null
 , �

Chapter 20. Stored procedures 199

� m_offset

null
 , m_scale

null
 , coordsys_name , description

null
) ��

With maximum possible extend (version 2)

�� db2gse.ST_create_srs (srs_name , srs_id , x_min , x_max , �

� x_scale , , y_min , y_max y_scale

null
 , z_min , z_max , �

� z_scale

null
 , m_min , m_max , m_scale

null
 , coordsys_name , �

� description

null
 ��

Parameter descriptions

With conversion factors (version 1)

srs_name

Identifies the spatial reference system. You must specify a non-null value for

this parameter.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

srs_id

Uniquely identifies the spatial reference system. This numeric identifier is used

as an input parameter for various spatial functions. You must specify a

non-null value for this parameter.

 For a geodetic spatial reference system, the srs_id value must be in the range

2000000318 to 2000001000. DB2 Geodetic Data Management Feature provides

predefined geodetic spatial reference systems with srs_id values 2000000000 to

2000000317.

 The data type of this parameter is INTEGER.

x_offset

Specifies the offset for all X coordinates of geometries that are represented in

this spatial reference system. The offset is subtracted before the scale factor

x_scale is applied when geometries are converted from external representations

(WKT, WKB, shape) to the DB2 Spatial Extender internal representation. (WKT

is well-known text, and WKB is well-known binary.) Although you must

specify a value for this parameter, the value can be null. If this parameter is

null, a value of 0 (zero) is used.

 The data type of this parameter is DOUBLE.

x_scale

Specifies the scale factor for all X coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset x_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

200 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Extender internal representation. Either the x_offset value is specified explicitly,

or a default x_offset value of 0 is used. You must specify a non-null value for

this parameter.

 The data type of this parameter is DOUBLE.

y_offset

Specifies the offset for all Y coordinates of geometries that are represented in

this spatial reference system. The offset is subtracted before the scale factor

y_scale is applied when geometries are converted from external representations

(WKT, WKB, shape) to the DB2 Spatial Extender internal representation.

Although you must specify a value for this parameter, the value can be null. If

this parameter is the null value, a value of 0 (zero) is used.

 The data type of this parameter is DOUBLE.

y_scale

Specifies the scale factor for all Y coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset y_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. Either the y_offset value is specified explicitly,

or a default y_offset value of 0 is used. Although you must specify a value for

this parameter, the value can be null. If this parameter is null, the value of the

x_scale parameter is used. If you specify a value other than null for this

parameter, the value that you specify must match the value of the x_scale

parameter.

 The data type of this parameter is DOUBLE.

z_offset

Specifies the offset for all Z coordinates of geometries that are represented in

this spatial reference system. The offset is subtracted before the scale factor

z_scale is applied when geometries are converted from external representations

(WKT, WKB, shape) to the DB2 Spatial Extender internal representation.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null, a value of 0 (zero) is used.

 The data type of this parameter is DOUBLE.

z_scale

Specifies the scale factor for all Z coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset z_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. Either the z_offset value is specified explicitly,

or a default z_offset value of 0 is used. Although you must specify a value for

this parameter, the value can be null. If this parameter is null, a value of 1 is

used.

 The data type of this parameter is DOUBLE.

m_offset

Specifies the offset for all M coordinates of geometries that are represented in

this spatial reference system. The offset is subtracted before the scale factor

m_scale is applied when geometries are converted from external representations

(WKT, WKB, shape) to the DB2 Spatial Extender internal representation.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null, a value of 0 (zero) is used.

 The data type of this parameter is DOUBLE.

Chapter 20. Stored procedures 201

m_scale

Specifies the scale factor for all M coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset m_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. Either the m_offset value is specified explicitly,

or a default m_offset value of 0 is used. Although you must specify a value for

this parameter, the value can be null. If this parameter is null, a value of 1 is

used.

 The data type of this parameter is DOUBLE.

coordsys_name

Uniquely identifies the coordinate system on which this spatial reference

system is based. The coordinate system must be listed in the view

ST_COORDINATE_SYSTEMS. You must supply a non-null value for this

parameter.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

description

Describes the spatial reference system by explaining the application’s purpose.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null, no description information is recorded.

 The data type of this parameter is VARCHAR(256).

With maximum possible extend (version 2)

srs_name

Identifies the spatial reference system. You must specify a non-null value for

this parameter.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

srs_id

Uniquely identifies the spatial reference system. This numeric identifier is used

as an input parameter for various spatial functions. You must specify a

non-null value for this parameter.

 The data type of this parameter is INTEGER.

x_min

Specifies the minimum possible X coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

 The data type of this parameter is DOUBLE.

x_max

Specifies the maximum possible X coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

202 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Depending on the value of x_scale, the value that is shown in the view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value

that is specified here. The value from the view is correct.

 The data type of this parameter is DOUBLE.

x_scale

Specifies the scale factor for all X coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset x_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. The calculation of the offset x_offset is based

on the x_min value. You must supply a non-null value for this parameter.

 If both the x_scale and y_scale parameters are specified, the values must match.

 The data type of this parameter is DOUBLE.

y_min

Specifies the minimum possible Y coordinate value for all geometries that use

this spatial reference system. You must supply a non-null value for this

parameter.

 The data type of this parameter is DOUBLE.

y_max

Specifies the maximum possible Y coordinate value for all geometries that use

this spatial reference system. You must supply a non-null value for this

parameter.

 Depending on the value of y_scale, the value that is shown in the view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value

that is specified here. The value from the view is correct.

 The data type of this parameter is DOUBLE.

y_scale

Specifies the scale factor for all Y coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset y_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. The calculation of the offset y_offset is based

on the y_min value. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value of the x_scale parameter is

used. If both the y_scale and x_scale parameters are specified, the values must

match.

 The data type of this parameter is DOUBLE.

z_min

Specifies the minimum possible Z coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

 The data type of this parameter is DOUBLE.

z_max

Specifies the maximum possible Z coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

Chapter 20. Stored procedures 203

Depending on the value of z_scale, the value that is shown in the view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value

that is specified here. The value from the view is correct.

 The data type of this parameter is DOUBLE.

z_scale

Specifies the scale factor for all Z coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset z_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. The calculation of the offset z_offset is based

on the z_min value. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, a value of 1 is used.

 The data type of this parameter is DOUBLE.

m_min

Specifies the minimum possible M coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

 The data type of this parameter is DOUBLE.

m_max

Specifies the maximum possible M coordinate value for all geometries that use

this spatial reference system. You must specify a non-null value for this

parameter.

 Depending on the value of m_scale, the value that is shown in the view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS might be larger than the value

that is specified here. The value from the view is correct.

 The data type of this parameter is DOUBLE.

m_scale

Specifies the scale factor for all M coordinates of geometries that are

represented in this spatial reference system. The scale factor is applied

(multiplication) after the offset m_offset is subtracted when geometries are

converted from external representations (WKT, WKB, shape) to the DB2 Spatial

Extender internal representation. The calculation of the offset m_offset is based

on the m_min value. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, a value of 1 is used.

 The data type of this parameter is DOUBLE.

coordsys_name

Uniquely identifies the coordinate system on which this spatial reference

system is based. The coordinate system must be listed in the view

ST_COORDINATE_SYSTEMS. You must specify a non-null value for this

parameter.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

description

Describes the spatial reference system by explaining the application’s purpose.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null, no description information is recorded.

204 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_create_srs stored procedure. This example uses a DB2 CALL command to create

a spatial reference system named SRSDEMO with the following parameter values:

v srs_id: 1000000

v x_offset: -180

v x_scale: 1000000

v y_offset: -90

v y_scale: 1000000
call db2gse.ST_create_srs(’SRSDEMO’,1000000,

 -180,1000000, -90, 1000000,

 0, 1, 0, 1,’NORTH_AMERICAN’,

 ’SRS for GSE Demo Program: customer table’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_disable_autogeocoding

Use this stored procedure to specify that DB2 Spatial Extender is to stop

synchronizing a geocoded column with its associated geocoding column or

columns.

A geocoding column is used as input to the geocoder.

This stored procedure replaces db2gse.gse_disable_autogc.

Authorization

The user ID under which this stored procedure is invoked must have one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table on which

the triggers that are being dropped are defined

Chapter 20. Stored procedures 205

v CONTROL privilege on this table

v ALTER and UPDATE privileges on this table

Note: For CONTROL and ALTER privileges, you must have DROPIN authority on

the DB2GSE schema.

Syntax

�� db2gse.ST_disable_autogeocoding (table_schema

null
 , table_name , �

� column_name) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table on which the triggers that you want

dropped are defined. You must specify a non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the geocoded column that is maintained by the triggers that you want

dropped. You must specify a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

206 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_disable_autogeocoding stored procedure. This example uses a DB2 CALL

command to disable autogeocoding on the LOCATION column in the table named

CUSTOMERS:

call db2gse.ST_disable_autogeocoding(NULL,’CUSTOMERS’,’LOCATION’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_disable_db

Use this stored procedure to remove resources that allow DB2 Spatial Extender to

store and support spatial data.

This stored procedure helps you resolve problems or issues that arise after you

enable your database for spatial operations. For example, you might enable a

database for spatial operations and then decide to use another database with DB2

Spatial Extender instead. If you did not define any spatial columns or import any

spatial data, you can invoke this stored procedure to remove all spatial resources

from the first database. Because of the interdependency between spatial columns

and the type definitions, you cannot drop the type definitions when columns of

those types exist. If you already defined spatial columns but still want to disable a

database for spatial operations, you must specify a value other than 0 (zero) for the

force parameter to remove all spatial resources in the database that do not have

other dependencies on them.

This stored procedure replaces db2gse.gse_disable_db.

Authorization

The user ID under which this stored procedure is invoked must have either

SYSADM or DBADM authority on the database from which DB2 Spatial Extender

resources are to be removed.

Syntax

�� db2gse.ST_disable_db (force

null
) ��

Parameter descriptions

force

Specifies that you want to disable a database for spatial operations, even

though you might have database objects that are dependent on the spatial

types or spatial functions. Although you must specify a value for this

parameter, the value can be null. If you specify a value other than 0 (zero) or

null for the force parameter, the database is disabled, and all resources of the

Chapter 20. Stored procedures 207

DB2 Spatial Extender are removed (if possible). If you specify 0 (zero) or null,

the database is not disabled if any database objects are dependent on spatial

types or spatial functions. Database objects that might have such dependencies

include tables, views, constraints, triggers, generated columns, methods,

functions, procedures, and other data types (subtypes or structured types with

a spatial attribute).

 The data type of this parameter is SMALLINT.

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_disable_db stored procedure. This example uses a DB2 CALL command to

disable the database for spatial operations, with a force parameter value of 1:

call db2gse.ST_disable_db(1,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_drop_coordsys

Use this stored procedure to delete information about a coordinate system from the

database. When this stored procedure is processed, information about the

coordinate system is removed from the DB2GSE.ST_COORDINATE_SYSTEMS

catalog view.

Restriction:

You cannot drop a coordinate system on which a spatial reference system is based.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority.

208 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_drop_coordsys (coordsys_name) ��

Parameter descriptions

coordsys_name

Uniquely identifies the coordinate system. You must specify a non-null value

for this parameter.

 The coordsys_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_drop_coordsys stored procedure. This example uses a DB2 CALL command to

delete a coordinate system named NORTH_AMERICAN_TEST from the database:

call db2gse.ST_drop_coordsys(’NORTH_AMERICAN_TEST’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_drop_srs

Use this stored procedure to drop a spatial reference system.

When this stored procedure is processed, information about the spatial reference

system is removed from the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog

view.

Restriction: You cannot drop a spatial reference system if a spatial column that

uses that spatial reference system is registered.

Chapter 20. Stored procedures 209

Important:

Use care when you use this stored procedure. If you use this stored procedure to

drop a spatial reference system, and if any spatial data is associated with that

spatial reference system, you can no longer perform spatial operations on the

spatial data.

This stored procedure replaces db2gse.gse_disable_sref.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority.

Syntax

�� db2gse.ST_drop_srs (srs_name) ��

Parameter descriptions

srs_name

Identifies the spatial reference system. You must specify a non-null value for

this parameter.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_drop_srs stored procedure. This example uses a DB2 CALL command to delete

a spatial reference system named SRSDEMO:

call db2gse.ST_drop_srs(’SRSDEMO’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

210 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

displayed after the stored procedure runs.

ST_enable_autogeocoding

Use this stored procedure to specify that DB2 Spatial Extender is to synchronize a

geocoded column with its associated geocoding column or columns.

A geocoding column is used as input to the geocoder. Each time that values are

inserted into, or updated in, the geocoding column or columns, triggers are

activated. These triggers invoke the associated geocoder to geocode the inserted or

updated values and to place the resulting data in the geocoded column.

Restriction: You can enable autogeocoding only on tables on which INSERT and

UPDATE triggers can be created. Consequently, you cannot enable

autogeocoding on views or nicknames.

Prerequisite: Before enabling autogeocoding, you must perform the geocoding

setup step by invoking the ST_setup_geocoding stored procedure. The geocoding

setup step specifies the geocoder and the geocoding parameter values. It also

identifies the geocoding columns that are to be synchronized with the geocoded

columns.

This stored procedure replaces db2gse.gse_enable_autogc.

Authorization

The user ID under which this stored procedure is invoked must have one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table on which

the triggers that are created by this stored procedure are defined

v CONTROL privilege on the table

v ALTER privilege on the table

If the authorization ID of the statement does not have SYSADM or DBADM

authority, the privileges that the authorization ID of the statement holds (without

considering PUBLIC or group privileges) must include all of the following

privileges as long as the trigger exists:

v SELECT privilege on the table on which autogeocoding is enabled

v Necessary privileges to evaluate the SQL expressions that are specified for the

parameters in the geocoding setup

Syntax

�� db2gse.ST_enable_autogeocoding (table_schema

null
 , table_name , �

� column_name) ��

Parameter descriptions

table_schema

Identifies the schema to which the table that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

Chapter 20. Stored procedures 211

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table that contains the column into which

the geocoded data is to be inserted or updated. You must specify a non-null

value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Identifies the column into which the geocoded data is to be inserted or

updated. This column is referred to as the geocoded column. You must specify

a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_enable_autogeocoding stored procedure. This example uses a DB2 CALL

command to enable autogeocoding on the LOCATION column in the table named

CUSTOMERS:

call db2gse.ST_enable_autogeocoding(NULL,’CUSTOMERS’,’LOCATION’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

212 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_enable_db

Use this stored procedure to supply a database with the resources that it needs to

store spatial data and to support spatial operations. These resources include spatial

data types, spatial index types, catalog views, supplied functions, and other stored

procedures.

This stored procedure replaces db2gse.gse_enable_db.

Authorization

The user ID under which the stored procedure is invoked must have either

SYSADM or DBADM authority on the database that is being enabled.

Syntax

�� db2gse.ST_enable_db (table_creation_parameters

null
) ��

Parameter descriptions

table_creation_parameters

Specifies any options that are to be added to the CREATE TABLE statements

for the DB2 Spatial Extender catalog tables. Although you must specify a value

for this parameter, the value can be null. If this parameter is null, no options

are added to the CREATE TABLE statements.

 To specify these options, use the syntax of the DB2 CREATE TABLE statement.

For example, to specify a table space in which to create the tables, use:

IN tsName INDEX IN indexTsName

The data type of this parameter is VARCHAR(32K).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

The following example shows how to use Call Level Interface (CLI) to invoke the

ST_enable_db stored procedure:

Chapter 20. Stored procedures 213

SQLHANDLE henv;

 SQLHANDLE hdbc;

 SQLHANDLE hstmt;

 SQLCHAR uid[MAX_UID_LENGTH + 1];

 SQLCHAR pwd[MAX_PWD_LENGTH + 1];

 SQLINTEGER ind[3];

 SQLINTEGER msg_code = 0;

 char msg_text[1024] = "";

 SQLRETURN rc;

 char *table_creation_parameters = NULL;

 /* Allocate environment handle */

 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 /* Allocate database handle */

 rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 /* Establish a connection to database "testdb" */

 rc = SQLConnect(hdbc, (SQLCHAR *)"testdb", SQL_NTS, (SQLCHAR *)uid,SQL_NTS,

 (SQLCHAR *)pwd, SQL_NTS);

 /* Allocate statement handle */

 rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

 /* Associate SQL statement to call the ST_enable_db stored procedure */

 /* with statement handle and send the statement to DBMS to be prepared. */

 rc = SQLPrepare(hstmt, "call db2gse!ST_enable_db(?,?,?)", SQL_NTS);

 /* Bind 1st parameter marker in the SQL call statement, the input */

 /* parameter for table creation parameters, to variable */

 /* table_creation_parameters. */

 ind[0] = SQL_NULL_DATA;

 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR,

 SQL_VARCHAR, 255, 0, table_creation_parameters, 256, &ind[0]);

 /* Bind 2nd parameter marker in the SQL call statement, the output */

 /* parameter for returned message code, to variable msg_code. */

 ind[1] = 0;

 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,

 SQL_INTEGER, 0, 0, &msg_code, 4, &ind[1]);

 /* Bind 3rd parameter marker in the SQL call statement, the output */

 /* parameter returned message text, to variable msg_text. */

 ind[2] = 0;

 rc = SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,

 SQL_VARCHAR, (sizeof(msg_text)-1), 0, msg_text,

 sizeof(msg_text), &ind[2]);

 rc = SQLExecute(hstmt);

ST_export_shape

Use this stored procedure to export a spatial column and its associated table to a

shape file.

This stored procedure replaces db2gse.gse_export_shape.

Authorization

The user ID under which this stored procedure is invoked must have the necessary

privileges to successfully execute the SELECT statement from which the data is to

be exported.

214 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The stored procedure, which runs as a process that is owned by the DB2 instance

owner, must have the necessary privileges on the server machine to create or write

to the shape files.

Syntax

�� db2gse.ST_export_shape (file_name , append_flag

null
 , �

� output_column_names

null
 , select_statement , messages_file

null
) ��

Parameter descriptions

file_name

Specifies the full path name of a shape file to which the specified data is to be

exported. You must specify a non-null value for this parameter.

 You can use the ST_export_shape stored procedure to export a new file or to

export to an existing file by appending the exported data to it:

v If you are exporting to a new file, you can specify the optional file extension

as .shp or .SHP. If you specify .shp or .SHP for the file extension, DB2

Spatial Extender creates the file with the specified file_name value. If you do

not specify the optional file extension, DB2 Spatial Extender creates the file

that has the name of the file_name value that you specify and with an

extension of .shp.

v If you are exporting data by appending the data to an existing file, DB2

Spatial Extender first looks for an exact match of the name that you specify

for the file_name parameter. If DB2 Spatial Extender does not find an exact

match, it looks first for a file with the .shp extension, and then for a file with

the .SHP extension.

 If the value of the append_flag parameter indicates that you are not appending

to an existing file, but the file that you name in the file_name parameter already

exists, DB2 Spatial Extender returns an error and does not overwrite the file.

 See Usage notes for a list of files that are written on the server machine. The

stored procedure, which runs as a process that is owned by the DB2 instance

owner, must have the necessary privileges on the server machine to create or

write to the files.

 The data type of this parameter is VARCHAR(256).

append_flag

Indicates whether the data that is to be exported is to be appended to an

existing shape file. Although you must specify a value for this parameter, the

value can be null. Indicate whether you want to append to an existing shape

file as follows:

v If you want to append data to an existing shape file, specify any value other

than 0 (zero) and null. In this case, the file structure must match the

exported data; otherwise an error is returned.

v If you want to export to a new file, specify 0 (zero) or null. In this case, DB2

Spatial Extender does not overwrite any existing files.

The data type of this parameter is SMALLINT.

Chapter 20. Stored procedures 215

output_column_names

Specifies one or more column names (separated by commas) that are to be

used for non-spatial columns in the output dBASE file. Although you must

specify a value for this parameter, the value can be null. If this parameter is

null, the names that are derived from the SELECT statement are used.

 If you specify this parameter but do not enclose column names in double

quotation marks, the column names are converted to uppercase. The number

of specified columns must match the number of columns that are returned

from the SELECT statement, as specified in the select_statement parameter,

excluding the spatial column.

 The data type of this parameter is VARCHAR(32K).

select_statement

Specifies the subselect that returns the data that is to be exported. The

subselect must reference exactly one spatial column and any number of

attribute columns. You must specify a non-null value for this parameter.

 The data type of this parameter is VARCHAR(32K).

messages_file

Specifies the full path name of the file (on the server machine) that is to

contain messages about the export operation. Although you must specify a

value for this parameter, the value can be null. If this parameter is null, no file

for DB2 Spatial Extender messages is created.

 The messages that are sent to this messages file can be:

v Informational messages, such as a summary of the export operation

v Error messages for data that could not be exported, for example because of

different coordinate systems

 The stored procedure, which runs as a process that is owned by the DB2

instance owner, must have the necessary privileges on the server to create the

file.

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

216 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Usage notes

You can export only one spatial column at a time.

The ST_export_shape stored procedure creates or writes to the following four files:

v The main shape file (.shp extension).

v The shape index file (.shx extension).

v A dBASE file that contains data for non-spatial columns (.dbf extension). This

file is created only if attribute columns actually need to be exported

v A projection file that specifies the coordinate system that is associated with the

spatial data, if the coordinate system is not equal to ″UNSPECIFIED″ (.prj

extension). The coordinate system is obtained from the first spatial record. An

error occurs if subsequent records have different coordinate systems.

The following table describes how DB2 data types are stored in dBASE attribute

files. All other DB2 data types are not supported.

 Table 28. Storage of DB2 data types in attribute files

SQL type .dbf type .dbf length .dbf decimals Comments

SMALLINT N 6 0

INTEGER N 11 0

BIGINT N 20 0

DECIMAL N precision+2 scale

REAL FLOAT(1)

through FLOAT(24)

F 14 6

DOUBLE FLOAT(25)

through FLOAT(53)

F 19 9

CHARACTER,

VARCHAR, LONG

VARCHAR, and

DATALINK

C len 0 length ≤ 255

DATE D 8 0

TIME C 8 0

TIMESTAMP C 26 0

All synonyms for data types and distinct types that are based on the types listed in

the preceding table are supported.

Example

This example shows how to use the DB2 command line processor to invoke the

ST_export_shape stored procedure. This example uses a DB2 CALL command to

export all rows from the CUSTOMERS table to a shape file that is to be created

and named /tmp/export_file:

call db2gse.ST_export_shape(’/tmp/export_file’,0,NULL,

 ’select * from customers’,’/tmp/export_msg’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

Chapter 20. Stored procedures 217

ST_import_shape

Use this stored procedure to import a shape file to a database that is enabled for

spatial operations.

The stored procedure can operate in either of two ways, based on the

create_table_flag parameter:

v DB2 Spatial Extender can create a table that has a spatial column and attribute

columns, and it can then load the table’s columns with the file’s data.

v Otherwise, the shape and attribute data can be loaded into an existing table that

has a spatial column and attribute columns that match the file’s data.

This stored procedure replaces db2gse.gse_import_shape.

Authorization

The owner of the DB2 instance must have the necessary privileges on the server

machine for reading the input files and optionally writing error files. Additional

authorization requirements vary based on whether you are importing into an

existing table or into a new table.

v When importing into an existing table, the user ID under which this stored

procedure is invoked must hold one of the following authorities or privileges:

– SYSADM or DBADM

– CONTROL privilege on the table or view

– INSERT and SELECT privilege on the table or view
v When importing into a new table, the user ID under which this stored

procedure is invoked must hold one of the following authorities or privileges:

– SYSADM or DBADM

– CREATETAB authority on the database
The user ID must also have one of the following authorities:

– IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

– CREATEIN privilege on the schema, if the schema of the table exists

Syntax

�� db2gse.ST_import_shape (file_name , input_attr_columns

null
 , �

� srs_name , table_schema

null
 , table_name , table_attr_columns

null
 , �

� create_table_flag

null
 , table_creation_parameters

null
 , spatial_column �

� , type_schema

null
 , type_name

null
 , inline_length

null
 , id_column

null
 �

� , id_column_is_identity

null
 , restart_count

null
 , commit_scope

null
 , �

218 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

� exception_file

null
 , messages_file

null
) ��

Parameter descriptions

file_name

Specifies the full path name of the shape file that is to be imported. You must

specify a non-null value for this parameter.

 If you specify the optional file extension, specify either .shp or .SHP. DB2

Spatial Extender first looks for an exact match of the specified file name. If

DB2 Spatial Extender does not find an exact match, it looks first for a file with

the .shp extension, and then for a file with the .SHP extension.

 See Usage notes for a list of required files, which must reside on the server

machine. The stored procedure, which runs as a process that is owned by the

DB2 instance owner, must have the necessary privileges on the server to read

the files.

 The data type of this parameter is VARCHAR(256).

input_attr_columns

Specifies a list of attribute columns to import from the dBASE file. Although

you must specify a value for this parameter, the value can be null. If this

parameter is null, all columns are imported. If the dBASE file does not exist,

this parameter must be the empty string or null.

 To specify a non-null value for this parameter, use one of the following

specifications:

v List the attribute column names. The following example shows how to

specify a list of the names of the attribute columns that are to be imported

from the dBASE file:

N(COLUMN1,COLUMN5,COLUMN3,COLUMN7)

If a column name is not enclosed in double quotation marks, it is converted

to uppercase. Each name in the list must be separated by a comma. The

resulting names must exactly match the column names in the dBASE file.

v List the attribute column numbers. The following example shows how to

specify a list of the numbers of the attribute columns that are to be imported

from the dBASE file:

P(1,5,3,7)

Columns are numbered beginning with 1. Each number in the list must be

separated by a comma.

v Indicate that no attribute data is to be imported. Specify ″″, which is an

empty string that explicitly specifies that DB2 Spatial Extender is to import

no attribute data.

 The data type of this parameter is VARCHAR(32K).

srs_name

Identifies the spatial reference system that is to be used for the geometries that

are imported into the spatial column. You must specify a non-null value for

this parameter.

 The spatial column will not be registered. The spatial reference system (SRS)

must exist before the data is imported. The import process does not implicitly

create the SRS, but it does compare the coordinate system of the SRS with the

Chapter 20. Stored procedures 219

coordinate system that is specified in the .prj file (if available with the shape

file). The import process also verifies that the extents of the data in the shape

file can be represented in the given spatial reference system. That is, the import

process verifies that the extents lie within the minimum and maximum

possible X, Y, Z, and M coordinates of the SRS.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_schema

Names the schema to which the table that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table into which the imported shape file

is to be loaded. You must specify a non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_attr_columns

Specifies the table column names where attribute data from the dBASE file is

to be stored. Although you must specify a value for this parameter, the value

can be null. If this parameter is null, the names of the columns in the dBASE

file are used.

 If this parameter is specified, the number of names must match the number of

columns that are imported from the dBASE file. If the table exists, the column

definitions must match the incoming data. See Usage notes for an explanation

of how attribute data types are mapped to DB2 data types.

 The data type of this parameter is VARCHAR(32K).

create_table_flag

Specifies whether the import process is to create a new table. Although you

must specify a value for this parameter, the value can be null. If this parameter

is null or any other value other than 0 (zero), a new table is created. (If the

table already exists, an error is returned.) If this parameter is 0 (zero), no table

is created, and the table must already exist.

 The data type of this parameter is INTEGER.

table_creation_parameters

Specifies any options that are to be added to the CREATE TABLE statement

that creates a table into which data is to be imported. Although you must

specify a value for this parameter, the value can be null. If this parameter is

null, no options are added to the CREATE TABLE statement.

220 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

To specify any CREATE TABLE options, use the syntax of the DB2 CREATE

TABLE statement. For example, to specify a table space in which to create the

tables, specify:

IN tsName INDEX IN indexTsName LONG IN longTsName

The data type of this parameter is VARCHAR(32K).

spatial_column

Name of the spatial column in the table into which the shape data is to be

loaded. You must specify a non-null value for this parameter.

 For a new table, this parameter specifies the name of the new spatial column

that is to be created. Otherwise, this parameter specifies the name of an

existing spatial column in the table.

 The spatial_column value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

type_schema

Specifies the schema name of the spatial data type (specified by the type_name

parameter) that is to be used when creating a spatial column in a new table.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null, a value of DB2GSE is used.

 The type_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

type_name

Names the data type that is to be used for the spatial values. Although you

must specify a value for this parameter, the value can be null. If this parameter

is null, the data type is determined by the shape file and is one of the

following types:

v ST_Point

v ST_MultiPoint

v ST_MultiLineString

v ST_MultiPolygon

Note that shape files, by definition, allow a distinction only between points

and multipoints, but not between polygons and multipolygons or between

linestrings and multilinestrings.

If you are importing into a table that does not yet exist, this data type is also

used for the data type of the spatial column. In that case, the data type can

also be a super type of ST_Point, ST_MultiPoint, ST_MultiLineString, or

ST_MultiPolygon.

 The type_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

inline_length

Specifies, for a new table, the maximum number of bytes that are to be

allocated for the spatial column within the table. Although you must specify a

Chapter 20. Stored procedures 221

value for this parameter, the value can be null. If this parameter is null, no

explicit INLINE LENGTH option is used in the CREATE TABLE statement,

and DB2 defaults are used implicitly.

 Spatial records that exceed this size are stored separately in the LOB table

space, which might be slower to access.

 Typical sizes that are needed for various spatial types are as follows:

v One point: 292.

v Multipoint, line, or polygon: As large a value as possible. Consider that the

total number of bytes in one row should not exceed the limit for the page

size of the table space for which the table is created.

 See the DB2 documentation about the CREATE TABLE SQL statement for a

complete description of this value. See also the db2dart utility to determine the

number of inline geometries for existing tables and the ability to alter the

inline length.

 The data type of this parameter is INTEGER.

id_column

Names a column that is to be created to contain a unique number for each row

of data. (ESRI tools require a column named SE_ROW_ID.) The unique values

for that column are generated automatically during the import process.

Although you must specify a value for this parameter, the value can be null if

no column (with a unique ID in each row) exists in the table or if you are not

adding such a column to a newly created table. If this parameter is null, no

column is created or populated with unique numbers.

 Restriction: You cannot specify an id_column name that matches the name of

any column in the dBASE file.

 The requirements and effect of this parameter depend on whether the table

already exists.

v For an existing table, the data type of the id_column parameter can be any

integer type (INTEGER, SMALLINT, or BIGINT).

v For a new table that is to be created, the column is added to the table when

the stored procedure creates it. The column will be defined as follows:

INTEGER NOT NULL PRIMARY KEY

If the value of the id_column_is_identity parameter is not null and not 0

(zero), the definition is expanded as follows:

INTEGER NOT NULL PRIMARY KEY GENERATED ALWAYS AS IDENTITY

(START WITH 1 INCREMENT BY 1)

 The id_column value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

id_column_is_identity

Indicates whether the specified id_column is to be created using the IDENTITY

clause. Although you must specify a value for this parameter, the value can be

null. If this parameter is 0 (zero) or null, the column is not created as the

identity column. If the parameter is any value other than 0 or null, the column

is created as the identity column. This parameter is ignored for tables that

already exist.

222 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The data type of this parameter is SMALLINT.

restart_count

Specifies that an import operation is to be started at record n + 1. The first n

records are skipped. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, all records (starting with record

number 1) are imported.

 The data type of this parameter is INTEGER.

commit_scope

Specifies that a COMMIT is to be performed after at least n records are

imported. Although you must specify a value for this parameter, the value can

be null. If this parameter is null, a value of 0 (zero) is used, and no records are

committed.

 The data type of this parameter is INTEGER.

exception_file

Specifies the full path name of a shape file in which the shape data that could

not be imported is stored. Although you must specify a value for this

parameter, the value can be null. If the parameter is null, no files are created.

 If you specify a value for the parameter and include the optional file extension,

specify either .shp or .SHP. If the extension is null, an extension of .shp is

appended.

 The exception file holds the complete block of rows for which a single insert

statement failed. For example, assume that one row cannot be imported

because the shape data is incorrectly encoded. A single insert statement

attempts to import 20 rows, including the one that is in error. Because of the

problem with the single row, the entire block of 20 rows is written to the

exception file.

 Records are written to the exception file only when those records can be

correctly identified, as is the case when the shape record type is not valid.

Some types of corruption to the shape data (.shp files) and shape index (.shx

files) do not allow the appropriate records to be identified. In this case, no

records are written to the exception file, and an error message is issued to

report the problem.

 If you specify a value for this parameter, four files are created on the server

machine. See Usage notes for an explanation these files. The stored procedure,

which runs as a process that is owned by the DB2 instance owner, must have

the necessary privileges on the server to create the files. If the files already

exist, the stored procedure returns an error.

 The data type of this parameter is VARCHAR(256).

messages_file

Specifies the full path name of the file (on the server machine) that is to

contain messages about the import operation. Although you must specify a

value for this parameter, the value can be null. If the parameter is null, no file

for DB2 Spatial Extender messages is created.

 The messages that are written to the messages file can be:

v Informational messages, such as a summary of the import operation

v Error messages for data that could not be imported, for example because of

different coordinate systems

These messages correspond to the shape data that is stored in the exception file

(identified by the exception_file parameter).

Chapter 20. Stored procedures 223

The stored procedure, which runs as a process that is owned by the DB2

instance owner, must have the necessary privileges on the server to create the

file. If the file already exists, the stored procedure returns an error.

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Usage notes

The ST_import_shape stored procedure uses from one to four files:

v The main shape file (.shp extension). This file is required.

v The shape index file (.shx extension). This file is optional. If it is present,

performance of the import operation might improve.

v A dBASE file that contains attribute data (.dbf extension). This file is required

only if attribute data is to be imported.

v The projection file that specifies the coordinate system of the shape data (.prj

extension). This file is optional. If this file is present, the coordinate system that

is defined in it is compared with the coordinate system of the spatial reference

system that is specified by the srs_id parameter.

The following table describes how dBASE attribute data types are mapped to DB2

data types. All other attribute data types are not supported.

 Table 29. Relationship between DB2 data types and dBASE attribute data types

.dbf type

.dbf length� (See

note)

.dbf decimals� (See

note) SQL type Comments

N < 5 0 SMALLINT

N < 10 0 INTEGER

N < 20 0 BIGINT

N len dec DECIMAL(len,dec) len<32

F len dec REAL len + dec < 7

F len dec DOUBLE

C len CHAR(len)

L CHAR(1)

D DATE

224 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Note: This table includes the following variables, both of which are defined in the

header of the dBASE file:

v len, which represents the total length of the column in the dBASE file.

DB2 Spatial Extender uses this value for two purposes:

– To define the precision for the SQL data type DECIMAL or the length

for the SQL data type CHAR

– To determine which of the integer or floating-point types is to be used
v dec, which represents the maximum number of digits to the right of the

decimal point of the column in the dBASE file. DB2 Spatial Extender uses

this value to define the scale for the SQL data type DECIMAL.

For example, assume that the dBASE file contains a column of data whose

length (len) is defined as 20. Assume that the number of digits to the right of

the decimal point (dec) is defined as 5. When DB2 Spatial Extender imports

data from that column, it uses the values of len and dec to derive the

following SQL data type: DECIMAL(20,5).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_import_shape stored procedure. This example uses a DB2 CALL command to

import a shape file named /tmp/officesShape into the table named OFFICES:

call db2gse.ST_import_shape(’/tmp/officesShape’,NULL,’USA_SRS_1’,NULL,

 ’OFFICES’,NULL,0,NULL,’LOCATION’,NULL,NULL,NULL,NULL,

 NULL,NULL,NULL,NULL,’/tmp/import_msg’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_register_geocoder

Use this stored procedure to register a geocoder other than the

DB2SE_USA_GEOCODER geocoder, which is shipped with DB2 Spatial Extender.

The DB2SE_USA_GEOCODER geocoder is registered by DB2 Spatial Extender

when the database is enabled.

Prerequisites: Before registering a geocoder:

v Ensure that the function that implements the geocoder is already created. Each

geocoder function can be registered as a geocoder with a uniquely identified

geocoder name.

v Obtain information from the geocoder vendor, such as:

– The SQL statement that creates the function

– The values to use with the ST_create_srs parameters so that geometric data

can be supported

– Information for registering the geocoder, such as:

- A description of the geocoder

- Descriptions of the parameters for the geocoder

- The default values of the geocoder parameters

The geocoder function’s return type must match the data type of the geocoded

column. The geocoding parameters can be either a column name (called a geocoding

column) which contains data that the geocoder needs. For example, the geocoder

Chapter 20. Stored procedures 225

parameters can identify addresses or a value of particular meaning to the geocoder,

such as the minimum match score. If the geocoding parameter is a column name,

the column must be in the same table or view as the geocoded column.

The geocoder function’s return type serves as the data type for the geocoded

column. The return type can be any DB2 data type, user-defined type, or

structured type. If a user-defined type or structured type is returned, the geocoder

function is responsible for returning a valid value of the respective data type. If the

geocoder function returns values of a spatial type, that is ST_Geometry or one of

its subtypes, the geocoder function is responsible for constructing a valid geometry.

The geometry must be represented using an existing spatial reference system. The

geometry is valid if you invoke the ST_IsValid spatial function on the geometry

and a value of 1 is returned. The returned data from the geocoder function is

updated in or is inserted into the geocoded column, depending on which operation

(INSERT or UPDATE) caused the generation of the geocoded value.

To find out whether a geocoder is already registered, examine the

DB2GSE.ST_GEOCODERS catalog view.

This stored procedure replaces db2gse.gse_register_gc.

Authorization

The user ID under which this stored procedure is invoked must hold either

SYSADM or DBADM authority on the database that contains the geocoder that this

stored procedure registers.

Syntax

�� db2gse.ST_register_geocoder (geocoder_name , function_schema

null
 , �

� function_name

null
 , specific_name

null
 , default_parameter_values

null
 , �

� parameter_descriptions

null
 , vendor

null
 , description

null
) ��

Parameter descriptions

geocoder_name

Uniquely identifies the geocoder. You must specify a non-null value for this

parameter.

 The geocoder_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

function_schema

Names the schema for the function that implements this geocoder. Although

you must specify a value for this parameter, the value can be null. If this

parameter is null, the value in the CURRENT SCHEMA special register is used

as the schema name for the function.

 The function_schema value is converted to uppercase unless you enclose it in

double quotation marks.

226 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

function_name

Specifies the unqualified name of the function that implements this geocoder.

The function must already be created and listed in SYSCAT.ROUTINES.

 For this parameter, you can specify null if the specific_name parameter is

specified. If the specific_name parameter is not specified, the function_name

value, together with the implicitly or explicitly defined function_schema value,

must uniquely identify the function. If the function_name parameter is not

specified, DB2 Spatial Extender retrieves the function_name value from the

SYSCAT.ROUTINES catalog view.

 The function_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

specific_name

Identifies the specific name of the function that implements the geocoder. The

function must already be created and listed in SYSCAT.ROUTINES.

 For this parameter, you can specify null if the function_name parameter is

specified and the combination of function_schema and function_name uniquely

identifies the geocoder function. If the geocoder function name is overloaded,

the specific_name parameter cannot be null. (A function name is overloaded if it

has the same name, but not the same parameters or parameter data types, as

one or more other functions.)

 The specific_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

default_parameter_values

Specifies the list of default geocoding parameter values for the geocoder

function. Although you must specify a value for this parameter, the value can

be null. If the entire default_parameter_values parameter is null, all parameter

default values are null.

 If you specify any parameter values, specify them in the order that the

function defined them, and separate them with a comma. For example:

default_parm1_value,default_parm2_value,...

Each parameter value is an SQL expression. Follow these guidelines:

v If a value is a string, enclose it in single quotation marks.

v If a parameter value is a number, do not enclose it in single quotation

marks.

v If the parameter value is null, cast it to the correct type. For example,

instead of specifying just NULL, specify:

CAST(NULL AS INTEGER)

v If the geocoding parameter is to be a geocoding column, do not specify the

default parameter value.

 If any parameter value is not specified (that is, if you specify two consecutive

commas (...,,...)), this parameter must be specified either when geocoding

Chapter 20. Stored procedures 227

is set up or when geocoding is run in batch mode with the parameter_values

parameter of the respective stored procedures.

 The data type of this parameter is VARCHAR(32K).

parameter_descriptions

Specifies the list of geocoding parameter descriptions for the geocoder

function. Although you must specify a value for this parameter, the value can

be null.

 If the entire parameter_descriptions parameter is null, all parameter descriptions

are null. Each parameter description that you specify explains the meaning and

usage of the parameter, and can be up to 256 characters long. The descriptions

for the parameters must be separated by commas and must appear in the

order of the parameters as defined by the function. If a comma shall be used

within the description of a parameter, enclose the string in single or double

quotation marks. For example:

description,’description2, which contains a comma’,description3

The data type of this parameter is VARCHAR(32K).

vendor

Names the vendor who implemented the geocoder. Although you must specify

a value for this parameter, the value can be null. If this parameter is null, no

information about the vendor who implemented the geocoder is recorded.

 The data type of this parameter is VARCHAR(128).

description

Describes the geocoder by explaining its application. Although you must

specify a value for this parameter, the value can be null. If this parameter is

null, no description information about the geocoder is recorded.

 Recommendation: Include the following information:

v Coordinate system name if spatial data, such as well-known text (WKT) or

well-known binary (WKB), is to be returned

v Spatial reference system, if ST_Geometry or any of its subtypes are to be

returned

v Name of the geographical area to which this geocoder applies

v Any other information about the geocoder that users should know

 The data type of this parameter is VARCHAR(256).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

228 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example assumes that you want to create a geocoder that takes latitude and

longitude as input and geocodes into ST_Point spatial data. To do this, you first

create a function named lat_long_gc_func. Then you register a geocoder named

SAMPLEGC, which uses the function lat_long_gc_func.

Here is an example of the SQL statement that creates the function lat_long_gc_func

that returns ST_Point:

CREATE FUNCTION lat_long_gc_func(latitude double,

 longitude double, srId integer)

 RETURNS db2gse.ST_Point

 LANGUAGE SQL

 RETURN db2gse.ST_Point(latitude, longitude, srId)

After the function is created, you can register it as a geocoder. This example shows

how to use the DB2 command line processor CALL command to invoke the

ST_register_geocoder stored procedure to register a geocoder named SAMPLEGC

with function lat_long_gc_func:

call db2gse.ST_register_geocoder (’SAMPLEGC’,NULL,’LAT_LONG_GC_FUNC’,’,,1’

 ,NULL,’My Company’,’Latitude/Longitude to

 ST_Point Geocoder’?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_register_spatial_column

Use this stored procedure to register a spatial column and to associate a spatial

reference system (SRS) with it.

When this stored procedure is processed, information about the spatial column that

is being registered is added to the DB2GSE.ST_GEOMETRY_COLUMNS catalog

view. Registering a spatial column creates a constraint on the table, if possible, to

ensure that all geometries use the specified SRS.

This stored procedure replaces db2gse.gse_register_layer.

Authorization

The user ID under which this stored procedure is invoked must hold one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table to which

the spatial column that is being registered belongs

v CONTROL or ALTER privilege on this table

Syntax

Chapter 20. Stored procedures 229

�� db2gse.ST_register_spatial_column (table_schema

null
 , table_name , �

� column_name , srs_name) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table or view that contains the column

that is being registered. You must specify a non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the column that is being registered. You must specify a non-null value

for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

srs_name

Names the spatial reference system that is to be used for this spatial column.

You must specify a non-null value for this parameter.

 The srs_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

230 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_register_spatial_column stored procedure. This example uses a DB2 CALL

command to register the spatial column named LOCATION in the table named

CUSTOMERS. This CALL command specifies the srs_name parameter value as

USA_SRS_1:

call db2gse.ST_register_spatial_column(NULL,’CUSTOMERS’,’LOCATION’,

 ’USA_SRS_1’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_remove_geocoding_setup

Use this stored procedure to remove all the geocoding setup information for the

geocoded column.

This stored procedure removes information that is associated with the specified

geocoded column from the DB2GSE.ST_GEOCODING and

DB2GSE.ST_GEOCODING_PARAMETERS catalog views.

Restriction:

You cannot remove a geocoding setup if autogeocoding is enabled for the

geocoded column.

Authorization

The user ID under which this stored procedure is invoked must hold one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table on which

the specified geocoder is to operate

v CONTROL or UPDATE privilege on this table

Syntax

�� db2gse.ST_remove_geocoding_setup (table_schema

null
 , table_name , �

� column_name) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

Chapter 20. Stored procedures 231

The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table or view that contains the column

into which the geocoded data is to be inserted or updated. You must specify a

non-null value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the column into which the geocoded data is to be inserted or updated.

You must specify a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type for this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_remove_geocoding_setup stored procedure. This example uses a DB2 CALL

command to remove the geocoding setup for the table named CUSTOMER and the

column named LOCATION:

call db2gse.ST_remove_geocoding_setup(NULL, ’CUSTOMERS’, ’LOCATION’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

232 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_run_geocoding

Use this stored procedure to run a geocoder in batch mode on a geocoded column.

This stored procedure replaces db2gse.gse_run_gc.

Authorization

The user ID under which this stored procedure is invoked must hold one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table on which

the specified geocoder is to operate

v CONTROL or UPDATE privilege on this table

Syntax

�� db2gse.ST_run_geocoding (table_schema

null
 , table_name , �

� column_name , geocoder_name

null
 , parameter_values

null
 , �

� where_clause

null
 , commit_scope

null
) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table or view that contains the column

into which the geocoded data is to be inserted or updated. If a view name is

specified, the view must be an updatable view. You must specify a non-null

value for this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the column into which the geocoded data is to be inserted or updated.

You must specify a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

Chapter 20. Stored procedures 233

The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

geocoder_name

Names the geocoder that is to perform the geocoding. Although you must

specify a value for this parameter, the value can be null. If this parameter is

null, the geocoding is performed by the geocoder that was specified when

geocoding was set up.

 The geocoder_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

parameter_values

Specifies the list of geocoding parameter values for the geocoder function.

Although you must specify a value for this parameter, the value can be null. If

the entire parameter_values parameter is null, the values that are used are either

the parameter values that were specified when the geocoder was set up or the

default parameter values for the geocoder if the geocoder was not set up.

 If you specify any parameter values, specify them in the order that the

function defined them, and separate them with a comma. For example:

parameter1-value,parameter2-value,...

Each parameter value can be a column name, a string, a numeric value, or

null.

 Each parameter value is an SQL expression. Follow these guidelines:

v If a parameter value is a geocoding column name, ensure that the column is

in the same table or view where the geocoded column resides.

v If a parameter value is a string, enclose it in single quotation marks.

v If a parameter value is a number, do not enclose it in single quotation

marks.

v If the parameter is null, cast it to the correct type. For example, instead of

specifying just NULL, specify:

CAST(NULL AS INTEGER)

 If any parameter value is not specified (that is, if you specify two consecutive

commas (...,,...)), this parameter must be specified either when geocoding

is set up or when geocoding is run in batch mode with the parameter_values

parameter of the respective stored procedures.

 The data type of this parameter is VARCHAR(32K).

where_clause

Specifies the body of the WHERE clause, which defines a restriction on the set

of records that are to be geocoded. Although you must specify a value for this

parameter, the value can be null.

 If the where_clause parameter is null, the resulting behavior depends on

whether geocoding was set up for the column (specified in the column_name

parameter) before the stored procedure runs. If the where_clause parameter is

null, and:

v A value was specified when geocoding was set up, that value is used for the

where_clause parameter.

234 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v Either geocoding was not set up or no value was specified when geocoding

was set up, no where clause is used.

 You can specify a clause that references any column in the table or view that

the geocoder is to operate on. Do not specify the keyword WHERE.

 The data type of this parameter is VARCHAR(32K).

commit_scope

Specifies that a COMMIT is to be performed after every n records that are

geocoded. Although you must specify a value for this parameter, the value can

be null.

 If the commit_scope parameter is null, the resulting behavior depends on

whether geocoding was set up for the column (specified in the column_name

parameter) before the stored procedure runs. If the commit_scope parameter is

null and:

v A value was specified when geocoding was set up for the column, that value

is used for the commit_scope parameter.

v Either geocoding was not set up or it was set up but no value was specified,

the default value of 0 (zero) is used, and no COMMIT is performed.

 The data type of this parameter is INTEGER.

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_run_geocoding stored procedure. This example uses a DB2 CALL command to

geocode the LOCATION column in the table named CUSTOMER. This CALL

command specifies the geocoder_name parameter value as DB2SE_USA_GEOCODER

and the commit_scope parameter value as 10. A COMMIT is to be performed after

every 10 records are geocoded:

call db2gse.ST_run_geocoding(NULL, ’CUSTOMERS’, ’LOCATION’,

 ’DB2SE_USA_GEOCODER’,NULL,NULL,10,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

Chapter 20. Stored procedures 235

ST_setup_geocoding

Use this stored procedure to associate a column that is to be geocoded with a

geocoder and to set up the corresponding geocoding parameters. Information that

is set up here is recorded in the DB2GSE.ST_GEOCODING and

DB2GSE.ST_GEOCODING_PARAMETERS catalog views.

This stored procedure does not invoke geocoding. It provides a way for you to

specify parameter settings for the column that is to be geocoded. With these

settings, the subsequent invocation of either batch geocoding or autogeocoding can

be done with a much simpler interface. Parameter settings that are specified in this

setup step override any of the default parameter values for the geocoder that were

specified when the geocoder was registered. You can also override these parameter

settings by running the ST_run_geocoding stored procedure in batch mode.

This step is a prerequisite for autogeocoding. You cannot enable autogeocoding

without first setting up the geocoding parameters. This step is not a prerequisite

for batch geocoding. You can run geocoding in batch mode with or without

performing the setup step. However, if the setup step is done prior to batch

geocoding, parameter values are taken from the setup time if they are not specified

at run time.

Authorization

The user ID under which this stored procedure is invoked must hold one of the

following authorities or privileges:

v SYSADM or DBADM authority on the database that contains the table on which

the specified geocoder is to operate

v CONTROL or UPDATE privilege on this table

Syntax

�� db2gse.ST_setup_geocoding (

table_schema

null

 , table_name , �

� column_name , geocoder_name , parameter_values

null
 , �

� autogeocoding_columns

null
 , where_clause

null
 , commit_scope

null
) ��

Parameter descriptions

table_schema

Names the schema to which the table or view that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

236 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

table_name

Specifies the unqualified name of the table or view that contains the column

into which the geocoded data is to be inserted or updated. If a view name is

specified, the view must be updatable. You must specify a non-null value for

this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the column into which the geocoded data is to be inserted or updated.

You must specify a non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

geocoder_name

Names the geocoder that is to perform the geocoding. You must specify a

non-null value for this parameter.

 The geocoder_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

parameter_values

Specifies the list of geocoding parameter values for the geocoder function.

Although you must specify a value for this parameter, the value can be null. If

the entire parameter_values parameter is null, the values that are used are taken

from the default parameter values at the time the geocoder was registered.

 If you specify parameter values, specify them in the order that the function

defined them, and separate them with a comma. For example:

parameter1-value,parameter2-value,...

Each parameter value is an SQL expression and can be a column name, a

string, a numeric value, or null. Follow these guidelines:

v If a parameter value is a geocoding column name, ensure that the column is

in the same table or view where the geocoded column resides.

v If a parameter value is a string, enclose it in single quotation marks.

v If a parameter value is a number, do not enclose it in single quotation

marks.

v If the parameter value is specified as a null value, cast it to the correct type.

For example, instead of specifying just NULL, specify:

CAST(NULL AS INTEGER)

 If any parameter value is not specified (that is, if you specify two consecutive

commas (...,,...)), this parameter must be specified either when geocoding

is set up or when geocoding is run in batch mode with the parameter_values

parameter of the respective stored procedures.

 The data type of this parameter is VARCHAR(32K).

Chapter 20. Stored procedures 237

autogeocoding_columns

Specifies the list of column names on which the trigger is to be created.

Although you must specify a value for this parameter, the value can be null. If

this parameter is null and autogeocoding is enabled, an update of any column

in the table causes the trigger to be activated.

 If you specify a value for the autogeocoding_columns parameter, specify column

names in any order, and separate column names with a comma. The column

name must exist in the same table where the geocoded column resides.

 This parameter setting applies only to subsequent autogeocoding.

 The data type of this parameter is VARCHAR(32K).

where_clause

Specifies the body of the WHERE clause, which defines a restriction on the set

of records that are to be geocoded. Although you must specify a value for this

parameter, the value can be null. If this parameter is null, no restrictions are

defined in the WHERE clause.

 The clause can reference any column in the table or view that the geocoder is

to operate on. Do not specify the keyword WHERE.

 This parameter setting applies only to subsequent batch-mode geocoding.

 The data type of this parameter is VARCHAR(32K).

commit_scope

Specifies that a COMMIT is to be performed for every n records that are

geocoded. Although you must specify a value for this parameter, the value can

be null. If this parameter is null, a COMMIT is performed after all records are

geocoded.

 This parameter setting applies only to subsequent batch-mode geocoding.

 The data type of this parameter is INTEGER.

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_setup_geocoding stored procedure. This example uses a DB2 CALL command

to set up a geocoding process for the geocoded column named LOCATION in the

238 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

table named CUSTOMER. This CALL command specifies the geocoder_name

parameter value as DB2SE_USA_GEOCODER:

call db2gse.ST_setup_geocoding(NULL, ’CUSTOMERS’, ’LOCATION’,

 ’DB2SE_USA_GEOCODER’,’ADDRESS,CITY,STATE,ZIP,1,100,80,,,,"$HOME/sqllib/

 gse/refdata/ky.edg","$HOME/sqllib/samples/extenders/spatial/EDGESample.loc"’,

 ’ADDRESS,CITY,STATE,ZIP’,NULL,10,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs

ST_unregister_geocoder

Use this stored procedure to unregister a geocoder other than the

DB2SE_USA_GEOCODER geocoder, which is shipped with DB2 Spatial Extender.

Restriction:

You cannot unregister a geocoder if it is specified in the geocoding setup for any

column.

To determine whether a geocoder is specified in the geocoding setup for a column,

check the DB2GSE.ST_GEOCODING and

DB2GSE.ST_GEOCODING_PARAMETERS catalog views. To find information

about the geocoder that you want to unregister, consult the

DB2GSE.ST_GEOCODERS catalog view.

This stored procedure replaces db2gse.gse_unregist_gc.

Authorization

The user ID under which this stored procedure is invoked must hold either

SYSADM or DBADM authority on the database that contains the geocoder that is

to be unregistered.

Syntax

�� db2gse.ST_unregister_geocoder (geocoder_name) ��

Parameter descriptions

geocoder_name

Uniquely identifies the geocoder. You must specify a non-null value for this

parameter.

 The geocoder_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

Chapter 20. Stored procedures 239

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_unregister_geocoder stored procedure. This example uses a DB2 CALL

command to unregister the geocoder named SAMPLEGC:

call db2gse.ST_unregister_geocoder(’SAMPLEGC’,?,?)

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

ST_unregister_spatial_column

Use this stored procedure to remove the registration of a spatial column.

The stored procedure removes the registration by:

v Removing association of the spatial reference system with the spatial column.

The ST_GEOMETRY_COLUMNS catalog view continues to contain the spatial

column, but the column is no longer associated with any spatial reference

system.

v For a base table, dropping the constraint that DB2 Spatial Extender placed on

this table to ensure that the geometry values in this spatial column are all

represented in the same spatial reference system.

This stored procedure replaces db2gse.gse_unregist_layer.

Authorization

The user ID under which this stored procedure is invoked must hold one of the

following authorities or privileges:

v SYSADM or DBADM authority

v CONTROL or ALTER privilege on this table

Syntax

�� db2gse.ST_unregister_spatial_column (table_schema

null
 , table_name , �

� column_name) ��

240 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameter descriptions

table_schema

Names the schema to which the table that is specified in the table_name

parameter belongs. Although you must specify a value for this parameter, the

value can be null. If this parameter is null, the value in the CURRENT

SCHEMA special register is used as the schema name for the table or view.

 The table_schema value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

table_name

Specifies the unqualified name of the table that contains the column that is

specified in the column_name parameter. You must specify a non-null value for

this parameter.

 The table_name value is converted to uppercase unless you enclose it in double

quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

column_name

Names the spatial column that you want to unregister. You must specify a

non-null value for this parameter.

 The column_name value is converted to uppercase unless you enclose it in

double quotation marks.

 The data type of this parameter is VARCHAR(128) or, if you enclose the value

in double quotation marks, VARCHAR(130).

Output parameters

msg_code

Specifies the message code that is returned from the stored procedure. The

value of this output parameter identifies the error, success, or warning

condition that was encountered during the processing of the procedure. If this

parameter value is for a success or warning condition, the procedure finished

its task. If the parameter value is for an error condition, no changes to the

database were performed.

 The data type of this output parameter is INTEGER.

msg_text

Specifies the actual message text, associated with the message code, that is

returned from the stored procedure. The message text can include additional

information about the success, warning, or error condition, such as where an

error was encountered.

 The data type of this output parameter is VARCHAR(1024).

Example

This example shows how to use the DB2 command line processor to invoke the

ST_unregister_spatial_column stored procedure. This example uses a DB2 CALL

command to unregister the spatial column named LOCATION in the table named

CUSTOMERS:

call db2gse.ST_unregister_spatial_column(NULL,’CUSTOMERS’,’LOCATION’,?,?)

Chapter 20. Stored procedures 241

The two question marks at the end of this CALL command represent the output

parameters, msg_code and msg_text. The values for these output parameters are

displayed after the stored procedure runs.

242 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 21. Catalog views

Spatial and Geodetic Data Management Feature’s catalog views give useful

information.

Spatial Extender’s catalog views contain information about:

“The DB2GSE.ST_COORDINATE_SYSTEMS catalog view” on page 245

Coordinate systems that you can use

“The DB2GSE.ST_GEOMETRY_COLUMNS catalog view”

Spatial columns that you can populate or update.

“The DB2GSE.ST_GEOCODERS catalog view” on page 248 and “The

DB2GSE.ST_GEOCODING_PARAMETERS catalog view” on page 250

Geocoders that you can use

“The DB2GSE.ST_GEOCODING catalog view” on page 249 and “The

DB2GSE.ST_GEOCODING_PARAMETERS catalog view” on page 250

Specifications for setting up a geocoder to run automatically and for

setting, in advance, operations to be performed during batch geocoding.

“The DB2GSE.ST_SIZINGS catalog view” on page 251

Allowable maximum lengths of values that you can assign to variables.

“The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view” on page 252

Spatial reference systems that you can use.

“The DB2GSE.ST_UNITS_OF_MEASURE catalog view” on page 254

The units of measure (meters, miles, feet, and so on) in which distances

generated by spatial functions can be expressed.

The DB2GSE.ST_GEOMETRY_COLUMNS catalog view

Use the DB2GSE.ST_GEOMETRY_COLUMNS catalog view to find information

about all spatial columns in all tables that contain spatial data in the database.

If a spatial column was registered in association with a spatial reference system,

you can also use the view to find out the spatial reference system’s name and

numeric identifier. For additional information about spatial columns, query DB2’s

SYSCAT.COLUMN catalog view.

For a description of DB2GSE.ST_GEOMETRY_COLUMNS, see the following table.

 Table 30. Columns in the DB2GSE.ST_GEOMETRY_COLUMNS catalog view

Name Data type Nullable? Content

TABLE_SCHEMA VARCHAR(128) No Name of the schema to which the table that

contains this spatial column belongs.

TABLE_NAME VARCHAR(128) No Unqualified name of the table that contains this

spatial column.

COLUMN_NAME VARCHAR(128) No Name of this spatial column.

The combination of TABLE_SCHEMA,

TABLE_NAME, and COLUMN_NAME uniquely

identifies the column.

© Copyright IBM Corp. 1998, 2006 243

Table 30. Columns in the DB2GSE.ST_GEOMETRY_COLUMNS catalog view (continued)

Name Data type Nullable? Content

TYPE_SCHEMA VARCHAR(128) No Name of the schema to which the declared data

type of this spatial column belongs. This name is

obtained from the DB2 catalog.

TYPE_NAME VARCHAR(128) No Unqualified name of the declared data type of this

spatial column. This name is obtained from the DB2

catalog.

SRS_NAME VARCHAR(128) Yes Name of the spatial reference system that is

associated with this spatial column. If no spatial

reference system is associated with the column,

then SRS_NAME is null.

SRS_ID INTEGER Yes Numeric identifier of the spatial reference system

that is associated with this spatial column. If no

spatial reference system is associated with the

column, then SRS_ID is null.

The DB2GSE.SPATIAL_REF_SYS catalog view

When you create a spatial reference system, DB2 Spatial Extender registers it by

recording its identifier and information related to it in a catalog table. Selected

columns from this table comprise the DB2GSE.SPATIAL_REF_SYS catalog view,

which is described in the following table.

 Table 31. Columns in the DB2GSE.SPATIAL_REF_SYS catalog view

Name Data Type Nullable? Content

SRID INTEGER No User-defined identifier for this spatial reference

system.

SR_NAME VARCHAR(64) No Name of this spatial reference system.

CSID INTEGER No Numeric identifier for the coordinate system that

underlies this spatial reference system.

CS_NAME VARCHAR(64) No Name of the coordinate system that underlies this

spatial reference system.

AUTH_NAME VARCHAR(256) Yes Name of the organization that sets the standards

for this spatial reference system.

AUTH_SRID INTEGER Yes The identifier that the organization specified in the

AUTH_NAME column assigns to this spatial

reference system.

SRTEXT VARCHAR(2048) No Annotation text for this spatial reference system.

FALSEX FLOAT No A number that, when subtracted from a negative X

coordinate value, leaves a non-negative number

(that is, a positive number or a zero).

FALSEY FLOAT No A number that, when subtracted from a negative Y

coordinate value, leaves a non-negative number

(that is, a positive number or a zero).

XYUNITS FLOAT No A number that, when multiplied by a decimal X

coordinate or a decimal Y coordinate, yields an

integer that can be stored as a 32–bit data item.

FALSEZ FLOAT No A number that, when subtracted from a negative Z

coordinate value, leaves a non-negative number

(that is, a positive number or a zero).

ZUNITS FLOAT No A number that, when multiplied by a decimal Z

coordinate, yields an integer that can be stored as a

32–bit data item.

244 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 31. Columns in the DB2GSE.SPATIAL_REF_SYS catalog view (continued)

Name Data Type Nullable? Content

FALSEM FLOAT No A number that, when subtracted from a negative

measure, leaves a non-negative number (that is, a

positive number or a zero).

MUNITS FLOAT No A number that, when multiplied by a decimal

measure, yields an integer that can be stored as a

32–bit data item.

The DB2GSE.ST_COORDINATE_SYSTEMS catalog view

Query the DB2GSE.ST_COORDINATE_SYSTEMS catalog view to retrieve

information about registered coordinate systems.

Spatial Extender automatically registers coordinate systems in the Spatial Extender

catalog at the following times:

v When you enable a database for spatial operations.

v When users define additional coordinate systems to the database.

For a description of columns in this view, see the following table.

 Table 32. Columns in the DB2GSE.ST_COORDINATE_SYSTEMS catalog view

Name Data type Nullable? Content

COORDSYS_NAME VARCHAR(128) No Name of this coordinate system. The name is

unique within the database.

COORDSYS_TYPE VARCHAR(128) No Type of this coordinate system:

PROJECTED

Two-dimensional.

GEOGRAPHIC

Three-dimensional. Uses X and Y

coordinates.

GEOCENTRIC

Three-dimensional. Uses X, Y, and Z

coordinates.

UNSPECIFIED

Abstract or non-real world coordinate

system.
The value for this column is obtained from the

DEFINITION column.

DEFINITION VARCHAR(2048) No Well-known text representation of the definition of

this coordinate system.

ORGANIZATION VARCHAR(128) Yes Name of the organization (for example, a standards

body such as the European Petrol Survey Group, or

ESPG) that defined this coordinate system.

This column is null if the

ORGANIZATION_COORDSYS_ID column is null.

Chapter 21. Catalog views 245

Table 32. Columns in the DB2GSE.ST_COORDINATE_SYSTEMS catalog view (continued)

Name Data type Nullable? Content

ORGANIZATION_

COORDSYS_ID

INTEGER Yes Numeric identifier assigned to this coordinate

system by the organization that defined the

coordinate system. This identifier and the value in

the ORGANIZATION column uniquely identify the

coordinate system unless the identifier and the

value are both null.

If the ORGANIZATION column is null, then the

ORGANIZATION_COORDSYS_ID column is also

null.

DESCRIPTION VARCHAR(256) Yes Description of the coordinate system that indicates

its application.

The DB2GSE.ST_GEOMETRY_COLUMNS catalog view

Use the DB2GSE.ST_GEOMETRY_COLUMNS catalog view to find information

about all spatial columns in all tables that contain spatial data in the database.

If a spatial column was registered in association with a spatial reference system,

you can also use the view to find out the spatial reference system’s name and

numeric identifier. For additional information about spatial columns, query DB2’s

SYSCAT.COLUMN catalog view.

For a description of DB2GSE.ST_GEOMETRY_COLUMNS, see the following table.

 Table 33. Columns in the DB2GSE.ST_GEOMETRY_COLUMNS catalog view

Name Data type Nullable? Content

TABLE_SCHEMA VARCHAR(128) No Name of the schema to which the table that

contains this spatial column belongs.

TABLE_NAME VARCHAR(128) No Unqualified name of the table that contains this

spatial column.

COLUMN_NAME VARCHAR(128) No Name of this spatial column.

The combination of TABLE_SCHEMA,

TABLE_NAME, and COLUMN_NAME uniquely

identifies the column.

TYPE_SCHEMA VARCHAR(128) No Name of the schema to which the declared data

type of this spatial column belongs. This name is

obtained from the DB2 catalog.

TYPE_NAME VARCHAR(128) No Unqualified name of the declared data type of this

spatial column. This name is obtained from the DB2

catalog.

SRS_NAME VARCHAR(128) Yes Name of the spatial reference system that is

associated with this spatial column. If no spatial

reference system is associated with the column,

then SRS_NAME is null.

SRS_ID INTEGER Yes Numeric identifier of the spatial reference system

that is associated with this spatial column. If no

spatial reference system is associated with the

column, then SRS_ID is null.

246 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The DB2GSE.ST_GEOCODER_PARAMETERS catalog view

When you enable a database for spatial operations, information about the

parameters of the supplied geocoder, DB2GSE_USA_GEOCODER, is automatically

recorded in the DB2 Spatial Extender catalog. If you register additional geocoders,

information about their parameters is also recorded in the catalog. To retrieve

information about a geocoders’ parameters from the catalog, query the

DB2GSE.ST_GEOCODER_PARAMETERS catalog view. For a description of

columns in this view, see the following table.

For more information about geocoders’ parameters, query DB2’s

SYSCAT.ROUTINEPARMS catalog view. For a description of this view, see the SQL

Reference.

 Table 34. Columns in the DB2GSE.ST_GEOCODER_PARAMETERS

Name Data type Nullable? Content

GEOCODER_NAME VARCHAR(128) No Name of the geocoder to which this parameter

belongs.

ORDINAL SMALLINT No Position of this parameter (that is, the parameter

specified in the PARAMETER_NAME column) in

the signature of the function that serves as the

geocoder specified in the GEOCODER_NAME

column.

The combined values in the GEOCODER_NAME

and ORDINAL columns uniquely identify this

parameter.

A record in DB2’s SYSCAT.ROUTINEPARMS

catalog view also contains information about this

parameter. This record contains a value that

appears in the ORDINAL column of

SYSCAT.ROUTINEPARMS. This value is the same

one that appears in the ORDINAL column of the

DB2GSE.ST_GEOCODER_PARAMETERS view.

PARAMETER_NAME VARCHAR(128) Yes Name of this parameter. If a name was not

specified when the function to which this

parameter belongs was created, the

PARAMETER_NAME column is null.

The content of the PARAMETER_NAME column is

obtained from the DB2 catalog.

TYPE_SCHEMA VARCHAR(128) No Name of the schema to which this parameter

belongs. This name is obtained from the DB2

catalog.

TYPE_NAME VARCHAR(128) No Unqualified name of the data type of the values

assigned to this parameter. This name is obtained

from the DB2 catalog.

Chapter 21. Catalog views 247

Table 34. Columns in the DB2GSE.ST_GEOCODER_PARAMETERS (continued)

Name Data type Nullable? Content

PARAMETER_DEFAULT VARCHAR(2048) Yes The default value that is to be assigned to this

parameter. DB2 will interpret this value as an SQL

expression. If the value is enclosed in quotation

marks, it will be passed to the geocoder as a string.

Otherwise, the evaluation of the SQL expression

will determine what parameter’s data type will be

when it is passed to the geocoder. If the

PARAMETER_DEFAULT column contains a null,

then this null value will be passed to the geocoder.

The default value can have a corresponding value

in the DB2GSE.ST_GEOCODING_PARAMETERS

catalog view. It can also have a corresponding

value in the input to the ST_run_geocoding stored

procedure. If either corresponding value differs

from the default value, the corresponding value

will override the default value.

DESCRIPTION VARCHAR(256) Yes Description of the parameter indicating its

application.

The DB2GSE.ST_GEOCODERS catalog view

When you enable a database for spatial operations, the supplied geocoder,

DB2GSE_USA_GEOCODER, is automatically registered in the DB2 Spatial

Extender catalog. When you want to make additional geocoders available to users,

you need to register these geocoders. To retrieve information about registered

geocoders, query the DB2GSE.ST_GEOCODERS catalog view. For a description of

columns in this view, see the following table.

For information about geocoders’ parameters, query DB2 Spatial Extender’s

DB2GSE.ST_GEOCODER_PARAMETERS catalog view and DB2’s

SYSCAT.ROUTINEPARMS catalog view. For information about functions that are

used as geocoders, query DB2’s SYSCAT.ROUTINES catalog view.

 Table 35. Columns in the DB2GSE.ST_GEOCODERS catalog view

Name Data type Nullable? Content

GEOCODER_NAME VARCHAR(128) No Name of this geocoder. It is unique within the

database.

FUNCTION_SCHEMA VARCHAR(128) No Name of the schema to which the function that is

being used as this geocoder belongs.

FUNCTION_NAME VARCHAR(128) No Unqualified name of the function that is being used

as this geocoder.

SPECIFIC_NAME VARCHAR(128) No Specific name of the function that is being used as

this geocoder.

The combined values of FUNCTION_SCHEMA and

SPECIFIC_NAME uniquely identify the function

that is being used as this geocoder.

RETURN_TYPE_SCHEMA VARCHAR(128) No Name of the schema to which the data type of this

geocoder’s output parameter belongs. This name is

obtained from the DB2 catalog.

RETURN_TYPE_NAME VARCHAR(128) No Unqualified name of the data type of this

geocoder’s output parameter. This name is obtained

from the DB2 catalog.

248 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 35. Columns in the DB2GSE.ST_GEOCODERS catalog view (continued)

Name Data type Nullable? Content

VENDOR VARCHAR(256) Yes Name of the vendor that created this geocoder.

DESCRIPTION VARCHAR(256) Yes Description of the geocoder that indicates its

application.

The DB2GSE.ST_GEOCODING catalog view

When you set up geocoding operations, the particulars of your settings are

automatically recorded in the DB2 Spatial Extender catalog. To find out these

particulars, query the DB2GSE.ST_GEOCODING and

DB2GSE.ST_GEOCODING_PARAMETERS catalog views. The

DB2GSE.ST_GEOCODING catalog view, which is described in the following table,

contains particulars of all settings; for example, the number of records that a

geocoder is to process before each commit. The

DB2GSE.ST_GEOCODING_PARAMETERS catalog view contains particulars that

are specific to each geocoder. For example, set-ups for the supplied geocoder,

DB2GSE_USA_GEOCODER, include the minimum degree to which addresses

given as input and actual addresses must match in order for the geocoder to

geocode the input. This minimum requirement, called the minimum match score, is

recorded in the DB2GSE.ST_GEOCODING_PARAMETERS catalog view.

 Table 36. Columns in the DB2GSE.ST_GEOCODING catalog view

Name Data type Nullable? Content

TABLE_SCHEMA VARCHAR(128) No Name of the schema that contains the table that

contains the column identified in the

COLUMN_NAME column.

TABLE_NAME VARCHAR(128) No Unqualified name of the table that contains the

column identified in the COLUMN_NAME column.

COLUMN_NAME VARCHAR(128) No Name of the spatial column to be populated

according to the specifications shown in this catalog

view.

The combined values in the TABLE_SCHEMA,

TABLE_NAME, and COLUMN_NAME columns

uniquely identify the spatial column.

GEOCODER_NAME VARCHAR(128) No Name of the geocoder that is to produce data for

the spatial column specified in the

COLUMN_NAME column. Only one geocoder can

be assigned to a spatial column.

MODE VARCHAR(128) No Mode for the geocoding process:

BATCH

Only batch geocoding is enabled.

AUTO Automatic geocoding is set up and

activated.

INVALID

An inconsistency in the spatial catalog

tables was detected; the geocoding entry is

invalid.

SOURCE_COLUMNS VARCHAR(10000) Yes Names of table columns set up for automatic

geocoding. Whenever these columns are updated, a

trigger prompts the geocoder to geocode the

updated data.

Chapter 21. Catalog views 249

Table 36. Columns in the DB2GSE.ST_GEOCODING catalog view (continued)

Name Data type Nullable? Content

WHERE_CLAUSE VARCHAR(10000) Yes Search condition within a WHERE clause. This

condition indicates that when the geocoder runs in

batch mode, it is geocode only data within a

specified subset of records.

COMMIT_COUNT INTEGER Yes The number of rows that are to be processed

during batch geocoding before a commit is issued.

If the value in the COMMIT_COUNT column is 0

(zero) or null, then no commits are issued.

The DB2GSE.ST_GEOCODING_PARAMETERS catalog view

When you set up geocoding operations for a particular geocoder, geocoder-specific

aspects of the settings are automatically recorded in the Spatial Extender catalog.

For example, an operation specific to the supplied geocoder,

DB2GSE_USA_GEOCODER, is to compare addresses given as input to reference

data, and to geocode the former if they match the latter to a specified degree, or to

a degree higher than the specified one. When you set up operations for this

geocoder, you specify what this degree, called the minimum match score, should

be; and your specification is recorded in the catalog.

To find out the geocoder-specific aspects of a settings for geocoding operations,

query the DB2GSE.ST_GEOCODING_PARAMETERS catalog view. This view is

described in the following table.

Certain defaults for set-ups of geocoding operations are available in the

DB2GSE.ST_GEOCODER_PARAMETERS catalog view. Values in the

DB2GSE.ST_GEOCODING_PARAMETERS view override the defaults.

 Table 37. Columns in the DB2GSE.ST_GEOCODING_PARAMETERS catalog view

Name Data type Nullable? Content

TABLE_SCHEMA VARCHAR(128) No Name of the schema that contains the table that

contains the column identified in the

COLUMN_NAME column.

TABLE_NAME VARCHAR(128) No Unqualified name of the table that contains the

spatial column.

COLUMN_NAME VARCHAR(128) No Name of the spatial column to be populated

according to the specifications shown in this catalog

view.

The combined values in the TABLE_SCHEMA,

TABLE_NAME, and COLUMN_NAME columns

uniquely identify this spatial column.

250 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 37. Columns in the DB2GSE.ST_GEOCODING_PARAMETERS catalog view (continued)

Name Data type Nullable? Content

ORDINAL SMALLINT No Position of this parameter (that is, the parameter

specified in the PARAMETER_NAME column) in

the signature of the function that serves as the

geocoder for the column identified in the

COLUMN_NAME column.

A record in DB2’s SYSCAT.ROUTINEPARMS

catalog view also contains information about this

parameter. This record contains a value that

appears in the ORDINAL column of

SYSCAT.ROUTINEPARMS. This value is the same

one that appears in the ORDINAL column of the

DB2GSE.ST_GEOCODING_PARAMETERS view.

PARAMETER_NAME VARCHAR(128) Yes Name of a parameter in the definition of the

geocoder. If no name was specified when the

geocoder was defined, PARAMETER_NAME is

null.

This content of the PARAMETER_NAME column is

obtained from the DB2 catalog.

PARAMETER_VALUE VARCHAR(2048) Yes The value that is assigned to this parameter. DB2

will interpret this value as an SQL expression. If the

value is enclosed in quotation marks, it will be

passed to the geocoder as a string. Otherwise, the

evaluation of the SQL expression will determine

what the parameter’s data type will be when it is

passed to the geocoder. If the

PARAMETER_VALUE column contains a null, then

this null is passed to the geocoder.

The PARAMETER_VALUE column corresponds to

the PARAMETER_DEFAULT column in the

DB2GSE.ST_GEOCODER_PARAMETERS catalog

view. If the PARAMETER_VALUE column contains

a value, this value overrides the default value in

the PARAMETER_DEFAULT column. If the

PARAMETER_VALUE column is null, the default

value will be used.

The DB2GSE.ST_SIZINGS catalog view

Use the DB2GSE.ST_SIZINGS catalog view to retrieve:

v All the variables supported by Spatial Extender; for example, coordinate system

name, geocoder name, and variables to which well-known text representations of

spatial data can be assigned.

v The allowable maximum length, if known, of values assigned to these variables

(for example, the maximum allowable lengths of names of coordinate systems, of

names of geocoders, and of well-known text representations of spatial data).

For a description of columns in the view, see the following table.

Chapter 21. Catalog views 251

Table 38. Columns in the DB2GSE.ST_SIZINGS catalog view

Name Data type Nullable? Content

VARIABLE_NAME VARCHAR(128) No Term that denotes a variable. The term is unique

within the database.

SUPPORTED_VALUE INTEGER Yes Allowable maximum length of the values assigned

to the variable shown in the VARIABLE_NAME

column. Possible values in the

SUPPORTED_VALUE column are:

A numeric value other than 0

The allowable maximum length of values

assigned to this variable.

0 Either any length is allowed, or the

allowable length cannot be determined.

NULL Spatial Extender does not support this

variable.

DESCRIPTION VARCHAR(128) Yes Description of this variable.

The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view

Query the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view to retrieve

information about registered spatial reference systems. Spatial Extender

automatically registers spatial reference systems in the Spatial Extender catalog at

the following times:

v When you enable a database for spatial operations, five default spatial reference

systems and 318 predefined geodetic spatial reference systems.

v When users create additional spatial reference systems.

To get full value from the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog

view, you need to understand that each spatial reference system is associated with

a coordinate system. The spatial reference system is designed partly to convert

coordinates derived from the coordinate system into values that DB2 can process

with maximum efficiency, and partly to define the maximum possible extent of

space that these coordinates can reference.

To find out the name and type of the coordinate system associated with a given

spatial reference system, query the COORDSYS_NAME and COORDSYS_TYPE

columns of the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view. For

more information about the coordinate system, query the

DB2GSE.ST_COORDINATE_SYSTEMS catalog view.

 Table 39. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view

Name Data type Nullable? Content

SRS_NAME VARCHAR(128) No Name of the spatial reference system. This name is

unique within the database.

SRS_ID INTEGER No Numerical identifier of the spatial reference system.

Each spatial reference system has a unique

numerical identifier. Geodetic spatial reference

systems have SRS_ID values in the range

2000000000 to 2000001000.

Spatial functions specify spatial reference systems

by their numerical identifiers rather than by their

names.

252 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 39. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view (continued)

Name Data type Nullable? Content

X_OFFSET DOUBLE No Offset to be subtracted from all X coordinates of a

geometry. The subtraction is a step in the process of

converting the geometry’s coordinates into values

that DB2 can process with maximum efficiency. A

subsequent step is to multiply the figure resulting

from the subtraction by the scale factor shown in

the X_SCALE column.

X_SCALE DOUBLE No Scale factor by which to multiply the figure that

results when an offset is subtracted from an X

coordinate. This factor is identical to the value

shown in the Y_SCALE column.

Y_OFFSET DOUBLE No Offset to be subtracted from all Y coordinates of a

geometry. The subtraction is a step in the process of

converting the geometry’s coordinates into values

that DB2 can process with maximum efficiency. A

subsequent step is to multiply the figure resulting

from the subtraction by the scale factor shown in

the Y_SCALE column.

Y_SCALE DOUBLE No Scale factor by which to multiply the figure that

results when an offset is subtracted from a Y

coordinate. This factor is identical to the value

shown in the X_SCALE column.

Z_OFFSET DOUBLE No Offset to be subtracted from all Z coordinates of a

geometry. The subtraction is a step in the process of

converting the geometry’s coordinates into values

that DB2 can process with maximum efficiency. A

subsequent step is to multiply the figure resulting

from the subtraction by the scale factor shown in

the Z_SCALE column.

Z_SCALE DOUBLE No Scale factor by which to multiply the figure that

results when an offset is subtracted from a Z

coordinate.

M_OFFSET DOUBLE No Offset to be subtracted from all measures associated

with a geometry. The subtraction is a step in the

process of converting the measures into values that

DB2 can process with maximum efficiency. A

subsequent step is to multiply the figure resulting

from the subtraction by the scale factor shown in

the M_SCALE column.

M_SCALE DOUBLE No Scale factor by which to multiply the figure that

results when an offset is subtracted from a

measure.

MIN_X DOUBLE No Minimum possible value for X coordinates in the

geometries to which this spatial reference system

applies. This value is derived from the values in

the X_OFFSET and X_SCALE columns.

MAX_X DOUBLE No Maximum possible value for X coordinates in the

geometries to which this spatial reference system

applies. This value is derived from the values in

the X_OFFSET and X_SCALE columns.

MIN_Y DOUBLE No Minimum possible value for Y coordinates in the

geometries to which this spatial reference system

applies. This value is derived from the values in

the Y_OFFSET and Y_SCALE columns.

Chapter 21. Catalog views 253

Table 39. Columns in the DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view (continued)

Name Data type Nullable? Content

MAX_Y DOUBLE No Maximum possible value for Y coordinates in the

geometries to which this spatial reference system

applies. This value is derived from the values in

the Y_OFFSET and Y_SCALE columns.

MIN_Z DOUBLE No Minimum possible value for Z coordinates in

geometries to which this spatial reference system

applies This value is derived from the values in the

Z_OFFSET and Z_SCALE columns.

MAX_Z DOUBLE No Maximum possible value for Z coordinates in

geometries to which this spatial reference system

applies. This value is derived from the values in

the Z_OFFSET and Z_SCALE columns.

MIN_M DOUBLE No Minimum possible value for measures that can be

stored with geometries to which this spatial

reference system applies. This value is derived from

the values in the M_OFFSET and M_SCALE

columns.

MAX_M DOUBLE No Maximum possible value for measures that can be

stored with geometries to which this spatial

reference system applies. This value is derived from

the values in the M_OFFSET and M_SCALE

columns.

COORDSYS_NAME VARCHAR(128) No Identifying name of the coordinate system on

which this spatial reference system is based.

COORDSYS_TYPE VARCHAR(128) No Type of the coordinate system on which this spatial

reference system is based.

ORGANIZATION VARCHAR(128) Yes Name of the organization (for example, a standards

body) that defined the coordinate system on which

this spatial reference system is based.

ORGANIZATION is null if

ORGANIZATION_COORSYS_ID is null.

ORGANIZATION_

COORDSYS_ID

INTEGER Yes Name of the organization (for example, a standards

body) that defined the coordinate system on which

this spatial reference system is based.

ORGANIZATION_COORDSYS_ID is null if

ORGANIZATION is null.

DEFINITION VARCHAR(2048) No Well-known text representation of the definition of

the coordinate system.

DESCRIPTION VARCHAR(256) Yes Description of the spatial reference system.

The DB2GSE.ST_UNITS_OF_MEASURE catalog view

Certain spatial functions accept or return values that denote a specific distance. In

some cases, you can choose what unit of measure the distance is to be expressed

in. For example, ST_Distance returns the minimum distance between two specified

geometries. On one occasion you might require ST_Distance to return the distance

in terms of miles; on another, you might require a distance expressed in terms of

meters. To find out what units of measure you can choose from, consult the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

254 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 40. Columns in the DB2GSE.ST_UNITS_OF_MEASURE catalog view

Name Data type Nullable? Content

UNIT_NAME VARCHAR(128) No Name of the unit of measure. This name is unique

in the database.

UNIT_TYPE VARCHAR(128) No Type of the unit of measure. Possible values are:

LINEAR

The unit of measure is linear.

ANGULAR

The unit of measure is angular.

CONVERSION_FACTOR DOUBLE No Numeric value used to convert this unit of measure

to its base unit. The base unit for linear units of

measure is METER; the base unit for angular units

of measure is RADIAN.

The base unit itself has a conversion factor of 1.0.

DESCRIPTION VARCHAR(256) Yes Description of the unit of measure.

Chapter 21. Catalog views 255

256 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 22. Spatial functions: categories and uses

This chapter introduces all the spatial functions, organizing them by category.

Spatial functions: categories and uses

DB2® Spatial Extender provides functions that:

v Convert geometries to and from various data exchange formats. These functions

are called constructor functions.

v Compare geometries for boundaries, intersections, and other information. These

functions are called comparison functions.

v Return information about properties of geometries, such as coordinates and

measures within geometries, relationships between geometries, and boundary

and other information.

v Generate new geometries from existing geometries.

v Measure the shortest distance between points in geometries.

v Provide information about index parameters.

v Provide projections and conversions between different coordinate systems.

Spatial functions that convert geometry values to data exchange

formats

DB2 Spatial Extender provides spatial functions that convert geometries to and

from the following data exchange formats:

v Well-known text (WKT) representation

v Well-known binary (WKB) representation

v ESRI shape representation

v Geography Markup Language (GML) representation

The functions for creating geometries from these formats are known as constructor

functions.

Constructor functions

DB2 Spatial Extender provides spatial functions that convert geometries to and

from the following data exchange formats:

v Well-known text (WKT) representation

v Well-known binary (WKB) representation

v ESRI shape representation

v Geography Markup Language (GML) representation

The functions for creating geometries from these formats are known as constructor

functions. Constructor functions have the same name as the geometry data type of

the column into which the data will be inserted. These functions operate

consistently on each of the input data exchange formats. This section provides:

© Copyright IBM Corp. 1998, 2006 257

v The SQL for calling functions that operate on data exchange formats, and the

type of geometry returned by these functions

v The SQL for calling a function that creates points from X and Y coordinates, and

the type of geometry returned by this function

v Examples of code and result sets

Functions that operate on data exchange formats

This section provides the syntax for calling functions that operate on data exchange

formats, describes the input parameters for the functions, and identifies the type of

geometry that these functions return.

Syntax

�� geometry_type

db2gse.
 (wkt

wkb

shape

gml

,

srs_id
) ��

Parameters and other elements of syntax

db2gse

Name of the schema to which the spatial data types supplied by DB2®

Spatial Extender belong.

geometry_type

One of the following constructor functions:

v ST_Point

v ST_LineString

v \

v ST_Polygon

v ST_MultiPoint

v ST_MultiLineString

v ST_MultiPolygon

v ST_GeomCollection

v ST_Geometry

wkt A value of type CLOB(2G) that contains the well-known text representation

of the geometry.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the geometry.

shape A value of type BLOB(2G) that contains the ESRI shape representation of

the geometry.

gml A value of type CLOB(2G) that contains the Geography Markup Language

(GML) representation of the geometry.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry.

 If the srs_id parameter is omitted, then the spatial reference system with

the numeric identifier 0 (zero) is used.

258 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return Type

geometry_type

If geometry_type is ST_Geometry, the dynamic type of the returned geometry type

corresponds to the geometry indicated by the input value.

If geometry_type is any other type, the dynamic type of the returned geometry type

corresponds to the function name. If the geometry indicated by the input value

does not match the function name or the name of one of its subtypes, an error is

returned.

A function that creates geometries from coordinates

This section provides the syntax for calling ST_Point, an explanation of its

parameters, and information about the type of geometry that it returns.

The ST_Point function creates geometries not only from data exchange formats, but

also from numeric coordinate values—a very useful capability if your location data

is already stored in your database.

Syntax

�� db2gse.ST_Point (coordinates

,

srs_id
) ��

coordinates:

 x_coordinate , y_coordinate

,

z_coordinate

,

m_coordinate

Parameters

x_coordinate

A value of type DOUBLE that specifies the X coordinate for the resulting

point.

y_coordinate

A value of type DOUBLE that specifies the Y coordinate for the resulting

point.

z_coordinate

A value of type DOUBLE that specifies the Z coordinate for the resulting

point.

 If the z_coordinate parameter is omitted, the resulting point will not have a

Z coordinate. The result of ST_Is3D is 0 (zero) for such a point.

m_coordinate

A value of type DOUBLE that specifies the M coordinate for the resulting

point.

 If the m_coordinate parameter is omitted, the resulting point will not have a

measure. The result of ST_IsMeasured is 0 (zero) for such a point.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting point.

Chapter 22. Spatial functions: categories and uses 259

If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Point

Examples

This section provides examples of code for invoking constructor functions, code for

creating tables to contain the output of constructor functions, code for retrieving

the output, and the output itself.

The following example inserts a row into the SAMPLE_GEOMETRY table with ID

100 and a point value with an X coordinate of 30, a Y coordinate of 40, and in

spatial reference system 1 using the coordinate representation and well-known text

(WKT) representation. It then inserts another row with ID 200 and a linestring

value with the coordinates indicated.

CREATE TABLE sample_geometry (id INT, geom db2gse.ST_Geometry);

INSERT INTO sample_geometry(id, geom)

 VALUES(100,db2gse.ST_Geometry(’point(30 40)’, 1));

INSERT INTO sample_geometry(id, geom)

 VALUES(200,db2gse.ST_Geometry(’linestring(50 50, 100 100’, 1));

SELECT id, TYPE_NAME(geom) FROM sample_geometry

ID 2

------ --------------------------------

 100 "ST_POINT"

 200 "ST_LINESTRING"

If you know that the spatial column can only contain ST_Point values, you can use

the following example, which inserts two points. Attempting to insert a linestring

or any other type which is not a point results in an SQL error. The first insert

creates a point geometry from the well-known-text representation (WKT). The

second insert creates a point geometry from numeric coordinate values. Note that

these input values could also be selected from existing table columns.

CREATE TABLE sample_points (id INT, geom db2gse.ST_Point);

INSERT INTO sample_points(id, geom)

 VALUES(100,db2gse.ST_Point(’point(30 40)’, 1));

INSERT INTO sample_points(id, geom)

 VALUES(101,db2gse.ST_Point(50, 50, 1));

SELECT id, TYPE_NAME(geom) FROM sample_geometry

ID 2

------ --------------------------------

 100 "ST_POINT"

 101 "ST_POINT"

The following example uses embedded SQL and assumes that the application fills

the data areas with the appropriate values.

260 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS CLOB(10000) wkt_buffer;

 SQL TYPE IS CLOB(10000) gml_buffer;

 SQL TYPE IS BLOB(10000) wkb_buffer;

 SQL TYPE IS BLOB(10000) shape_buffer;

EXEC SQL END DECLARE SECTION;

// * Application logic to read into buffers goes here */

EXEC SQL INSERT INTO sample_geometry(id, geom)

 VALUES(:id, db2gse.ST_Geometry(:wkt_buffer,1));

EXEC SQL INSERT INTO sample_geometry(id, geom)

 VALUES:id, db2gse.ST_Geometry(:wkb_buffer,1));

EXEC SQL INSERT INTO sample_geometry(id, geom)

 VALUES(:id, db2gse.ST_Geometry(:gml_buffer,1));

EXEC SQL INSERT INTO sample_geometry(id, geom)

 VALUES(:id, db2gse.ST_Geometry(:shape_buffer,1));

The following sample Java™ code uses JDBC to insert point geometries using X, Y

numeric coordinate values and uses the WKT representation to specify the

geometries.

String ins1 = "INSERT into sample_geometry (id, geom)

 VALUES(?, db2gse.ST_PointFromText(CAST(?

 as VARCHAR(128)), 1))";

PreparedStatement pstmt = con.prepareStatement(ins1);

pstmt.setInt(1, 100); // id value

pstmt.setString(2, "point(32.4 50.7)"); // wkt value

int rc = pstmt.executeUpdate();

String ins2 = "INSERT into sample_geometry (id, geom)

 VALUES(?, db2gse.ST_Point(CAST(? as double),

 CAST(? as double), 1))";

pstmt = con.prepareStatement(ins2);

pstmt.setInt(1, 200); // id value

pstmt.setDouble(2, 40.3); // lat

pstmt.setDouble(3, -72.5); // long

rc = pstmt.executeUpdate();

Conversion to well-known text (WKT) representation

Text representations are CLOB values representing ASCII character strings. They

allow geometries to be exchanged in ASCII text form.

The ST_AsText function converts a geometry value stored in a table to a WKT

string. The following example uses a simple command-line query to select the

values that were previously inserted into the SAMPLE_GEOMETRY table.

SELECT id, VARCHAR(db2gse.ST_AsText(geom), 50) AS WKTGEOM

FROM sample_geometry;

ID WKTGEOM

------ --------------------------------

 100 POINT (30.00000000 40.00000000)

 200 LINESTRING (50.00000000 50.00000000, 100.00000000 100.00000000)

The following example uses embedded SQL to select the values that were

previously inserted into the SAMPLE_GEOMETRY table.

Chapter 22. Spatial functions: categories and uses 261

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS CLOB(10000) wkt_buffer;

 short wkt_buffer_ind = -1;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL

 SELECT id, db2gse.ST_AsText(geom)

 INTO :id, :wkt_buffer :wkt_buffer_ind

 FROM sample_geometry

 WHERE id = 100;

Alternatively, you can use the ST_WellKnownText transform group to implicitly

convert geometries to their well-known text representation when binding them out.

The following sample code shows how to use the transform group.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS CLOB(10000) wkt_buffer;

 short wkt_buffer_ind = -1;

EXEC SQL END DECLARE SECTION;

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownText;

EXEC SQL

 SELECT id, geom

 INTO :id, :wkt_buffer :wkt_buffer_ind

 FROM sample_geometry

 WHERE id = 100;

No spatial function is used in the SELECT statement to convert the geometry.

In addition to the functions explained in this section, DB2® Spatial Extender

provides other functions that also convert geometries to and from well-known text

representations. DB2 Spatial Extender provides these other functions to implement

the OGC “Simple Features for SQL” specification and the ISO SQL/MM Part 3:

Spatial standard. These functions are:

v ST_WKTToSQL

v ST_GeomFromText

v ST_GeomCollFromTxt

v ST_PointFromText

v ST_LineFromText

v ST_PolyFromText

v ST_MPointFromText

v ST_MLineFromText

v ST_MPolyFromText

Conversion to well-known binary (WKB) representation

The WKB representation consists of binary data structures that must be BLOB

values. These BLOB values represent binary data structures that must be managed

by an application program written in a programming language that DB2® supports

and for which DB2 has a language binding.

The ST_AsBinary function converts a geometry value stored in a table to the

well-known binary (WKB) representation, which can be fetched into a BLOB

262 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

variable in program storage. The following example uses embedded SQL to select

the values that were previously inserted into the SAMPLE_GEOMETRY table.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS BLOB(10000) wkb_buffer;

 short wkb_buffer_ind = -1;

EXEC SQL END DECLARE SECTION;

EXEC SQL

 SELECT id, db2gse.ST_AsBinary(geom)

 INTO :id, :wkb_buffer :wkb_buffer_ind

 FROM sample_geometry

 WHERE id = 200;

Alternatively, you can use the ST_WellKnownBinary transform group to implicitly

convert geometries to their well-known binary representation when binding them

out. The following sample code shows how to use this transform group.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS BLOB(10000) wkb_buffer;

 short wkb_buffer_ind = -1;

EXEC SQL END DECLARE SECTION;

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownBinary;

EXEC SQL

 SELECT id, geom

 INTO :id, :wkb_buffer :wkb_buffer_ind

 FROM sample_geometry

 WHERE id = 200;

No spatial function is used in the SELECT statement to convert the geometry.

In addition to the functions explained in this section, there are other functions that

also convert geometries to and from well-known binary representations. DB2

Spatial Extender provides these other functions to implement the OGC “Simple

Features for SQL” specification and the ISO SQL/MM Part 3: Spatial standard.

These functions are:

v ST_WKBToSQL

v ST_GeomFromWKB

v ST_GeomCollFromWKB

v ST_PointFromWKB

v ST_LineFromWKB

v ST_PolyFromWKB

v ST_MPointFromWKB

v ST_MLineFromWKB

v ST_MPolyFromWKB

Conversion to ESRI shape representation

The ESRI Shape representation consists of binary data structures that must be

managed by an application program written in a supported language.

The ST_AsShape function converts a geometry value stored in a table to the ESRI

Shape representation, which can be fetched into a BLOB variable in program

Chapter 22. Spatial functions: categories and uses 263

storage. The following example uses embedded SQL to select the values that were

previously inserted into the SAMPLE_GEOMETRY table.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id;

 SQL TYPE IS BLOB(10000) shape_buffer;

EXEC SQL END DECLARE SECTION;

EXEC SQL

 SELECT id, db2gse.ST_AsShape(geom)

 INTO :id, :shape_buffer

 FROM sample_geometry;

Alternatively, you can use the ST_Shape transform group to implicitly convert

geometries to their shape representation when binding them out. The following

sample code shows how to use the transform group.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS BLOB(10000) shape_buffer;

 short shape_buffer_ind = -1;

EXEC SQL END DECLARE SECTION;

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_Shape;

EXEC SQL

 SELECT id, geom

 FROM sample_geometry

 WHERE id = 300;

No spatial function is used in the SELECT statement to convert the geometry.

Conversion to Geography Markup Language (GML) representation

Geography Markup Language (GML) representations are ASCII strings. They allow

geometries to be exchanged in ASCII text form.

The ST_AsGML function converts a geometry value stored in a table to a GML

text string. The following example selects the values that were previously inserted

into the SAMPLE_GEOMETRY table. The results shown in the example have been

reformatted for readability. The spacing in your results might vary according to

your online display.

SELECT id, VARCHAR(db2gse.ST_AsGML(geom), 500) AS GMLGEOM

FROM sample_geometry;

ID GMLGEOM

----------- --

 100 <gml:Point srsName="EPSG:4269">

 <gml:coord><gml:X>30</gml:X><gml:Y>40</gml:Y></gml:coord>

 </gml:Point>

 200 <gml:LineString srsName="EPSG:4269">

 <gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>

 <gml:coord><gml:X>100</gml:X><gml:Y>100</gml:Y></gml:coord>

 </gml:LineString>

Alternatively, you can use the ST_GML transform group to implicitly convert

geometries to their HTML representation when binding them out.

SET CURRENT DEFAULT TRANSFORM GROUP = ST_GML

SELECT id, geom AS GMLGEOM

FROM sample_geometry;

264 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID GMLGEOM

----------- --

 100 <gml:Point srsName="EPSG:4269">

 <gml:coord><gml:X>30</gml:X><gml:Y>40</gml:Y></gml:coord>

 </gml:Point>

 200 <gml:LineString srsName="EPSG:4269">

 <gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>

 <gml:coord><gml:X>100</gml:X><gml:Y>100</gml:Y></gml:coord>

 </gml:LineString>

No spatial function is used in the SELECT statement to convert the geometry.

Functions that compare geographic features

Certain spatial functions return information about ways in which geographic

features relate to one another or compare with one another. Other spatial functions

return information as to whether two definitions of coordinate systems or two

spatial reference systems are the same. In all cases, the information returned is a

result of a comparison between geometries, between definitions of coordinate

systems, or between spatial reference systems. The functions that provide this

information are called comparison functions.

 Table 41. Comparison functions by purpose

Pupose Functions

Determine whether the interior of one

geometry intersects the interior of another.

v ST_Contains

v ST_Within

Return information about intersections of

geometries.

v ST_Crosses

v ST_Intersects

v ST_Overlaps

v ST_Touches

Determine whether the smallest rectangle

that encloses one geometry intersects with

the smallest rectangle that encloses another

geometry.

v ST_EnvIntersects

v ST_MBRIntersects

Determine whether two objects are identical. v ST_Equals

v ST_EqualCoordsys

v ST_EqualSRS

Determines whether the geometries being

compared meet the conditions of the

DE-9IM pattern matrix string.

v ST_Relate

Checks whether an intersection exists

between two geometries.

v ST_Disjoint

Comparison functions

DB2® Spatial Extender’s comparison functions return a value of 1 (one) if a

comparison meets certain criteria, a value of 0 (zero) if a comparison fails to meet

the criteria, and a null value if the comparison could not be performed.

Comparisons cannot be performed if the comparison operation has not been

defined for the input parameters, or if either of the parameters is null.

Chapter 22. Spatial functions: categories and uses 265

Comparisons can be performed if geometries with different data types or

dimensions are assigned to the parameters.

The Dimensionally Extended 9 Intersection Model (DE-9IM) is a mathematical

approach that defines the pair-wise spatial relationship between geometries of

different types and dimensions. This model expresses spatial relationships between

all types of geometries as pair-wise intersections of their interiors, boundaries, and

exteriors, with consideration for the dimension of the resulting intersections.

Given geometries a and b: I(a), B(a), and E(a) represent the interior, boundary, and

exterior of a, respectively. And, I(b), B(b), and E(b) represent the interior, boundary,

and exterior of b. The intersections of I(a), B(a), and E(a) with I(b), B(b), and E(b)

produce a 3–by–3 matrix. Each intersection can result in geometries of different

dimensions. For example, the intersection of the boundaries of two polygons

consists of a point and a linestring, in which case the dim function returns the

maximum dimension of 1.

The dim function returns a value of –1, 0, 1 or 2. The –1 corresponds to the null set

or dim(null), which is returned when no intersection was found.

Results returned by comparison functions can be understood or verified by

comparing the results returned by a comparison function with a pattern matrix

that represents the acceptable values for the DE-9IM.

The pattern matrix contains the acceptable values for each of the intersection

matrix cells. The possible pattern values are:

T An intersection must exist; dim = 0, 1, or 2.

F An intersection must not exist; dim = -1.

* It does not matter if an intersection exists; dim = -1, 0, 1, or 2.

0 An intersection must exist and its exact dimension must be 0; dim = 0.

1 An intersection must exist and its maximum dimension must be 1; dim =

1.

2 An intersection must exist and its maximum dimension must be 2; dim =

2.

For example, the following pattern matrix for the ST_Within function includes the

values T, F, and *.

 Table 42. Matrix for ST_Within. The pattern matrix of the ST_Within function for geometry

combinations.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a Interior T * F

Geometry a

Boundary

* * F

Geometry a Exterior * * *

The ST_Within function returns a value of 1 when the interiors of both geometries

intersect and when the interior or boundary of a does not intersect the exterior of

b. All other conditions do not matter.

266 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Each function has at least one pattern matrix, but some require more than one to

describe the relationships of various geometry type combinations.

The DE-9IM was developed by Clementini and Felice, who dimensionally extended

the 9 Intersection Model of Egenhofer and Herring. The DE-9IM is a collaboration

of four authors (Clementini, Eliseo, Di Felice, and van Osstrom) who published the

model in ″A Small Set of Formal Topological Relationships Suitable for End-User

Interaction,″ D. Abel and B.C. Ooi (Ed.), Advances in Spatial Database—Third

International Symposium. SSD ’93. LNCS 692. Pp. 277-295. The 9 Intersection model

by M. J. Egenhofer and J. Herring (Springer-Verlag Singapore [1993]) was

published in ″Categorizing binary topological relationships between regions, lines,

and points in geographic databases,″ Tech. Report, Department of Surveying

Engineering, University of Maine, Orono, ME 1991.

Spatial comparison functions

The comparison functions are:

v ST_Contains

v ST_Crosses

v ST_Disjoint

v ST_EnvIntersects

v ST_EqualCoordsys

v ST_Equals

v ST_EqualSRS

v ST_Intersects

v ST_MBRIntersects

v ST_Overlaps

v ST_Relate

v ST_Touches

v ST_Within

Functions that check whether one geometry contains another

ST_Contains and ST_Within both take two geometries as input and determine

whether the interior of one intersects the interior of the other. In colloquial terms,

ST_Contains determines whether the first geometry given to it encloses the second

geometry (whether the first contains the second). ST_Within determines whether

the first geometry is completely inside the second (whether the first is within the

second).

ST_Contains

Use ST_Contains to determine whether one geometry is completely contained by

anther geometry.

ST_Contains returns a value of 1 (one) if the second geometry is completely

contained by the first geometry. The ST_Contains function returns the exact

opposite result of the ST_Within function.

Figure 44 on page 268 shows examples of ST_Contains:

v A multipoint geometry contains a point or multipoint geometries when all of

the points are within the first geometry.

Chapter 22. Spatial functions: categories and uses 267

v A polygon geometry contains a multipoint geometry when all of the points are

either on the boundary of the polygon or in the interior of the polygon.

v A linestring geometry contains a point, multipoint, or linestring geometries

when all of the points are within the first geometry.

v A polygon geometry contains a point, linestring or polygon geometries when the

second geometry is in the interior of the polygon.

The pattern matrix of the ST_Contains function states that the interiors of both

geometries must intersect and that the interior or boundary of the secondary

(geometry b) must not intersect the exterior of the primary (geometry a). The

asterisk (*) indicates that it does not matter if an intersection exists between these

parts of the geometries.

 Table 43. Matrix for ST_Contains

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a Interior T * *

Geometry a

Boundary

* * *

Geometry a Exterior F F *

Figure 44. ST_Contains. The dark geometries represent geometry a and the gray geometries represent geometry b. In

all cases, geometry a contains geometry b completely.

268 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_Within

Use ST_Within to determine whether one geometry is completely within another

geometry.

ST_Within returns a value of 1 (one) if the first geometry is completely within the

second geometry. ST_Within returns the exact opposite result of ST_Contains.

The ST_Within function pattern matrix states that the interiors of both geometries

must intersect, and that the interior or boundary of the primary geometry

(geometry a) must not intersect the exterior of the secondary (geometry b). The

asterisk (*) indicates that all other intersections do not matter.

 Table 44. Matrix for ST_Within

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a Interior T * F

Geometry a

Boundary

* * F

Geometry a Exterior * * *

Figure 45 shows examples of ST_Within:

Figure 45. ST_Within

Chapter 22. Spatial functions: categories and uses 269

v A point geometry is within a multipoint geometry when its interior intersects

one of the points in the second geometry.

v A multipoint geometry is within a multipoint geometry when the interiors of all

points intersect the second geometry.

v A multipoint geometry is within a polygon geometry when all of the points are

either on the boundary of the polygon or in the interior of the polygon.

v A point geometry is within a linestring geometry when all of the points are

within the second geometry. In Figure 45 on page 269, the point is not within the

linestring because its interior does not intersect the linestring; however, the

multipoint geometry is within the linestring because all of its points intersect the

interior of the linestring.

v A linestring geometry is within another linestring geometries when all of its

points intersect the second geometry.

v A point geometry is not within a polygon geometry because its interior does

not intersect the boundary or interior of the polygon.

v A linestring geometry is within a polygon geometry when all of its points

intersect either the boundary or interior of the polygon.

v A polygon geometry is within a polygon geometry when all of its points

intersect either the boundary or interior of the polygon.

Functions that check intersections between geometries

ST_Intersects, ST_Crosses, ST_Overlaps, and ST_Touches all determine whether one

geometry intersects another. They differ mainly as to the scope of intersection that

they test for:

v ST_Intersects tests to determine whether the two geometries given to it meet one

of four conditions: that the geometries’ interiors intersect, that their boundaries

intersect, that the boundary of the first geometry intersects with the interior of

the second, or that the interior of the first geometry intersects with the boundary

of the second.

v ST_Crosses is used to analyze the intersection of geometries of different

dimensions, with one exception: it can also analyze the intersection of

linestrings. In all cases, the place of intersection is itself considered a geometry;

and ST_Crosses requires that this geometry be of a lesser dimension than the

greater of the intersecting geometries (or, if both are linestrings, that the place of

intersection be of a lesser dimension than a linestring). For example, the

dimensions of a linestring and polygon are 1 and 2, respectively. If two such

geometries intersect, and if the place of intersection is linear (the linestring’s

path along the polygon), then that place can itself be considered a linestring.

And because a linestring’s dimension (1) is lesser than a polygon’s (2),

ST_Crosses, after analyzing the intersection, would return a value of 1.

v The geometries given to ST_Overlaps as input must be of the same dimension.

ST_Overlaps requires that these geometries overlap part-way, forming a new

geometry (the region of overlap) that is the same dimension as they are.

v ST_Touches determines whether the boundaries of two geometries intersect.

ST_Intersects

Use ST_Intersects to determine whether two geometries intersect.

ST_Intersects returns a value of 1 (one) if the intersection does not result in an

empty set. ST_Intersects returns the exact opposite result of ST_Disjoint.

270 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The ST_Intersects function returns 1 (one) if the conditions of any of the following

pattern matrices returns TRUE.

 Table 45. Matrix for ST_Intersects (1). The ST_Intersects function returns 1 (one) if the

interiors of both geometries intersect.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Geometry a Interior T * *

Geometry a Exterior * * *

 Table 46. Matrix for ST_Intersects (2). The ST_Intersects function returns 1 (one) if the

boundary of the first geometry intersects the boundary of the second geometry.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Geometry a Interior * T *

Geometry a Exterior * * *

 Table 47. Matrix for ST_Intersects (3). The ST_Intersects function returns 1 (one) if the

boundary of the first geometry intersects the interior of the second.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

T * *

Geometry a Interior * * *

Geometry a Exterior * * *

 Table 48. Matrix for ST_Intersects (4). The ST_Intersects function returns 1 (one) if the

boundaries of either geometry intersect.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* T *

Geometry a Interior * * *

Geometry a Exterior * * *

ST_Crosses

Use ST_Crosses to determine whether one geometry crosses another.

ST_Crosses takes two geometries and returns a value of 1 (one) if:

v The intersection results in a geometry whose dimension is less than the

maximum dimension of the source geometries.

v The intersection set is interior to both source geometries.

ST_Crosses returns a null if the first geometry is a surface or multisurface or if the

second geometry is a point or multipoint. For all other combinations, ST_Crosses

returns either a value of 1 (indicating that the two geometries cross) or a value of 0

(indicating that they do not cross).

Chapter 22. Spatial functions: categories and uses 271

The following figure illustrates multipoints crossing linestring, linestring crossing

linestring, multiple points crossing a polygon, and linestring crossing a pollygon.

In three of the four cases, geometry b crosses geometry a. In the fourth case

geometry a is a multipoint which does not cross the line, but does touch the area

inside the geometry b polygon.

The dark geometries represent geometry a; the gray geometries represent geometry

b.

The pattern matrix in Table 49 applies if the first geometry is a point or multipoint,

or if the first geometry is a curve or multicurve, and the second geometry is a

surface. The matrix states that the interiors must intersect and that the interior of

the primary (geometry a) must intersect the exterior of the secondary (geometry b).

 Table 49. Matrix for ST_Crosses (1)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Geometry a Interior T * T

Geometry a Exterior * * *

The pattern matrix in Table 50 applies if the first and second geometries are both

curves or multicurves. The 0 indicates that the intersection of the interiors must be

a point (dimension 0). If the dimension of this intersection is 1 (intersect at a

linestring), the ST_Crosses function returns a value of 0 (indicating that the

geometries do not cross); however, the ST_Overlaps function returns a value of 1

(indicating that the geometries overlap).

 Table 50. Matrix for ST_Crosses (2)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Figure 46. ST_Crosses

272 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 50. Matrix for ST_Crosses (2) (continued)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a Interior 0 * *

Geometry a Exterior * * *

ST_Overlaps

Use ST_Overlaps to determine whether two geometries of the same dimension

overlap.

ST_Overlaps compares two geometries of the same dimension. It returns a value of

1 (one) if their intersection set results in a geometry that is different from both, but

that has the same dimension.

The dark geometries represent geometry a; the gray geometries represent geometry

b. In all cases, both geometries have the same dimension, and one overlaps the

other partway. The area of overlap is a new geometry; it has the same dimension

as geometries a and b.

The following figure illustrates overlaps in geometries. The three examples show

overlaps with points, linestrings, and polygons. With points the actual points

overlap. With linestrings, a portion of the line overlaps. With polygons a portion of

the area overlaps.

The pattern matrix in Table 51 applies if the first and second geometries are both

either points, multipoints, surfaces, or multisurfaces. ST_Overlaps returns a value

of 1 if the interior of each geometry intersects the other geometry’s interior and

exterior.

 Table 51. Matrix for ST_Overlaps (1)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Geometry a Interior T * T

Geometry a Exterior T * *

The pattern matrix in Table 52 on page 274 applies if the first and second

geometries are both curves or multicurves. In this case, the intersection of the

geometries must result in a geometry that has a dimension of 1 (another curve). If

the dimension of the intersection of the interiors is 0, ST_Overlaps returns a value

of 0 (indicating that the geometries do not overlap); however the ST_Crosses

Figure 47. ST_Overlaps

Chapter 22. Spatial functions: categories and uses 273

function would return a value of 1 (indicating that the geometries cross).

 Table 52. Matrix for ST_Overlaps (2)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Geometry a Interior 1 * T

Geometry a Exterior T * *

ST_Touches

ST_Touches returns a value of 1 (one) if all the points common to both geometries

can be found only on the boundaries.

The interiors of the geometries must not intersect one another. At least one

geometry must be a curve, surface, multicurve, or multisurface.

The dark geometries represent geometry a; the gray geometries represent geometry

b. In all cases, the boundary of geometry b intersects geometry a. The interior of

geometry b remains separate from geometry a.

The following figure shows examples of touching with types of geometries, such as

point and linestring, linestring and linestring, point and polygon, multipoint and

polygon, and linestring and polygon.

The pattern matrices show that the ST_Touches function returns 1 (one) when the

interiors of the geometry do not intersect, and the boundary of either geometry

intersects the other’s interior or its boundary.

 Table 53. Matrix for ST_Touches (1)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * *

Figure 48. ST_Touches

274 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 53. Matrix for ST_Touches (1) (continued)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a Interior F T *

Geometry a Exterior * * *

 Table 54. Matrix for ST_Touches (2)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

T * *

Geometry a Interior F * *

Geometry a Exterior * * *

 Table 55. Matrix for ST_Touches (3)

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* T *

Geometry a Interior F * *

Geometry a Exterior * * *

Functions that compare geometries’ envelopes

ST_EnvIntersects and ST_MBRIntersects are similar in that they determine whether

the smallest rectangle that encloses one geometry intersects with the smallest

rectangle that encloses another geometry. Such a rectangle has traditionally been

called an envelope. Multipolygons, polygons, multilinestrings, and crooked

linestrings abut against the sides of their envelopes; horizontal linestrings, vertical

linestrings, and points are slightly smaller than their envelopes. ST_EnvIntersects

tests to determine whether envelopes of geometries intersect.

The smallest rectangular area into which a geometry can fit is called a minimum

bounding rectangle (MBR). The envelopes surrounding multipolygons, polygons,

multilinestrings, and crooked linestrings are actually MBRs. But the envelopes

surrounding horizontal linestrings, vertical linestrings, and points are not MBRs,

because they do not constitute a minimum area in which these latter geometries fit.

These latter geometries occupy no definable space and therefore cannot have

MBRs. Nevertheless, a convention has been adopted whereby they are referred to

as their own MBRs. Therefore, with respect to multipolygons, polygons,

multilinestrings, and crooked linestrings, ST_MBRIntersects tests the intersection of

the same surrounding rectangles that ST_EnvIntersects tests. But for horizontal

linestrings, vertical linestrings, and points, ST_MBRIntersects tests the intersections

of these geometries themselves.

ST_EnvIntersects

ST_EnvIntersects returns a value of 1 (one) if the envelopes of two geometries

intersect. It is a convenience function that efficiently implements ST_Intersects

(ST_Envelope(g1),ST_Envelope(g2)).

ST_MBRIntersects

ST_MBRIntersects returns a value of 1 (one) if the minimum bounding rectangles

(MBRs) of two geometries intersect.

Chapter 22. Spatial functions: categories and uses 275

Functions that check whether two things are identical

ST_EqualCoordsys

ST_EqualCoordsys returns a value of 1 (one) if two coordinate system definitions

are identical.

In comparing the definitions, ST_EqualCoordsys disregards differences in case,

spaces, parentheses, and representation of floating point numbers.

ST_Equals

ST_Equals returns a value of 1 (one) if two geometries are identical.

The order of the points used to define the geometries is not relevant to the test of

equality.

In the six examples (point, multipoint, linestring, multistring, polygon, and multipolygon) geometry a and geometry

b are the same.

Figure 49. ST_Equals. The dark geometries represent geometry a; the gray geometries represent geometry b. In all

cases, geometry a is equal to geometry b.

276 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 56. Matrix for equality. The DE-9IM pattern matrix for equality ensures that the interiors

intersect and that no part interior or boundary of either geometry intersects the exterior of the

other.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

* * F

Geometry a Interior T * F

Geometry a Exterior F F *

ST_EqualSRS

Use ST_EqualSRS to test whether two spatial reference systems are identical.

ST_EqualSRS returns a value of 1 (one) if two spatial reference systems are

identical, provided that the numeric identifier of either or both systems is not null.

Function that checks for no intersection between two geometries

ST_Disjoint returns a value of 1 (one) if the intersection of the two geometries is an

empty set. This function returns the exact opposite of what ST_Intersects returns.

Chapter 22. Spatial functions: categories and uses 277

Table 57. Matrix for ST_Disjoint. This matrix simply states that neither the interiors nor the

boundaries of either geometry intersect.

Geometry b Interior Geometry b

Boundary

Geometry b Exterior

Geometry a

Boundary

F F *

Geometry a Interior F F *

Geometry a Exterior * * *

Function that compares geometries to the DE-9IM pattern matrix string

The ST_Relate function compares two geometries and returns a value of 1 (one) if

the geometries meet the conditions specified by the DE-9IM pattern matrix string;

otherwise, the function returns a value of 0 (zero).

The illustration shows different geometries and how the boundaries do not intersect at any point.

Figure 50. ST_Disjoint. The dark geometries represent geometry a; the gray geometries represent geometry b. In all

cases, geometry a and geometry b are disjoint from one another.

278 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Functions that return information about properties of geometries

This section introduces spatial functions that return information about properties of

geometries. This information concerns:

v Data types of geometries

v Coordinates and measures within a geometry

v Rings, boundaries, envelopes, and minimum bounding rectangles (MBRs)

v Dimensions

v The qualities of being closed, empty, or simple

v Base geometries within a geometry collection

v Spatial reference systems

Some properties are geometries in their own right; for example, the exterior and

interior rings of a surface, or the start- and endpoints of a curve. These geometries

are produced by some of the functions in this category. Functions that produce

other kinds of geometries—for example, geometries that represent zones that

surround a given location—belong to another category. For information about this

other category, which is called “Spatial functions that generate new geometries”,

see the appropriate link or cross-reference at the end of this section.

Function that returns data-type information

ST_GeometryType takes a geometry as an input parameter and returns the

fully-qualified type name of the dynamic type of that geometry.

Functions that return coordinate and measure information

The following functions return information about the coordinates and measures

within a geometry. For example, ST_X can return the X coordinate within a

specified point, ST_MaxX returns the highest X coordinate within a geometry, and

ST_MinX returns the lowest X coordinate within a geometry.

These functions are:

v ST_CoordDim

v ST_IsMeasured

v ST_IsValid

v ST_Is3D

v ST_M

v ST_MaxM

v ST_MaxX

v ST_MaxY

v ST_MaxZ

v ST_MinM

v ST_MinX

v ST_MinY

v ST_MinZ

v ST_X

v ST_Y

Chapter 22. Spatial functions: categories and uses 279

v ST_Z

ST_CoordDim

ST_CoordDim returns a value that denotes what types of coordinates a geometry

has, and whether the geometry also contains any measures.

This value is called a coordinate dimension. A coordinate dimension is not the same

thing as the property referred to as dimension. The latter indicates whether a

geometry has breadth or length, not whether it contains coordinates of a specific

type or measures.

ST_IsMeasured

ST_IsMeasured takes a geometry as an input parameter and returns 1 if the given

geometry has M coordinates (measures). Otherwise 0 (zero) is returned.

ST_IsValid

ST_IsValid takes a geometry as an input parameter and returns 1 if it is valid.

Otherwise 0 (zero) is returned. A geometry is valid only if all of the attributes in

the structured type are consistent with the internal representation of geometry

data, and if the internal representation is not corrupted.

ST_Is3D

ST_Is3d takes a geometry as an input parameter and returns 1 if the given

geometry has Z coordinates. Otherwise, 0 (zero) is returned.

ST_M

If a measure is stored with a given point, ST_M can take the point as an input

parameter and return the measure.

ST_MaxM

ST_MaxM takes a geometry as an input parameter and returns its maximum

measure.

ST_MaxX

ST_MaxX takes a geometry as an input parameter and returns its maximum X

coordinate.

ST_MaxY

ST_MaxY takes a geometry as an input parameter and returns its maximum Y

coordinate.

ST_MaxZ

ST_MaxZ takes a geometry as an input parameter and returns its maximum Z

coordinate.

ST_MinM

ST_MinM takes a geometry as an input parameter and returns its minimum

measure.

280 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_MinX

ST_MinX takes a geometry as an input parameter and returns its minimum X

coordinate.

ST_MinY

ST_MinY takes a geometry as an input parameter and returns its minimum Y

coordinate.

ST_MinZ

ST_MinY takes a geometry as an input parameter and returns its minimum Z

coordinate.

ST_X

ST_X can take a point as an input parameter and return the point’s X coordinate.

ST_Y

ST_Y can take a point as an input parameter and return the point’s Y coordinate.

ST_Z

If a Z coordinate is stored with a given point, ST_Z can take the point as an input

parameter and return the Z coordinate.

Functions that return information about geometries within a geometry

The following functions return information about geometries within a geometry.

Some functions identify specific points within a geometry; others return the

number of base geometries within a collection.

These functions are:

v ST_Centroid

v ST_EndPoint

v ST_GeometryN

v ST_LineStringN

v ST_MidPoint

v ST_NumGeometries

v ST_NumLineStrings

v ST_NumPoints

v ST_NumPolygons

v ST_PointN

v ST_PolygonN

v ST_StartPoint

ST_Centroid

ST_Centroid takes a geometry as an input parameter and returns the geometric

center, which is the center of the minimum bounding rectangle of the given

geometry, as a point.

Chapter 22. Spatial functions: categories and uses 281

ST_EndPoint

ST_Endpoint takes a curve as an input parameter and returns the point that is the

last point of the curve.

ST_GeometryN

ST_GeometryN takes a geometry collection and an index as input parameters and

returns the geometry in the collection that is identified by the index.

ST_LineStringN

ST_LineStringN takes a multilinestring and an index as input parameters and

returns the linestring that is identified by the index.

ST_MidPoint

ST_MidPoint takes a curve as an input parameter and returns the point on the

curve that is equidistant from both end points of the curve, measured along the

curve.

ST_NumGeometries

ST_NumGeometries takes a geometry collection as an input parameter and returns

the number of geometries in the collection.

ST_NumLineStrings

ST_NumLineStrings takes a multilinestring as an input parameter and returns the

number of linestrings that it contains.

ST_NumPoints

ST_NumPoints takes a geometry as an input parameter and returns the number of

points that were used to define that geometry. For example, if the geometry is a

polygon and five points were used to define that polygon, then the returned

number is 5.

ST_NumPolygons

ST_NumPolygons takes a multipolygon as an input parameter and returns the

number of polygons that it contains.

ST_PointN

ST_PointN takes a linestring or a multipoint and an index as input parameters and

returns that point in the linestring or multipoint that is identified by the index.

ST_PolygonN

ST_PolygonN takes a multipolygon and an index as input parameters and returns

the polygon that is identified by the index.

ST_StartPoint

ST_StartPoint takes a curve as an input parameter and returns the point that is the

first point of the curve.

282 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Functions that show information about boundaries, envelopes, and

rings

The following functions return information about demarcations that divide an

inner part of a geometry from an outer part, or that divide the geometry itself from

the space external to it. For example, ST_Boundary returns a geometry’s boundary

in the form of a curve.

These functions are:

v ST_Boundary

v ST_Envelope

v ST_EnvIntersects

v ST_ExteriorRing

v ST_InteriorRingN

v ST_MBR

v ST_MBRIntersects

v ST_NumInteriorRing

v ST_Perimeter

ST_Envelope

ST_Envelope takes a geometry as an input parameter and returns an envelope

around the geometry. The envelope is a rectangle that is represented as a polygon.

ST_EnvIntersects

ST_EnvIntersects takes two geometries as input parameters and returns 1 if the

envelopes of two geometries intersect. Otherwise, 0 (zero) is returned.

ST_ExteriorRing

ST_ExteriorRing takes a polygon as an input parameter and returns its exterior

ring as a curve.

ST_InteriorRingN

ST_InteriorRingN takes a polygon and an index as input parameters and returns

the interior ring identified by the given index as a linestring. The interior rings are

organized according to the rules defined by the internal geometry verification

routines.

ST_MBR

ST_MBR takes a geometry as an input parameter and returns its minimum

bounding rectangle.

ST_MBRIntersects

ST_MBRIntersects returns a value of 1 (one) if the minimum bounding rectangles

(MBRs) of two geometries intersect.

ST_NumInteriorRing

ST_NumInteriorRing takes a polygon as an input parameter and returns the

number of its interior rings.

Chapter 22. Spatial functions: categories and uses 283

ST_Perimeter

ST_Perimeter takes a surface or multisurface and, optionally, a unit as input

parameters and returns the perimeter of the surface or multisurface (that is, the

length of its boundary) measured in the given units.

Functions that return information about a geometry’s dimensions

The following functions return information about the dimension of a geometry. For

example, ST_Area reports how much area a given geometry covers.

These functions are:

v ST_Area

v ST_Dimension

v ST_Length

ST_Area

ST_Area takes a geometry and, optionally, a unit as input parameters and returns

the area covered by the given geometry in the given unit of measure.

ST_Dimension

ST_Dimension takes a geometry as an input parameter and returns its dimension.

ST_Length

ST_Length takes a curve or multicurve and, optionally, a unit as input parameters

and returns the length of the given curve or multicurve in the given unit of

measure.

Functions that reveal whether a geometry is closed, empty, or simple

The following functions indicate:

v Whether a given curve or multicurve is closed (that is, whether the start point

and end point of the curve or multicurve are the same)

v Whether a given geometry is empty (that is, devoid of points)

v Whether a curve, multicurve, or multipoint is simple (that is, whether such

geometries have typical configurations)

ST_IsClosed

ST_IsClosed takes a curve or multicurve as an input parameter and returns 1 if the

given curve or multicurve is closed. Otherwise, 0 (zero) is returned.

ST_IsEmpty

ST_IsEmpty takes a geometry as an input parameter and returns 1 if the given

geometry is empty. Otherwise 0 (zero) is returned.

ST_IsSimple

ST_IsSimple takes a geometry as an input parameter and returns 1 if the given

geometry is simple. Otherwise, 0 (zero) is returned.

284 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Functions that identify a geometry’s spatial reference system

The following functions return values that identify the spatial reference system that

has been associated with the geometry. In addition, the function ST_SrsID can

change the geometry’s spatial reference system without changing or transforming

the geometry.

ST_SrsId (also called ST_SRID)

ST_SrsId (or ST_SRID) takes a geometry and, optionally, a spatial reference system

identifier as input parameters. What this function returns depends on what input

parameters are specified:

v If the spatial reference system identifier is specified, the function returns the

geometry with its spatial reference system changed to the specified spatial

reference system. No transformation of the geometry is performed.

v If no spatial reference system identifier is given as an input parameter, the

current spatial reference system identifier of the given geometry is returned.

ST_SrsName

ST_SrsName takes a geometry as an input parameter and returns the name of the

spatial reference system in which the given geometry is represented.

Functions that generate new geometries from existing geometries

This section introduces the category of functions that derive new geometries from

existing ones. This category does not include functions that derive geometries that

represent properties of other geometries. Rather, it is for functions that:

v Convert geometries into other geometries

v Create geometries that represent configurations of space

v Derive individual geometries from multiple geometries

v Create geometries based on measures

v Create modifications of geometries

Functions that convert one geometry to another

The following functions can convert geometries of a supertype into corresponding

geometries of a subtype. For example, the ST_ToLineString function can convert a

linestring of type ST_Geometry into a linestring of ST_LineString. Some of these

functions can also combine base geometries and geometry collections into a single

geometry collection. For example, ST_ToMultiLine can convert a linestring and a

multilinestring into a single multilinestring.

ST_Polygon

ST_Polygon can construct a polygon from a closed linestring. The linestring will

define the exterior ring of the polygon.

ST_ToGeomColl

ST_ToGeomColl takes a geometry as an input parameter and converts it to a

geometry collection.

Chapter 22. Spatial functions: categories and uses 285

ST_ToLineString

ST_ToLineString takes a geometry as an input parameter and converts it to a

linestring.

ST_ToMultiLine

ST_ToMultiLine takes a geometry as an input parameter and converts it to a

multilinestring.

ST_ToMultiPoint

ST_ToMultiPoint takes a geometry as an input parameter and converts it to a

multipoint.

ST_ToMultiPolygon

ST_ToMultiPolygon takes a geometry as an input parameter and converts it to a

multipolygon.

ST_ToPoint

ST_ToPoint takes a geometry as an input parameter and converts it to a point.

ST_ToPolygon

ST_ToPolygon takes a geometry as an input parameter and converts it to a

polygon.

Functions that create new geometries with different space

configurations

Using existing geometries as a starting point, the following functions create new

geometries that represent circular areas or other configurations of space. For

example, given a point that represents the center of a proposed airport, ST_Buffer

can create a surface that represents, in circular form, the proposed extent of the

airport.

These functions are:

v ST_Buffer

v ST_ConvexHull

v ST_Difference

v ST_Intersection

v ST_SymDifference

ST_Buffer

The ST_Buffer function can generate a new geometry that extends outward from

an existing geometry by a specified radius. The new geometry will be a surface

when the existing geometry is buffered or whenever the elements of a collection

are so close that the buffers around the single elements of the collection overlap.

However, when the buffers are separate, individual buffer surfaces result, in which

case ST_Buffer returns a multisurface.

The following figure illustrates the buffer around single and overlapped elements.

286 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The ST_Buffer function accepts both positive and negative distance; however, only

geometries with a dimension of two (surfaces and multisurfaces) apply a negative

buffer. The absolute value of the buffer distance is used whenever the dimension of

the source geometry is less than 2 (all geometries that are not surfaces or

multisurfaces).

In general, for exterior rings, positive buffer distances generate surface rings that

are away from the center of the source geometry; negative buffer distances

generate surface or multisurface rings toward the center. For interior rings of a

surface or multisurface, a positive buffer distance generates a buffer ring toward

the center, and a negative buffer distance generates a buffer ring away from the

center.

The buffering process merges surfaces that overlap. Negative distances greater than

one half the maximum interior width of a polygon result in an empty geometry.

ST_ConvexHull

The ST_ConvexHull function returns the convex hull of any geometry that has at

least three vertices forming a convex. Vertices are the pairs of X and Y coordinates

within geometries. A convex hull is the smallest convex polygon that can be

formed by all vertices within a given set of vertices.

The following illustration shows four examples of convex hull. In the first example

an irregular shape resembling the letter c has been drawn. The c is closed by the

convex hull. In the fourth example there are four points with lines in a zig-zag

pattern. The convex line goes between points four and two on one side and three

and one on the other side.

Figure 51. ST_Buffer

Chapter 22. Spatial functions: categories and uses 287

ST_Difference

ST_Difference takes two geometries of the same dimension as input. The

ST_Difference function returns that portion of the first geometry that is not

intersected by the second geometry. This operation is the spatial equivalent of the

logical AND NOT. The portion of geometry returned by ST_Difference is itself a

geometry—a collection that has the same dimension as the geometries taken as

input. If these two geometries are equal—that is, if they occupy the same space—

the returned geometry is empty.

To the left of each arrow are two geometries that are given to ST_Difference as

input. To the right of each arrow is the output of ST_Difference. If part of the first

geometry is intersected by the second, the output is that part of the first geometry

that is not intersected. If the geometries given as input are equal, the output is an

empty geometry (denoted by the term nil)

This figure illustrates input and output for ST_Difference. For example, if input is

points, and point a and point b are the same, the output would be null. If point a

and point b are different, output would be a new point between the two. If input

was a polygon for b and a smaller but identical polygon for geometry a inside the

first, the outcome would be null. If the polygons were overlapping, the output

would be the outer edges of the combined polygons.

ST_Intersection

The ST_Intersection function returns a set of points, represented as a geometry,

which define the intersection of two given geometries.

Figure 52. ST_ConvexHull

Figure 53. ST_Difference

288 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If the geometries given to ST_Intersection as input do not intersect, or if they do,

and the dimension of their intersection is less than the geometries’ dimensions,

ST_Intersection returns an empty geometry.

To the left of each arrow are two intersecting geometries that are given to

ST_Intersection as input. To the right of each arrow is the output of

ST_Intersection—a geometry that represents the intersection created by the

geometries at the left.

This figure illustrates ten examples of output of ST_Intersection, which returns

information on where given geometries intersect. For example, if b was a linestring

and geometry a was a point on the line, the output would be the multipoint where

geometry a and geometry b converged. If geometry a and geometry b were

overlapping polygons, the output would be a new multipolygon of only that

portion that overlapped.

ST_SymDifference

The ST_SymDifference function returns the symmetric difference (the spatial

equivalent of the logical XOR operation) of two intersecting geometries that have

the same dimension. If these geometries are equal, ST_SymDifference returns an

empty geometry. If they are not equal, then a portion of one or both of them will

lie outside the area of intersection.

Figure 54. ST_Intersection

Chapter 22. Spatial functions: categories and uses 289

Functions that derive one geometry from many

The following functions derive individual geometries from multiple geometries.

For example, ST_Union combines two geometries into a single geometry.

MBR Aggregate

The combination of the functions ST_BuildMBRAggr and ST_GetAggrResult

aggregates a column of geometries in a selected column to a single geometry by

constructing a rectangle that represents the minimum bounding rectangle that

encloses all the geometries in the column. Z and M coordinates are discarded when

the aggregate is computed.

ST_Union

The ST_Union function returns the union set of two geometries.

This operation is the spatial equivalent of the logical OR. The two geometries must

be of the same dimension. ST_Union always returns the result as a collection.

Union Aggregate

A union aggregate is the combination of the ST_BuildUnionAggr and

ST_GetAggrResult functions. This combination aggregates a column of geometries

in a table to a single geometry by constructing the union.

Functions that derive new geometries based on measures

The functions explained in this section can create geometries whose points are

associated with a specific measure or with a specific sequence of two measures. For

example, suppose that measures ranging from a value of 4 to a value of 8 are

stored with the points in a multicurve. If you want to know with which points a

measure with a value of 7 is stored, you could use the ST_FindMeasure function to

return those points within a single multipoint.

These functions are:

v ST_FindMeasure (also called ST_LocateAlong)

v ST_MeasureBetween (also called ST_LocateBetween)

Figure 55. ST_Union

290 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_FindMeasure (also called ST_LocateAlong)

ST_FindMeasure (or ST_LocateAlong) takes a geometry and measure as input

parameters. It returns a multipoint or multicurve of the given geometry that

matched the specified measure. For points and multipoints, all the points with the

specified measure are returned. For curves, multicurves, surfaces, and

multisurfaces, interpolation is performed to compute the result. The computation

for surfaces and multisurfaces is performed on the boundary of the geometry.

ST_MeasureBetween (also called ST_LocateBetween)

ST_MeasureBetween (or ST_LocateBetween) takes a geometry and two M

coordinates (measures) as input parameters and returns that part of the given

geometry that represents the set of disconnected paths or points between the two

M coordinates.

For curves, multicurves, surfaces, and multisurfaces, interpolation is performed to

compute the result. In Figure 56 points 3, 4, 5, 6, 7, 8, and 9 represent a curve. If

the two M coordiates are 4 and 7, ST_MeasureBetween returns the part of the

curve between points 4 and 7.

Functions that create modified forms of existing geometries

The following functions create modified forms of existing geometries. For example,

the ST_AppendPoint function creates extended versions of existing curves. Each

version includes the points in an existing curve plus an additional point.

These functions are:

v ST_AppendPoint

v ST_ChangePoint

v ST_Generalize

v ST_M

v ST_PerpPoints

v ST_RemovePoint

v ST_X

v ST_Y

v ST_Z

ST_AppendPoint

ST_AppendPoint takes a curve and a point as input parameters and extends the

curve by the given point.

Figure 56. LocateBetween

Chapter 22. Spatial functions: categories and uses 291

ST_ChangePoint

ST_ChangePoint takes a curve and two points as input parameters. It replaces all

occurrences of the first point in the given curve with the second point and returns

the resulting curve.

ST_Generalize

ST_Generalize takes a geometry and a threshold as input parameters and

represents the given geometry with a reduced number of points, while preserving

the general characteristics of the geometry. The Douglas-Peucker line-simplification

algorithm is used, by which the sequence of points that define the geometry is

recursively subdivided until a run of the points can be replaced by a straight line

segment. In this line segment, none of the defining points deviates from the

straight line segment by more than the given threshold. Z and M coordinates are

not considered for the simplification.

ST_M

If a given point is not associated with a measure, ST_M can provide a measure to

be stored with the point. If the point has an associated measure, ST_M can replace

this measure with another one.

ST_PerpPoints

ST_PerpPoints takes a curve or multicurve and a point as input parameters and

returns the perpendicular projection of the given point on the curve or multicurve.

The point with the smallest distance between the given point and the

perpendicular point is returned. If two or more such perpendicular projected

points are equidistant from the given point, they are all returned.

ST_RemovePoint

ST_RemovePoint takes a curve and a point as input parameters and returns the

given curve with all points equal to the specified point removed from it. If the

given curve has Z or M coordinates, then the point must also have Z or M

coordinates.

ST_X

ST_X can replace a point’s X coordinate with another X coordinate.

ST_Y

ST_Y can replace a point’s Y coordinate with another Y coordinate.

ST_Z

If a given point has no Z coordinate, ST_Z can add a Z coordinate to the point. If

the point does have a Z coordinate, ST_Z can replace this coordinate with another

Z coordinate.

Function that returns distance information

ST_Distance takes two geometries and, optionally, a unit as input parameters and

returns the shortest distance between any point in the first geometry to any point

in the second geometry, measured in the given units.

292 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If any of the two given geometries is null or is empty, then null is returned.

For example, ST_Distance could report the shortest distance an aircraft must travel

between two locations. Figure 57 illustrates this information.

Function that returns index information

ST_GetIndexParms takes either the identifier for a spatial index or for a spatial

column as an input parameter and returns the parameters used to define the index

or the index on the spatial column. If an additional parameter number is specified,

only the parameter identified by the number is returned.

Conversions between coordinate systems

ST_Transform takes a geometry and a spatial reference system identifier as input

parameters and transforms the geometry to be represented in the given spatial

reference system. Projections and conversions between different coordinate systems

are performed and the coordinates of the geometries are adjusted accordingly.

The figure shows a map of the United States with a straight line between points labeled Los Angeles and Chicago.

Figure 57. Minimum distance between two cities. ST_Distance can take the coordinates for the locations of Los

Angeles and Chicago as input, and return a value denoting the minimum distance between these locations.

Chapter 22. Spatial functions: categories and uses 293

294 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 23. Spatial functions: syntax and parameters

This section introduces the spatial functions described in the following sections. It

discusses certain factors that are common to all or most spatial functions. The

functions are documented here in alphabetical order.

Spatial functions: considerations and associated data types

This section provides information that you need to know when you code spatial

functions. This information includes:

v Factors to consider: the requirement to specify the schema to which spatial

functions belong, and the fact that some functions can be invoked as methods.

v How to address a situation in which a spatial function cannot process the type

of geometries returned by another spatial function.

v A table showing which functions take values of each spatial data type as input

When you use spatial functions, be aware of these factors:

v Before a spatial function can be called, its name must be qualified by the name

of the schema to which spatial functions belong: DB2GSE. One way to do this is

to explicitly specify the schema in the SQL statement that references the

function; for example:

SELECT db2gse.ST_Relate (g1, g2, ’T*F**FFF2’) EQUALS FROM relate_test

Alternatively, to avoid specifying the schema each time a function is to be called,

you can add DB2GSE to the CURRENT FUNCTION PATH special register. To

obtain the current settings for this special register, type the following SQL

command:

VALUES CURRENT FUNCTION PATH

To update the CURRENT FUNCTION PATH special register with DB2GSE, issue

the following SQL command:

set CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

v Some spatial functions can be invoked as methods. In the following code, for

example, ST_Area is invoked first as a function and then as a method. In both

cases, ST_Area is coded to operate on a polygon that has an ID of 10 and that is

stored in the SALES_ZONE column of a table named STORES. When invoked,

ST_Area will return the area of the real-world feature—Sales Zone no. 10—that

the polygon represents.

ST_Area invoked as a function:

SELECT ST_Area(sales_zone)

FROM stores

WHERE id = 10

ST_Area invoked as a method:

SELECT sales_zone..ST_Area()

FROM stores

WHERE id = 10

The functions ST_BuildMBRAggr and ST_BuildUnionAggr are described in ″MBR

Aggregate″ and ″Union Aggregate″, respectively.

© Copyright IBM Corp. 1998, 2006 295

Factors to consider

Treating values of ST_Geometry as values of a subtype

If a spatial function returns a geometry whose static type is a super type, and if

the geometry is passed to a function that accepts only geometries of a type that is

subordinate to this super type, a compile-time exception is raised.

For example, the static type of the output parameter of the ST_Union function is

ST_Geometry, the super type of all spatial data types. The static input parameter

for the ST_PointOnSurface function can be either ST_Polygon or ST_MultiPolygon,

two subtypes of ST_Geometry. If DB2® attempts to pass geometries returned by

ST_Union to ST_PointOnSurface, DB2 raises the following compile-time exception:

SQL00440N No function by the name "ST_POINTONSURFACE"

having compatible arguments was found in the function

path. SQLSTATE=42884

This message indicates that DB2 could not find a function that is named

ST_PointOnSurface and that has an input parameter of ST_Geometry.

To let geometries of a super type pass to functions that accept only subtypes of the

super type, use the TREAT operator. As indicated earlier, ST_Union returns

geometries of a static type of ST_Geometry. It can also return geometries of a

dynamic subtype of ST_Geometry. Suppose, for example, that it returns a geometry

with a dynamic type of ST_MultiPolygon. In that case, the TREAT operator

requires that this geometry be used with the static type ST_MultiPolygon. This

matches one of the data types of the input parameter of ST_PointOnSurface. If

ST_Union does not return an ST_MultiPolygon value, DB2 raises a run-time

exception.

If a function returns a geometry of a super type, the TREAT operator generally can

tell DB2 to regard this geometry as a subtype of this super type. But be aware that

this operation succeeds only if the subtype matches or is subordinate to a static

subtype defined as an input parameter of the function to which the geometry is

passed. If this condition is not met, DB2 raises a run-time exception.

Consider another example: suppose that you want to determine the perpendicular

points for a given point on the boundary of a polygon that has no holes. You use

the ST_Boundary function to derive the boundary from the polygon. The static

output parameter of ST_Boundary is ST_Geometry, but ST_PerpPoints accepts

ST_Curve geometries. Because all polygons have a linestring (which is also a

curve) as a boundary, and because the data type of linestrings (ST_LineString) is

subordinate to ST_Curve, the following operation will let an ST_Geometry polygon

returned by ST_Boundary pass to ST_PerpPoints:

SELECT ST_AsText(ST_PerpPoints(TREAT(ST_Boundary(polygon) as ST_Curve)),

 ST_Point(30.5, 65.3, 1)))

FROM polygon_table

Instead of invoking ST_Boundary and ST_PerpPoints as functions, you can invoke

them as methods. To do so, specify the following code:

SELECT TREAT(ST_Boundary(polygon) as ST_Curve)..

 ST_PerpPoints(St_Point(30.5, 65.3,))..ST_AsText()

FROM polygon_table

296 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Spatial functions listed according to input type

Table 58 lists the spatial functions according to the type of input that they can

accept.

Important: As noted elsewhere, the spatial data types form a hierarchy, with

ST_Geometry as the root. When the documentation for DB2 Spatial Extender

indicates that a value of a super type in this hierarchy can be used as input to a

function, alternatively, a value of any subtype of this super type can also be used

as input to the function.

For example, the first entries in Table 58 indicate that ST_Area and a number of

other functions can take values of the ST_Geometry data type as input. Therefore,

input to these functions can also be values of any subtype of ST_Geometry:

ST_Point, ST_Curve, ST_LineString, and so on.

 Table 58. Spatial functions listed according to input type

Data type of input parameter Function

ST_Geometry

 EnvelopesIntersect

ST_Area

ST_AsBinary

ST_AsGML

ST_AsShape

ST_AsText

ST_Boundary

ST_Buffer

ST_BuildMBRAggr

ST_BuildUnionAggr

ST_Centroid

ST_Contains

ST_ConvexHull

ST_CoordDim

ST_Crosses

ST_Difference

ST_Dimension

ST_Disjoint

ST_Distance

ST_Envelope

ST_EnvIntersects

ST_Equals

ST_FindMeasure or ST_LocateAlong

ST_Generalize

ST_GeometryType

Chapter 23. Spatial functions: syntax and parameters 297

Table 58. Spatial functions listed according to input type (continued)

Data type of input parameter Function

ST_Geometry, continued

 ST_Intersection

ST_Intersects

ST_Is3D

ST_IsEmpty

ST_IsMeasured

ST_IsSimple

ST_IsValid

ST_MaxM

ST_MaxX

ST_MaxY

ST_MaxZ

ST_MBR

ST_MBRIntersects

ST_MeasureBetween or ST_LocateBetween

ST_MinM

ST_MinX

ST_MinY

ST_MinZ

ST_NumPoints

ST_Overlaps

ST_Relate

ST_SRID or ST_SrsId

ST_SrsName

ST_SymDifference

ST_ToGeomColl

ST_ToLineString

ST_ToMultiLine

ST_ToMultiPoint

ST_ToMultiPolygon

ST_ToPoint

ST_ToPolygon

ST_Touches

ST_Transform

ST_Union

ST_Within

ST_Point

 ST_M

ST_X

ST_Y

ST_Z

ST_Curve

 ST_AppendPoint

ST_ChangePoint

ST_EndPoint

ST_IsClosed

ST_IsRing

ST_Length

ST_MidPoint

ST_PerpPoints

ST_RemovePoint

ST_StartPoint

ST_LineString

 ST_PointN

ST_Polygon

298 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 58. Spatial functions listed according to input type (continued)

Data type of input parameter Function

ST_Surface

 ST_Perimeter

ST_PointOnSurface

ST_GeomCollection

 ST_GeometryN

ST_NumGeometries

ST_MultiPoint ST_PointN

ST_MultiCurve

 ST_IsClosed

ST_Length

ST_PerpPoints

ST_MultiLineString

 ST_LineStringN

ST_NumLineStrings

ST_Polygon

ST_MultiSurface

 ST_Perimeter

ST_PointOnSurface

ST_MultiPolygon

 ST_NumPolygons

ST_PolygonN

EnvelopesIntersect

EnvelopesIntersect accepts two types of input parameters:

v Two geometries

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects the

envelope of the second geometry. Otherwise, 0 (zero) is returned.

v A geometry, four type DOUBLE coordinate values that define the lower-left and

upper-right corners of a rectangular window, and the spatial reference system

identifier.

EnvelopesIntersect returns 1 if the envelope of the first geometry intersects with

the envelope defined by the four type DOUBLE values. Otherwise, 0 (zero) is

returned.

Syntax

�� db2gse.EnvelopesIntersect (geometry1 , geometry2)

rectangular-window
 ��

rectangular-window:

 x_min , y_min , x_max , y_max , srs_id

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

Chapter 23. Spatial functions: syntax and parameters 299

geometry whose envelope is to be tested for intersection with the envelope of

either geometry2 or the rectangular window defined by the four type DOUBLE

values.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry whose envelope is to be tested for intersection with the envelope of

geometry1.

x_min

Specifies the minimum X coordinate value for the envelope. You must specify a

non-null value for this parameter.

 The data type of this parameter is DOUBLE.

 For geodetic data, the following conditions apply:

v x_min must be a longitude value between –180 and 180 degrees.

v x_min is greater than x_max when the envelope overlaps the 180th meridian.

y_min

Specifies the minimum Y coordinate value for the envelope. You must specify a

non-null value for this parameter.

 The data type of this parameter is DOUBLE.

 For geodetic data, the following conditions apply:

v y_min must be a latitude value between –90 and 90 degrees.

v y_min must be less than the y_max value.

x_max

Specifies the maximum X coordinate value for the envelope. You must specify

a non-null value for this parameter.

 The data type of this parameter is DOUBLE.

 For geodetic data, the following conditions apply:

v x_max must be a longitude value between –180 and 180 degrees.

v x_max is less than the x_min value when the envelope overlaps the 180th

meridian.

y_max

Specifies the maximum Y coordinate value for the envelope. You must specify

a non-null value for this parameter.

 The data type of this parameter is DOUBLE.

 For geodetic data, the following conditions apply:

v y_max must be a latitude value between –90 and 90 degrees.

v y_max must be greater than the y_min value.

srs_id

Uniquely identifies the spatial reference system. The spatial reference system

identifier must match the spatial reference system identifier of the geometry

parameter. You must specify a non-null value for this parameter.

 The data type of this parameter is INTEGER.

Return type

INTEGER

300 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Example

This example creates two polygons that represent counties and then determines if

any of them intersect a geographic area specified by the four type DOUBLE values.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE counties (id INTEGER, name CHAR(20), geometry ST_Polygon)

INSERT INTO counties VALUES

 (1, ’County_1’, ST_Polygon(’polygon((0 0, 30 0, 40 30, 40 35,

 5 35, 5 10, 20 10, 20 5, 0 0))’ ,0))

INSERT INTO counties VALUES

 (2, ’County_2’, ST_Polygon(’polygon((15 15, 15 20, 60 20, 60 15,

 15 15))’ ,0))

INSERT INTO counties VALUES

 (3, ’County_3’, ST_Polygon(’polygon((115 15, 115 20, 160 20, 160 15,

 115 15))’ ,0))

SELECT name

FROM counties as c

WHERE EnvelopesIntersect(c.geometry, 15, 15, 60, 20, 0) =1

Results:

Name

County_1

County_2

MBR Aggregate

The combination of the functions ST_BuildMBRAggr and ST_GetAggrResult

aggregates a column of geometries in a selected column to a single geometry by

constructing a rectangle that represents the minimum bounding rectangle that

encloses all the geometries in the column. Z and M coordinates are discarded when

the aggregate is computed.

If all of the geometries to be combined are null, then null is returned. If all of the

geometries are either null or empty, then an empty geometry is returned. If the

minimum bounding rectangle of all the geometries to be combined results in a

point, then this point is returned as an ST_Point value. If the minimum bounding

rectangle of all the geometries to be combined results in a horizontal or vertical

linestring, then this linestring is returned as an ST_LineString value. Otherwise, the

minimum bounding rectangle is returned as an ST_Polygon value.

Syntax

�� db2gse.ST_GetAggrResult (MAX (�

� db2gse.ST_BuildMBRAggr (geometries))) ��

Chapter 23. Spatial functions: syntax and parameters 301

Parameter

geometries

A selected column that has a type of ST_Geometry or one of its subtypes

and represents all the geometries for which the minimum bounding

rectangle is to be computed.

Return type

db2gse.ST_Geometry

Restrictions

You cannot construct the union aggregate of a spatial column in a full-select in any

of the following situations:

v In an MPP environment.

v If GROUP BY clause is used in the full-select.

v If you use a function other than the DB2 aggregate function MAX.

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example shows how to use the ST_BuildMBRAggr function to obtain the

maximum bounding rectangle of all of the geometries within a column. In this

example, several points are added to the GEOMETRY column in the

SAMPLE_POINTS table. The SQL code then determines the maximum bounding

rectangle of all of the points put together.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id integer, geometry ST_Point)

INSERT INTO sample_points (id, geometry)

VALUES

 (1, ST_Point(2, 3, 1)),

 (2, ST_Point(4, 5, 1)),

 (3, ST_Point(13, 15, 1)),

 (4, ST_Point(12, 5, 1)),

 (5, ST_Point(23, 2, 1)),

 (6, ST_Point(11, 4, 1))

SELECT cast(ST_GetAggrResult(MAX(ST_BuildMBRAggr

 (geometry)))..ST_AsText AS varchar(160))

 AS ";Aggregate_of_Points";

FROM sample_points

Results:

Aggregate_of_Points

--

POLYGON ((2.00000000 2.00000000, 23.00000000 2.00000000,

23.00000000 15.00000000, 2.00000000 15.00000000, 2.00000000

2.00000000))

302 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_AppendPoint

ST_AppendPoint takes a curve and a point as input parameters and extends the

curve by the given point. If the given curve has Z or M coordinates, then the point

must also have Z or M coordinates. The resulting curve is represented in the

spatial reference system of the given curve.

If the point to be appended is not represented in the same spatial reference system

as the curve, it will be converted to the other spatial reference system.

If the given curve is closed or simple, the resulting curve might not be closed or

simple anymore. If the given curve or point is null, or if the curve is empty, then

null is returned. If the point to be appended is empty, then the given curve is

returned unchanged and a warning is raised (SQLSTATE 01HS3).

This function can also be called as a method.

Syntax

�� db2gse.ST_AppendPoint (curve , point) ��

Parameter

curve A value of type ST_Curve or one of its subtypes that represents the curve

to which point will be appended.

point A value of type ST_Point that represents the point that is appended to

curve.

Return type

db2gse.ST_Curve

Examples

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This code creates two linestrings, each with three points.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id integer, line ST_Linestring)

INSERT INTO sample_lines VALUES

 (1, ST_LineString(’linestring (10 10, 10 0, 0 0)’, 0))

INSERT INTO sample_lines VALUES

 (2, ST_LineString(’linestring z (0 0 4, 5 5 5, 10 10 6)’, 0))

Example 1

This example adds the point (5, 5) to the end of a linestring.

SELECT CAST(ST_AsText(ST_AppendPoint(line, ST_Point(5, 5)))

 AS VARCHAR(120)) New

FROM sample_lines

WHERE id=1

Results:

Chapter 23. Spatial functions: syntax and parameters 303

NEW

--

LINESTRING (10.00000000 10.00000000, 10.00000000 0.00000000,

0.00000000 0.00000000, 5.00000000 5.00000000)

Example 2

This example adds the point (15, 15, 7) to the end of a linestring with Z

coordinates.

SELECT CAST(ST_AsText(ST_AppendPoint(line, ST_Point(15.0, 15.0, 7.0)))

 AS VARCHAR(160)) New

FROM sample_lines

WHERE id=2

Results:

NEW

--

LINESTRING Z (0.00000000 0.00000000 4.00000000, 5.00000000

5.00000000 5.00000000, 10.00000000 10.00000000 6.00000000,

15.00000000 15.00000000 7.00000000)

ST_Area

ST_Area takes a geometry and, optionally, a unit as input parameters and returns

the area covered by the geometry in either the default or given unit of measure.

If the geometry is a polygon or multipolygon, then the area covered by the

geometry is returned. The area of points, linestrings, multipoints, and

multilinestrings is 0 (zero). If the geometry is null or is an empty geometry, null is

returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Area (geometry)

,

unit
 ��

Parameters

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that determines the area.

unit A VARCHAR(128) value that identifies the units in which the area is

measured. The supported units of measure are listed in the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

 If the unit parameter is omitted, the following rules are used to determine

the unit in which the area is measured:

v If geometry is in a projected or geocentric coordinate system, the linear

unit associated with this coordinate system is used.

v If geometry is in a geographic coordinate system, but is not in a geodetic

spatial reference system (SRS), the angular unit associated with this

coordinate system is used.

v If geometry is in a geodetic SRS, the default unit of measure is square

meters.

304 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned

if any of the following conditions occur:

v The geometry is in an unspecified coordinate system and the unit

parameter is specified.

v The geometry is in a projected coordinate system and an angular unit is

specified.

v The geometry is in a geographic coordinate system, but is not in a

geodetic SRS, and a linear unit is specified.

v The geometry is in a geographic coordinate system, is in a geodetic SRS,

and an angular unit is specified.

Return type

DOUBLE

Examples

Example 1

The spatial analyst needs a list of the area covered by each sales region. The sales

region polygons are stored in the SAMPLE_POLYGONS table. The area is

calculated by applying the ST_Area function to the geometry column.

db2se create_srs se_bank -srsId 4000 -srsName new_york1983 -xOffset 0

 -yOffset 0 -xScale 1 -yScale 1

 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

CREATE TABLE sample_polygons (id INTEGER, geometry ST_POLYGON)

INSERT INTO sample_polygons (id, geometry)

VALUES

 (1, ST_Polygon(’polygon((0 0, 0 10, 10 10, 10 0, 0 0))’, 4000)),

 (2, ST_Polygon(’polygon((20 0, 30 20, 40 0, 20 0))’, 4000)),

 (3, ST_Polygon(’polygon((20 30, 25 35, 30 30, 20 30))’, 4000))

The following SELECT statement retrieves the sales region ID and area:

SELECT id, ST_Area(geometry) AS area

FROM sample_polygons

Results:

ID AREA

-------- ------------------------

 1 +1.00000000000000E+002

 2 +2.00000000000000E+002

 3 +2.50000000000000E+001

Example 2

The following SELECT statement retrieves the sales region ID and area in various

units:

SELECT id,

 ST_Area(geometry) square_feet,

 ST_Area(geometry, ’METER’) square_meters,

 ST_Area(geometry, ’STATUTE MILE’) square_miles

FROM sample_polygons

Results:

Chapter 23. Spatial functions: syntax and parameters 305

ID SQUARE_FEET SQUARE_METERS SQUARE_MILES

--- ------------------------ ------------------------ ------------------------

 1 +1.00000000000000E+002 +9.29034116132748E+000 +3.58702077598427E-006

 2 +2.00000000000000E+002 +1.85806823226550E+001 +7.17404155196855E-006

 3 +2.50000000000000E+001 +2.32258529033187E+000 +8.96755193996069E-007

Example 3

This example finds the area of a polygon defined in State Plane coordinates.

The State Plane spatial reference system with an ID of 3 is created with the

following command:

db2se create_srs SAMP_DB -srsId 3 -srsName z3101a -xOffset 0

 -yOffset 0 -xScale 1 -yScale 1

 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

The following SQL statements add the polygon, in spatial reference system 3, to

the table and determines the area in square feet, square meters, and square miles.

SET current function path db2gse;

 CREATE TABLE Sample_Poly3 (id integer, geometry ST_Polygon);

 INSERT into Sample_Poly3 VALUES

 (1, ST_Polygon(’polygon((567176.0 1166411.0,

 567176.0 1177640.0,

 637948.0 1177640.0,

 637948.0 1166411.0,

 567176.0 1166411.0))’, 3));

 SELECT id, ST_Area(geometry) "Square Feet",

 ST_Area(geometry, ’METER’) "Square Meters",

 ST_Area(geometry, ’STATUTE MILE’) "Square Miles"

 FROM Sample_Poly3;

Results:

ID Square Feet Square Meters Square Miles

--- ------------------------ ------------------------ ------------------------

 1 +7.94698788000000E+008 +7.38302286101346E+007 +2.85060106320552E+001

Example 4

The spatial analyst needs a list of the area covered by each region of exploration.

The exploration region polygons are stored in the SAMPLE_GEODETIC_TAB table,

and they include the following regions:

v A region around the North Pole

v A region around the South Pole

v A region that straddles the 180th Meridian

The second field in the following input file, samp_wkt_rows.txt, contains polygons

that represent these regions:

1|’polygon((5 82,15 82,25 82,35 82,45 82,55 82,65 82,75 82,85 82,95 82,

105 82,115 82,125 82,135 82,145 82,155 82,165 82,175 82,-175 82,-165 82,

-155 82,-145 82,-135 82,-125 82,-115 82,-105 82,-95 82,-85 82,-75 82,

-65 82,-55 82,-45 82,-35 82,-25 82,-15 82,-5 82,5 82))’|’North Pole region’

2|’polygon((175 -82,165 -82,155 -82,145 -82,135 -82,125 -82,115 -82,

105 -82,95 -82,85 -82,75 -82,65 -82,55 -82,45 -82,35 -82,25 -82,15 -82,

5 -82,-5 -82,-15 -82,-25 -82,-35 -82,-45 -82,-55 -82,-65 -82,-75 -82,

-85 -82,-95 -82,-105 -82,-115 -82,-125 -82,-135 -82,-145 -82,-155 -82,

-165 -82,-175 -82,175 -82))’|’South Pole region’

3|’polygon((-175 -42,-175 1,-175 42,175 42,175 -1,175 -42,-175 -42))

’|’180th meridian’

306 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The following SQL statements add the polygons, in geodetic spatial reference

system 2000000000, to the SAMPLE_GEODETIC_TAB table.

SET current function path db2gse;

CREATE TABLE db2se_samp.gsege_temp_samp (

 gid INTEGER,

 g1_wkt varchar(500),

 comment varchar(255)

) NOT LOGGED INITIALLY;

LOAD FROM samp_wkt_rows.txt OF DEL MODIFIED BY CHARDEL’’ COLDEL|

 INSERT INTO db2se_samp.gsege_temp_samp;

CREATE TABLE sample_geodetic_tab

 (gid INTEGER NOT NULL PRIMARY KEY,

 geometry ST_Geometry),

 comment varchar(255));

INSERT INTO sample_geodetic_tab

 SELECT gid, ST_GeomFromText(g1_wkt, 2000000000), comment

 FROM db2se_samp.gsege_temp_samp;

The ST_Area function calculates the area of the polygon in the geometry column.

The default unit of measure from ST_Area is square meters. The following SELECT

statement retrieves the exploration region ID and area in square meters, square

feet, and square miles.

SELECT id, ST_Area(geometry) AS SQUARE_METERS,

ST_Area(geometry,’FOOT’) AS SQUARE_FEET,

ST_Area(geometry, ’STATUTE MILE’) AS SQUARE_MILES

FROM sample_geodetic_tab

WHERE id BETWEEN 1 AND 9 ORDER BY id;

ID SQUARE_METERS SQUARE_FEET SQUARE_MILES

--- ----------------------- ----------------------- -----------------------

 1 +2.52472719957839E+012 +2.71759374028922E+013 +9.74802621488040E+005

 2 +2.52475431563494E+012 +2.71762292776957E+013 +9.74813091056005E+005

 3 +9.43568029137069E+012 +1.01564817377028E+014 +3.64313652781464E+006

ST_AsBinary

ST_AsBinary takes a geometry as an input parameter and returns its well-known

binary representation. The Z and M coordinates are discarded and will not be

represented in the well-known binary representation.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_AsBinary (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes to be converted to the

corresponding well-known binary representation.

Return type

BLOB(2G)

Chapter 23. Spatial functions: syntax and parameters 307

Examples

The following code illustrates how to use the ST_AsBinary function to convert the

points in the geometry columns of the SAMPLE_POINTS table into well-known

binary (WKB) representation in the BLOB column.

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, wkb BLOB(32K))

INSERT INTO SAMPLE_POINTS (id, geometry)

VALUES

 (1100, ST_Point(10, 20, 1))

Example 1

This example populates the WKB column, with an ID of 1111, from the

GEOMETRY column, with an ID of 1100.

INSERT INTO sample_points(id, wkb)

VALUES (1111,

 (SELECT ST_AsBinary(geometry)

 FROM sample_points

 WHERE id = 1100))

SELECT id, cast(ST_Point(wkb)..ST_AsText AS varchar(35)) AS point

FROM sample_points

WHERE id = 1111

Results:

ID Point

----------- -----------------------------------

 1111 POINT (10.00000000 20.00000000)

Example 2

This example displays the WKB binary representation.

SELECT id, substr(ST_AsBinary(geometry), 1, 21) AS point_wkb

FROM sample_points

WHERE id = 1100

Results:

ID POINT_WKB

------ ---

 1100 x’010100000000000000000024400000000000003440’

ST_AsGML

ST_AsGML takes a geometry as an input parameter and returns its representation

using the geography markup language.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_AsGML (geometry) ��

308 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameter

geometry

A value of type ST_Geometry or one of its subtypes to be converted to the

corresponding GML representation.

Return type

CLOB(2G)

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

The following code fragment illustrates how to use the ST_AsGML function to

view the GML fragment. This example populates the GML column, from the

geometry column, with an ID of 2222.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, gml CLOB(32K))

INSERT INTO SAMPLE_POINTS (id, geometry)

VALUES

 (1100, ST_Point(10, 20, 1))

INSERT INTO sample_points(id, gml)

VALUES (2222,

 (SELECT ST_AsGML(geometry)

 FROM sample_points

 WHERE id = 1100))

The following SELECT statement lists the ID and the GML representation of the

geometries. The geometry is converted to a GML fragment by the ST_AsGML

function.

SELECT id, cast(ST_AsGML(geometry) AS varchar(110)) AS gml_fragment

FROM sample_points

WHERE id = 1100

Results:

The SELECT statement returns the following result set:

ID GML_FRAGMENT

----------- --

 1100 <gml:Point srsName";EPSG:4269";><gml:coord>

 <gml:X>10</gml:X><gml:Y>20</gml:Y>

 </gml:coord></gml:Point>

ST_AsShape

St_AsShape takes a geometry as an input parameter and returns its ESRI shape

representation.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Chapter 23. Spatial functions: syntax and parameters 309

Syntax

�� db2gse.ST_AsShape (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes to be converted to the

corresponding ESRI shape representation.

Return type

BLOB(2G)

Example

The following code fragment illustrates how to use the ST_AsShape function to

convert the points in the geometry column of the SAMPLE_POINTS table into

shape binary representation in the shape BLOB column. This example populates

the shape column from the geometry column. The shape binary representation is

used to display the geometries in geobrowsers, which require geometries to

comply with the ESRI shapefile format, or to construct the geometries for the

*.SHP file of the shape file.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE SAMPLE_POINTS (id integer, geometry ST_POINT, shape BLOB(32K))

INSERT INTO SAMPLE_POINTS (id, geometry)

VALUES

 (1100, ST_Point(10, 20, 1))

INSERT INTO sample_points(id, shape)

VALUES (2222,

 (SELECT ST_AsShape(geometry)

 FROM sample_points

 WHERE id = 1100))

SELECT id, substr(ST_AsShape(geometry), 1, 20) AS shape

FROM sample_points

WHERE id = 1100

Returns:

ID SHAPE

------ ---

 1100 x’0100000000000000000024400000000000003440’

ST_AsText

ST_AsText takes a geometry as an input parameter and returns its well-known text

representation.

If the given geometry is null, then null is returned.

This function can also be called as a method.

310 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_AsText (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes to be converted to the

corresponding well-known text representation.

Return type

CLOB(2G)

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

After capturing and inserting the data into the SAMPLE_GEOMETRIES table, an

analyst wants to verify that the values inserted are correct by looking at the

well-known text representation of the geometries.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id SMALLINT, spatial_type varchar(18),

 geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, spatial_type, geometry)

VALUES

 (1, ’st_point’, ST_Point(50, 50, 0)),

 (2, ’st_linestring’, ST_LineString(’linestring

 (200 100, 210 130, 220 140)’, 0)),

 (3, ’st_polygon’, ST_Polygon(’polygon((110 120, 110 140,

 130 140, 130 120, 110 120))’, 0))

The following SELECT statement lists the spatial type and the WKT representation

of the geometries. The geometry is converted to text by the ST_AsText function. It

is then cast to a varchar(120) because the default output of the ST_AsText function

is CLOB(2G).

SELECT id, spatial_type, cast(geometry..ST_AsText

 AS varchar(150)) AS wkt

FROM sample_geometries

Results:

ID SPATIAL_TYPE WKT

------ ------------------ --

 1 st_point POINT (50.00000000 50.00000000)

 2 st_linestring LINESTRING (200.00000000 100.00000000,

 210.00000000 130.00000000, 220.00000000

 140.00000000)

 3 st_polygon POLYGON ((110.00000000 120.00000000,

 130.00000000 120.00000000, 130.00000000

 140.00000000, 110.00000000140.00000000,

 110.00000000 120.00000000))

Chapter 23. Spatial functions: syntax and parameters 311

ST_Boundary

ST_Boundary takes a geometry as an input parameter and returns its boundary as

a new geometry. The resulting geometry is represented in the spatial reference

system of the given geometry.

If the given geometry is a point, multipoint, closed curve, or closed multicurve, or

if it is empty, then the result is an empty geometry of type ST_Point. For curves or

multicurves that are not closed, the start points and end points of the curves are

returned as an ST_MultiPoint value, unless such a point is the start or end point of

an even number of curves. For surfaces and multisurfaces, the curve defining the

boundary of the given geometry is returned, either as an ST_Curve or an

ST_MultiCurve value. If the given geometry is null, then null is returned.

If possible, the specific type of the returned geometry will be ST_Point,

ST_LineString, or ST_Polygon. For example, the boundary of a polygon with no

holes is a single linestring, represented as ST_LineString. The boundary of a

polygon with one or more holes consists of multiple linestrings, represented as

ST_MultiLineString.

This function can also be called as a method.

Syntax

�� db2gse.ST_Boundary (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes. The boundary of this

geometry is returned.

Return type

db2gse.ST_Geometry

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example creates several geometries and determines the boundary of each

geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Polygon(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’, 0))

INSERT INTO sample_geoms VALUES

 (2, ST_Polygon(’polygon((40 120, 90 120, 90 150, 40 150, 40 120),

 (70 130, 80 130, 80 140, 70 140, 70 130))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’linestring(60 60, 65 60, 65 70, 70 70)’ ,0))

INSERT INTO sample_geoms VALUES

312 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

(4, ST_Geometry(’multilinestring((60 60, 65 60, 65 70, 70 70),

 (80 80, 85 80, 85 90, 90 90),

 (50 50, 55 50, 55 60, 60 60))’ ,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’point(30 30)’ ,0))

SELECT id, CAST(ST_AsText(ST_Boundary(geometry)) as VARCHAR(320)) Boundary

FROM sample_geoms

Results

ID BOUNDARY

------- --

 1 LINESTRING (40.00000000 120.00000000, 90.00000000 120.00000000,

 90.00000000 150.00000000, 40.00000000 150.00000000, 40.00000000

 120.00000000)

 2 MULTILINESTRING ((40.00000000 120.00000000, 90.00000000 120.00000000,

 90.00000000 150.00000000, 40.00000000 150.00000000, 40.00000000

 120.00000000),(70.00000000 130.00000000, 70.00000000 140.00000000,

 80.00000000 140.00000000, 80.00000000 130.00000000, 70.00000000

 130.00000000))

 3 MULTIPOINT (60.00000000 60.00000000, 70.00000000 70.00000000)

 4 MULTIPOINT (50.00000000 50.00000000, 70.00000000 70.00000000,

 80.00000000 80.00000000, 90.00000000 90.00000000)

 5 POINT EMPTY

ST_Buffer

ST_Buffer takes a geometry, a distance, and, optionally, a unit as input parameters

and returns the geometry that surrounds the given geometry by the specified

distance, measured in the given unit.

Each point on the boundary of the resulting geometry is the specified distance

away from the given geometry. The resulting geometry is represented in the spatial

reference system of the given geometry.

For geodetic data, if you specify a negative distance, ST_Buffer returns a region

that is further than the specified distance away from all points of the input

geometry. In other words, a negative distance returns the complementary region.

Any circular curve in the boundary of the resulting geometry is approximated by

linear strings. For example, the buffer around a point, which would result in a

circular region, is approximated by a polygon whose boundary is a linestring.

If the given geometry is null or is empty, null will be returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Buffer (geometry , distance)

,

unit
 ��

Chapter 23. Spatial functions: syntax and parameters 313

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to create the buffer around. For geodetic data, ST_Buffer

supports only ST_Point and ST_MultiPoint data types.

distance

A DOUBLE PRECISION value that specifies the distance to be used for the

buffer around geometry. For geodetic data, the distance must not be greater

than the Earth’s equatorial radius. For the WGS-84 ellipsoid, this length is

6378137.0 meters.

unit A VARCHAR(128) value that identifies the unit in which distance is

measured. The supported units of measure are listed in the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit

of measure used for distance:

v If geometry is in a projected or geocentric coordinate system, the linear unit

associated with this coordinate system is the default.

v If geometry is in a geographic coordinate system, but is not in a geodetic spatial

reference system (SRS), the angular unit associated with this coordinate system

is the default.

v If geometry is in a geodetic SRS, the default unit of measure is meters.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any

of the following conditions occur:

v The geometry is in an unspecified coordinate system and the unit parameter is

specified.

v The geometry is in a projected coordinate system and an angular unit is

specified.

v The geometry is in a geographic coordinate system, but is not in a geodetic SRS,

and a linear unit is specified.

v The geometry is in a geographic coordinate system, is in a geodetic SRS, and an

angular unit is specified.

Return type

db2gse.ST_Geometry

Examples

In the following examples, the results have been reformatted for readability. The

spacing in your results will vary according to your display.

Example 1

The following code creates a spatial reference system, creates the

SAMPLE_GEOMETRIES table, and populates it.

db2se create_srs se_bank -srsId 4000 -srsName new_york1983

 -xOffset 0 -yOffset 0 -xScale 1 -yScale 1

 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE

314 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

sample_geometries (id INTEGER, spatial_type varchar(18),

 geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, spatial_type, geometry)

VALUES

 (1, ’st_point’, ST_Point(50, 50, 4000)),

 (2, ’st_linestring’,

 ST_LineString(’linestring(200 100, 210 130,

 220 140)’, 4000)),

 (3, ’st_polygon’,

 ST_Polygon(’polygon((110 120, 110 140, 130 140,

 130 120, 110 120))’,4000)),

 (4, ’st_multipolygon’,

 ST_MultiPolygon(’multipolygon(((30 30, 30 40,

 35 40, 35 30, 30 30),(35 30, 35 40, 45 40,

 45 30, 35 30)))’, 4000))

Example 2

The following SELECT statement uses the ST_Buffer function to apply a buffer of

10.

SELECT id, spatial_type,

 cast(geometry..ST_Buffer(10)..ST_AsText AS varchar(470)) AS buffer_10

FROM sample_geometries

Results:

ID SPATIAL_TYPE BUFFER_10

----------- ------------------ --

1 st_point POLYGON ((60.00000000 50.00000000,

 59.00000000 55.00000000, 54.00000000 59.00000000, 49.00000000

 60.00000000, 44.00000000 58.00000000, 41.00000000 53.00000000,

 40.00000000 48.00000000,42.00000000 43.00000000, 47.00000000

 41.00000000, 52.00000000 40.00000000, 57.00000000 42.00000000,

 60.00000000 50.00000000))

2 st_linestring POLYGON ((230.00000000

 140.00000000, 229.00000000 145.00000000, 224.00000000

 149.00000000, 219.00000000 150.00000000, 213.00000000 147.00000000,

 203.00000000 137.00000000, 201.00000000 133.00000000, 191.00000000

 103.00000000, 191.00000000 99.00000000, 192.00000000 95.00000000,

 196.00000000 91.00000000, 200.00000000 91.00000000,204.00000000

 91.00000000, 209.00000000 97.00000000, 218.00000000 124.00000000,

 227.00000000 133.00000000, 230.00000000 140.00000000))

3 st_polygon POLYGON ((140.00000000 120.00000000,

 140.00000000 140.00000000, 139.00000000 145.00000000, 130.00000000

 150.00000000, 110.00000000 150.00000000, 105.00000000 149.00000000,

 100.00000000 140.00000000,100.00000000 120.00000000, 101.00000000

 115.00000000, 110.00000000 110.00000000,130.00000000 110.00000000,

 135.00000000 111.00000000, 140.00000000 120.00000000))

4 st_multipolygon POLYGON ((55.00000000 30.00000000,

 55.00000000 40.00000000, 54.00000000 45.00000000, 45.00000000

 50.00000000, 30.00000000 50.00000000, 25.00000000 49.00000000,

 20.00000000 40.00000000, 20.00000000 30.00000000, 21.00000000

 25.00000000, 30.00000000 20.00000000, 45.00000000 20.00000000,

 50.00000000 21.00000000, 55.00000000 30.00000000))

Example 3

The following SELECT statement uses the ST_Buffer function to apply a negative

buffer of 5.

Chapter 23. Spatial functions: syntax and parameters 315

SELECT id, spatial_type,

 cast(ST_AsText(ST_Buffer(geometry, -5)) AS varchar(150))

 AS buffer_negative_5

FROM sample_geometries

WHERE id = 3

Results:

ID SPATIAL_TYPE BUFFER_NEGATIVE_5

----------- ------------------ --------------------------------------

3 st_polygon POLYGON ((115.00000000 125.00000000,

 125.00000000 125.00000000, 125.00000000 135.00000000, 115.00000000

 135.00000000, 115.00000000 125.00000000))

Example 4

The following SELECT statement shows the result of applying a buffer with the

unit parameter specified.

SELECT id, spatial_type,

 cast(ST_AsText(ST_Buffer(geometry, 10, ’METER’)) AS varchar(680))

 AS buffer_10_meter

FROM sample_geometries

WHERE id = 3

Results:

ID SPATIAL_TYPE BUFFER_10_METER

----------- ------------------ --------------------------------------

3 st_polygon POLYGON ((163.00000000 120.00000000,

 163.00000000 140.00000000, 162.00000000 149.00000000, 159.00000000

 157.00000000, 152.00000000 165.00000000, 143.00000000 170.00000000,

 130.00000000 173.00000000, 110.00000000 173.00000000, 101.00000000

 172.00000000, 92.00000000 167.00000000, 84.00000000 160.00000000,

 79.00000000 151.00000000, 77.00000000 140.00000000, 77.00000000

 120.00000000, 78.00000000 111.00000000, 83.00000000 102.00000000,

 90.00000000 94.00000000, 99.00000000 89.00000000, 110.00000000

 87.00000000, 130.00000000 87.00000000, 139.00000000 88.00000000,

 147.00000000 91.00000000, 155.00000000 98.00000000, 160.00000000

 107.00000000, 163.00000000 120.00000000))

ST_Centroid

ST_Centroid takes a geometry as an input parameter and returns the geometric

center, which is the center of the minimum bounding rectangle of the given

geometry, as a point. The resulting point is represented in the spatial reference

system of the given geometry.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Centroid (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to determine the geometric center.

316 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

db2gse.ST_Point

Example

This example creates two geometries and finds the centroid of them.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Polygon(’polygon

 ((40 120, 90 120, 90 150, 40 150, 40 120),

 (50 130, 80 130, 80 140, 50 140, 50 130))’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_MultiPoint(’multipoint(10 10, 50 10, 10 30)’ ,0))

SELECT id, CAST(ST_AsText(ST_Centroid(geometry))

 as VARCHAR(40)) Centroid

FROM sample_geoms

Results:

ID CENTROID

----------- --

 1 POINT (65.00000000 135.00000000)

 2 POINT (30.00000000 20.00000000)

ST_ChangePoint

ST_ChangePoint takes a curve and two points as input parameters. It replaces all

occurrences of the first point in the given curve with the second point and returns

the resulting curve. The resulting geometry is represented in the spatial reference

system of the given geometry.

If the two points are not represented in the same spatial reference system as the

curve, they will be converted to the spatial reference system used for the curve.

If the given curve is empty, then an empty value is returned. If the given curve is

null, or if any of the given points is null or empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ChangePoint (curve , old_point , new_point) ��

Parameter

curve A value of type ST_Curve or one of its subtypes that represents the curve

in which the points identified by old_point are changed tonew_point.

old_point

A value of type ST_Point that identifies the points in the curve that are

changed to new_point.

Chapter 23. Spatial functions: syntax and parameters 317

new_point

A value of type ST_Point that represents the new locations of the points in

the curve identified by old_point.

Return type

db2gse.ST_Curve

Restrictions

The point to be changed in the curve must be one of the points used to define the

curve.

If the curve has Z or M coordinates, then the given points also must have Z or M

coordinates.

Examples

Example 1

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

The following code creates and populates the SAMPLE_LINES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id INTEGER, line ST_Linestring)

INSERT INTO sample_lines VALUES

 (1, ST_LineString(’linestring (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)’, 0))

INSERT INTO sample_lines VALUES

 (2, ST_LineString(’linestring z (0 0 4, 5 5 5, 10 10 6, 5 5 7)’, 0))

Example 2

This example changes all occurrences of the point (5, 5) to the point (6, 6) in the

linestring.

SELECT cast(ST_AsText(ST_ChangePoint(line, ST_Point(5, 5),

 ST_Point(6, 6))) as VARCHAR(160))

FROM sample_lines

WHERE id=1

Example 3

This example changes all occurrences of the point (5, 5, 5) to the point (6, 6, 6) in

the linestring.

SELECT cast(ST_AsText(ST_ChangePoint(line, ST_Point(5.0, 5.0, 5.0),

 ST_Point(6.0, 6.0, 6.0))) as VARCHAR(180))

FROM sample_lines

WHERE id=2

Results:

NEW

LINESTRING Z (0.00000000 0.00000000 4.00000000, 6.00000000 6.00000000

6.00000000, 10.00000000 10.00000000 6.00000000, 5.00000000 5.00000000

7.00000000)

318 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_Contains

ST_Contains takes two geometries as input parameter and returns 1 if the first

geometry completely contains the second; otherwise it returns 0 (zero) to indicate

that the first geometry does not completely contain the second.

If any of the given geometries is null or is empty, then null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

Syntax

�� db2gse.ST_Contains (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested to completely contain geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested to be completely within geometry1.

Restrictions: For geodetic data, both geometries must be geodetic and they both

must be in the same geodetic SRS.

Return type

INTEGER

Examples

Example 1

The following code creates and populates these tables.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points(id SMALLINT, geometry ST_POINT)

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LINESTRING)

CREATE TABLE sample_polygons(id SMALLINT, geometry ST_POLYGON)

INSERT INTO sample_points (id, geometry)

VALUES

 (1, ST_Point(10, 20, 1)),

 (2, ST_Point(’point(41 41)’, 1))

INSERT INTO sample_lines (id, geometry)

VALUES

 (10, ST_LineString(’linestring (1 10, 3 12, 10 10)’, 1)),

 (20, ST_LineString(’linestring (50 10, 50 12, 45 10)’, 1))

INSERT INTO sample_polygons(id, geometry)

VALUES

 (100, ST_Polygon(’polygon((0 0, 0 40, 40 40, 40 0, 0 0))’, 1))

Chapter 23. Spatial functions: syntax and parameters 319

Example 2

The following code fragment uses the ST_Contains function to determine which

points are contained by a particular polygon.

SELECT poly.id AS polygon_id,

 CASE ST_Contains(poly.geometry, pts.geometry)

 WHEN 0 THEN ’does not contain’

 WHEN 1 THEN ’does contain’

 END AS contains,

 pts.id AS point_id

FROM sample_points pts, sample_polygons poly

Results:

POLYGON_ID CONTAINS POINT_ID

---------- ---------------- --------

 100 does contain 1

 100 does not contain 2

Example 3

The following code fragment uses the ST_Contains function to determine which

lines are contained by a particular polygon.

SELECT poly.id AS polygon_id,

 CASE ST_Contains(poly.geometry, line.geometry)

 WHEN 0 THEN ’does not contain’

 WHEN 1 THEN ’does contain

 END AS contains,

 line.id AS line_id

FROM sample_lines line, sample_polygons poly

Results:

POLYGON_ID CONTAINS LINE_ID

---------- ---------------- -------

 100 does contain 10

 100 does not contain 20

ST_ConvexHull

ST_ConvexHull takes a geometry as an input parameter and returns the convex

hull of it.

The resulting geometry is represented in the spatial reference system of the given

geometry.

If possible, the specific type of the returned geometry will be ST_Point,

ST_LineString, or ST_Polygon. For example, the boundary of a polygon with no

holes is a single linestring, represented as ST_LineString. The boundary of a

polygon with one or more holes consists of multiple linestrings, represented as

ST_MultiLineString.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ConvexHull (geometry) ��

320 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to compute the convex hull.

Return type

db2gse.ST_Geometry

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

The following code creates and populates the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id INTEGER, spatial_type varchar(18),

 geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, spatial_type, geometry)

VALUES

 (1, ’ST_LineString’, ST_LineString

 (’linestring(20 20, 30 30, 20 40, 30 50)’, 0)),

 (2, ’ST_Polygon’, ST_Polygon(’polygon

 ((110 120, 110 140, 120 130, 110 120))’, 0)),

 (3, ’ST_Polygon’, ST_Polygon(’polygon((30 30, 25 35, 15 50,

 35 80, 40 85, 80 90,70 75, 65 70, 55 50, 75 40, 60 30,

 30 30))’, 0)),

 (4, ’ST_MultiPoint’, ST_MultiPoint(’multipoint(20 20, 30 30,

 20 40, 30 50)’, 1))

The following SELECT statement calculates the convex hull for all the geometries

constructed above and displays the result.

SELECT id, spatial_type, cast(geometry..ST_ConvexHull..ST_AsText

 AS varchar(300)) AS convexhull

FROM sample_geometries

Results:

ID SPATIAL_TYPE CONVEXHULL

----- ------------------ --

 1 ST_LineString POLYGON ((20.00000000 40.00000000,

 20.00000000 20.00000000, 30.00000000

 30.00000000, 30.00000000 50.00000000,

 20.00000000 40.00000000))

 2 ST_Polygon POLYGON ((110.00000000 140.00000000,

 110.00000000 120.00000000, 120.00000000

 130.00000000, 110.00000000 140.00000000))

 3 ST_Polygon POLYGON ((15.00000000 50.00000000,

 25.00000000 35.00000000, 30.00000000

 30.00000000, 60.00000000 30.00000000,

 75.00000000 40.00000000, 80.00000000

 90.00000000, 40.00000000 85.00000000,

 35.00000000 80.00000000, 15.00000000

 50.00000000))

 4 ST_MultiPoint POLYGON ((20.00000000 40.00000000,

Chapter 23. Spatial functions: syntax and parameters 321

20.00000000 20.00000000, 30.00000000

 30.00000000, 30.00000000 50.00000000,

 20.00000000 40.00000000))

ST_CoordDim

ST_CoordDim takes a geometry as an input parameter and returns the

dimensionality of its coordinates.

If the given geometry does not have Z and M coordinates, the dimensionality is 2.

If it has Z coordinates and no M coordinates, or if it has M coordinates and no Z

coordinates, the dimensionality is 3. If it has Z and M coordinates, the

dimensionality is 4. If the geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_CoordDim (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to retrieve the dimensionality from.

Return type

INTEGER

Example

This example creates several geometries and then determines the dimensionality of

their coordinates.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id CHARACTER(15), geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (’Empty Point’, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (’Linestring’, ST_Geometry(’linestring (10 10, 15 20)’,0))

INSERT INTO sample_geoms VALUES

 (’Polygon’, ST_Geometry(’polygon((40 120, 90 120, 90 150,

 40 150, 40 120))’ ,0))

INSERT INTO sample_geoms VALUES

 (’Multipoint M’, ST_Geometry(’multipoint m (10 10 5, 50 10

 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (’Multipoint Z’, ST_Geometry(’multipoint z (47 34 295,

 23 45 678)’ ,0))

INSERT INTO sample_geoms VALUES

 (’Point ZM’, ST_Geometry(’point zm (10 10 16 30)’ ,0))

322 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SELECT id, ST_CoordDim(geometry) COORDDIM

FROM sample_geoms

Results:

ID COORDDIM

--------------- -----------

Empty Point 2

Linestring 2

Polygon 2

Multipoint M 3

Multipoint Z 3

Point ZM 4

ST_Crosses

ST_Crosses takes two geometries as input parameters and returns 1 if the first

geometry crosses the second. Otherwise, 0 (zero) is returned.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If the first geometry is a polygon or a multipolygon, or if the second geometry is a

point or multipoint, or if any of the geometries is null value or is empty, then null

is returned. If the intersection of the two geometries results in a geometry that has

a dimension that is one less than the maximum dimension of the two given

geometries, and if the resulting geometry is not equal any of the two given

geometries, then 1 is returned. Otherwise, the result is 0 (zero).

Syntax

�� db2gse.ST_Crosses (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested for crossing geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested to determine if it is crossed by geometry1.

Return Type

INTEGER

Example

This code determines if the constructed geometries cross each other.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’polygon((30 30, 30 50, 50 50, 50 30, 30 30))’ ,0))

INSERT INTO sample_geoms VALUES

Chapter 23. Spatial functions: syntax and parameters 323

(2, ST_Geometry(’linestring(40 50, 50 40)’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’linestring(20 20, 60 60)’ ,0))

SELECT a.id, b.id, ST_Crosses(a.geometry, b.geometry) Crosses

FROM sample_geoms a, sample_geoms b

Results:

ID ID CROSSES

----------- ----------- -----------

 1 1 -

 2 1 0

 3 1 1

 1 2 -

 2 2 0

 3 2 1

 1 3 -

 2 3 1

 3 3 0

ST_Difference

ST_Difference takes two geometries as input parameters and returns the part of the

first geometry that does not intersect with the second geometry.

Both geometries must be of the same dimension. If either geometry is null, null is

returned. If the first geometry is empty, an empty geometry of type ST_Point is

returned. If the second geometry is empty, then the first geometry is returned

unchanged.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

This function can also be called as a method.

Syntax

�� db2gse.ST_Difference (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry that represents the first geometry to use to

compute the difference to geometry2.

geometry2

A value of type ST_Geometry that represents the second geometry that is

used to compute the difference to geometry1.

Restrictions for geodetic data:

v Both geometries must be geodetic and they both must be in the same geodetic

SRS.

324 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v ST_Difference supports only ST_Point, ST_Polygon, ST_MultiPoint, and

ST_MultiPolygon data types.

Return type

db2gse.ST_Geometry

The dimension of the returned geometry is the same as that of the input

geometries.

Examples

In the following example, the results have been reformatted for readability. The

spacing in your results will vary according to your display.

The following code creates and populates the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’polygon((10 10, 10 20, 20 20, 20 10, 10 10))’ ,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((30 30, 30 50, 50 50, 50 30, 30 30))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’polygon((40 40, 40 60, 60 60, 60 40, 40 40))’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring(70 70, 80 80)’ ,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’linestring(75 75, 90 90)’ ,0))

Example 1

This example finds the difference between two disjoint polygons.

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))

 as VARCHAR(200)) Difference

FROM sample_geoms a, sample_geoms b

WHERE a.id = 1 and b.id = 2

Results:

ID ID DIFFERENCE

-------- -------- --

 1 2 POLYGON ((10.00000000 10.00000000, 20.00000000

 10.00000000, 20.00000000 20.00000000,

 10.00000000 20.00000000, 10.00000000 10.00000000))

Example 2

This example finds the difference between two intersecting polygons.

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))

 as VARCHAR(200)) Difference

FROM sample_geoms a, sample_geoms b

WHERE a.id = 2 and b.id = 3

Results:

Chapter 23. Spatial functions: syntax and parameters 325

ID ID DIFFERENCE

-------- -------- ---

 2 3 POLYGON ((30.00000000 30.00000000, 50.00000000

 30.00000000, 50.00000000 40.00000000, 40.00000000

 40.00000000, 40.00000000 50.00000000, 30.00000000

 50.00000000, 30.00000000 30.00000000))

Example 3

This example finds the difference between two overlapping linestrings.

SELECT a.id, b.id, CAST(ST_AsText(ST_Difference(a.geometry, b.geometry))

 as VARCHAR(100)) Difference

FROM sample_geoms a, sample_geoms b

WHERE a.id = 4 and b.id = 5

Results:

ID ID DIFFERENCE

-------- -------- --

 4 5 LINESTRING (70.00000000 70.00000000, 75.00000000

 75.00000000)

ST_Dimension

ST_Dimension takes a geometry as an input parameter and returns its dimension.

If the given geometry is empty, then -1 is returned. For points and multipoints, the

dimension is 0 (zero); for curves and multicurves, the dimension is 1; and for

polygons and multipolygons, the dimension is 2. If the given geometry is null,

then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Dimension (geometry) ��

Parameter

geometry

A value of type ST_Geometry that represents the geometry for which the

dimension is returned.

Return type

INTEGER

Example

This example creates several different geometries and finds their dimensions.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id char(15), geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (’Empty Point’, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (’Point ZM’, ST_Geometry(’point zm (10 10 16 30)’ ,0))

326 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

INSERT INTO sample_geoms VALUES

 (’MultiPoint M’, ST_Geometry(’multipoint m (10 10 5,

 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (’LineString’, ST_Geometry(’linestring (10 10, 15 20)’,0))

INSERT INTO sample_geoms VALUES

 (’Polygon’, ST_Geometry(’polygon((40 120, 90 120, 90 150,

 40 150, 40 120))’ ,0))

SELECT id, ST_Dimension(geometry) Dimension

FROM sample_geoms

Results:

ID DIMENSION

--------------- -----------

Empty Point -1

Point ZM 0

MultiPoint M 0

LineString 1

Polygon 2

ST_Disjoint

ST_Disjoint takes two geometries as input parameters and returns 1 if the given

geometries do not intersect. If the geometries do intersect, then 0 (zero) is returned.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If any of the two geometries is null or is empty, then null value is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Disjoint (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry that represents the geometry that is tested to

be disjoint with geometry2.

geometry2

A value of type ST_Geometry that represents the geometry that that is

tested to be disjoint with geometry1.

Return type

INTEGER

Chapter 23. Spatial functions: syntax and parameters 327

Examples

Example 1

This code creates several geometries in the SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’polygon((20 30, 30 30, 30 40, 20 40, 20 30))’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((30 30, 30 50, 50 50, 50 30, 30 30))’,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’polygon((40 40, 40 60, 60 60, 60 40, 40 40))’,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring(60 60, 70 70)’ ,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’linestring(30 30, 40 40)’ ,0))

Example 2

This example determines if the first polygon is disjoint from any of the geometries.

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint

FROM sample_geoms a, sample_geoms b

WHERE a.id = 1

Results:

ID ID DISJOINT

----------- ----------- -----------

 1 1 0

 1 2 0

 1 3 1

 1 4 1

 1 5 0

Example 3

This example determines if the third polygon is disjoint from any of the

geometries.

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint

FROM sample_geoms a, sample_geoms b

WHERE a.id = 3

Results:

ID ID DISJOINT

----------- ----------- -----------

 3 1 1

 3 2 0

 3 3 0

 3 4 0

 3 5 0

Example 4

This example determines if the second linestring is disjoint from any of the

geometries.

328 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SELECT a.id, b.id, ST_Disjoint(a.geometry, b.geometry) DisJoint

FROM sample_geoms a, sample_geoms b

WHERE a.id = 5

Results:

ID ID DISJOINT

----------- ----------- -----------

 5 1 0

 5 2 0

 5 3 0

 5 4 1

 5 5 0

ST_Distance

ST_Distance takes two geometries and, optionally, a unit as input parameters and

returns the shortest distance between any point in the first geometry to any point

in the second geometry, measured in the default or given units.

For geodetic data, ST_Distance returns the geodesic distance between any two

geometries. The geodesic distance is the shortest distance on the surface of the

ellipsoid.

If any of the two geometries is null or is empty, null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

You can also call this function as a method when you provide a unit of measure.

Syntax

�� db2gse.ST_Distance (geometry1 , geometry2)

,

unit
 ��

Parameter

geometry1

A value of type ST_Geometry that represents the geometry that is used to

compute the distance to geometry2.

geometry2

A value of type ST_Geometry that represents the geometry that is used to

compute the distance to geometry1.

unit VARCHAR(128) value that identifies the unit in which the result is

measured. The supported units of measure are listed in the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

For geodetic data, both geometries must be geodetic and they both must be in the

same geodetic SRS.

If the unit parameter is omitted, the following rules are used to determine the unit

of measure used for the result:

Chapter 23. Spatial functions: syntax and parameters 329

v If geometry1 is in a projected or geocentric coordinate system, the linear unit

associated with this coordinate system is the default.

v If geometry1 is in a geographic coordinate system, but is not in a geodetic SRS,

the angular unit associated with this coordinate system is the default.

v If geometry1 is in a geodetic SRS, the default unit of measure is meters.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any

of the following conditions occur:

v The geometry is in an unspecified coordinate system and the unit parameter is

specified.

v The geometry is in a projected coordinate system and an angular unit is

specified.

v The geometry is in a geographic coordinate system, is in a geodetic SRS, and an

angular unit is specified.

Return type

DOUBLE

Examples

Example 1

The following SQL statements create and populate the SAMPLE_GEOMETRIES1

and SAMPLE_GEOMETRIES2 tables.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries1(id SMALLINT, spatial_type varchar(13),

 geometry ST_GEOMETRY)

CREATE TABLE sample_geometries2(id SMALLINT, spatial_type varchar(13),

 geometry ST_GEOMETRY)

INSERT INTO sample_geometries1(id, spatial_type, geometry)

VALUES

 (1, ’ST_Point’, ST_Point(’point(100 100)’, 1)),

 (10, ’ST_LineString’, ST_LineString(’linestring(125 125, 125 175)’, 1)),

 (20, ’ST_Polygon’, ST_Polygon(’polygon

 ((50 50, 50 150, 150 150, 150 50, 50 50))’, 1))

INSERT INTO sample_geometries2(id, spatial_type, geometry)

VALUES

 (101, ’ST_Point’, ST_Point(’point(200 200)’, 1)),

 (102, ’ST_Point’, ST_Point(’point(200 300)’, 1)),

 (103, ’ST_Point’, ST_Point(’point(200 0)’, 1)),

 (110, ’ST_LineString’, ST_LineString(’linestring(200 100, 200 200)’, 1)),

 (120, ’ST_Polygon’, ST_Polygon(’polygon

 ((200 0, 200 200, 300 200, 300 0, 200 0))’, 1))

Example 2

The following SELECT statement calculates the distance between the various

geometries in the SAMPLE_GEOMTRIES1 and SAMPLE_GEOMTRIES2 tables.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,

 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,

 cast(ST_Distance(sg1.geometry, sg2.geometry)

 AS Decimal(8, 4)) AS distance

FROM sample_geometries1 sg1, sample_geometries2 sg2

ORDER BY sg1.id

330 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE

------ ------------- ------ ------------- ----------

 1 ST_Point 101 ST_Point 141.4213

 1 ST_Point 102 ST_Point 223.6067

 1 ST_Point 103 ST_Point 141.4213

 1 ST_Point 110 ST_LineString 100.0000

 1 ST_Point 120 ST_Polygon 100.0000

 10 ST_LineString 101 ST_Point 79.0569

 10 ST_LineString 102 ST_Point 145.7737

 10 ST_LineString 103 ST_Point 145.7737

 10 ST_LineString 110 ST_LineString 75.0000

 10 ST_LineString 120 ST_Polygon 75.0000

 20 ST_Polygon 101 ST_Point 70.7106

 20 ST_Polygon 102 ST_Point 158.1138

 20 ST_Polygon 103 ST_Point 70.7106

 20 ST_Polygon 110 ST_LineString 50.0000

 20 ST_Polygon 120 ST_Polygon 50.0000

Example 3

The following SELECT statement illustrates how to find all the geometries that are

within a distance of 100 of each other.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,

 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,

 cast(ST_Distance(sg1.geometry, sg2.geometry)

 AS Decimal(8, 4)) AS distance

FROM sample_geometries1 sg1, sample_geometries2 sg2

WHERE ST_Distance(sg1.geometry, sg2.geometry) <= 100

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE

------ ------------- ------ ------------- ----------

 1 ST_Point 110 ST_LineString 100.0000

 1 ST_Point 120 ST_Polygon 100.0000

 10 ST_LineString 101 ST_Point 79.0569

 10 ST_LineString 110 ST_LineString 75.0000

 10 ST_LineString 120 ST_Polygon 75.0000

 20 ST_Polygon 101 ST_Point 70.7106

 20 ST_Polygon 103 ST_Point 70.7106

 20 ST_Polygon 110 ST_LineString 50.0000

 20 ST_Polygon 120 ST_Polygon 50.0000

Example 4

The following SELECT statement calculates the distance in kilometers between the

various geometries.

SAMPLE_GEOMTRIES1 and SAMPLE_GEOMTRIES2 tables.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,

 sg2.id AS sg1_id, sg2.spatial_type AS sg2_type,

 cast(ST_Distance(sg1.geometry, sg2.geometry, ’KILOMETER’)

 AS DECIMAL(10, 4)) AS distance

FROM sample_geometries1 sg1, sample_geometries2 sg2

ORDER BY sg1.id

Results:

SG1_ID SG1_TYPE SG1_ID SG2_TYPE DISTANCE

------ ------------- ------ ------------- ------------

 1 ST_Point 101 ST_Point 12373.2168

 1 ST_Point 102 ST_Point 16311.3816

 1 ST_Point 103 ST_Point 9809.4713

 1 ST_Point 110 ST_LineString 1707.4463

Chapter 23. Spatial functions: syntax and parameters 331

1 ST_Point 120 ST_Polygon 12373.2168

 10 ST_LineString 101 ST_Point 8648.2333

 10 ST_LineString 102 ST_Point 11317.3934

 10 ST_LineString 103 ST_Point 10959.7313

 10 ST_LineString 110 ST_LineString 3753.5862

 10 ST_LineString 120 ST_Polygon 10891.1254

 20 ST_Polygon 101 ST_Point 7700.5333

 20 ST_Polygon 102 ST_Point 15039.8109

 20 ST_Polygon 103 ST_Point 7284.8552

 20 ST_Polygon 110 ST_LineString 6001.8407

 20 ST_Polygon 120 ST_Polygon 14515.8872

ST_Edge_GC_USA

ST_Edge_GC_USA is the function that implements the DB2SE_USA_GEOCODER

which geocodes addresses located in the United States of America into points. The

addresses are compared (matched) against EDGE files, which are provided on the

geocoder data CD.

The function takes the street number and name, the city name, the state, the zip

code, and the spatial reference system identifier for the resulting point as input

parameters and returns an ST_Point value. Additionally, several configuration

parameters that influence the geocoding process can be specified.

Syntax

�� db2gse.ST_Edge_GC_USA (street , city , state , zip , srs_id , �

� spelling_sens , min_match_score , side_offset , side_offset_units , end_offset , �

� base_map , locator_file) ��

Parameter

street A value of type VARCHAR(128) that contains the street number and name

of the address to be geocoded.

 This value must not be null.

city A value of type VARCHAR(128) that contains the name of the city of the

address to be geocoded.

 This value can be null if the zip parameter is specified.

state A value of type VARCHAR(128) that contains the name of the state of the

address to be geocoded. The state can be abbreviated or spelled out.

 This value can be null if the zip parameter is specified.

zip A value of type VARCHAR(10) that contains the zip code of the address to

be geocoded. The zip code can be given as 5 digits or in the 5+4 notation.

 This value can be null if the city and state parameters are specified.

srs_id A value of type INTEGER that contains the numeric identifier of the spatial

reference system for the resulting point. The value must identify an

existing spatial reference system, that uses a projected coordinate system

based on the geographic coordinate system

GCS_NORTH_AMERICAN_1983, or an existing spatial reference system

that uses the geographic coordinate system itself,

GCS_NORTH_AMERICAN_1983.

332 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

spelling_sens

A value of type INTEGER that specifies the spelling sensitivity that should

be applied to the given address. The value must be in the range from 0

(zero) to 100. The higher this value is, the more strict the geocoder will be

regarding differences in the spelling of the given address. Deviations result

in a higher penalty that will be applied to the final score of the match.

 If the spelling sensitivity is set too high, fewer addresses might be

geocoded successfully, and a null will be returned instead. If it the spelling

sensitivity is set too low, a more unmatching addresses might be

considered correct matches due to the accepted level of difference in the

spelling of the addresses. Recommendation: Set this value to 60.

 If this value is null, the spelling sensitivity will be derived from the

locatior file. If it is not specified in the locator file, a spelling sensitivity of

60 is used.

min_match_score

A value of type INTEGER that contains the minimum score value that a

point must have to be considered a match for the given address. The

minimum score value must be in the range from 0 (zero) to 100. If the

score of the point is lower than the min_match_score value, null is returned

instead of the point, and the address is not geocoded.

 Different factors like the quality of the base map, the spelling sensitivity, or

the accuracy if the address influence the score of a point.

Recommendation: Set this value to 80.

 If this value is null, the minimum match score will be derived from the

locator file. If it is not specified in the locator file, a minimum score value

of 80 is used.

side_offset

A value of type DOUBLE that specifies how far a resulting point is to be

placed off the center of the street. The value must be larger than or equal

to 0 (zero). The side_offset_unit parameter identifies the units that are used

to measure the side offset.

 If this value is null, the side offset will be derived from the locator file. If it

is not specified in the locator file, a side offset of 0.0 is used.

side_offset_units

A value of type VARCHAR(128) that contains the units in which the

side_offset parameter is measured. The value must be one of the following

units:

v Inches

v Points

v Feet

v Yards

v Miles

v Nautical miles

v Millimeters

v Centimeters

v Meters

Chapter 23. Spatial functions: syntax and parameters 333

v Kilometers

v Decimal degrees

v Projected meters

v Reference data units

If this value is null, the side offset units will be derived from the locator

file. If it is not specified in the locator file, the side offset will be measured

in feet.

end_offset

A value of type INTEGER that indicates how far a point that would be

exactly at the end of a street segment should be placed in the segment

instead. The value must be larger than or equal to 0 (zero). This parameter

is used to avoid placing resulting points in the middle of a street at

intersections. The end offset is measured in points (the smallest possible

resolution) on the base map.

 If this value is null, the end offset will be derived from the locator file. If it

is not specified in the locator file, an end offset of 3 is used.

base_map

A value of type VARCHAR(256) that contains the fully qualified path,

including the base name, to the base map (.edg) file. The base map file is

used by the geocoder to match the given addresses against. The base maps

supplied by the DB2 Spatial Extender should be used. You can use this

parameter if you placed the base maps in a different directory.

 If this value is null, the path to the base map will be derived from the

locator file. If it is not specified in the locator file, the base map will be

searched for in the sqllib directory of the current instance, in the

gse/refdata subdirectory. The base name of the file searched for is usa.edg.

locator_file

A value of type VARCHAR(256) that contains the fully qualified path,

including the base name, to the locator file that contains additional

configuration parameters for the geocoder. The locator file supplied by the

DB2 Spatial Extender should be used.

 If this value is null, the locator file will be searched for in the sqllib

directory of the current instance, in the gse/cfg/geocoder subdirectory. The

base name of the file searched for is EDGELocator.loc.

Return type

db2gse.ST_Point

Examples

Example 1

The following code creates a table SAMPLE_GEOCODING and inserts two

addresses that are subsequently geocoded. The minimum match score will be set to

50 for the given addresses, and the spatial reference system for the resulting points

is 1.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geocoding (

 street VARCHAR(128),

 city VARCHAR(128),

334 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

state VARCHAR(128),

 zip VARCHAR(5))

INSERT INTO geocoding(street, city, state, zip)

 VALUES (’1212 New York Ave NW’, ’Washington’, ’DC’, ’20005’),

 (’100 First North Street’, ’San Jose’, ’CA’, NULL)

SELECT VARCHAR(ST_AsText(ST_Edge_GC_USA(street, city, state, zip, 1,

 CAST(NULL AS INTEGER), 50, CAST(NULL AS DOUBLE),

 CAST(NULL AS VARCHAR(128)), CAST(NULL AS INTEGER),

 CAST(NULL AS VARCHAR(256)), CAST(NULL AS VARCHAR(256)))), 50)

FROM sample_geocoding

Results:

1

--

POINT (-77.02829300 38.90049000)

POINT (-121.94507200 37.28766700)

Example 2

In this example, a spatial reference system is created that uses a projected

coordinate system. To simplify the interface of the geocoding function, a

user-defined function is created to wrap the ST_Edge_GC_USA function.

db2se create_srs <db_name> -srsName CALIFORNIA -srsId 101 -xScale 1

 -coordsysName NAD_1983_STATEPLANE_CALIFORNIA_I_FIPS_0401

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE FUNCTION California_GC (

 street VARCHAR(128), city VARCHAR(128), zip VARCHAR(10))

 RETURNS db2gse.ST_Point

 LANGUAGE SQL

 RETURN db2gse.ST_Edge_GC_USA(street, city, ’CA’, zip, 101,

 CAST(NULL AS INTEGER), CAST(NULL AS INTEGER),

 CAST(NULL AS DOUBLE), CAST(NULL AS VARCHAR(128)),

 CAST(NULL AS INTEGER), CAST(NULL AS VARCHAR(256)))

CREATE TABLE sample_geocoding (

 street VARCHAR(128),

 city VARCHAR(128),

 state VARCHAR(128),

 zip VARCHAR(5))

INSERT INTO geocoding(street, city, state, zip)

VALUES (’100 First North Street’, ’San Jose’, ’CA’, NULL)

SELECT VARCHAR(ST_AsText(California_GC(street, city, zip)), 50)

FROM sample_geocoding

Results:

1

--

POINT (2004879.00000000 272723.00000000)

The values of the X and Y coordinates of the point are different than in the first

example because a different spatial reference system is used.

Chapter 23. Spatial functions: syntax and parameters 335

ST_Endpoint

ST_Endpoint takes a curve as an input parameter and returns the point that is the

last point of the curve. The resulting point is represented in the spatial reference

system of the given curve.

If the given curve is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_EndPoint (curve) ��

Parameter

curve A value of type ST_Curve that represents the geometry from which the last

point is returned.

Return type

db2gse.ST_Point

Example

The SELECT statement finds the endpoint of each of the geometries in the

SAMPLE_LINES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id INTEGER, line ST_Linestring)

INSERT INTO sample_lines VALUES

 (1, ST_LineString(’linestring (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)’, 0))

INSERT INTO sample_lines VALUES

 (2, ST_LineString(’linestring z (0 0 4, 5 5 5, 10 10 6, 5 5 7)’, 0))

SELECT id, CAST(ST_AsText(ST_EndPoint(line)) as VARCHAR(50)) Endpoint

FROM sample_lines

Results:

ID ENDPOINT

----------- --

 1 POINT (0.00000000 10.00000000)

 2 POINT Z (5.00000000 5.00000000 7.00000000)

ST_Envelope

ST_Envelope takes a geometry as an input parameter and returns an envelope

around the geometry. The envelope is a rectangle that is represented as a polygon.

If the given geometry is a point, a horizontal linestring, or a vertical linestring,

then a rectangle, which is slightly larger than the given geometry, is returned.

Otherwise, the minimum bounding rectangle of the geometry is returned as the

336 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

envelope. If the given geometry is null or is empty, then null is returned. To return

the exact minimum bounding rectangle for all geometries, use the function

ST_MBR.

For geodetic data, the envelope is a polygon that encloses the minimum bounding

circle of the geometry.

This function can also be called as a method.

Syntax

�� db2gse.ST_Envelope (geometry) ��

Parameter

geometry

A value of type ST_Geometry that represents the geometry to return the

envelope for.

Return type

db2gse.ST_Polygon

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

This example creates several geometries and then determines their envelopes. For

the non-empty point and the linestring (which is horizontal), the envelope is a

rectangle that is slightly larger than the geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’point zm (10 10 16 30)’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint m (10 10 5, 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring (10 10, 20 10)’,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’,0))

SELECT id, CAST(ST_AsText(ST_Envelope(geometry)) as VARCHAR(160)) Envelope

FROM sample_geoms

Results:

ID ENVELOPE

----------- ---

 1 -

 2 POLYGON ((9.00000000 9.00000000, 11.00000000 9.00000000,

Chapter 23. Spatial functions: syntax and parameters 337

11.00000000 11.00000000, 9.00000000 11.00000000, 9.00000000 9.00000000))

 3 POLYGON ((10.00000000 10.00000000, 50.00000000 10.00000000,

 50.00000000 30.00000000, 10.00000000 30.00000000, 10.00000000

 10.00000000))

 4 POLYGON ((10.00000000 9.00000000, 20.00000000 9.00000000,

 20.00000000 11.00000000, 10.00000000 11.00000000, 10.00000000

 9.00000000))

 5 POLYGON ((40.00000000 120.00000000, 90.00000000 120.00000000,

 90.00000000 150.00000000, 40.00000000 150.00000000, 40.00000000

 120.00000000))

ST_EnvIntersects

ST_EnvIntersects takes two geometries as input parameters and returns 1 if the

envelopes of two geometries intersect. Otherwise, 0 (zero) is returned.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If any of the given geometries is null or is empty, then null value is returned.

Syntax

�� db2gse.ST_EnvIntersects (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry whose envelope is to be tested for intersection with the envelope

of geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry whose envelope is to be tested for intersection with the envelope

of geometry1.

Return type

INTEGER

Example

This example creates two parallel linestrings and checks them for intersection. The

linestrings themselves do not intersect, but the envelopes for them do.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’linestring (10 10, 50 50)’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’linestring (10 20, 50 60)’,0))

338 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SELECT a.id, b.id, ST_Intersects(a.geometry, b.geometry) Intersects,

 ST_EnvIntersects(a.geometry, b.geometry) Envelope_Intersects

FROM sample_geoms a , sample_geoms b

WHERE a.id = 1 and b.id=2

Results:

ID ID INTERSECTS ENVELOPE_INTERSECTS

----------- ----------- ----------- -------------------

 1 2 0 1

ST_EqualCoordsys

ST_EqualCoordsys takes two coordinate system definitions as input parameters

and returns the integer value 1 (one) if the given definitions are identical.

Otherwise, the integer value 0 (zero) is returned.

The coordinate system definitions are compared regardless of differences in spaces,

parenthesis, uppercase and lowercase characters, and the representation of floating

point numbers.

If any of the given coordinate system definitions is null, null is returned.

Syntax

�� db2gse.ST_EqualCoordsys (coordinate_system1 , coordinate_system2) ��

Parameter

coordinate_system1

A value of type VARCHAR(2048) that defines the first coordinate system to

be compared with coordinate_system2.

coordinate_system2

A value of type VARCHAR(2048) that defines the second coordinate

system to be compared with coordinate_system1.

Return type

INTEGER

Example

This example compares two Australian coordinate systems to see if they are the

same.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

VALUES ST_EqualCoordSys(

 (SELECT definition

 FROM db2gse.ST_COORDINATE_SYSTEMS

 WHERE coordsys_name=’GCS_AUSTRALIAN’) ,

 (SELECT definition

 FROM db2gse.ST_COORDINATE_SYSTEMS

 WHERE coordsys_name=’GCS_AUSTRALIAN_1984’)

)

Chapter 23. Spatial functions: syntax and parameters 339

Results:

1

 0

ST_Equals

ST_Equals takes two geometries as input parameters and returns 1 if the

geometries are equal. Otherwise 0 (zero) is returned. The order of the points used

to define the geometry is not relevant for the test for equality.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If any of the two given geometries is null, then null is returned.

Syntax

�� db2gse.ST_Equals (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry that represents the geometry that is to be

compared with geometry2.

geometry2

A value of type ST_Geometry that represents the geometry that is to be

compared with geometry1.

Return type

INTEGER

Examples

Example 1

This example creates two polygons that have their coordinates in a different order.

ST_Equal is used to show that these polygons are considered equal.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’polygon((50 30, 30 30, 30 50, 50 50, 50 30))’ ,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((50 30, 50 50, 30 50, 30 30, 50 30))’ ,0))

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals

FROM sample_geoms a, sample_geoms b

WHERE a.id = 1 and b.id = 2

Results:

340 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID ID EQUALS

----------- ----------- -----------

 1 2 1

Example 2

In this example, two geometries are created with the same X and Y coordinates,

but different M coordinates (measures). When the geometries are compared with

the ST_Equal function, a 0 (zero) is returned to indicate that these geometries are

not equal.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint m(80 80 6, 90 90 7)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’multipoint m(80 80 6, 90 90 4)’ ,0))

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals

FROM sample_geoms a, sample_geoms b

WHERE a.id = 3 and b.id = 4

Results:

ID ID EQUALS

----------- ----------- -----------

 3 4 0

Example 3

In this example, two geometries are created with a different set of coordinates, but

both represent the same geometry. ST_Equal compares the geometries and

indicates that both geometries are indeed equal.

SET current function path = current function path, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (5, ST_LineString(’linestring (10 10, 40 40)’, 0)),

 (6, ST_LineString(’linestring (10 10, 20 20, 40 40)’, 0))

SELECT a.id, b.id, ST_Equals(a.geometry, b.geometry) Equals

FROM sample_geoms a, sample_geoms b

WHERE a.id = 5 AND b.id = 6

Results:

ID ID EQUALS

----------- ----------- -----------

 5 6 1

ST_EqualSRS

ST_EqualSRS takes two spatial reference system identifiers as input parameters and

returns 1 if the given spatial reference systems are identical. Otherwise, 0 (zero) is

returned. The offsets, scale factors, and the coordinate systems are compared.

If any of the given spatial reference system identifiers is null, null is returned.

Chapter 23. Spatial functions: syntax and parameters 341

Syntax

�� db2gse.ST_EqualSRS (srs_id1 , srs_id2) ��

Parameter

srs_id1

A value of type INTEGER that identifies the first spatial reference system

to be compared with the spatial reference system identified by srs_id2.

srs_id2

A value of type INTEGER that identifies the second spatial reference

system to be compared with the spatial reference system identified by

srs_id1.

Return type

INTEGER

Example

Two similar spatial reference systems are created with the following calls to db2se.

db2se create_srs SAMP_DB -srsId 12 -srsName NYE_12 -xOffset 0 -yOffset 0

 -xScale 1 -yScale 1 -coordsysName

 NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

db2se create_srs SAMP_DB -srsId 22 -srsName NYE_22 -xOffset 0 -yOffset 0

 -xScale 1 -yScale 1 -coordsysName

 NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

These SRSs have the same offset and scale values, and they refer to the same

coordinate systems. The only difference is in the defined name and the SRS ID.

Therefore, the comparison returns 1, which indicates that they are the same.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

VALUES ST_EqualSRS(12, 22)

Results:

1

 1

ST_ExteriorRing

ST_ExteriorRing takes a polygon as an input parameter and returns its exterior

ring as a curve. The resulting curve is represented in the spatial reference system

of the given polygon.

If the given polygon is null or is empty, then null is returned. If the polygon does

not have any interior rings, the returned exterior ring is identical to the boundary

of the polygon.

This function can also be called as a method.

342 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_ExteriorRing (polygon) ��

Parameter

polygon

A value of type ST_Polygon that represents the polygon for which the

exterior ring is to be returned.

Return type

db2gse.ST_Curve

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

This example creates two polygons, one with two interior rings and one with no

interior rings, then it determines their exterior rings.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys VALUES

 (1, ST_Polygon(’polygon((40 120, 90 120, 90 150, 40 150, 40 120),

 (50 130, 60 130, 60 140, 50 140, 50 130),

 (70 130, 80 130, 80 140, 70 140, 70 130))’ ,0))

INSERT INTO sample_polys VALUES

 (2, ST_Polygon(’polygon((10 10, 50 10, 10 30, 10 10))’ ,0))

SELECT id, CAST(ST_AsText(ST_ExteriorRing(geometry))

 AS VARCHAR(180)) Exterior_Ring

FROM sample_polys

Results:

ID EXTERIOR_RING

----------- --

 1 LINESTRING (40.00000000 120.00000000, 90.00000000

 120.00000000, 90.00000000 150.00000000, 40.00000000 150.00000000,

 40.00000000 120.00000000)

 2 LINESTRING (10.00000000 10.00000000, 50.00000000

 10.00000000, 10.00000000 30.00000000, 10.00000000 10.00000000)

ST_FindMeasure or ST_LocateAlong

ST_FindMeasure or ST_LocateAlong takes a geometry and a measure as input

parameters and returns a multipoint or multicurve of that part of the given

geometry that has exactly the specified measure of the given geometry that

contains the specified measure.

For points and multipoints, all the points with the specified measure are returned.

For curves, multicurves, surfaces, and multisurfaces, interpolation is performed to

compute the result. The computation for surfaces and multisurfaces is performed

on the boundary of the geometry.

Chapter 23. Spatial functions: syntax and parameters 343

For points and multipoints, if the given measure is not found, then an empty

geometry is returned. For all other geometries, if the given measure is lower than

the lowest measure in the geometry or higher than the highest measure in the

geometry, then an empty geometry is returned. If the given geometry is null, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_FindMeasure

db2gse.ST_LocateAlong
 (geometry , measure) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry in which to search for parts whose M coordinates (measures)

contain measure.

measure

A value of type DOUBLE that is the measure that the parts of geometry

must be included in the result.

Return type

db2gse.ST_Geometry

Examples

Example 1

The following CREATE TABLE statement creates the SAMPLE_GEOMETRIES

table. SAMPLE_GEOMETRIES has two columns: the ID column, which uniquely

identifies each row, and the GEOMETRY ST_Geometry column, which stores

sample geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id SMALLINT, geometry ST_GEOMETRY)

The following INSERT statements insert two rows. The first is a linestring; the

second is a multipoint.

INSERT INTO sample_geometries(id, geometry)

VALUES

 (1, ST_LineString(’linestring m (2 2 3, 3 5 3, 3 3 6, 4 4 8)’, 1)),

 (2, ST_MultiPoint(’multipoint m

 (2 2 3, 3 5 3, 3 3 6, 4 4 6, 5 5 6, 6 6 8)’, 1))

Example 2

In the following SELECT statement and the corresponding result set, the

ST_FindMeasure function is directed to find points whose measure is 7. The first

row returns a point. However, the second row returns an empty point. For linear

features (geometry with a dimension greater than 0), ST_FindMeasure can

interpolate the point; however, for multipoints, the target measure must match

exactly.

344 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SELECT id, cast(ST_AsText(ST_FindMeasure(geometry, 7))

 AS varchar(45)) AS measure_7

FROM sample_geometries

Results:

ID MEASURE_7

------ ---

 1 POINT M (3.50000000 3.50000000 7.00000000)

 2 POINT EMPTY

Example 3

In the following SELECT statement and the corresponding result set, the

ST_FindMeasure function returns a point and a multipoint. The target measure of 6

matches the measures in both the ST_FindMeasure and multipoint source data.

SELECT id, cast(ST_AsText(ST_FindMeasure(geometry, 6))

 AS varchar(120)) AS measure_6

FROM sample_geometries

Results:

ID MEASURE_6

------ --

1 POINT M (3.00000000 3.00000000 6.00000000)

2 MULTIPOINT M (3.00000000 3.00000000 6.00000000, 4.00000000

 4.00000000 6.00000000, 5.00000000 5.00000000 6.00000000)

ST_Generalize

ST_Generalize takes a geometry and a threshold as input parameters and

represents the given geometry with a reduced number of points, while preserving

the general characteristics of the geometry.

The Douglas-Peucker line-simplification algorithm is used, by which the sequence

of points that define the geometry is recursively subdivided until a run of the

points can be replaced by a straight line segment. In this line segment, none of the

defining points deviates from the straight line segment by more than the given

threshold. Z and M coordinates are not considered for the simplification. The

resulting geometry is in the spatial reference system of the given geometry.

If the given geometry is empty, an empty geometry of type ST_Point is returned. If

the given geometry or the threshold is null, null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Generalize (geometry , threshold) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry for which the line-simplification is applied.

threshold

A value of type DOUBLE that identifies the threshold to be used for the

Chapter 23. Spatial functions: syntax and parameters 345

line-simplification algorithm. The threshold must be greater than or equal

to 0 (zero). The larger the threshold, the smaller the number of points that

will be used to represent the generalized geometry. For geodetic data, the

unit for threshold is in meters.

Return type

db2gse.ST_Geometry

Examples

In the following examples, the results have been reformatted for readability. The

spacing in your results will vary according to your display.

Example 1

A linestring is created with eight points that go from (10, 10) to (80, 80). The path

is almost a straight line, but some of the points are slightly off of the line. The

ST_Generalize function can be used to reduce the number of points in the line.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, geometry ST_LineString)

INSERT INTO sample_lines VALUES

 (1, ST_Linestring(’linestring(10 10, 21 20, 34 26, 40 40,

 52 50, 59 63, 70 71, 80 80)’ ,0))

Example 2

When a generalization factor of 3 is used, the linestring is reduced to four

coordinates, and is still very close to the original representation of the linestring.

SELECT CAST(ST_AsText(ST_Generalize(geometry, 3)) as VARCHAR(115))

 Generalize_3

FROM sample_lines

Results:

GENERALIZE 3

--

LINESTRING (10.00000000 10.00000000, 34.00000000 26.00000000,

 59.00000000 63.00000000, 80.00000000 80.00000000)

Example 3

When a generalization factor of 6 is used, the linestring is reduced to only two

coordinates. This produces a simpler linestring than the previous example,

however it deviates more from the original representation.

SELECT CAST(ST_AsText(ST_Generalize(geometry, 6)) as VARCHAR(65))

 Generalize_6

FROM sample_lines

Results:

GENERALIZE 6

--

LINESTRING (10.00000000 10.00000000, 80.00000000 80.00000000)

346 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_GeomCollection

Use ST_GeomCollection to construct a geometry collection.

ST_GeomCollection constructs a geometry collection from one of the following

inputs:

v A well-known text representation

v A well-known binary representation

v An ESRI shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to identify the

spatial reference system that the resulting geometry collection is in.

If the well-known text representation, the well-known binary representation, the

ESRI shape representation, or the GML representation is null, then null is returned.

Syntax

�� db2gse.ST_GeomCollection (wkt

wkb

shape

gml

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting geometry collection.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting geometry collection.

shape A value of type BLOB(2G) that represents the ESRI shape representation of

the resulting geometry collection.

gml A value of type CLOB(2G) that represents the resulting geometry collection

using the geography markup language (GML).

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry collection.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_GeomCollection

Notes

If the srs_id parameter is omitted, it might be necessary to cast wkt and gml

explicitly to the CLOB data type. Otherwise, DB2 might resolve to the function

used to cast values from the reference type REF(ST_GeomCollection) to the

Chapter 23. Spatial functions: syntax and parameters 347

ST_GeomCollection type. The following example ensures that DB2 resolves to the

correct function:

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code illustrates how the ST_GeomCollection function can be used to

create and insert a multipoint, multiline, and multipolygon from well-known text

(WKT) representation and a multipoint from geographic markup language (GML)

into a GeomCollection column.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcollections(id INTEGER,

 geometry ST_GEOMCOLLECTION)

INSERT INTO sample_geomcollections(id, geometry)

VALUES

 (4001, ST_GeomCollection(’multipoint(1 2, 4 3, 5 6)’, 1)),

 (4002, ST_GeomCollection(’multilinestring(

 (33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1)),

 (4003, ST_GeomCollection(’multipolygon(((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1)),

 (4004, ST_GeomCollection(’<gml:MultiPoint srsName="EPSG:4269"

 ><gml:PointMember><gml:Point>

 <gml:coord><gml:X>10</gml:X>

 <gml:Y>20</gml:Y></gml: coord></gml:Point>

 </gml:PointMember><gml:PointMember>

 <gml:Point><gml:coord><gml:X>30</gml:X>

 <gml:Y>40</gml:Y></gml:coord></gml:Point>

 </gml:PointMember></gml:MultiPoint>’, 1))

SELECT id, cast(geometry..ST_AsText AS varchar(350)) AS geomcollection

FROM sample_geomcollections

Results:

ID GEOMCOLLECTION

----------- ---

4001 MULTIPOINT (1.00000000 2.00000000, 4.00000000 3.00000000,

 5.00000000 6.00000000)

4002 MULTILINESTRING ((33.00000000 2.00000000, 34.00000000

 3.00000000, 35.00000000 6.00000000),(28.00000000 4.00000000,

 29.00000000 5.00000000, 31.00000000 8.00000000, 43.00000000

 12.00000000),(39.00000000 3.00000000, 37.00000000 4.00000000,

 36.00000000 7.00000000))

4003 MULTIPOLYGON (((13.00000000 33.00000000, 10.00000000

 43.00000000, 1.00000000 40.00000000, 7.00000000 36.00000000,

 13.00000000 33.00000000)),((8.00000000 24.00000000, 9.00000000

 25.00000000, 1.00000000 28.00000000, 8.00000000 24.00000000)),

 ((3.00000000 3.00000000,5.00000000 3.00000000, 4.00000000

 6.00000000,3.00000000 3.00000000)))

4004 MULTIPOINT (10.00000000 20.00000000, 30.00000000

 40.00000000)

348 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_GeomCollFromTxt

ST_GeomCollFromTxt takes a well-known text representation of a geometry

collection and, optionally, a spatial reference system identifier as input parameters

and returns the corresponding geometry collection.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is ST_GeomCollection. It

is recommended because of its flexibility: ST_GeomCollection takes additional

forms of input as well as the well-known binary representation.

Syntax

�� db2gse.ST_GeomCollFromTxt (wkt

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting geometry collection.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry collection.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_GeomCollection

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code illustrates how the ST_GeomCollFromTxt function can be used

to create and insert a multipoint, multiline, and multipolygon from a well-known

text (WKT) representation into a GeomCollection column.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcollections(id INTEGER, geometry ST_GEOMCOLLECTION)

INSERT INTO sample_geomcollections(id, geometry)

VALUES

 (4011, ST_GeomCollFromTxt(’multipoint(1 2, 4 3, 5 6)’, 1)),

 (4012, ST_GeomCollFromTxt(’multilinestring(

 (33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1)),

 (4013, ST_GeomCollFromTxt(’multipolygon(((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1))

Chapter 23. Spatial functions: syntax and parameters 349

SELECT id, cast(geometry..ST_AsText AS varchar(340))

 AS geomcollection

FROM sample_geomcollections

Results:

ID GEOMCOLLECTION

----------- ---

4011 MULTIPOINT (1.00000000 2.00000000, 4.00000000 3.00000000,

 5.00000000 6.00000000)

4012 MULTILINESTRING ((33.00000000 2.00000000, 34.00000000

 3.00000000, 35.00000000 6.00000000),(28.00000000 4.00000000, 29.00000000

 5.00000000, 31.00000000 8.00000000, 43.00000000 12.00000000),(39.00000000

 3.00000000, 37.00000000 4.00000000, 36.00000000 7.00000000))

4013 MULTIPOLYGON (((13.00000000 33.00000000, 10.00000000 43.00000000,

 1.00000000 40.00000000, 7.00000000 36.00000000, 13.00000000 33.00000000)),

 ((8.00000000 24.00000000, 9.00000000 25.00000000, 1.00000000 28.00000000,

 8.00000000 24.00000000)),((3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000)))

ST_GeomCollFromWKB

ST_GeomCollFromWKB takes a well-known binary representation of a geometry

collection and, optionally, a spatial reference system identifier as input parameters

and returns the corresponding geometry collection.

If the given well-known binary representation is null, then null is returned.

The preferred version for this functionality is ST_GeomCollection.

Syntax

�� db2gse.ST_GeomCollFromTxt (wkb

,

srs_id
) ��

Parameter

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting geometry collection.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry collection.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_GeomCollection

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

350 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

The following code illustrates how the ST_GeomCollFromWKB function can be

used to create and query the coordinates of a geometry collection in a well-known

binary representation. The rows are inserted into the

SAMPLE_GEOMCOLLECTION table with IDs 4021 and 4022 and geometry

collections in spatial reference system 1.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcollections(id INTEGER,

 geometry ST_GEOMCOLLECTION, wkb BLOB(32k))

INSERT INTO sample_geomcollections(id, geometry)

VALUES

 (4021, ST_GeomCollFromTxt(’multipoint(1 2, 4 3, 5 6)’, 1)),

 (4022, ST_GeomCollFromTxt(’multilinestring(

 (33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12))’, 1))

UPDATE sample_geomcollections AS temp_correlated

SET wkb = geometry..ST_AsBinary

WHERE id = temp_correlated.id

SELECT id, cast(ST_GeomCollFromWKB(wkb)..ST_AsText

 AS varchar(190)) AS GeomCollection

FROM sample_geomcollections

Results:

ID GEOMCOLLECTION

----------- ---

 4021 MULTIPOINT (1.00000000 2.00000000, 4.00000000

 3.00000000, 5.00000000 6.00000000)

 4022 MULTILINESTRING ((33.00000000 2.00000000,

 34.00000000 3.00000000, 35.00000000 6.00000000),(28.00000000

 4.00000000, 29.00000000 5.00000000, 31.00000000 8.00000000,

 43.00000000 12.00000000))

ST_Geometry

ST_Geometry constructs a geometry from one of the following inputs:

v A well-known text representation

v A well-known binary representation

v An ESRI shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to identify the

spatial reference system that the resulting geometry is in.

The dynamic type of the resulting geometry is one of the instantiable subtypes of

ST_Geometry.

If the well-known text representation, the well-known binary representation, the

ESRI shape representation, or the GML representation is null, then null is returned.

Chapter 23. Spatial functions: syntax and parameters 351

Syntax

�� db2gse.ST_Geometry (wkt

wkb

shape

gml

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting geometry.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting geometry.

shape A value of type BLOB(2G) that represents the ESRI shape representation of

the resulting geometry.

gml A value of type CLOB(2G) that represents the resulting geometry using the

geography markup language (GML).

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_Geometry

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code illustrates how the ST_Geometry function can be used to create

and insert a point from a well-known text (WKT) point representation or line from

Geographic Markup Language (GML) line representation.

The ST_Geometry function is the most flexible of the spatial type constructor

functions because it can create any spatial type from various geometry

representations. ST_LineFromText can create only a line from WKT line

representation. ST_WKTToSql can construct any type, but only from WKT

representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id INTEGER, geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, geometry)

VALUES

 (7001, ST_Geometry(’point(1 2)’, 1)),

 (7002, ST_Geometry(’linestring(33 2, 34 3, 35 6)’, 1)),

 (7003, ST_Geometry(’polygon((3 3, 4 6, 5 3, 3 3))’, 1)),

 (7004, ST_Geometry(’<gml:Point srsName=";EPSG:4269";><gml:coord>

 <gml:X>50</gml:X><gml:Y>60</gml:Y></gml:coord>

352 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

</gml:Point>’, 1))

SELECT id, cast(geometry..ST_AsText AS varchar(120)) AS geometry

FROM sample_geometries

Results:

ID GEOMETRY

----------- --

7001 POINT (1.00000000 2.00000000)

7002 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,

 35.00000000 6.00000000)

7003 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000))

7004 POINT (50.00000000 60.00000000)

ST_GeometryN

ST_GeometryN takes a geometry collection and an index as input parameters and

returns the geometry in the collection that is identified by the index. The resulting

geometry is represented in the spatial reference system of the given geometry

collection.

If the given geometry collection is null or is empty, or if the index is smaller than 1

or larger than the number of geometries in the collection, then null is returned and

a warning condition is raised (01HS0).

This function can also be called as a method.

Syntax

�� db2gse.ST_GeometryN (collection , index) ��

Parameter

collection

A value of type ST_GeomCollection or one of its subtypes that represents

the geometry collection to locate the nth geometry within.

index A value of type INTEGER that identifies the nth geometry that is to be

returned from collection.

 If index is smaller than 1 or larger than the number of geometries in the

collection, then null is returned and a warning is returned (SQLSTATE

01HS0).

Return type

db2gse.ST_Geometry

Example

The following code illustrates how to choose the second geometry inside a

geometry collection.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcollections (id INTEGER,

Chapter 23. Spatial functions: syntax and parameters 353

geometry ST_GEOMCOLLECTION)

INSERT INTO sample_geomcollections(id, geometry)

VALUES

 (4001, ST_GeomCollection(’multipoint(1 2, 4 3)’, 1)),

 (4002, ST_GeomCollection(’multilinestring(

 (33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1)),

 (4003, ST_GeomCollection(’multipolygon(((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1))

SELECT id, cast(ST_GeometryN(geometry, 2)..ST_AsText AS varchar(110))

 AS second_geometry

FROM sample_geomcollections

Results:

ID SECOND_GEOMETRY

----------- --

 4001 POINT (4.00000000 3.00000000)

 4002 LINESTRING (28.00000000 4.00000000, 29.00000000 5.00000000,

 31.00000000 8.00000000, 43.00000000 12.00000000)

 4003 POLYGON ((8.00000000 24.00000000, 9.00000000 25.00000000,

 1.00000000 28.00000000, 8.00000000 24.00000000))

ST_GeometryType

ST_GeometryType takes a geometry as input parameter and returns the fully

qualified type name of the dynamic type of that geometry.

The DB2 functions TYPE_SCHEMA and TYPE_NAME have the same effect.

This function can also be called as a method.

Syntax

�� db2gse.ST_GeometryType (geometry) ��

Parameter

geometry

A value of type ST_Geometry for which the geometry type is to be

returned.

Return type

VARCHAR(128)

Examples

The following code illustrates how to determine the type of a geometry.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, geometry)

VALUES

354 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

(7101, ST_Geometry(’point(1 2)’, 1)),

 (7102, ST_Geometry(’linestring(33 2, 34 3, 35 6)’, 1)),

 (7103, ST_Geometry(’polygon((3 3, 4 6, 5 3, 3 3))’, 1)),

 (7104, ST_Geometry(’multipoint(1 2, 4 3)’, 1))

SELECT id, geometry..ST_GeometryType AS geometry_type

FROM sample_geometries

Results:

ID GEOMETRY_TYPE

----------- -------------------------------

 7101 "DB2GSE "."ST_POINT"

 7102 "DB2GSE "."ST_LINESTRING"

 7103 "DB2GSE "."ST_POLYGON"

 7104 "DB2GSE "."ST_MULTIPOINT"

ST_GeomFromText

ST_GeomFromText takes a well-known text representation of a geometry and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding geometry.

If the given well-known text representation is null, then null is returned.

The preferred version for this functionality is ST_Geometry.

Syntax

�� db2gse.ST_GeomFromText (wkt

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting geometry.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_Geometry

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

In this example the ST_GeomFromText function is used to create and insert a point

from a well known text (WKT) point representation.

Chapter 23. Spatial functions: syntax and parameters 355

The following code inserts rows into the SAMPLE_POINTS table with IDs and

geometries in spatial reference system 1 using WKT representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id INTEGER, geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, geometry)

VALUES

 (1251, ST_GeomFromText(’point(1 2)’, 1)),

 (1252, ST_GeomFromText(’linestring(33 2, 34 3, 35 6)’, 1)),

 (1253, ST_GeomFromText(’polygon((3 3, 4 6, 5 3, 3 3))’, 1))

The following SELECT statement will return the ID and GEOMETRIES from the

SAMPLE_GEOMETRIES table.

SELECT id, cast(geometry..ST_AsText AS varchar(105))

 AS geometry

FROM sample_geometries

Results:

ID GEOMETRY

----------- ---

 1251 POINT (1.00000000 2.00000000)

 1252 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,

 35.00000000 6.00000000)

 1253 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000))

ST_GeomFromWKB

ST_GeomFromWKB takes a well-known binary representation of a geometry and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding geometry.

If the given well-known binary representation is null, then null is returned.

The preferred version for this functionality is ST_Geometry.

Syntax

�� db2gse.ST_GeomFromWKB (wkb)

,

srs_id
 ��

Parameter

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting geometry.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry.

If the srs_id parameter is omitted, the spatial reference system with the numeric

identifier 0 (zero) is used implicitly.

If the specified srs_id parameter does not identify a spatial reference system listed

in the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

356 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

db2gse.ST_Geometry

Examples

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code illustrates how the ST_GeomFromWKB function can be used to

create and insert a line from a well-known binary (WKB) line representation.

The following example inserts a record into the SAMPLE_GEOMETRIES table with

an ID and a geometry in spatial reference system 1 in a WKB representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_GEOMETRY,

 wkb BLOB(32K))

INSERT INTO sample_geometries(id, geometry)

VALUES

 (1901, ST_GeomFromText(’point(1 2)’, 1)),

 (1902, ST_GeomFromText(’linestring(33 2, 34 3, 35 6)’, 1)),

 (1903, ST_GeomFromText(’polygon((3 3, 4 6, 5 3, 3 3))’, 1))

UPDATE sample_geometries AS temp_correlated

SET wkb = geometry..ST_AsBinary

WHERE id = temp_correlated.id

SELECT id, cast(ST_GeomFromWKB(wkb)..ST_AsText AS varchar(190))

 AS geometry

FROM sample_geometries

Results:

 ID GEOMETRY

 ----------- --

1901 POINT (1.00000000 2.00000000)

1902 LINESTRING (33.00000000 2.00000000, 34.00000000

 3.00000000, 35.00000000 6.00000000)

1903 POLYGON ((3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000))

ST_GetIndexParms

ST_GetIndexParms takes either the identifier for a spatial index or for a spatial

column as an input parameter and returns the parameters used to define the index

or the index on the spatial column. If an additional parameter number is specified,

only the grid size identified by the number is returned.

Syntax

�� db2gse.ST_GetIndexParms (�

� index_schema , index_name

table_schema

,

table_name

,

column_name

,

grid_size_number
) ��

Chapter 23. Spatial functions: syntax and parameters 357

Parameter

index_schema

A value of type VARCHAR(128) that identifies the schema in which the

spatial index with the unqualified name index_name is in. The schema

name is case-sensitive and must be listed in the SYSCAT.SCHEMATA

catalog view.

 If this parameter is null, then the value of the CURRENT SCHEMA special

register is used as the schema name for the spatial index.

index_name

A value of type VARCHAR(128) that contains the unqualified name of the

spatial index for which the index parameters are returned. The index name

is case-sensitive and must be listed in the SYSCAT.INDEXES catalog view

for the schema index_schema.

table_schema

A value of type VARCHAR(128) that identifies the schema in which the

table with the unqualified name table_name is in. The schema name is

case-sensitive and must be listed in the SYSCAT.SCHEMATA catalog view.

 If this is parameter null, then the value of the CURRENT SCHEMA special

register is used as the schema name for the spatial index.

table_name

A value of type VARCHAR(128) that contains the unqualified name of the

table with the spatial column column_name. The table name is case-sensitive

and must be listed in the SYSCAT.TABLES catalog view for the schema

table_schema.

column_name

A value of type VARCHAR(128) that identifies the column in the table

table_schema.table_name for which the index parameters of the spatial index

on that column are returned. The column name is case-sensitive and must

be listed in the SYSCAT.COLUMNS catalog view for the table

table_schema.table_name.

 If there is no spatial index defined in the column, then an error is raised

(SQLSTATE 38SQ0).

grid_size_number

A DOUBLE value that identifies the parameter whose value or values are

to be returned.

 If this value is smaller than 1 or larger than 3, then an error is raised

(SQLSTATE 38SQ1).

Return type

DOUBLE (if grid_size_number is specified)

If grid_size_number is not specified, then a table with the two columns ORDINAL

and VALUE is returned. The column ORDINAL is of type INTEGER, and the

column VALUE is of type DOUBLE.

If the parameters are returned for a grid index, the ORDINAL column contains the

values 1, 2, and 3 for the first, second, and third grid size, respectively. The column

VALUE contains the grid sizes.

The VALUE column contains the respective values for each of the parameters.

358 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Examples

Example 1

This code creates a table with a spatial column and a spatial index.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sch.offices (name VARCHAR(30), location ST_Point)

 CREATE INDEX sch.idx ON sch.offices(location)

 EXTEND USING db2gse.spatial_index(1e0, 10e0, 1000e0)

The ST_GetIndexParms function can be used to retrieve the values for the

parameters that were used when the spatial index was created.

Example 2

This example shows how to retrieve the three grid sizes for a spatial grid index

separately by explicitly specifying which parameter, identified by its number, is to

be returned.

VALUES ST_GetIndexParms(’SCH’, ’OFFICES’, ’LOCATION’, 1)

Results:

1

 +1.00000000000000E+000

VALUES ST_GetIndexParms(’SCH’, ’OFFICES’, ’LOCATION’, 2)

Results:

1

 +1.00000000000000E+001

VALUES ST_GetIndexParms(’SCH’, ’IDX’, 3)

Results:

1

 +1.00000000000000E+003

Example 3

This example shows how to retrieve all the parameters of a spatial grid index. The

ST_GetIndexParms function returns a table that indicates the parameter number

and the corresponding grid size.

SELECT * FROM TABLE (ST_GetIndexParms(’SCH’, ’OFFICES’, ’LOCATION’)) AS t

Results:

ORDINAL VALUE

----------- ------------------------

 1 +1.00000000000000E+000

 2 +1.00000000000000E+001

 3 +1.00000000000000E+003

SELECT * FROM TABLE (ST_GetIndexParms(’SCH’, ’IDX’)) AS t

Results:

Chapter 23. Spatial functions: syntax and parameters 359

ORDINAL VALUE

----------- ------------------------

 1 +1.00000000000000E+000

 2 +1.00000000000000E+001

 3 +1.00000000000000E+003

ST_InteriorRingN

ST_InteriorRingN takes a polygon and an index as input parameters and returns

the interior ring identified by the given index as a linestring. The interior rings are

organized according to the rules defined by the internal geometry verification

routines.

If the given polygon is null or is empty, or if it does not have any interior rings,

then null is returned. If the index is smaller than 1 or larger than the number of

interior rings in the polygon, then null is returned and a warning condition is

raised (1HS1).

This function can also be called as a method.

Syntax

�� db2gse.ST_InteriorRingN (polygon , index) ��

Parameter

polygon

A value of type ST_Polygon that represents the geometry from which the

interior ring identified by index is returned.

index A value of type INTEGER that identifies the nthe interior ring that is

returned. If there is no interior ring identified by index, then a warning

condition is raised (01HS1).

Return type

db2gse.ST_Curve

Example

In this example, a polygon is created with two interior rings. The ST_InteriorRingN

call is then used to retrieve the second interior ring.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys VALUES

 (1, ST_Polygon(’polygon((40 120, 90 120, 90 150, 40 150, 40 120),

 (50 130, 60 130, 60 140, 50 140, 50 130),

 (70 130, 80 130, 80 140, 70 140, 70 130))’ ,0))

SELECT id, CAST(ST_AsText(ST_InteriorRingN(geometry, 2)) as VARCHAR(180))

 Interior_Ring

FROM sample_polys

Results:

360 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID INTERIOR_RING

----------- --

 1 LINESTRING (70.00000000 130.00000000, 70.00000000 140.00000000,

80.00000000 140.00000000, 80.00000000 130.00000000, 70.00000000 130.00000000)

ST_Intersection

ST_Intersection takes two geometries as input parameters and returns the

geometry that is the intersection of the two given geometries. The intersection is

the common part of the first geometry and the second geometry. The resulting

geometry is represented in the spatial reference system of the first geometry.

If possible, the specific type of the returned geometry will be ST_Point,

ST_LineString, or ST_Polygon. For example, the intersection of a point and a

polygon is either empty or a single point, represented as ST_MultiPoint.

If any of the two geometries is null, null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

This function can also be called as a method.

Syntax

�� db2gse.ST_Intersection (geometry1 , geometry2) ��

Parameter

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

first geometry to compute the intersection with geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

second geometry to compute the intersection with geometry1.

For geodetic data, both geometries must be geodetic and they both must be in the

same geodetic SRS.

Return type

db2gse.ST_Geometry

The dimension of the returned geometry is that of the input with the lower

dimension, except for linestrings in geodetic data. For geodetic data, the dimension

of the intersection of two linestrings is 0 (in other words, the intersection is a point

or multipoint).

Example

In the following examples, the results have been reformatted for readability. The

spacing in your results will vary according to your display.

Chapter 23. Spatial functions: syntax and parameters 361

This example creates several different geometries and then determines the

intersection (if any) with the first one.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’polygon((30 30, 30 50, 50 50, 50 30, 30 30))’ ,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((20 30, 30 30, 30 40, 20 40, 20 30))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’polygon((40 40, 40 60, 60 60, 60 40, 40 40))’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring(60 60, 70 70)’ ,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’linestring(30 30, 60 60)’ ,0))

SELECT a.id, b.id, CAST(ST_AsText(ST_Intersection(a.geometry, b.geometry))

 as VARCHAR(150)) Intersection

FROM sample_geoms a, sample_geoms b

WHERE a.id = 1

Results:

ID ID INTERSECTION

----------- ----------- --

 1 1 POLYGON ((30.00000000 30.00000000, 50.00000000

30.00000000, 50.00000000 50.00000000, 30.00000000 50.00000000, 30.00000000

30.00000000))

 1 2 LINESTRING (30.00000000 40.00000000, 30.00000000

30.00000000)

 1 3 POLYGON ((40.00000000 40.00000000, 50.00000000

40.00000000, 50.00000000 50.00000000, 40.00000000 50.00000000, 40.00000000

40.00000000))

 1 4 POINT EMPTY

 1 5 LINESTRING (30.00000000 30.00000000, 50.00000000

50.00000000)

 5 record(s) selected.

ST_Intersects

ST_Intersects takes two geometries as input parameters and returns 1 if the given

geometries intersect. If the geometries do not intersect, 0 (zero) is returned.

If any of the two geometries is null or is empty, null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

Syntax

�� db2gse.ST_Intersects (geometry1 , geometry2) ��

362 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameter

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry to test for intersection with geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry to test for intersection with geometry1.

Restrictions: For geodetic data, both geometries must be geodetic, and they both

must be in the same geodetic SRS.

Return type

INTEGER

Example

The following statements create and populate the SAMPLE_GEOMETRIES1 and

SAMPLE_GEOMETRIES2 tables.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries1(id SMALLINT, spatial_type varchar(13),

 geometry ST_GEOMETRY);

CREATE TABLE sample_geometries2(id SMALLINT, spatial_type varchar(13),

 geometry ST_GEOMETRY);

INSERT INTO sample_geometries1(id, spatial_type, geometry)

VALUES

 (1, ’ST_Point’, ST_Point(’point(550 150)’, 1)),

 (10, ’ST_LineString’, ST_LineString(’linestring(800 800, 900 800)’, 1)),

 (20, ’ST_Polygon’, ST_Polygon(’polygon((500 100, 500 200, 700 200,

 700 100, 500 100))’, 1))

INSERT INTO sample_geometries2(id, spatial_type, geometry)

VALUES

 (101, ’ST_Point’, ST_Point(’point(550 150)’, 1)),

 (102, ’ST_Point’, ST_Point(’point(650 200)’, 1)),

 (103, ’ST_Point’, ST_Point(’point(800 800)’, 1)),

 (110, ’ST_LineString’, ST_LineString(’linestring(850 250, 850 850)’, 1)),

 (120, ’ST_Polygon’, ST_Polygon(’polygon((650 50, 650 150, 800 150,

 800 50, 650 50))’, 1)),

 (121, ’ST_Polygon’, ST_Polygon(’polygon((20 20, 20 40, 40 40, 40 20,

 20 20))’, 1))

The following SELECT statement determines whether the various geometries in the

SAMPLE_GEOMTRIES1 and SAMPLE_GEOMTRIES2 tables intersect.

SELECT sg1.id AS sg1_id, sg1.spatial_type AS sg1_type,

 sg2.id AS sg2_id, sg2.spatial_type AS sg2_type,

 CASE ST_Intersects(sg1.geometry, sg2.geometry)

 WHEN 0 THEN ’Geometries do not intersect’

 WHEN 1 THEN ’Geometries intersect’

 END AS intersects

FROM sample_geometries1 sg1, sample_geometries2 sg2

ORDER BY sg1.id

Results:

SG1_ID SG1_TYPE SG2_ID SG2_TYPE INTERSECTS

------ ------------- ------ ------------- ---------------------------

 1 ST_Point 101 ST_Point Geometries intersect

 1 ST_Point 102 ST_Point Geometries do not intersect

Chapter 23. Spatial functions: syntax and parameters 363

1 ST_Point 103 ST_Point Geometries do not intersect

 1 ST_Point 110 ST_LineString Geometries do not intersect

 1 ST_Point 120 ST_Polygon Geometries do not intersect

 1 ST_Point 121 ST_Polygon Geometries do not intersect

 10 ST_LineString 101 ST_Point Geometries do not intersect

 10 ST_LineString 102 ST_Point Geometries do not intersect

 10 ST_LineString 103 ST_Point Geometries intersect

 10 ST_LineString 110 ST_LineString Geometries intersect

 10 ST_LineString 120 ST_Polygon Geometries do not intersect

 10 ST_LineString 121 ST_Polygon Geometries do not intersect

 20 ST_Polygon 101 ST_Point Geometries intersect

 20 ST_Polygon 102 ST_Point Geometries intersect

 20 ST_Polygon 103 ST_Point Geometries do not intersect

 20 ST_Polygon 110 ST_LineString Geometries do not intersect

 20 ST_Polygon 120 ST_Polygon Geometries intersect

 20 ST_Polygon 121 ST_Polygon Geometries do not intersect

ST_Is3d

ST_Is3d takes a geometry as an input parameter and returns 1 if the given

geometry has Z coordinates. Otherwise, 0 (zero) is returned.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Is3D (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested for the existence of Z coordinates.

Return type

INTEGER

Example

In this example, several geometries are created with and without Z coordinates

and M coordinates (measures). ST_Is3d is then used to determine which of them

contain Z coordinates.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint m (10 10 5, 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring z (10 10 166, 20 10 168)’,0))

364 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’point zm (10 10 16 30)’ ,0))

SELECT id, ST_Is3d(geometry) Is_3D

FROM sample_geoms

Results:

ID IS_3D

----------- -----------

 1 0

 2 0

 3 0

 4 1

 5 1

ST_IsClosed

ST_IsClosed takes a curve or multicurve as an input parameter and returns 1 if the

given curve or multicurve is closed. Otherwise, 0 (zero) is returned.

A curve is closed if the start point and end point are equal. If the curve has Z

coordinates, the Z coordinates of the start and end point must be equal. Otherwise,

the points are not considered equal, and the curve is not closed. A multicurve is

closed if each of its curves are closed.

If the given curve or multicurve is empty, then 0 (zero) is returned. If it is null,

then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsClosed (curve) ��

Parameter

curve A value of type ST_Curve or ST_MultiCurve or one of their subtypes that

represent the curve or multicurve that is to be tested.

Return type

INTEGER

Examples

Example 1

This example creates several linestrings. The last two linestrings have the same X

and Y coordinates, but one linestring contains varying Z coordinates that cause the

linestring to not be closed, and the other linestring contains varying M coordinates

(measures) that do not affect whether the linestring is closed.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, geometry ST_Linestring)

INSERT INTO sample_lines VALUES

Chapter 23. Spatial functions: syntax and parameters 365

(1, ST_Linestring(’linestring EMPTY’,0))

INSERT INTO sample_lines VALUES

 (2, ST_Linestring(’linestring(10 10, 20 10, 20 20)’ ,0))

INSERT INTO sample_lines VALUES

 (3, ST_Linestring(’linestring(10 10, 20 10, 20 20, 10 10)’ ,0))

INSERT INTO sample_lines VALUES

 (4, ST_Linestring(’linestring m(10 10 1, 20 10 2, 20 20 3,

 10 10 4)’ ,0))

INSERT INTO sample_lines VALUES

 (5, ST_Linestring(’linestring z(10 10 5, 20 10 6, 20 20 7,

 10 10 8)’ ,0))

SELECT id, ST_IsClosed(geometry) Is_Closed

FROM sample_lines

Results:

ID IS_CLOSED

----------- -----------

 1 0

 2 0

 3 1

 4 1

 5 0

Example 2

In this example, two multilinestrings are created. ST_IsClosed is used to determine

if the multilinestrings are closed. The first one is not closed, even though all of the

curves together form a complete closed loop. This is because each curve itself is

not closed.

The second multilinestring is closed because each curve itself is closed.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLinestring)

INSERT INTO sample_mlines VALUES

 (6, ST_MultiLinestring(’multilinestring((10 10, 20 10, 20 20),

 (20 20, 30 20, 30 30),

 (30 30, 10 30, 10 10))’,0))

INSERT INTO sample_mlines VALUES

 (7, ST_MultiLinestring(’multilinestring((10 10, 20 10, 20 20, 10 10),

 (30 30, 50 30, 50 50,

 30 30))’,0))

SELECT id, ST_IsClosed(geometry) Is_Closed

FROM sample_mlines

Results:

ID IS_CLOSED

----------- -----------

 6 0

 7 1

366 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_IsEmpty

ST_IsEmpty takes a geometry as an input parameter and returns 1 if the given

geometry is empty. Otherwise 0 (zero) is returned.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsEmpty (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested.

Return type

INTEGER

Example

The following code creates three geometries and then determines if they are empty.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint m (10 10 5, 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring z (10 10 166, 20 10 168)’,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’point zm (10 10 16 30)’ ,0))

SELECT id, ST_IsEmpty(geometry) Is_Empty

FROM sample_geoms

Results:

ID IS_EMPTY

----------- -----------

 1 1

 2 0

 3 0

 4 0

 5 0

Chapter 23. Spatial functions: syntax and parameters 367

ST_IsMeasured

ST_IsMeasured takes a geometry as an input parameter and returns 1 if the given

geometry has M coordinates (measures). Otherwise 0 (zero) is returned.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsMeasured (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to be tested for the existence of M coordinates (measures).

Return type

INTEGER

Example

In this example, several geometries are created with and without Z coordinates

and M coordinates (measures). ST_IsMeasured is then used to determine which of

them contained measures.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint m (10 10 5, 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring z (10 10 166, 20 10 168)’,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’point zm (10 10 16 30)’ ,0))

SELECT id, ST_IsMeasured(geometry) Is_Measured

FROM sample_geoms

Results:

ID IS_MEASURED

----------- -----------

 1 0

 2 0

 3 1

 4 0

 5 1

368 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_IsRing

ST_IsRing takes a curve as an input parameter and returns 1 if it is a ring.

Otherwise, 0 (zero) is returned. A curve is a ring if it is simple and closed.

If the given curve is empty, then 0 (zero) is returned. If it is null, then null is

returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsRing (curve) ��

Parameter

curve A value of type ST_Curve or one of its subtypes that represents the curve

to be tested.

Return type

INTEGER

Examples

In this example, four linestrings are created. ST_IsRing is used to check if they are

rings. The last one is not considered a ring even though it is closed because the

path crosses over itself.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, geometry ST_Linestring)

INSERT INTO sample_lines VALUES

 (1, ST_Linestring(’linestring EMPTY’,0))

INSERT INTO sample_lines VALUES

 (2, ST_Linestring(’linestring(10 10, 20 10, 20 20)’ ,0))

INSERT INTO sample_lines VALUES

 (3, ST_Linestring(’linestring(10 10, 20 10, 20 20, 10 10)’ ,0))

INSERT INTO sample_lines VALUES

 (4, ST_Linestring(’linestring(10 10, 20 10, 10 20, 20 20, 10 10)’ ,0))

SELECT id, ST_IsClosed(geometry) Is_Closed, ST_IsRing(geometry) Is_Ring

FROM sample_lines

Results:

ID IS_CLOSED IS_RING

----------- ----------- -----------

 1 1 0

 2 0 0

 3 1 1

 4 1 0

Chapter 23. Spatial functions: syntax and parameters 369

ST_IsSimple

ST_IsSimple takes a geometry as an input parameter and returns 1 if the given

geometry is simple. Otherwise, 0 (zero) is returned.

Points, surfaces, and multisurfaces are always simple. A curve is simple if it does

not pass through the same point twice; a multipoint is simple if it does not contain

two equal points; and a multicurve is simple if all of its curves are simple and the

only intersections occur at points that are on the boundary of the curves in the

multicurve.

If the given geometry is empty, then 1 is returned. If it is null, null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsSimple (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry to be tested.

Return type

INTEGER

Examples

In this example, several geometries are created and checked if they are simple. The

geometry with an ID of 4 is not considered simple because it contains more than

one point that is the same. The geometry with an ID of 6 is not considered simple

because the linestring crosses over itself.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’ ,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’point (21 33)’ ,0))

INSERT INTO sample_geoms VALUES

 (3, ST_Geometry(’multipoint(10 10, 20 20, 30 30)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’multipoint(10 10, 20 20, 30 30, 20 20)’ ,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’linestring(60 60, 70 60, 70 70)’ ,0))

INSERT INTO sample_geoms VALUES

 (6, ST_Geometry(’linestring(20 20, 30 30, 30 20, 20 30)’ ,0))

INSERT INTO sample_geoms VALUES

370 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

(7, ST_Geometry(’polygon((40 40, 50 40, 50 50, 40 40))’ ,0))

SELECT id, ST_IsSimple(geometry) Is_Simple

FROM sample_geoms

Results:

ID IS_SIMPLE

----------- -----------

 1 1

 2 1

 3 1

 4 0

 5 1

 6 0

 7 1

ST_IsValid

ST_IsValid takes a geometry as an input parameter and returns 1 if it is valid.

Otherwise 0 (zero) is returned.

A geometry is valid only if all of the attributes in the structured type are consistent

with the internal representation of geometry data, and if the internal representation

is not corrupted.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_IsValid (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes.

Return type

INTEGER

Example

This example creates several geometries and uses ST_IsValid to check if they are

valid. All of the geometries are valid because the constructor routines, such as

ST_Geometry, do not allow invalid geometries to be constructed.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms VALUES

 (1, ST_Geometry(’point EMPTY’,0))

INSERT INTO sample_geoms VALUES

 (2, ST_Geometry(’polygon((40 120, 90 120, 90 150, 40 150, 40 120))’ ,0))

INSERT INTO sample_geoms VALUES

Chapter 23. Spatial functions: syntax and parameters 371

(3, ST_Geometry(’multipoint m (10 10 5, 50 10 6, 10 30 8)’ ,0))

INSERT INTO sample_geoms VALUES

 (4, ST_Geometry(’linestring z (10 10 166, 20 10 168)’,0))

INSERT INTO sample_geoms VALUES

 (5, ST_Geometry(’point zm (10 10 16 30)’ ,0))

SELECT id, ST_IsValid(geometry) Is_Valid

FROM sample_geoms

Results:

ID IS_VALID

----------- -----------

 1 1

 2 1

 3 1

 4 1

 5 1

ST_Length

ST_Length takes a curve or multicurve and, optionally, a unit as input parameters

and returns the length of the given curve or multicurve in the default or given unit

of measure.

If the given curve or multicurve is null or is empty, null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Length (curve

,

unit
) ��

Parameter

curve A value of type ST_Curve or ST_MultiCurve that represents the curves for

which the length is returned.

unit A VARCHAR(128) value that identifies the units in which the length of the

curve is measured. The supported units of measure are listed in the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

If the unit parameter is omitted, the following rules are used to determine the unit

in which the length is measured:

v If curve is in a projected or geocentric coordinate system, the linear unit

associated with this coordinate system is the default.

v If curve is in a geographic coordinate system, but is not in a geodetic spatial

reference system (SRS), the angular unit associated with this coordinate system

is the default.

v If curve is in a geodetic SRS, the default unit of measure is meters.

Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned if any

of the following conditions occur:

372 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

v The curve is in an unspecified coordinate system and the unit parameter is

specified.

v The curve is in a projected coordinate system and an angular unit is specified.

v The curve is in a geographic coordinate system, but is not in a geodetic SRS, and

a linear unit is specified.

v The curve is in a geodetic SRS and an angular unit is specified.

Return type

DOUBLE

Examples

Example 1

The following SQL statements create a table SAMPLE_GEOMETRIES and insert a

line and a multiline into the table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries(id SMALLINT, spatial_type varchar(20),

 geometry ST_GEOMETRY)

INSERT INTO sample_geometries(id, spatial_type, geometry)

VALUES

 (1110, ’ST_LineString’, ST_LineString(’linestring(50 10, 50 20)’, 1)),

 (1111, ’ST_MultiLineString’, ST_MultiLineString(’multilinestring

 ((33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1))

Example 2

The following SELECT statement calculates the length of the line in the

SAMPLE_GEOMTRIES table.

SELECT id, spatial_type, cast(ST_Length(geometry..ST_ToLineString)

 AS DECIMAL(7, 2)) AS "Line Length"

FROM sample_geometries

WHERE id = 1110

Results:

ID SPATIAL_TYPE Line Length

------ -------------------- -----------

 1110 ST_LineString 10.00

Example 3

The following SELECT statement calculates the length of the multiline in the

SAMPLE_GEOMTRIES table.

SELECT id, spatial_type, ST_Length(ST_ToMultiLine(geometry))

 AS multiline_length

FROM sample_geometries

WHERE id = 1111

Results:

ID SPATIAL_TYPE MULTILINE_LENGTH

 ------ -------------------- ------------------------

 1111 ST_MultiLineString +2.76437123387202E+001

Chapter 23. Spatial functions: syntax and parameters 373

ST_LineFromText

ST_LineFromText takes a well-known text representation of a linestring and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding linestring.

If the given well-known text representation is null, then null is returned.

The preferred version for this functionality is ST_LineString.

Syntax

�� db2gse.ST_LineFromText (wkt

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting linestring.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting linestring.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_LineString

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code uses the ST_LineFromText function to create and insert a line

from a well-known text (WKT) line representation. The rows are inserted into the

SAMPLE_LINES table with an ID and a line value in spatial reference system 1 in

WKT representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LineString)

INSERT INTO sample_lines(id, geometry)

VALUES

 (1110, ST_LineFromText(’linestring(850 250, 850 850)’, 1)),

 (1111, ST_LineFromText(’linestring empty’, 1))

SELECT id, cast(geometry..ST_AsText AS varchar(75)) AS linestring

FROM sample_lines

Results:

374 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID LINESTRING

------ --

 1110 LINESTRING (850.00000000 250.00000000, 850.00000000 850.00000000)

 1111 LINESTRING EMPTY

ST_LineFromWKB

ST_LineFromWKB takes a well-known binary representation of a linestring and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding linestring.

If the given well-known binary representation is null, then null is returned.

The preferred version for this functionality is ST_LineString.

Syntax

�� db2gse.ST_LineFromWKB (wkb

,

srs_id
) ��

Parameter

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting linestring.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting linestring.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

Return type

db2gse.ST_LineString

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The following code uses the ST_LineFromWKB function to create and insert a line

from a well-known binary representation. The row is inserted into the

SAMPLE_LINES table with an ID and a line in spatial reference system 1 in WKB

representation.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LineString, wkb BLOB(32k))

INSERT INTO sample_lines(id, geometry)

VALUES

 (1901, ST_LineString(’linestring(850 250, 850 850)’, 1)),

 (1902, ST_LineString(’linestring(33 2, 34 3, 35 6)’, 1))

UPDATE sample_lines AS temp_correlated

SET wkb = geometry..ST_AsBinary

Chapter 23. Spatial functions: syntax and parameters 375

WHERE id = temp_correlated.id

SELECT id, cast(ST_LineFromWKB(wkb)..ST_AsText AS varchar(90)) AS line

FROM sample_lines

Results:

ID LINE

------ --

 1901 LINESTRING (850.00000000 250.00000000, 850.00000000 850.00000000)

 1902 LINESTRING (33.00000000 2.00000000, 34.00000000 3.00000000,

35.00000000 6.00000000)

ST_LineString

ST_LineString constructs a linestring from one of the following inputs:

v A well-known text representation

v A well-known binary representation

v An ESRI shape representation

v A representation in the geography markup language (GML)

A spatial reference system identifier can be provided optionally to identify the

spatial reference system that the resulting linestring is in.

If the well-known text representation, the well-known binary representation, the

ESRI shape representation, or the GML representation is null, then null is returned.

Syntax

�� db2gse.ST_LineString (wkt

wkb

shape

gml

,

srs_id
) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting polygon.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting polygon.

shape A value of type BLOB(2G) that represents the ESRI shape representation of

the resulting polygon.

gml A value of type CLOB(2G) that represents the resulting polygon using the

geography markup language (GML).

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting polygon.

 If the srs_id parameter is omitted, then the spatial reference system with

the numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an error is

returned (SQLSTATE 38SU1).

376 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

db2gse.ST_LineString

Examples

The following code uses the ST_LineString function to create and insert a line from

a well-known text (WKT) line representation or from a well-known binary (WKB)

representation.

The following example inserts a row into the SAMPLE_LINES table with an ID

and line in spatial reference system 1 in WKT and GML representation

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines(id SMALLINT, geometry ST_LineString)

INSERT INTO sample_lines(id, geometry)

VALUES

 (1110, ST_LineString(’linestring(850 250, 850 850)’, 1)),

 (1111, ST_LineString(’<gml:LineString srsName=";EPSG:4269";><gml:coord>

 <gml:X>90</gml:X><gml:Y>90</gml:Y>

 </gml:coord><gml:coord><gml:X>100</gml:X>

 <gml:Y>100</gml:Y></gml:coord>

 </gml:LineString>’, 1))

SELECT id, cast(geometry..ST_AsText AS varchar(75)) AS linestring

FROM sample_lines

Results:

ID LINESTRING

------ --

 1110 LINESTRING (850.00000000 250.00000000, 850.00000000 850.00000000)

 1111 LINESTRING (90.00000000 90.00000000, 100.00000000 100.00000000)

ST_LineStringN

ST_LineStringN takes a multilinestring and an index as input parameters and

returns the linestring that is identified by the index. The resulting linestring is

represented in the spatial reference system of the given multilinestring.

If the given multilinestring is null or is empty, or if the index is smaller than 1 or

larger than the number of linestrings, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_LineStringN (multi_linestring , index) ��

Parameter

multi_linestring

A value of type ST_MultiLineString that represents the multilinestring from

which the linestring that is identified by index is returned.

index A value of type INTEGER that identifies the nth linestring, which is to be

returned from multi_linestring.

Chapter 23. Spatial functions: syntax and parameters 377

If index is smaller than 1 or larger than the number of linestrings in

multi_linestring, then null is returned and a warning condition is returned

(SQLSTATE 01HS0).

Return type

db2gse.ST_LineString

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The SELECT statement illustrates how to choose the second geometry inside a

multilinestring in the SAMPLE_MLINES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER,

 geometry ST_MULTILINESTRING)

INSERT INTO sample_mlines(id, geometry)

VALUES

 (1110, ST_MultiLineString(’multilinestring

 ((33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1)),

 (1111, ST_MLineFromText(’multilinestring(

 (61 2, 64 3, 65 6),

 (58 4, 59 5, 61 8),

 (69 3, 67 4, 66 7, 68 9))’, 1))

SELECT id, cast(ST_LineStringN(geometry, 2)..ST_AsText

 AS varchar(110)) AS second_linestring

FROM sample_mlines

Results:

ID SECOND_LINESTRING

----------- ---

1110 LINESTRING (28.00000000 4.00000000, 29.00000000

 5.00000000, 31.00000000 8.00000000, 43.00000000 12.00000000)

1111 LINESTRING (58.00000000 4.00000000, 59.00000000

 5.00000000, 61.00000000 8.00000000)

ST_M

ST_M can either:

v Take a point as an input parameter and return its M (measure) coordinate

v Take a point and an M coordinate and return the point itself with its M

coordinate set to the given measure, even if the specified point has no existing

M coordinate.

If the specified M coordinate is null, then the M coordinate of the point is

removed.

If the specified point is null or is empty, then null is returned.

This function can also be called as a method.

378 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_M (point)

,

m_coordinate
 ��

Parameters

point A value of type ST_Point for which the M coordinate is returned or

modified.

m_coordinate

A value of type DOUBLE that represents the new M coordinate for point.

 If m_coordinate is null, then the M coordinate is removed from point.

Return types

v DOUBLE, if m_coordinate is not specified

v db2gse.ST_Point, if m_coordinate is specified

Examples

Example 1

This example illustrates the use of the ST_M function. Three points are created and

inserted into the SAMPLE_POINTS table. They are all in the spatial reference

system that has an ID of 1.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points

 VALUES (1, ST_Point (2, 3, 32, 5, 1))

INSERT INTO sample_points

 VALUES (2, ST_Point (4, 5, 20, 4, 1))

INSERT INTO sample_points

 VALUES (3, ST_Point (3, 8, 23, 7, 1))

Example 2

This example finds the M coordinate of the points in the SAMPLE_POINTS table.

SELECT id, ST_M (geometry) M_COORD

 FROM sample_points

Results:

ID M_COORD

----------- ------------------------

 1 +5.00000000000000E+000

 2 +4.00000000000000E+000

 3 +7.00000000000000E+000

Example 3

This example returns one of the points with its M coordinate set to 40.

SELECT id, CAST (ST_AsText (ST_M (geometry, 40))

 AS VARCHAR(60)) M_COORD_40

 FROM sample_points

 WHERE id=3

Chapter 23. Spatial functions: syntax and parameters 379

Results:

ID M_COORD_40

---------- ---

 3 POINT ZM (3.00000000 8.00000000 23.00000000 40.00000000)

ST_MaxM

ST_MaxM takes a geometry as an input parameter and returns its maximum M

coordinate.

If the given geometry is null or is empty, or if it does not have M coordinates, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MaxM (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

maximum M coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MaxM function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

380 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

This example finds the maximum M coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MaxM(geometry) AS INTEGER) MAX_M

 FROM sample_polys

Results:

ID MAX_M

----------- ------------

 1 4

 2 12

 3 16

Example 3

This example finds the maximum M coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MAX (ST_MaxM(geometry)) AS INTEGER) OVERALL_MAX_M

 FROM sample_polys

Results:

OVERALL_MAX_M

 16

ST_MaxX

ST_MaxX takes a geometry as an input parameter and returns its maximum X

coordinate.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MaxX (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

maximum X coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrats the use of the ST_MaxX function. Three polygons are

created and inserted into the SAMPLE_POLYS table. The third example illustrates

Chapter 23. Spatial functions: syntax and parameters 381

how you can use all of the functions that return the maximum and minimum

coordinate values to assess the spatial range of the geometries that are stored in a

particular spatial column.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the maximum X coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MaxX(geometry) AS INTEGER) MAX_X_COORD

 FROM sample_polys

Results:

ID MAX_X_COORD

----------- ------------

 1 120

 2 5

 3 12

Example 3

This example finds the maximum X coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MAX (ST_MaxX(geometry)) AS INTEGER) OVERALL_MAX_X

 FROM sample_polys

Results:

OVERALL_MAX_X

 120

Example 4

This example finds the spatial extent (overall minimum to overall maximum) of all

the polygons in the SAMPLE_POLYS table. This calculation is typically used to

compare the actual spatial extent of the geometries to the spatial extent of the

spatial reference system associated with the data to determine if the data has room

to grow.

382 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SELECT CAST (MIN (ST_MinX (geometry)) AS INTEGER) MIN_X,

 CAST (MIN (ST_MinY (geometry)) AS INTEGER) MIN_Y,

 CAST (MIN (ST_MinZ (geometry)) AS INTEGER) MIN_Z,

 CAST (MIN (ST_MinM (geometry)) AS INTEGER) MIN_M,

 CAST (MAX (ST_MaxX (geometry)) AS INTEGER) MAX_X,

 CAST (MAX (ST_MaxY (geometry)) AS INTEGER) MAX_Y,

 CAST (MAX (ST_MaxZ (geometry)) AS INTEGER) MAX_Z,

 CAST (MAX (ST_MaxmM(geometry)) AS INTEGER) MAX_M,

 FROM sample_polys

Results:

MIN_X MIN_Y MIN_Z MIN_M MAX_X MAX_Y MAX_Z MAX_M

--------- --------- --------- --------- --------- --------- --------- ----------

 0 0 10 3 120 140 40 16

ST_MaxY

ST_MaxY takes a geometry as an input parameter and returns its maximum Y

coordinate.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MaxY (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

maximum Y coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MaxY function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

Chapter 23. Spatial functions: syntax and parameters 383

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the maximum Y coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MaxY(geometry) AS INTEGER) MAX_Y

 FROM sample_polys

Results:

ID MAX_Y

----------- ------------

 1 140

 2 4

 3 13

Example 3

This example finds the maximum Y coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MAX (ST_MaxY(geometry)) AS INTEGER) OVERALL_MAX_Y

 FROM sample_polys

Results:

OVERALL_MAX_Y

 140

ST_MaxZ

ST_MaxZ takes a geometry as an input parameter and returns its maximum Z

coordinate.

If the given geometry is null or is empty, or if it does not have Z coordinates, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MaxZ (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

maximum Z coordinate is returned.

Return type

DOUBLE

384 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Examples

Example 1

This example illustrates the use of the ST_MaxZ function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the maximum Z coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MaxZ(geometry) AS INTEGER) MAX_Z

 FROM sample_polys

Results:

ID MAX_Z

----------- ------------

 1 26

 2 40

 3 12

Example 3

This example finds the maximum Z coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MAX (ST_MaxZ(geometry)) AS INTEGER) OVERALL_MAX_Z

 FROM sample_polys

Results:

OVERALL_MAX_Z

 40

ST_MBR

ST_MBR takes a geometry as an input parameter and returns its minimum

bounding rectangle.

Chapter 23. Spatial functions: syntax and parameters 385

If the given geometry is a point, then the point itself is returned. If the geometry is

a horizontal linestring or a vertical linestring and the spatial reference system is

non-geodetic, the horizontal or vertical linestring itself is returned. Otherwise, the

minimum bounding rectangle of the geometry is returned as a polygon. If the

given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MBR (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry for which the minimum bounding rectangle is returned.

Return type

db2gse.ST_Geometry

Example

This example illustrates how the ST_MBR function can be used to return the

minimum bounding rectangle of a polygon. Because the specified geometry is a

polygon, the minimum bounding rectangle is returned as a polygon.

In the following examples, the lines of results have been reformatted here for

readability. The spacing in your results will vary according to your online display.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon (’polygon ((5 5, 7 7, 5 9, 7 9, 9 11, 13 9,

 15 9, 13 7, 15 5, 9 6, 5 5))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon (’polygon ((20 30, 25 35, 30 30, 20 30))’, 0))

SELECT id, CAST (ST_AsText (ST_MBR(geometry)) AS VARCHAR(150)) MBR

 FROM sample_polys

Results:

ID MBR

--------- --

 1 POLYGON ((5.00000000 5.00000000, 15.00000000 5.00000000,

 15.00000000 11.00000000, 5.00000000 11.00000000,

 5.00000000 5.00000000))

 2 POLYGON ((20.00000000 30.00000000, 30.00000000 30.00000000,

 30.00000000 35.00000000, 20.00000000 35.00000000,

 20.00000000 30.00000000))

386 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_MBRIntersects

ST_MBRIntersects takes two geometries as input parameters and returns 1 if the

minimum bounding rectangles of the two geometries intersect. Otherwise, 0 (zero)

is returned. The minimum bounding rectangle of a point and a horizontal or

vertical linestring is the geometry itself.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

If either of the given geometries is null or is empty, then null is returned.

Syntax

�� db2gse.ST_MBRIntersects (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry whose minimum bounding rectangle is to be tested for

intersection with the minimum bounding rectangle of geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry whose minimum bounding rectangle is to be tested for

intersection with the minimum bounding rectangle of geometry1.

Return type

INTEGER

Examples

Example 1

This example illustrates the use of ST_MBRIntersects to get an approximation of

whether two nonintersecting polygons are close to each other by seeing if their

minimum bounding rectangles intersect. The first example uses the SQL CASE

expression. The second example uses a single SELECT statement to find those

polygons that intersect the minimum bounding rectangle of the polygon with ID =

2.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon (’polygon ((0 0, 30 0, 40 30, 40 35,

 5 35, 5 10, 20 10, 20 5, 0 0))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon (’polygon ((15 15, 15 20, 60 20, 60 15,

 15 15))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon (’polygon ((115 15, 115 20, 160 20, 160 15,

 115 15))’, 0))

Chapter 23. Spatial functions: syntax and parameters 387

Example 2

The following SELECT statement uses a CASE expression to find the IDs of the

polygons that have minimum bounding rectangles that intersect.

SELECT a.id, b.id,

 CASE ST_MBRIntersects (a.geometry, b.geometry)

 WHEN 0 THEN ’MBRs do not intersect’

 WHEN 1 THEN ’MBRs intersect’

 END AS MBR_INTERSECTS

 FROM sample_polys a, sample_polys b

 WHERE a.id <= b.id

Results:

ID ID MBR_INTERSECTS

--------- --------- --------------

 1 1 MBRs intersect

 1 2 MBRs intersect

 2 2 MBRs intersect

 1 3 MBRs do not intersect

 2 3 MBRs do not intersect

 3 3 MBRs intersect

Example 3

The following SELECT statement determines whether the minimum bounding

rectangles for the geometries intersect that for the polygon with ID = 2.

SELECT a.id, b.id, ST_MBRIntersects (a.geometry, b.geometry) MBR_INTERSECTS

 FROM sample_polys a, sample_polys b

 WHERE a.id = 2

Results

ID ID MBR_INTERSECTS

---------- ------------ ---------------

 2 1 1

 2 2 1

 2 3 0

ST_MeasureBetween, ST_LocateBetween

ST_MeasureBetween or ST_LocateBetween takes a geometry and two M

coordinates (measures) as input parameters and returns that part of the given

geometry that represents the set of disconnected paths or points between the two

M coordinates.

For curves, multicurves, surfaces, and multisurfaces, interpolation is performed to

compute the result. The resulting geometry is represented in the spatial reference

system of the given geometry.

If the given geometry is a surface or multisurface, then ST_MeasureBetween or

ST_LocateBetween will be applied to the exterior and interior rings of the

geometry. If none of the parts of the given geometry are in the interval defined by

the given M coordinates, then an empty geometry is returned. If the given

geometry is null , then null is returned.

If the resulting geometry is not empty, a multipoint or multilinestring type is

returned.

Both functions can also be called as methods.

388 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_MeasureBetween

db2gse.ST_LocateBetween
 �

� (geometry , startMeasure , endMeasure) ��

Parameters

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry in which those parts with measure values between startMeasure

to endMeasure are to be found.

startMeasure

A value of type DOUBLE that represents the lower bound of the measure

interval. If this value is null, no lower bound is applied.

endMeasure

A value of type DOUBLE that represents the upper bound of the measure

interval. If this value is null, no upper bound is applied.

Return type

db2gse.ST_Geometry

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

The M coordinate (measure) of a geometry is defined by the user. It is very

versatile because it can represent anything that you want to measure; for example,

distance along a highway, temperature, pressure, or pH measurements.

This example illustrates the use of the M coordinate to record collected data of pH

measurements. A researcher collects the pH of the soil along a highway at specific

places. Following his standard operating procedures, he writes down the values

that he needs at every place at which he takes a soil sample: the X and Y

coordinates of that place and the pH that he measures.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, geometry ST_LineString)

INSERT INTO sample_lines

 VALUES (1, ST_LineString (’linestring m (2 2 3, 3 5 3,

 3 3 6, 4 4 6,

 5 5 6, 6 6 8)’, 1))

To find the path where the acidity of the soil varies between 4 and 6, the

researcher would use this SELECT statement:

SELECT id, CAST(ST_AsText(ST_MeasureBetween(4, 6))

 AS VARCHAR(150)) MEAS_BETWEEN_4_AND_6

 FROM sample_lines

Results:

ID MEAS_BETWEEN_4_AND_6

---------- --

 1 LINESTRING M (3.00000000 4.33333300 4.00000000,

Chapter 23. Spatial functions: syntax and parameters 389

3.00000000 3.00000000 6.00000000,

 4.00000000 4.00000000 6.00000000,

 5.00000000 5.00000000 6.00000000)

ST_MidPoint

ST_MidPoint takes a curve as an input parameter and returns the point on the

curve that is equidistant from both end points of the curve, measured along the

curve. The resulting point is represented in the spatial reference system of the

given curve.

If the given curve is empty, then an empty point is returned. If the given curve is

null, then null is returned.

If the curve contains Z coordinates or M coordinates (measures), the midpoint is

determined solely by the values of the X and Y coordinates in the curve. The Z

coordinate and measure in the returned point are interpolated.

This function can also be called as a method.

Syntax

�� db2gse.ST_MidPoint (curve) ��

Parameter

curve A value of type ST_Curve or one of its subtypes that represents the curve

for which the point in the middle is returned.

Return type

db2gse.ST_Point

Example

This example illustrates the use of ST_MidPoint for returning the midpoint of

curves.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, geometry ST_LineString)

INSERT INTO sample_lines (id, geometry)

 VALUES (1, ST_LineString (’linestring (0 0, 0 10, 0 20, 0 30, 0 40)’, 1))

INSERT INTO sample_lines (id, geometry)

 VALUES (2, ST_LineString (’linestring (2 2, 3 5, 3 3, 4 4, 5 5, 6 6)’, 1))

INSERT INTO sample_lines (id, geometry)

 VALUES (3, ST_LineString (’linestring (0 10, 0 0, 10 0, 10 10)’, 1))

INSERT INTO sample_lines (id, geometry)

 VALUES (4, ST_LineString (’linestring (0 20, 5 20, 10 20, 15 20)’, 1))

SELECT id, CAST(ST_AsText(ST_MidPoint(geometry)) AS VARCHAR(60)) MID_POINT

 FROM sample_lines

Results:

390 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID MID_POINT

---------- ------------------------------------

 1 POINT (0.00000000 20.00000000)

 2 POINT (3.00000000 3.45981800)

 3 POINT (5.00000000 0.00000000)

 4 POINT (7.50000000 20.00000000)

ST_MinM

ST_MinM takes a geometry as an input parameter and returns its minimum M

coordinate.

If the given geometry is null or is empty, or if it does not have M coordinates, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MinM (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

minimum M coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MinM function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Chapter 23. Spatial functions: syntax and parameters 391

Example 2

This example finds the minimum M coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MinM(geometry) AS INTEGER) MIN_M

 FROM sample_polys

Results:

ID MIN_M

----------- ------------

 1 3

 2 5

 3 11

Example 3

This example finds the minimum M coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MIN (ST_MinM(geometry)) AS INTEGER) OVERALL_MIN_M

 FROM sample_polys

Results:

OVERALL_MIN_M

 3

ST_MinX

ST_MinX takes a geometry as an input parameter and returns its minimum X

coordinate.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MinX (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

minimum X coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MinX function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

392 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the minimum X coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MinX(geometry) AS INTEGER) MIN_X

 FROM sample_polys

Results:

ID MIN_X

----------- ------------

 1 110

 2 0

 3 8

Example 3

This example finds the minimum X coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MIN (ST_MinX(geometry)) AS INTEGER) OVERALL_MIN_X

 FROM sample_polys

Results:

OVERALL_MIN_X

 0

ST_MinY

ST_MinY takes a geometry as an input parameter and returns its minimum Y

coordinate.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Chapter 23. Spatial functions: syntax and parameters 393

Syntax

�� db2gse.ST_MinY (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

minimum Y coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MinY function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

 8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the minimum Y coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MinY(geometry) AS INTEGER) MIN_Y

 FROM sample_polys

Results:

ID MIN_Y

----------- ------------

 1 120

 2 0

 3 4

Example 3

394 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

This example finds the minimum Y coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MIN (ST_MinY(geometry)) AS INTEGER) OVERALL_MIN_Y

 FROM sample_polys

Results:

OVERALL_MIN_Y

 0

ST_MinZ

ST_MinZ takes a geometry as an input parameter and returns its minimum Z

coordinate.

If the given geometry is null or is empty, or if it does not have Z coordinates, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_MinZ (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes for which the

minimum Z coordinate is returned.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_MinZ function. Three polygons are

created and inserted into the SAMPLE_POLYS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon zm ((110 120 20 3,

 110 140 22 3,

 120 130 26 4,

 110 120 20 3))’, 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon zm ((0 0 40 7,

 0 4 35 9,

 5 4 32 12,

 5 0 31 5,

 0 0 40 7))’, 0))

INSERT INTO sample_polys

 VALUES (3, ST_Polygon(’polygon zm ((12 13 10 16,

Chapter 23. Spatial functions: syntax and parameters 395

8 4 10 12,

 9 4 12 11,

 12 13 10 16))’, 0))

Example 2

This example finds the minimum Z coordinate of each polygon in

SAMPLE_POLYS.

SELECT id, CAST (ST_MinZ(geometry) AS INTEGER) MIN_Z

 FROM sample_polys

Results:

ID MIN_Z

----------- ------------

 1 20

 2 31

 3 10

Example 3

This example finds the minimum Z coordinate that exists for all polygons in the

GEOMETRY column.

SELECT CAST (MIN (ST_MinZ(geometry)) AS INTEGER) OVERALL_MIN_Z

 FROM sample_polys

Results:

OVERALL_MIN_Z

 10

ST_MLineFromText

ST_MLineFromText takes a well-known text representation of a multilinestring

and, optionally, a spatial reference system identifier as input parameters and

returns the corresponding multilinestring.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiLineString

function. It is recommended because of its flexibility: ST_MultiLineString takes

additional forms of input as well as the well-known text representation.

Syntax

�� db2gse.ST_MLineFromText (wkt)

,

srs_id
 ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multilinestring.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multilinestring.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

396 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiLineString

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MLineFromText can be used to create and insert a

multilinestring from its well-known text representation. The record that is inserted

has ID = 1110, and the geometry is a multilinestring in spatial reference system 1.

The multilinestring is in the well-known text representation of a multilinestring.

The X and Y coordinates for this geometry are:

v Line 1: (33, 2) (34, 3) (35, 6)

v Line 2: (28, 4) (29, 5) (31, 8) (43, 12)

v Line 3: (39, 3) (37, 4) (36, 7)
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLineString)

INSERT INTO sample_mlines

 VALUES (1110, ST_MLineFromText (’multilinestring ((33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1))

The following SELECT statement returns the multilinestring that was recorded in

the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(280)) MULTI_LINE_STRING

 FROM sample_mlines

 WHERE id = 1110

Results:

ID MULTI_LINE_STRING

---------- --

 1110 MULTILINESTRING ((33.00000000 2.00000000, 34.00000000 3.00000000,

 35.00000000 6.00000000),

 (28.00000000 4.00000000, 29.00000000 5.00000000,

 31.00000000 8.0000000, 43.00000000 12.00000000),

 (39.00000000 3.00000000, 37.00000000 4.00000000,

 36.00000000 7.00000000))

ST_MLineFromWKB

ST_MLineFromWKB takes a well-known binary representation of a multilinestring

and, optionally, a spatial reference system identifier as input parameters and

returns the corresponding multilinestring.

If the given well-known binary representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiLineString

function. It is recommended because of its flexibility: ST_MultiLineString takes

additional forms of input as well as the well-known binary representation.

Chapter 23. Spatial functions: syntax and parameters 397

Syntax

�� db2gse.ST_MLineFromWKB (wkb)

,

srs_id
 ��

Parameters

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multilinestring.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multilinestring.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiLineString

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MLineFromWKB can be used to create a

multilinestring from its well-known binary representation. The geometry is a

multilinestring in spatial reference system 1. In this example, the multilinestring

gets stored with ID = 10 in the GEOMETRY column of the SAMPLE_MLINES

table, and then the WKB column is updated with its well-known binary

representation (using the ST_AsBinary function). Finally, the ST_MLineFromWKB

function is used to return the multilinestring from the WKB column. The X and Y

coordinates for this geometry are:

v Line 1: (61, 2) (64, 3) (65, 6)

v Line 2: (58, 4) (59, 5) (61, 8)

v Line 3: (69, 3) (67, 4) (66, 7) (68, 9)

The SAMPLE_MLINES table has a GEOMETRY column, where the multilinestring

is stored, and a WKB column, where the multilinestring’s well-known binary

representation is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLineString,

 wkb BLOB(32K))

INSERT INTO sample_mlines

 VALUES (10, ST_MultiLineString (’multilinestring

 ((61 2, 64 3, 65 6),

 (58 4, 59 5, 61 8),

 (69 3, 67 4, 66 7, 68 9))’, 1))

UPDATE sample_mlines AS temporary_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temporary_correlated.id

398 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

In the following SELECT statement, the ST_MLineFromWKB function is used to

retrieve the multilinestring from the WKB column.

SELECT id, CAST(ST_AsText(ST_MLineFromWKB (wkb))

 AS VARCHAR(280)) MULTI_LINE_STRING

 FROM sample_mlines

 WHERE id = 10

Results:

ID MULTI_LINE_STRING

---------- --

 10 MULTILINESTRING ((61.00000000 2.00000000, 64.00000000 3.00000000,

 65.00000000 6.00000000),

 (58.00000000 4.00000000, 59.00000000 5.00000000,

 61.00000000 8.0000000),

 (69.00000000 3.00000000, 67.00000000 4.00000000,

 66.00000000 7.00000000, 68.00000000 9.00000000))

ST_MPointFromText

ST_MPointFromText takes a well-known text representation of a multipoint and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding multipoint.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiPoint

function. It is recommended because of its flexibility: ST_MultiPoint takes

additional forms of input as well as the well-known text representation.

Syntax

�� db2gse.ST_MPointFromText (wkt)

,

srs_id
 ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multipoint.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipoint.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiPoint

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

Chapter 23. Spatial functions: syntax and parameters 399

This example illustrates how ST_MPointFromText can be used to create and insert

a multipoint from its well-known text representation. The record that is inserted

has ID = 1110, and the geometry is a multipoint in spatial reference system 1. The

multipoint is in the well-known text representation of a multipoint. The X and Y

coordinates for this geometry are: (1, 2) (4, 3) (5, 6).

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpoints (id INTEGER, geometry ST_MultiPoint)

INSERT INTO sample_mpoints

 VALUES (1110, ST_MPointFromText (’multipoint (1 2, 4 3, 5 6))’, 1))

The following SELECT statement returns the multipoint that was recorded in the

table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(280)) MULTIPOINT

 FROM sample_mpoints

 WHERE id = 1110

Results:

ID MULTIPOINT

---------- --

 1110 MULTIPOINT (1.00000000 2.00000000, 4.00000000 3.00000000,

 5.00000000 6.00000000)

ST_MPointFromWKB

ST_MPointFromWKB takes a well-known binary representation of a multipoint

and, optionally, a spatial reference system identifier as input parameters and

returns the corresponding multipoint.

If the given well-known binary representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiPoint

function. It is recommended because of its flexibility: ST_MultiPoint takes

additional forms of input as well as the well-known binary representation.

Syntax

�� db2gse.ST_MPointFromWKB (wkb)

,

srs_id
 ��

Parameters

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multipoint.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipoint.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiPoint

400 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MPointFromWKB can be used to create a

multipoint from its well-known binary representation. The geometry is a

multipoint in spatial reference system 1. In this example, the multipoint gets stored

with ID = 10 in the GEOMETRY column of the SAMPLE_MPOINTS table, and

then the WKB column is updated with its well-known binary representation (using

the ST_AsBinary function). Finally, the ST_MPointFromWKB function is used to

return the multipoint from the WKB column. The X and Y coordinates for this

geometry are: (44, 14) (35, 16) (24, 13).

The SAMPLE_MPOINTS table has a GEOMETRY column, where the multipoint is

stored, and a WKB column, where the multipoint’s well-known binary

representation is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpoints (id INTEGER, geometry ST_MultiPoint,

 wkb BLOB(32K))

INSERT INTO sample_mpoints

 VALUES (10, ST_MultiPoint (’multipoint (4 14, 35 16, 24 13)’, 1))

UPDATE sample_mpoints AS temporary_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_MPointFromWKB function is used to

retrieve the multipoint from the WKB column.

SELECT id, CAST(ST_AsText(ST_MLineFromWKB (wkb)) AS VARCHAR(100)) MULTIPOINT

 FROM sample_mpoints

 WHERE id = 10

Results:

ID MULTIPOINT

---------- --

 10 MULTIPOINT (44.00000000 14.00000000, 35.00000000

 16.00000000 24.00000000 13.00000000)

ST_MPolyFromText

ST_MPolyFromText takes a well-known text representation of a multipolygon and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding multipolygon.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiPolygon

function. It is recommended because of its flexibility: ST_MultiPolygon takes

additional forms of input as well as the well-known text representation.

Syntax

�� db2gse.ST_MPolyFromText (wkt)

,

srs_id
 ��

Chapter 23. Spatial functions: syntax and parameters 401

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multipolygon.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipolygon.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiPolygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MPolyFromText can be used to create and insert a

multipolygon from its well-known text representation. The record that is inserted

has ID = 1110, and the geometry is a multipolygon in spatial reference system 1.

The multipolygon is in the well-known text representation of a multipolygon. The

X and Y coordinates for this geometry are:

v Polygon 1: (3, 3) (4, 6) (5, 3) (3, 3)

v Polygon 2: (8, 24) (9, 25) (1, 28) (8, 24)

v Polygon 3: (13, 33) (7, 36) (1, 40) (10, 43) (13, 33)
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpolys (id INTEGER, geometry ST_MultiPolygon)

INSERT INTO sample_mpolys

 VALUES (1110,

 ST_MPolyFromText (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43 13 33)))’, 1))

The following SELECT statement returns the multipolygon that was recorded in

the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(350)) MULTI_POLYGON

 FROM sample_mpolys

 WHERE id = 1110

Results:

ID MULTI_POLYGON

------- --

 1110 MULTIPOLYGON (((13.00000000 33.00000000, 10.00000000 43.00000000,

 1.00000000 40.00000000, 7.00000000 36.00000000,

 13.00000000 33.00000000)),

 ((8.00000000 24.00000000, 9.00000000 25.00000000,

 1.00000000 28.0000000, 8.00000000 24.00000000)),

 (3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000)))

402 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_MPolyFromWKB

ST_MPolyFromWKB takes a well-known binary representation of a multipolygon

and, optionally, a spatial reference system identifier as input parameters and

returns the corresponding multipolygon.

If the given well-known binary representation is null, then null is returned.

The recommended function for achieving the same result is the ST_MultiPolygon

function. It is recommended because of its flexibility: ST_MultiPolygon takes

additional forms of input as well as the well-known binary representation.

Syntax

�� db2gse.ST_MPolyFromWKB (wkb)

,

srs_id
 ��

Parameters

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multipolygon.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipolygon.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If the specified srs_id does not identify a spatial reference system listed in

the catalog view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an

exception condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiPolygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MPolyFromWKB can be used to create a

multipolygon from its well-known binary representation. The geometry is a

multipolygon in spatial reference system 1. In this example, the multipolygon gets

stored with ID = 10 in the GEOMETRY column of the SAMPLE_MPOLYS table,

and then the WKB column is updated with its well-known binary representation

(using the ST_AsBinary function). Finally, the ST_MPolyFromWKB function is used

to return the multipolygon from the WKB column. The X and Y coordinates for

this geometry are:

v Polygon 1: (1, 72) (4, 79) (5, 76) (1, 72)

v Polygon 2: (10, 20) (10, 40) (30, 41) (10, 20)

v Polygon 3: (9, 43) (7, 44) (6, 47) (9, 43)

The SAMPLE_MPOLYS table has a GEOMETRY column, where the multipolygon

is stored, and a WKB column, where the multipolygon’s well-known binary

representation is stored.

Chapter 23. Spatial functions: syntax and parameters 403

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpolys (id INTEGER,

 geometry ST_MultiPolygon, wkb BLOB(32K))

INSERT INTO sample_mpolys

 VALUES (10, ST_MultiPolygon (’multipolygon

 (((1 72, 4 79, 5 76, 1 72),

 (10 20, 10 40, 30 41, 10 20),

 (9 43, 7 44, 6 47, 9 43)))’, 1))

UPDATE sample_mpolys AS temporary_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_MPolyFromWKB function is used to

retrieve the multipolygon from the WKB column.

SELECT id, CAST(ST_AsText(ST_MPolyFromWKB (wkb))

 AS VARCHAR(320)) MULTIPOLYGON

 FROM sample_mpolys

 WHERE id = 10

Results:

ID MULTIPOLYGON

---------- --

 10 MULTIPOLYGON (((10.00000000 20.00000000, 30.00000000

 41.00000000, 10.00000000 40.00000000, 10.00000000

 20.00000000)),

 (1.00000000 72.00000000, 5.00000000

 76.00000000, 4.00000000 79.0000000, 1.00000000

 72,00000000)),

 (9.00000000 43.00000000, 6.00000000

 47.00000000, 7.00000000 44.00000000, 9.00000000

 43.00000000)))

ST_MultiLineString

ST_MultiLineString constructs a multilinestring from one of the following inputs:

v A well-known text representation

v A well-known binary representation

v A shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to identify the

spatial reference system that the resulting multilinestring is in.

If the well-known text representation, the well-known binary representation, the

shape representation, or the GML representation is null, then null is returned.

Syntax

�� db2gse.ST_MultiLineString (wkt

wkb

gml

shape

,

srs_id
) ��

404 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multilinestring.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multilinestring.

gml A value of type CLOB(2G) that represents the resulting multilinestring

using the geography markup language.

shape A value of type BLOB(2G) that represents the shape representation of the

resulting multilinestring.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multilinestring.

 If the srs_id parameter is omitted, then the spatial reference system with

the numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiLineString

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MultiLineString can be used to create and insert a

multilinestring from its well-known text representation. The record that is inserted

has ID = 1110, and the geometry is a multilinestring in spatial reference system 1.

The multilinestring is in the well-known text representation of a multilinestring.

The X and Y coordinates for this geometry are:

v Line 1: (33, 2) (34, 3) (35, 6)

v Line 2: (28, 4) (29, 5) (31, 8) (43, 12)

v Line 3: (39, 3) (37, 4) (36, 7)
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER,

 geometry ST_MultiLineString)

INSERT INTO sample_mlines

 VALUES (1110,

 ST_MultiLineString (’multilinestring ((33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1))

The following SELECT statement returns the multilinestring that was recorded in

the table:

SELECT id,

 CAST(ST_AsText(geometry) AS VARCHAR(280))

 MULTI_LINE_STRING

 FROM sample_mlines

 WHERE id = 1110

Results:

Chapter 23. Spatial functions: syntax and parameters 405

ID MULTI_LINE_STRING

------- --

 1110 MULTILINESTRING ((33.00000000 2.00000000, 34.00000000 3.00000000,

 35.00000000 6.00000000),

 (28.00000000 4.00000000, 29.00000000 5.00000000,

 31.00000000 8.0000000, 43.00000000 12.00000000),

 (39.00000000 3.00000000, 37.00000000 4.00000000,

 36.00000000 7.00000000))

ST_MultiPoint

ST_MultiPoint constructs a multipoint from one of the following inputs:

v A well-known text representation

v A well-known binary representation

v A shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to indicate the

spatial reference system the resulting multipoint is in.

If the well-known text representation, the well-known binary representation, the

shape representation, or the GML representation is null, then null is returned.

Syntax

�� db2gse.ST_MultiPoint (wkt

wkb

gml

shape

,

srs_id
) ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multipoint.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multipoint.

gml A value of type CLOB(2G) that represents the resulting multipoint using

the geography markup language.

shape A value of type BLOB(2G) that represents the shape representation of the

resulting multipoint.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipoint.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Point

406 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MultiPoint can be used to create and insert a

multipoint from its well-known text representation. The record that is inserted has

ID = 1110, and the geometry is a multipoint in spatial reference system 1. The

multipoint is in the well-known text representation of a multipoint. The X and Y

coordinates for this geometry are: (1, 2) (4, 3) (5, 6).

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpoints (id INTEGER, geometry ST_MultiPoint)

INSERT INTO sample_mpoints

 VALUES (1110, ST_MultiPoint (’multipoint (1 2, 4 3, 5 6))’, 1))

The following SELECT statement returns the multipoint that was recorded in the

table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) MULTIPOINT

 FROM sample_mpoints

 WHERE id = 1110

Results:

ID MULTIPOINT

---------- ---

 1110 MULTIPOINT (1.00000000 2.00000000, 4.00000000

 3.00000000, 5.00000000 6.00000000)

ST_MultiPolygon

ST_MultiPolygon constructs a multipolygon from one of the following inputs:

v A well-known text representation

v A well-known binary representation

v A shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to identify the

spatial reference system that the resulting multipolygon is in.

If the well-known text representation, the well-known binary representation, the

shape representation, or the GML representation is null, then null is returned.

Syntax

�� db2gse.ST_MultiPolygon wkt

wkb

shape

gml

,

srs_id
) ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting multipolygon.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting multipolygon.

Chapter 23. Spatial functions: syntax and parameters 407

gml A value of type CLOB(2G) that represents the resulting multipolygon using

the geography markup language.

shape A value of type BLOB(2G) that represents the shape representation of the

resulting multipolygon.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting multipolygon.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_MultiPolygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_MultiPolygon can be used to create and insert a

multipolygon from its well-known text representation. The record that is inserted

has ID = 1110, and the geometry is a multipolygon in spatial reference system 1.

The multipolygon is in the well-known text representation of a multipolygon. The

X and Y coordinates for this geometry are:

v Polygon 1: (3, 3) (4, 6) (5, 3) (3, 3)

v Polygon 2: (8, 24) (9, 25) (1, 28) (8, 24)

v Polygon 3: (13, 33) (7, 36) (1, 40) (10, 43) (13, 33)
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpolys (id INTEGER, geometry ST_MultiPolygon)

INSERT INTO sample_mpolys

 VALUES (1110,

 ST_MultiPolygon (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43 13 33)))’, 1))

The following SELECT statement returns the multipolygon that was recorded in

the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(350)) MULTI_POLYGON

 FROM sample_mpolys

 WHERE id = 1110

Results:

ID MULTI_POLYGON

------- --

 1110 MULTIPOLYGON (((13.00000000 33.00000000, 10.00000000 43.00000000,

 1.00000000 40.00000000, 7.00000000 36.00000000,

 13.00000000 33.00000000)),

 ((8.00000000 24.00000000, 9.00000000 25.00000000,

 1.00000000 28.0000000, 8.00000000 24.00000000)),

 ((3.00000000 3.00000000, 5.00000000 3.00000000,

 4.00000000 6.00000000, 3.00000000 3.00000000)))

408 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ST_NumGeometries

ST_NumGeometries takes a geometry collection as an input parameter and returns

the number of geometries in the collection.

If the given geometry collection is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_NumGeometries (collection) ��

Parameter

collection

A value of type ST_GeomCollection or one of its subtypes that represents

the geometry collection for which the number of geometries is returned.

Return Type

INTEGER

Example

Two geometry collections are stored in the SAMPLE_GEOMCOLL table. One is a

multipolygon, and the other is a multipoint. The ST_NumGeometries function

determines how many individual geometries are within each geometry collection.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geomcoll (id INTEGER, geometry ST_GeomCollection)

INSERT INTO sample_geomcoll

 VALUES (1,

 ST_MultiPolygon (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1))

INSERT INTO sample_geomcoll

 VALUES (2, ST_MultiPoint (’multipoint (1 2, 4 3, 5 6, 7 6, 8 8)’, 1))

SELECT id, ST_NumGeometries (geometry) NUM_GEOMS_IN_COLL

 FROM sample_geomcoll

Results:

ID NUM_GEOMS_IN_COLL

----------- -----------------

 1 3

 2 5

ST_NumInteriorRing

ST_NumInteriorRing takes a polygon as an input parameter and returns the

number of its interior rings.

If the given polygon is null or is empty, then null is returned.

If the polygon has no interior rings, then 0 (zero) is returned.

Chapter 23. Spatial functions: syntax and parameters 409

This function can also be called as a method.

Syntax

�� db2gse.ST_NumInteriorRing (polygon) ��

Parameter

polygon

A value of type ST_Polygon that represents the polygon for which the

number of interior rings is returned.

Return type

INTEGER

Example

The following example creates two polygons:

v One with two interior rings

v One without any interior rings
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon(’polygon

 ((40 120, 90 120, 90 150, 40 150, 40 120),

 (50 130, 60 130, 60 140, 50 140, 50 130),

 (70 130, 80 130, 80 140, 70 140, 70 130))’ , 0))

INSERT INTO sample_polys

 VALUES (2, ST_Polygon(’polygon ((5 15, 50 15, 50 105, 5 15))’ , 0))

The ST_NumInteriorRing function is used to return the number of rings in the

geometries in the table:

SELECT id, ST_NumInteriorRing(geometry) NUM_RINGS

FROM sample_polys

Results:

ID NUM_RINGS

---------- ---------------

 1 2

 2 0

ST_NumLineStrings

ST_NumLineStrings takes a multilinestring as an input parameter and returns the

number of linestrings that it contains.

If the given multilinestring is null or is empty, then null is returned.

This function can also be called as a method.

410 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_NumLineStrings (multilinestring) ��

Parameter

multilinestring

A value of type ST_MultiLineString that represents the multilinestring for

which the number of linestrings is returned.

Return type

INTEGER

Example

Multilinestrings are stored in the SAMPLE_MLINES table. The ST_NumLineStrings

function determines how many individual geometries are within each

multilinestring.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mlines (id INTEGER, geometry ST_MultiLineString)

INSERT INTO sample_mlines

 VALUES (110, ST_MultiLineString (’multilinestring

 ((33 2, 34 3, 35 6),

 (28 4, 29 5, 31 8, 43 12),

 (39 3, 37 4, 36 7))’, 1))

INSERT INTO sample_mlines

 VALUES (111, ST_MultiLineString (’multilinestring

 ((3 2, 4 3, 5 6),

 (8 4, 9 5, 3 8, 4 12))’, 1))

SELECT id, ST_NumLineStrings (geometry) NUM_WITHIN

 FROM sample_mlines

Results:

ID NUM_WITHIN

----------- ----------

 110 3

 111 2

ST_NumPoints

ST_NumPoints takes a geometry as an input parameter and returns the number of

points that were used to define that geometry. For example, if the geometry is a

polygon and five points were used to define that polygon, then the returned

number is 5.

If the given geometry is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_NumPoints (geometry) ��

Chapter 23. Spatial functions: syntax and parameters 411

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry for which the number of points is returned.

Return type

INTEGER

Example

A variety of geometries are stored in the table. The ST_NumPoints function

determines how many points are within each geometry in the

SAMPLE_GEOMETRIES table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (spatial_type VARCHAR(18), geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (’st_point’,

 ST_Point (2, 3, 0))

INSERT INTO sample_geometries

 VALUES (’st_linestring’,

 ST_LineString (’linestring (2 5, 21 3, 23 10)’, 0))

INSERT INTO sample_geometries

 VALUES (’st_polygon’,

 ST_Polygon (’polygon ((110 120, 110 140, 120 130, 110 120))’, 0))

SELECT spatial_type, ST_NumPoints (geometry) NUM_POINTS

 FROM sample_geometries

Results:

SPATIAL_TYPE NUM_POINTS

--------------- ----------

st_point 1

st_linestring 3

st_polygon 4

ST_NumPolygons

ST_NumPolygons takes a multipolygon as an input parameter and returns the

number of polygons that it contains.

If the given multipolygon is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_NumPolygons (multipolygon) ��

Parameter

multipolygon

A value of type ST_MultiPolygon that represents the multipolygon for

which the number of polygons is returned.

412 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

INTEGER

Example

Multipolygons are stored in the SAMPLE_MPOLYS table. The ST_NumPolygons

function determines how many individual geometries are within each

multipolygon.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpolys (id INTEGER, geometry ST_MultiPolygon)

INSERT INTO sample_mpolys

 VALUES (1,

 ST_MultiPolygon (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1))

INSERT INTO sample_polys

 VALUES (2,

 ST_MultiPolygon (’multipolygon empty’, 1))

INSERT INTO sample_polys

 VALUES (3,

 ST_MultiPolygon (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (13 33, 7 36, 1 40, 10 43, 13 33)))’, 1))

SELECT id, ST_NumPolygons (geometry) NUM_WITHIN

 FROM sample_mpolys

Results:

ID NUM_WITHIN

----------- ----------

 1 3

 2 0

 3 2

ST_Overlaps

ST_Overlaps takes two geometries as input parameters and returns 1 if the

intersection of the geometries results in a geometry of the same dimension but is

not equal to either of the given geometries. Otherwise, 0 (zero) is returned.

If any of the two geometries is null or is empty, then null is returned.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

Syntax

�� db2gse.ST_Overlaps (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is tested to overlap with geometry2.

Chapter 23. Spatial functions: syntax and parameters 413

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is tested to overlap with geometry1.

Return type

INTEGER

Examples

Example 1

This example illustrates the use of ST_Overlaps. Various geometries are created

and inserted into the SAMPLE_GEOMETRIES table

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Point (10, 20, 1)),

 (2, ST_Point (’point (41 41)’, 1)),

 (10, ST_LineString (’linestring (1 10, 3 12, 10 10)’, 1)),

 (20, ST_LineString (’linestring (50 10, 50 12, 45 10)’, 1)),

 (30, ST_LineString (’linestring (50 12, 50 10, 60 8)’, 1)),

 (100, ST_Polygon (’polygon ((0 0, 0 40, 40 40, 40 0, 0 0))’, 1)),

 (110, ST_Polygon (’polygon ((30 10, 30 30, 50 30, 50 10, 30 10))’, 1)),

 (120, ST_Polygon (’polygon ((0 50, 0 60, 40 60, 40 60, 0 50))’, 1))

Example 2

This example finds the IDs of points that overlap.

SELECT sg1.id, sg2.id

 CASE ST_Overlaps (sg1.geometry, sg2.geometry)

 WHEN 0 THEN ’Points_do_not_overlap’

 WHEN 1 THEN ’Points_overlap’

 END

 AS OVERLAP

 FROM sample_geometries sg1, sample_geometries sg2

 WHERE sg1.id < 10 AND sg2.id < 10 AND sg1.id >= sg2.id

Results:

ID ID OVERLAP

----------- ---------- ------------------------

 1 1 Points_do_not_overlap

 2 1 Points_do_not_overlap

 2 2 Points_do_not_overlap

Example 3

This example finds the IDs of lines that overlap.

SELECT sg1.id, sg2.id

 CASE ST_Overlaps (sg1.geometry, sg2.geometry)

 WHEN 0 THEN ’Lines_do_not_overlap’

 WHEN 1 THEN ’Lines_overlap’

 END

 AS OVERLAP

 FROM sample_geometries sg1, sample_geometries sg2

 WHERE sg1.id >= 10 AND sg1.id < 100

 AND sg2.id >= 10 AND sg2.id < 100

 AND sg1.id >= sg2.id

414 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Results:

ID ID OVERLAP

----------- ---------- ------------------------

 10 10 Lines_do_not_overlap

 20 10 Lines_do_not_overlap

 30 10 Lines_do_not_overlap

 20 20 Lines_do_not_overlap

 30 20 Lines_overlap

 30 30 Lines_do_not_overlap

Example 4

This example finds the IDs of polygons that overlap.

SELECT sg1.id, sg2.id

 CASE ST_Overlaps (sg1.geometry, sg2.geometry)

 WHEN 0 THEN ’Polygons_do_not_overlap’

 WHEN 1 THEN ’Polygons_overlap’

 END

 AS OVERLAP

 FROM sample_geometries sg1, sample_geometries sg2

 WHERE sg1.id >= 100 AND sg2.id >= 100 AND sg1.id >= sg2.id

Results:

ID ID OVERLAP

----------- ---------- ------------------------

 100 100 Polygons_do_not_overlap

 110 100 Polygons_overlap

 120 100 Polygons_do_not_overlap

 110 110 Polygons_do_not_overlap

 120 110 Polygons_do_not_overlap

 120 120 Polygons_do_not_overlap

ST_Perimeter

ST_Perimeter takes a surface or multisurface and, optionally, a unit as input

parameters and returns the perimeter of the surface or multisurface, that is the

length of its boundary, measured in the default or given units.

If the given surface or multisurface is null or is empty, null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Perimeter (surface)

,

unit
 ��

Parameters

surface

A value of type ST_Surface, ST_MultiSurface, or one of their subtypes for

which the perimeter is returned.

unit A VARCHAR(128) value that identifies the units in which the perimeter is

measured. The supported units of measure are listed in the

DB2GSE.ST_UNITS_OF_MEASURE catalog view.

 If the unit parameter is omitted, the following rules are used to determine

the unit in which the perimeter is measured:

Chapter 23. Spatial functions: syntax and parameters 415

v If surface is in a projected or geocentric coordinate system, the linear unit

associated with this coordinate system is the default.

v If surface is in a geographic coordinate system, but is not in a geodetic

spatial reference system (SRS), the angular unit associated with this

coordinate system is the default.

v If surface is in a geodetic SRS, the default unit of measure is meters.

 Restrictions on unit conversions: An error (SQLSTATE 38SU4) is returned

if any of the following conditions occur:

v The geometry is in an unspecified coordinate system and the unit

parameter is specified.

v The geometry is in a projected coordinate system and an angular unit is

specified.

v The geometry is in a geographic coordinate system, but is not in a

geodetic SRS, and a linear unit is specified.

v The geometry is in a geographic coordinate system, is in a geodetic SRS,

and an angular unit is specified.

Return type

DOUBLE

Examples

Example 1

This example illustrates the use of the ST_Perimeter function. A spatial reference

system with an ID of 4000 is created using a call to db2se, and a polygon is created

in that spatial reference system.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

db2se create_srs se_bank -srsId 4000 -srsName new_york1983

 -xOffset 0 -yOffset 0 -xScale 1 -yScale 1

 -coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

The SAMPLE_POLYS table is created to hold a geometry with a perimeter of 18.

CREATE TABLE sample_polys (id SMALLINT, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1, ST_Polygon (’polygon ((0 0, 0 4, 5 4, 5 0, 0 0))’, 4000))

Example 2

This example lists the ID and perimeter of the polygon.

SELECT id, ST_Perimeter (geometry) AS PERIMETER

 FROM sample_polys

Results:

ID PERIMETER

----------- ------------------------

 1 +1.80000000000000E+001

Example 3

416 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

This example lists the ID and perimeter of the polygon with the perimeter

measured in meters.

SELECT id, ST_Perimeter (geometry, ’METER’) AS PERIMETER_METER

 FROM sample_polys

Results:

ID PERIMETER_METER

----------- ------------------------

 1 +5.48641097282195E+000

ST_PerpPoints

ST_PerpPoints takes a curve or multicurve and a point as input parameters and

returns the perpendicular projection of the given point on the curve or multicurve.

The point with the smallest distance between the given point and the

perpendicular point is returned. If two or more such perpendicular projected

points are equidistant from the given point, they are all returned. If no

perpendicular point can be constructed, then an empty point is returned.

If the given curve or multicurve has Z or M coordinates, the Z or M coordinate of

the resulting points are computed by interpolation on the given curve or

multicurve.

If the given curve or point is empty, then an empty point is returned. If the given

curve or point is null , then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_PerpPoints (curve , point) ��

Parameters

curve A value of type ST_Curve, ST_MultiCurve, or one of their subtypes that

represents the curve or multicurve in which the perpendicular projection of

the point is returned.

point A value of type ST_Point that represents the point that is perpendicular

projected onto curve.

Return type

db2gse.ST_MultiPoint

Examples

Example 1

This example illustrates the use of the ST_PerpPoints function to find points that

are perpendicular to the linestring stored in the following table. The ST_LineString

function is used in the INSERT statement to create the linestring.

Chapter 23. Spatial functions: syntax and parameters 417

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines (id, line)

 VALUES (1, ST_LineString(’linestring (0 10, 0 0, 10 0, 10 10)’ , 0))

Example 2

This example finds the perpendicular projection on the linestring of a point with

coordinates (5, 0). The ST_AsText function is used to convert the returned value (a

multipoint) to its well-known text representation.

SELECT CAST (ST_AsText(ST_PerpPoints(line, ST_Point(5, 0)))

 AS VARCHAR(50)) PERP

 FROM sample_lines

Results:

PERP

--

MULTIPOINT (5.00000000 0.00000000)

Example 3

This example finds the perpendicular projections on the linestring of a point with

coordinates (5, 5). In this case, there are three points on the linestring that are

equidistant to the given location. Therefore, a multipoint that consists of all three

points is returned.

SELECT CAST (ST_AsText(ST_PerpPoints(line, ST_Point(5, 5)))

 AS VARCHAR160)) PERP

 FROM sample_lines

Results:

PERP

--

MULTIPOINT (0.00000000 5.00000000, 5.00000000 0.00000000, 10.00000000 5.00000000)

Example 4

This example finds the perpendicular projections on the linestring of a point with

coordinates (5, 10). In this case there are three different perpendicular points that

can be found. However, the ST_PerpPoints function only returns those points that

are closest to the given point. Thus, a multipoint that consists of only the two

closest points is returned. The third point is not included.

SELECT CAST (ST_AsText(ST_PerpPoints(line, ST_Point(5, 10)))

 AS VARCHAR(80)) PERP

 FROM sample_lines

Results:

PERP

--

MULTIPOINT (0.00000000 10.00000000, 10.00000000 10.00000000)

Example 5

This example finds the perpendicular projection on the linestring of a point with

coordinates (5, 15).

SELECT CAST (ST_AsText(ST_PerpPoints(line, ST_Point(’point(5 15)’, 0)))

 AS VARCHAR(80)) PERP

 FROM sample_lines

418 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Results:

PERP

MULTIPOINT (5.00000000 0.00000000)

Example 6

In this example, the specified point with coordinates (15 15) has no perpendicular

projection on the linestring. Therefore, an empty geometry is returned.

SELECT CAST (ST_AsText(ST_PerpPoints(line, ST_Point(15, 15)))

 AS VARCHAR(80)) PERP

 FROM sample_lines

Results:

PERP

--

MULTIPOINT EMPTY

ST_Point

ST_Point constructs a point from one of the following sets of input:

v X and Y coordinates only

v X, Y, and Z coordinates

v X, Y, Z, and M coordinates

v A well-known text representation

v A well-known binary representation

v A shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to indicate the

spatial reference system that the resulting point is in.

If the point is constructed from coordinates, and if the X or Y coordinate is null,

then an exception condition is raised (SQLSTATE 38SUP). If the Z or M coordinate

is null, then the resulting point will not have a Z or M coordinate, respectively. If

the point is constructed from its well-known text representation, its well-known

binary representation, its shape representation, or its GML representation, and if

the representation is null, then null is returned.

Syntax

�� db2gse.ST_Point (coordinates

wkt

wkb

gml

shape

,

srs_id
) ��

coordinates:

 x_coordinate , y_coordinate

,

z_coordinate

,

m_coordinate

Chapter 23. Spatial functions: syntax and parameters 419

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting point.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting point.

gml A value of type CLOB(2G) that represents the resulting point using the

geography markup language.

shape A value of type BLOB(2G) that represents the shape representation of the

resulting point.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting point.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

x_coordinate

A value of type DOUBLE that specifies the X coordinate for the resulting

point.

y_coordinate

A value of type DOUBLE that specifies the Y coordinate for the resulting

point.

z_coordinate

A value of type DOUBLE that specifies the Z coordinate for the resulting

point.

 If the z_coordinate parameter is omitted, the resulting point will not have a

Z coordinate. The result of ST_Is3D is 0 (zero) for such a point.

m_coordinate

A value of type DOUBLE that specifies the M coordinate for the resulting

point.

 If the m_coordinate parameter is omitted, the resulting point will not have a

measure. The result of ST_IsMeasured is 0 (zero) for such a point.

Return type

db2gse.ST_Point

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

Example 1

This example illustrates how ST_Point can be used to create and insert points. The

first point is created using a set of X and Y coordinates. The second point is

created using its well-known text representation. Both points are geometries in

spatial reference system 1.

420 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points

 VALUES (1100, ST_Point (10, 20, 1))

INSERT INTO sample_points

 VALUES (1101, ST_Point (’point (30 40)’, 1))

The following SELECT statement returns the points that were recorded in the table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) POINTS

 FROM sample_points

Results:

ID POINTS

---------- ------------------------------------

 1110 POINT (10.00000000 20.00000000)

 1101 POINT (30.00000000 40.00000000)

Example 2

This example inserts a record into the SAMPLE_POINTS table with ID 1103 and a

point value with an X coordinate of 120, a Y coordinate of 358, an M coordinate of

34, but no Z coordinate.

INSERT INTO SAMPLE_POINTS(ID, GEOMETRY)

 VALUES(1103, db2gse.ST_Point(120, 358, CAST(NULL AS DOUBLE), 34, 1))

 SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) POINTS

 FROM sample_points

Results:

ID POINTS

 ---------- --

 1103 POINT M (120.0000000 358.0000000 34.00000000)

Example 3

This example inserts a row into the SAMPLE_POINTS table with ID 1104 and a

point value with an X coordinate of 1003, a Y coordinate of 9876, a Z coordinate of

20, and in spatial reference system 0, using the geography markup language for its

representation.

INSERT INTO SAMPLE_POINTS(ID, GEOMETRY)

 VALUES(1104, db2gse.ST_Point(’<gml:Point><gml:coord>

 <gml:x>1003</gml:X><gml:Y>9876</gml:Y><gml:Z>20</gml:Z>

 </gml:coord></gml:Point>’, 1))

 SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(90)) POINTS

 FROM sample_points

Results:

ID POINTS

 ---------- --

 1104 POINT Z (1003.000000 9876.000000 20.00000000)

Chapter 23. Spatial functions: syntax and parameters 421

ST_PointFromText

ST_PointFromText takes a well-known text representation of a point and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding point.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is the ST_Point function.

It is recommended because of its flexibility: ST_Point takes additional forms of

input as well as the well-known text representation.

Syntax

�� db2gse.ST_PointFromText (wkt)

,

srs_id
 ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting point.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting point.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Point

Example

This example illustrates how ST_PointFromText can be used to create and insert a

point from its well-known text representation. The record that is inserted has ID =

1110, and the geometry is a point in spatial reference system 1. The point is in the

well-known text representation of a point. The X and Y coordinates for this

geometry are: (10, 20).

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points

 VALUES (1110, ST_PointFromText (’point (30 40)’, 1))

The following SELECT statement returns the polygon that was recorded in the

table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(35)) POINTS

 FROM sample_points

 WHERE id = 1110

Results:

422 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID POINTS

---------- ---------------------------------------

 1110 POINTS (30.00000000 40.00000000)

ST_PointFromWKB

ST_PointFromWKB takes a well-known binary representation of a point and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding point.

If the given well-known binary representation is null, then null is returned.

The recommended function for achieving the same result is the ST_Point function.

It is recommended because of its flexibility: ST_Point takes additional forms of

input as well as the well-known binary representation.

Syntax

�� db2gse.ST_PointFromWKB (wkb)

,

srs_id
 ��

Parameters

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting point.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting point.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used implicitly.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Point

Example

This example illustrates how ST_PointFromWKB can be used to create a point from

its well-known binary representation. The geometries are points in spatial reference

system 1. In this example, the points get stored in the GEOMETRY column of the

SAMPLE_POLYS table, and then the WKB column is updated with their

well-known binary representations (using the ST_AsBinary function). Finally, the

ST_PointFromWKB function is used to return the points from the WKB column.

The SAMPLE_POINTS table has a GEOMETRY column, where the points are

stored, and a WKB column, where the points’ well-known binary representations

are stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point, wkb BLOB(32K))

INSERT INTO sample_points

 VALUES (10, ST_Point (’point (44 14)’, 1)),

Chapter 23. Spatial functions: syntax and parameters 423

VALUES (11, ST_Point (’point (24 13)’, 1))

UPDATE sample_points AS temporary_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_PointFromWKB function is used to

retrieve the points from the WKB column.

SELECT id, CAST(ST_AsText(ST_PolyFromWKB (wkb)) AS VARCHAR(35)) POINTS

 FROM sample_points

Results:

ID POINTS

---------- -----------------------------------

 10 POINT (44.00000000 14.00000000)

 11 POINT (24.00000000 13.00000000)

ST_PointN

ST_PointN takes a linestring or a multipoint and an index as input parameters and

returns that point in the linestring or multipoint that is identified by the index. The

resulting point is represented in the spatial reference system of the given linestring

or multipoint.

If the given linestring or multipoint is null or is empty, then null is returned. If the

index is smaller than 1 or larger than the number of points in the linestring or

multipoint, then null is returned and a warning condition is returned (SQLSTATE

01HS2).

This function can also be called as a method.

Syntax

�� db2gse.ST_PointN (geometry , index) ��

Parameters

geometry

A value of type ST_LineString or ST_MultiPoint that represents the

geometry from which the point that is identified by index is returned.

index A value of type INTEGER that identifies the nth point which is to be

returned from geometry.

Return type

db2gse.ST_Point

Example

The following example illustrates the use of ST_PointN.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines

424 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

VALUES (1, ST_LineString (’linestring (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)’, 0))

SELECT id, CAST (ST_AsText (ST_PointN (line, 2)) AS VARCHAR(60)) SECOND_INDEX

 FROM sample_lines

Results:

ID SECOND_INDEX

--------- --------------------------------

 1 POINT (5.00000000 5.00000000)

ST_PointOnSurface

ST_PointOnSurface takes a surface or a multisurface as an input parameter and

returns a point that is guaranteed to be in the interior of the surface or

multisurface. This point is the paracentroid of the surface.

The resulting point is represented in the spatial reference system of the given

surface or multisurface.

If the given surface or multisurface is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_PointOnSurface (surface) ��

Parameter

surface

A value of type ST_Surface, ST_MultiSurface, or one of their subtypes that

represents the geometry for which a point on the surface is returned.

Return type

db2gse.ST_Point

Example

In the following example, two polygons are created and then ST_PointOnSurface is

used. One of the polygons has a hole in its center. The returned points are on the

surface of the polygons. They are not necessarily at the exact center of the

polygons.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1,

 ST_Polygon (’polygon ((40 120, 90 120, 90 150, 40 150, 40 120) ,

 (50 130, 80 130, 80 140, 50 140, 50 130))’ ,0))

INSERT INTO sample_polys

 VALUES (2,

 ST_Polygon (’polygon ((10 10, 50 10, 10 30, 10 10))’, 0))

SELECT id, CAST (ST_AsText (ST_PointOnSurface (geometry)) AS VARCHAR(80))

 POINT_ON_SURFACE

 FROM sample_polys

Chapter 23. Spatial functions: syntax and parameters 425

Results:

ID POINT_ON_SURFACE

----------- ------------------------------------

 1 POINT (65.00000000 125.00000000)

 2 POINT (30.00000000 15.00000000)

ST_PolyFromText

ST_PolyFromText takes a well-known text representation of a polygon and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding polygon.

If the given well-known text representation is null, then null is returned.

The recommended function for achieving the same result is the ST_Polygon

function. It is recommended because of its flexibility: ST_Polygon takes additional

forms of input as well as the well-known text representation.

Syntax

�� db2gse.ST_PolyFromText (wkt)

,

srs_id
 ��

Parameters

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting polygon.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting polygon.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Polygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_PolyFromText can be used to create and insert a

polygon from its well-known text representation. The record that is inserted has ID

= 1110, and the geometry is a polygon in spatial reference system 1. The polygon is

in the well-known text representation of a polygon. The X and Y coordinates for

this geometry are: (50, 20) (50, 40) (70, 30).

426 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1110, ST_PolyFromText (’polygon ((50 20, 50 40, 70 30, 50 20))’, 1))

The following SELECT statement returns the polygon that was recorded in the

table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(120)) POLYGON

 FROM sample_polys

 WHERE id = 1110

Results:

ID POLYGON

---------- --

 1110 POLYGON ((50.00000000 20.00000000, 70.00000000 30.00000000,

 50.00000000 40.00000000, 50.00000000 20.00000000))

ST_PolyFromWKB

ST_PolyFromWKB takes a well-known binary representation of a polygon and,

optionally, a spatial reference system identifier as input parameters and returns the

corresponding polygon.

If the given well-known binary representation is null, then null is returned.

The recommended function for achieving the same result is the ST_Polygon

function. It is recommended because of its flexibility: ST_Polygon takes additional

forms of input as well as the well-known binary representation.

Syntax

�� db2gse.ST_PolyFromWKB (wkb)

,

srs_id
 ��

Parameters

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting polygon.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting polygon.

 If the srs_id parameter is omitted, the spatial reference system with the

numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Polygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

Chapter 23. Spatial functions: syntax and parameters 427

This example illustrates how ST_PolyFromWKB can be used to create a polygon

from its well-known binary representation. The geometry is a polygon in spatial

reference system 1. In this example, the polygon gets stored with ID = 1115 in the

GEOMETRY column of the SAMPLE_POLYS table, and then the WKB column is

updated with its well-known binary representation (using the ST_AsBinary

function). Finally, the ST_PolyFromWKB function is used to return the

multipolygon from the WKB column. The X and Y coordinates for this geometry

are: (50, 20) (50, 40) (70, 30).

The SAMPLE_POLYS table has a GEOMETRY column, where the polygon is

stored, and a WKB column, where the polygon’s well-known binary representation

is stored.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon,

 wkb BLOB(32K))

INSERT INTO sample_polys

 VALUES (10, ST_Polygon (’polygon ((50 20, 50 40, 70 30, 50 20))’, 1))

UPDATE sample_polys AS temporary_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temporary_correlated.id

In the following SELECT statement, the ST_PolyFromWKB function is used to

retrieve the polygon from the WKB column.

SELECT id, CAST(ST_AsText(ST_PolyFromWKB (wkb))

 AS VARCHAR(120)) POLYGON

 FROM sample_polys

 WHERE id = 1115

Results:

ID POLYGON

---------- --

 1115 POLYGON ((50.00000000 20.00000000, 70.00000000

 30.00000000,50.00000000 40.00000000, 50.00000000

 20.00000000))

ST_Polygon

ST_Polygon constructs a polygon from one of the following inputs:

v A closed linestring that defines the exterior ring of the resulting polygon

v A well-known text representation

v A well-known binary representation

v A shape representation

v A representation in the geography markup language (GML)

An optional spatial reference system identifier can be specified to identify the

spatial reference system that the resulting polygon is in.

If the polygon is constructed from a linestring and the given linestring is null, then

null is returned. If the given linestring is empty, then an empty polygon is

returned. If the polygon is constructed from its well-known text representation, its

well-known binary representation, its shape representation, or its GML

representation, and if the representation is null, then null is returned.

This function can also be called as a method for the following cases only:

ST_Polygon(linestring) and ST_Polygon(linestring, srs_id).

428 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_Polygon (linestring)

wkt

,

srs_id

wkb

shape

gml

 ��

Parameters

linestring

A value of type ST_LineString that represents the linestring that defines the

exterior ring for the outer boundary. If linestring is not closed and simple,

an exception condition is raised (SQLSTATE 38SSL).

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting polygon.

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting polygon.

shape A value of type BLOB(2G) that represents the shape representation of the

resulting polygon.

gml A value of type CLOB(2G) that represents the resulting polygon using the

geography markup language.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting polygon.

 If the polygon is constructed from a given linestring parameter and the

srs_id parameter is omitted, then the spatial reference system from

linestring is used implicitly. Otherwise, if the srs_id parameter is omitted,

the spatial reference system with the numeric identifier 0 (zero) is used.

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Polygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_Polygon can be used to create and insert

polygons. Three polygons are created and inserted. All of them are geometries in

spatial reference system 1.

v The first polygon is created from a ring (a closed and simple linestring). The X

and Y coordinates for this polygon are: (10, 20) (10, 40) (20, 30).

v The second polygon is created using its well-known text representation. The X

and Y coordinates for this polygon are: (110, 120) (110, 140) (120, 130).

v The third polygon is a donut polygon. A donut polygon consists of an interior

and an exterior polygon. This donut polygon is created using its well-known

text representation. The X and Y coordinates for the exterior polygon are: (110,

Chapter 23. Spatial functions: syntax and parameters 429

120) (110, 140) (130, 140) (130, 120) (110, 120). The X and Y coordinates for the

interior polygon are: (115, 125) (115, 135) (125, 135) (125, 135) (115, 125).
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1100,

 ST_Polygon (ST_LineString (’linestring

 (10 20, 10 40, 20 30, 10 20)’,1), 1))

INSERT INTO sample_polys

 VALUES (1101,

 ST_Polygon (’polygon

 ((110 120, 110 140, 120 130, 110 120))’, 1))

INSERT INTO sample_polys

 VALUES (1102,

 ST_Polygon (’polygon

 ((110 120, 110 140, 130 140, 130 120, 110 120),

 (115 125, 115 135, 125 135, 125 135, 115 125))’, 1))

The following SELECT statement returns the polygons that were recorded in the

table:

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(120)) POLYGONS

 FROM sample_polys

Results:

ID POLYGONS

------- --

 1110 POLYGON ((10.00000000 20.00000000, 20.00000000 30.00000000

 10.00000000 40.00000000, 10.00000000 20.00000000))

 1101 POLYGON ((110.00000000 120.00000000, 120.00000000 130.00000000

 110.00000000 140.00000000, 110.00000000 120.00000000))

 1102 POLYGON ((110.00000000 120.00000000, 130.00000000 120.00000000

 130.00000000 140.00000000, 110.00000000 140.00000000

 110.00000000 120.00000000),

 (115.00000000 125.00000000, 115.00000000 135.00000000

 125.00000000 135.00000000, 125.00000000 135.00000000

 115.00000000 125.00000000))

ST_PolygonN

ST_PolygonN takes a multipolygon and an index as input parameters and returns

the polygon that is identified by the index. The resulting polygon is represented in

the spatial reference system of the given multipolygon.

If the given multipolygon is null or is empty, or if the index is smaller than 1 or

larger than the number of polygons, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_PolygonN (multipolygon , index) ��

430 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameters

multipolygon

A value of type ST_MultiPolygon that represents the multipolygon from

which the polygon that is identified by index is returned.

index A value of type INTEGER that identifies the nth polygon that is to be

returned from multipolygon.

Return type

db2gse.ST_Polygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example illustrates the use of ST_PolygonN.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_mpolys (id INTEGER, geometry ST_MultiPolygon)

INSERT INTO sample_mpolys

 VALUES (1, ST_Polygon (’multipolygon (((3 3, 4 6, 5 3, 3 3),

 (8 24, 9 25, 1 28, 8 24)

 (13 33, 7 36, 1 40, 10 43,

 13 33)))’, 1))

SELECT id, CAST (ST_AsText (ST_PolygonN (geometry, 2))

 AS VARCHAR(120)) SECOND_INDEX

FROM sample_mpolys

Results:

ID SECOND_INDEX

--------- ---

 1 POLYGON ((8.00000000 24.00000000, 9.00000000 25.00000000,

 1.00000000 28.00000000, 8.00000000 24.00000000))

ST_Relate

ST_Relate takes two geometries and a Dimensionally Extended 9 Intersection

Model (DE-9IM) matrix as input parameters and returns 1 if the given geometries

meet the conditions specified by the matrix. Otherwise, 0 (zero) is returned.

If any of the given geometries is null or is empty, then null is returned.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

This function can also be called as a method.

Syntax

�� db2gse.ST_Relate (geometry1 , geometry2 , matrix) ��

Chapter 23. Spatial functions: syntax and parameters 431

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is tested against geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is tested against geometry1.

matrix A value of CHAR(9) that represents the DE-9IM matrix which is to be used

for the test of geometry1 and geometry2.

Return type

INTEGER

Example

The following code creates two separate polygons. Then, the ST_Relate function is

used to determine several relationships between the two polygons. For example,

whether the two polygons overlap.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_polys (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_polys

 VALUES (1,

 ST_Polygon(’polygon ((40 120, 90 120, 90 150, 40 150, 40 120))’, 0))

INSERT INTO sample_polys

 VALUES (2,

 ST_Polygon(’polygon ((30 110, 50 110, 50 130, 30 130, 30 110))’, 0))

SELECT ST_Relate(a.geometry, b.geometry, ’T*T***T**’) "Overlaps ",

 ST_Relate(a.geometry, b.geometry, ’T*T***FF*’) "Contains ",

 ST_Relate(a.geometry, b.geometry, ’T*F**F***’) "Within "

 ST_Relate(a.geometry, b.geometry, ’T********’) "Intersects",

 ST_Relate(a.geometry, b.geometry, ’T*F**FFF2’) "Equals "

 FROM sample_polys a, sample_polys b

 WHERE a.id = 1 AND b.id = 2

Results:

Overlaps Contains Within Intersects Equals

----------- ----------- ----------- ----------- -----------

 1 0 0 1 0

ST_RemovePoint

ST_RemovePoint takes a curve and a point as input parameters and returns the

given curve with all points equal to the specified point removed from it. If the

given curve has Z or M coordinates, then the point must also have Z or M

coordinates. The resulting geometry is represented in the spatial reference system

of the given geometry.

If the given curve is empty, then an empty curve is returned. If the given curve is

null, or if the given point is null or empty, then null is returned.

This function can also be called as a method.

432 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_RemovePoint (curve , point) ��

Parameters

curve A value of type ST_Curve or one of its subtypes that represents the curve

from which point is removed.

point A value of type ST_Point that identifies the points that are removed from

curve.

Return type

db2gse.ST_Curve

Examples

Example 1

In the following example, two linestrings are added to the SAMPLE_LINES table.

These linestrings are used in the examples below.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines

 VALUES (1,ST_LineString(’linestring

 (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)’, 0))

INSERT INTO sample_lines

 VALUES (2, ST_LineString(’linestring z

 (0 0 4, 5 5 5, 10 10 6, 5 5 7, 0 0 8)’, 0))

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results will vary according to your online display.

Example 2

The following example removes the point (5, 5) from the linestring that has ID = 1.

This point occurs twice in the linestring. Therefore, both occurrences are removed.

SELECT CAST(ST_AsText (ST_RemovePoint (line, ST_Point(5, 5)))

 AS VARCHAR(120)) RESULT

 FROM sample_lines

 WHERE id = 1

Results:

RESULT

--

LINESTRING (10.00000000 10.00000000, 0.00000000 0.00000000,

 10.00000000 0.00000000, 0.00000000 10.00000000)

Example 3

The following example removes the point (5, 5, 5) from the linestring that has ID =

2. This point occurs only once, so only that occurrence is removed.

Chapter 23. Spatial functions: syntax and parameters 433

SELECT CAST (ST_AsText (ST_RemovePoint (line, ST_Point(5.0, 5.0, 5.0)))

 AS VARCHAR(160)) RESULT

 FROM sample_lines

 WHERE id=2

Results:

RESULT

LINESTRING Z (0.00000000 0.00000000 4.00000000, 10.00000000 10.00000000

 6.00000000, 5.00000000 5.00000000 7.00000000, 0.00000000

 0.00000000 8.00000000)

ST_SrsId, ST_SRID

ST_SrsId (or ST_SRID) takes a geometry and, optionally, a spatial reference system

identifier as input parameters. What it returns depends on what input parameters

are specified:

v If the spatial reference system identifier is specified, it returns the geometry with

its spatial reference system changed to the specified spatial reference system. No

transformation of the geometry is performed.

v If no spatial reference system identifier is given as an input parameter, the

current spatial reference system identifier of the given geometry is returned.

If the given geometry is null, then null is returned.

These functions can also be called as methods.

Syntax

�� db2gse.ST_SrsId

db2gse.ST_SRID
 (geometry)

,

srs_id
 ��

Parameters

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry for which the spatial reference system identifier is to be set or

returned.

srs_id A value of type INTEGER that identifies the spatial reference system to be

used for the resulting geometry.

Attention: If this parameter is specified, the geometry is not transformed,

but is returned with its spatial reference system changed to the

specified spatial reference system. As a result of changing to the

new spatial reference system, the data might be corrupted. For

transformations, use ST_Transform instead.

If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return types

v INTEGER, if an srs_id is not specified

v db2gse.ST_Geometry, if an srs_id is specified

434 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Example

Two points are created in two different spatial reference systems. The ID of the

spatial reference system that is associated with each point can be found by using

the ST_SrsId function.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points

 VALUES (1, ST_Point(’point (80 180)’, 0))

INSERT INTO sample_points

 VALUES (2, ST_Point(’point (-74.21450127 + 42.03415094)’, 1))

SELECT id, ST_SRSId (geometry) SRSID

 FROM sample_points

Results:

ID SRSID

----------- ------------

 1 0

 2 1

ST_SrsName

ST_SrsName takes a geometry as an input parameter and returns the name of the

spatial reference system in which the given geometry is represented.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_SrsName (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry for which the name of the spatial reference system is returned.

Return type

VARCHAR(128)

Example

Two points are created in different spatial reference systems. The ST_SrsName

function is used to find out the name of the spatial reference system that is

associated with each point.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry, ST_Point)

INSERT INTO sample_points

 VALUES (1, ST_Point (’point (80 180)’, 0))

Chapter 23. Spatial functions: syntax and parameters 435

INSERT INTO sample_points

 VALUES (2, ST_Point (’point (-74.21450127 + 42.03415094)’, 1))

SELECT id, ST_SrsName (geometry) SRSNAME

 FROM sample_points

Results:

ID SRSNAME

----------- ------------------------------

 1 DEFAULT_SRS

 2 NAD83_SRS_1

ST_StartPoint

ST_StartPoint takes a curve as an input parameter and returns the point that is the

first point of the curve. The resulting point is represented in the spatial reference

system of the given curve. This result is equivalent to the function call

ST_PointN(curve, 1)

If the given curve is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_StartPoint (curve) ��

Parameters

curve A value of type ST_Curve or one of its subtypes that represents the

geometry from which the first point is returned.

Return type

db2gse.ST_Point

Example

In the following example, two linestrings are added to the SAMPLE_LINES table.

The first one is a linestring with X and Y coordinates. The second one is a

linestring with X, Y, and Z coordinates. The ST_StartPoint function is used to

return the first point in each linestring.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

INSERT INTO sample_lines

 VALUES (1, ST_LineString (’linestring

 (10 10, 5 5, 0 0, 10 0, 5 5, 0 10)’, 0))

INSERT INTO sample_lines

 VALUES (1, ST_LineString (’linestring z

 (0 0 4, 5 5 5, 10 10 6, 5 5 7, 0 0 8)’, 0))

SELECT id, CAST(ST_AsText(ST_StartPoint(line)) AS VARCHAR(80))

 START_POINT

 FROM sample_lines

436 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Results:

ID START_POINT

----------- --

 1 POINT (10.00000000 10.00000000)

 2 POINT Z (0.00000000 0.00000000 4.00000000)

ST_SymDifference

ST_SymDifference takes two geometries as input parameters and returns the

geometry that is the symmetrical difference of the two geometries. The symmetrical

difference is the nonintersecting part of the two given geometries. The resulting

geometry is represented in the spatial reference system of the first geometry. The

dimension of the returned geometry is the same as that of the input geometries.

Both geometries must be of the same dimension.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

If the geometries are equal, an empty geometry of type ST_Point is returned. If

either geometry is null, then null is returned.

The resulting geometry is represented in the most appropriate spatial type. If it can

be represented as a point, linestring, or polygon, then one of those types is used.

Otherwise, the multipoint, multilinestring, or multipolygon type is used.

This function can also be called as a method.

Syntax

�� db2gse.ST_SymDifference (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

first geometry to compute the symmetrical difference with geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

second geometry to compute the symmetrical difference with geometry1.

Restrictions for geodetic data:

v Both geometries must be geodetic and they both must be in the same geodetic

SRS.

v ST_SymDifference supports only ST_Point, ST_Polygon, ST_MultiPoint, and

ST_MultiPolygon data types.

Return type

db2gse.ST_Geometry

Chapter 23. Spatial functions: syntax and parameters 437

Examples

Example 1

This example illustrates the use of the ST_SymDifference function. The geometries

are stored in the SAMPLE_GEOMS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms

 VALUES (1,

 ST_Geometry (’polygon ((10 10, 10 20, 20 20, 20 10, 10 10))’, 0))

INSERT INTO sample_geoms

 VALUES

 (2, ST_Geometry (’polygon ((30 30, 30 50, 50 50, 50 30, 30 30))’, 0))

INSERT INTO sample_geoms

 VALUES

 (3,ST_Geometry (’polygon ((40 40, 40 60, 60 60, 60 40, 40 40))’, 0))

INSERT INTO sample_geoms

 VALUES

 (4, ST_Geometry (’linestring (70 70, 80 80)’ , 0))

INSERT INTO sample_geoms

 VALUES

 (5, ST_Geometry(’linestring(75 75, 90 90)’ ,0));

In the following examples, the results have been reformatted for readability. Your

results will vary according to your display.

Example 2

This example uses ST_SymDifference to return the symmetric difference of two

disjoint polygons in the SAMPLE_GEOMS table.

SELECT a.id, b.id,

 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))

 AS VARCHAR(350)) SYM_DIFF

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 1 AND b.id = 2

Results:

ID ID SYM_DIFF

----- ----- ---

 1 2 MULTIPOLYGON (((10.00000000 10.00000000, 20.00000000 10.00000000,

 20.00000000 20.00000000, 10.00000000 20.00000000,

 10.00000000 10.00000000)),

 ((30.00000000 30.00000000, 50.00000000 30.00000000,

 50.00000000 50.00000000, 30.00000000 50.00000000,

 30.00000000 30.00000000)))

Example 3

This example uses ST_SymDifference to return the symmetric difference of two

intersecting polygons in the SAMPLE_GEOMS table.

SELECT a.id, b.id,

 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))

 AS VARCHAR(500)) SYM_DIFF

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 2 AND b.id = 3

438 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Results:

ID ID SYM_DIFF

--- --- ---

 2 3 MULTIPOLYGON (((40.00000000 50.00000000, 50.00000000 50.00000000,

 50.00000000 40.00000000, 60.00000000 40.00000000,

 60.00000000 60.00000000, 40.00000000 60.00000000,

 40.00000000 50.00000000)),

 ((30.00000000 30.00000000, 50.00000000 30.00000000,

 50.00000000 40.00000000, 40.00000000 40.00000000,

 40.00000000 50.00000000, 30.00000000 50.00000000,

 30.00000000 30.00000000)))

Example 4

This example uses ST_SymDifference to return the symmetric difference of two

intersecting linestrings in the SAMPLE_GEOMS table.

SELECT a.id, b.id,

 CAST (ST_AsText (ST_SymDifference (a.geometry, b.geometry))

 AS VARCHAR(350)) SYM_DIFF

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 4 AND b.id = 5

Results:

ID ID SYM_DIFF

---- --- ---

 4 5 MULTILINESTRING ((70.00000000 70.00000000, 75.00000000 75.00000000),

 (80.00000000 80.00000000, 90.00000000 90.00000000))

ST_ToGeomColl

ST_ToGeomColl takes a geometry as an input parameter and converts it to a

geometry collection. The resulting geometry collection is represented in the spatial

reference system of the given geometry.

If the specified geometry is empty, then it can be of any type. However, it is then

converted to ST_Multipoint, ST_MultiLineString, or ST_MultiPolygon as

appropriate.

If the specified geometry is not empty, then it must be of type ST_Point,

ST_LineString, or ST_Polygon. These are then converted to ST_Multipoint,

ST_MultiLineString, or ST_MultiPolygon respectively.

If the given geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToGeomColl (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a geometry collection.

Chapter 23. Spatial functions: syntax and parameters 439

Return type

db2gse.ST_GeomCollection

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example illustrates the use of the ST_ToGeomColl function.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Polygon (’polygon ((3 3, 4 6, 5 3, 3 3))’, 1)),

 (2, ST_Point (’point (1 2)’, 1))

In the following SELECT statement, the ST_ToGeomColl function is used to return

geometries as their corresponding geometry collection subtypes.

SELECT id, CAST(ST_AsText(ST_ToGeomColl(geometry))

 AS VARCHAR(120)) GEOM_COLL

FROM sample_geometries

Results:

ID GEOM_COLL

----------- --

 1 MULTIPOLYGON (((3.00000000 3.00000000, 5.00000000

 3.00000000, 4.00000000 6.00000000,

 3.00000000 3.00000000)))

 2 MULTIPOINT (1.00000000 2.00000000)

ST_ToLineString

ST_ToLineString takes a geometry as an input parameter and converts it to a

linestring. The resulting linestring is represented in the spatial reference system of

the given geometry.

The given geometry must be empty or a linestring. If the given geometry is null,

then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToLineString (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a linestring.

 A geometry can be converted to a linestring if it is empty or a linestring. If

the conversion cannot be performed, then an exception condition is raised

(SQLSTATE 38SUD).

440 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

db2gse.ST_LineString

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example illustrates the use of the ST_ToLineString function.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’linestring z (0 10 1, 0 0 3, 10 0 5)’, 0)),

 (2, ST_Geometry (’point empty’, 1)),

 (3, ST_Geometry (’multipolygon empty’, 1))

In the following SELECT statement, the ST_ToLineString function is used to return

linestrings converted to ST_LineString from the static type of ST_Geometry.

SELECT CAST(ST_AsText(ST_ToLineString(geometry))

 AS VARCHAR(130)) LINES

FROM sample_geometries

Results:

LINES

--

LINESTRING Z (0.00000000 10.00000000 1.00000000, 0.00000000

 0.00000000 3.00000000, 10.00000000 0.00000000

 5.00000000)

LINESTRING EMPTY

LINESTRING EMPTY

ST_ToMultiLine

ST_ToMultiLine takes a geometry as an input parameter and converts it to a

multilinestring. The resulting multilinestring is represented in the spatial reference

system of the given geometry.

The given geometry must be empty, a multilinestring, or a linestring. If the given

geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToMultiLine (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a multilinestring.

 A geometry can be converted to a multilinestring if it is empty, a linestring,

or a multilinestring. If the conversion cannot be performed, then an

exception condition is raised (SQLSTATE 38SUD).

Chapter 23. Spatial functions: syntax and parameters 441

Return type

db2gse.ST_MultiLineString

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example illustrates the use of the ST_ToMultiLine function.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’multilinestring ((0 10 1, 0 0 3, 10 0 5),

 (23 43, 27 34, 35 12))’, 0)),

 (2, ST_Geometry (’linestring z (0 10 1, 0 0 3, 10 0 5)’, 0)),

 (3, ST_Geometry (’point empty’, 1)),

 (4, ST_Geometry (’multipolygon empty’, 1))

In the following SELECT statement, the ST_ToMultiLine function is used to return

multilinestrings converted to ST_MultiLineString from the static type of

ST_Geometry.

SELECT CAST(ST_AsText(ST_ToMultiLine(geometry))

 AS VARCHAR(130)) LINES

 FROM sample_geometries

Results:

LINES

--

MULTILINESTRING Z (0.00000000 10.00000000 1.00000000,

 0.00000000 0.00000000 3.00000000,

 10.00000000 0.00000000 5.00000000)

MULTILINESTRING EMPTY

MULTILINESTRING EMPTY

ST_ToMultiPoint

ST_ToMultiPoint takes a geometry as an input parameter and converts it to a

multipoint. The resulting multipoint is represented in the spatial reference system

of the given geometry.

The given geometry must be empty, a point, or a multipoint. If the given geometry

is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToMultiPoint (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a multipoint.

442 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

A geometry can be converted to a multipoint if it is empty, a point, or a

multipoint. If the conversion cannot be performed, then an exception

condition is raised (SQLSTATE 38SUD).

Return type

db2gse.ST_MultiPoint

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example illustrates the use of the ST_ToMultiPoint function.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’multipoint (0 0, 0 4)’, 1)),

 (2, ST_Geometry (’point (30 40)’, 1)),

 (3, ST_Geometry (’multipolygon empty’, 1))

In the following SELECT statement, the ST_ToMultiPoint function is used to return

multipoints converted to ST_MultiPoint from the static type of ST_Geometry.

SELECT CAST(ST_AsText(ST_ToMultiPoint(geometry))

 AS VARCHAR(62)) MULTIPOINTS

FROM sample_geometries

Results:

MULTIPOINTS

--

MULTIPOINT (0.00000000 0.00000000, 0.00000000 4.00000000)

MULTIPOINT (30.00000000 40.00000000)

MULTIPOINT EMPTY

ST_ToMultiPolygon

ST_ToMultiPolygon takes a geometry as an input parameter and converts it to a

multipolygon. The resulting multipolygon is represented in the spatial reference

system of the given geometry.

The given geometry must be empty, a polygon, or a multipolygon. If the given

geometry is null, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToMultiPolygon (geometry) ��

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a multipolygon.

Chapter 23. Spatial functions: syntax and parameters 443

A geometry can be converted to a multipolygon if it is empty, a polygon,

or a multipolygon. If the conversion cannot be performed, then an

exception condition is raised (SQLSTATE 38SUD).

Return type

db2gse.ST_MultiPolygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example creates several geometries and then uses ST_ToMultiPolygon to

return multipolygons.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’polygon ((0 0, 0 4, 5 4, 5 0, 0 0))’, 1)),

 (2, ST_Geometry (’point empty’, 1)),

 (3, ST_Geometry (’multipoint empty’, 1))

In the following SELECT statement, the ST_ToMultiPolygon function is used to

return multipolygons converted to ST_MultiPolygon from the static type of

ST_Geometry.

SELECT CAST(ST_AsText(ST_ToMultiPolygon(geometry))

 AS VARCHAR(130)) POLYGONS

 FROM sample_geometries

Results:

POLYGONS

--

MULTIPOLYGON ((0.00000000 0.00000000, 5.00000000 0.00000000,

 5.00000000 4.00000000, 0.00000000 4.00000000,

 0.00000000 0.00000000))

MULTIPOLYGON EMPTY

MULTIPOLYGON EMPTY

ST_ToPoint

ST_ToPoint takes a geometry as an input parameter and converts it to a point. The

resulting point is represented in the spatial reference system of the given geometry.

The given geometry must be empty or a point. If the given geometry is null, then

null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToPoint (geometry) ��

444 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a point.

 A geometry can be converted to a point if it is empty or a point. If the

conversion cannot be performed, then an exception condition is raised

(SQLSTATE 38SUD).

Return type

db2gse.ST_Point

Example

This example creates three geometries in SAMPLE_GEOMETRIES and converts

each to a point.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’point (30 40)’, 1)),

 (2, ST_Geometry (’linestring empty’, 1)),

 (3, ST_Geometry (’multipolygon empty’, 1))

In the following SELECT statement, the ST_ToPoint function is used to return

points converted to ST_Point from the static type of ST_Geometry.

SELECT CAST(ST_AsText(ST_ToPoint(geometry)) AS VARCHAR(35)) POINTS

 FROM sample_geometries

Results:

POINTS

POINT (30.00000000 40.00000000)

POINT EMPTY

POINT EMPTY

ST_ToPolygon

ST_ToPolygon takes a geometry as an input parameter and converts it to a

polygon. The resulting polygon is represented in the spatial reference system of the

given geometry.

The given geometry must be empty or a polygon. If the given geometry is null,

then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_ToPolygon (geometry) ��

Chapter 23. Spatial functions: syntax and parameters 445

Parameter

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is converted to a polygon.

 A geometry can be converted to a polygon if it is empty or a polygon. If

the conversion cannot be performed, then an exception condition is raised

(SQLSTATE 38SUD).

Return type

db2gse.ST_Polygon

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display

This example creates three geometries in SAMPLE_GEOMETRIES and converts

each to a polygon.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (1, ST_Geometry (’polygon ((0 0, 0 4, 5 4, 5 0, 0 0))’, 1)),

 (2, ST_Geometry (’point empty’, 1)),

 (3, ST_Geometry (’multipolygon empty’, 1))

In the following SELECT statement, the ST_ToPolygon function is used to return

polygons converted to ST_Polygon from the static type of ST_Geometry.

SELECT CAST(ST_AsText(ST_ToPolygon(geometry)) AS VARCHAR(130)) POLYGONS

 FROM sample_geometries

Results:

POLYGONS

POLYGON ((0.00000000 0.00000000, 5.00000000 0.00000000,

 5.00000000 4.00000000,0.00000000 4.00000000,

 0.00000000 0.00000000))

POLYGON EMPTY

POLYGON EMPTY

ST_Touches

ST_Touches takes two geometries as input parameters and returns 1 if the given

geometries spatially touch. Otherwise, 0 (zero) is returned.

Two geometries touch if the interiors of both geometries do not intersect, but the

boundary of one of the geometries intersects with either the boundary or the

interior of the other geometry.

If the second geometry is not represented in the same spatial reference system as

the first geometry, it will be converted to the other spatial reference system.

446 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

If both of the given geometries are points or multipoints, or if any of the given

geometries is null or empty, then null is returned.

Syntax

�� db2gse.ST_Touches (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested to touch geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is to be tested to touch geometry1.

Return type

INTEGER

Example

Several geometries are added to the SAMPLE_GEOMS table. The ST_Touches

function is then used to determine which geometries touch each other.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geoms

 VALUES (1, ST_Geometry(’polygon ((20 30, 30 30, 30 40, 20 40, 20 30))’ , 0))

INSERT INTO sample_geoms

 VALUES (2, ST_Geometry(’polygon ((30 30, 30 50, 50 50, 50 30, 30 30))’ ,0))

INSERT INTO sample_geoms

 VALUES (3, ST_Geometry(’polygon ((40 40, 40 60, 60 60, 60 40, 40 40))’ , 0))

INSERT INTO sample_geoms

 VALUES (4, ST_Geometry(’linestring(60 60, 70 70)’ , 0))

INSERT INTO sample_geoms

 VALUES (5, ST_Geometry(’linestring(30 30, 60 60)’ , 0))

SELECT a.id, b.id, ST_Touches (a.geometry, b.geometry) TOUCHES

 FROM sample_geoms a, sample_geoms b

 WHERE b.id >= a.id

Results:

 ID ID TOUCHES

 ----------- ----------- -----------

 1 1 0

 1 2 1

 1 3 0

 1 4 0

 1 5 1

 2 2 0

 2 3 0

 2 4 0

 2 5 1

 3 3 0

 3 4 1

Chapter 23. Spatial functions: syntax and parameters 447

3 5 1

 4 4 0

 4 5 1

 5 5 0

ST_Transform

ST_Transform takes a geometry and a spatial reference system identifier as input

parameters and transforms the geometry to be represented in the given spatial

reference system. Projections and conversions between different coordinate systems

are performed and the coordinates of the geometries are adjusted accordingly.

The geometry can be converted to the specified spatial reference system only if the

geometry’s current spatial reference system is based in the same geographic

coordinate system as the specified spatial spatial reference system. If either the

geometry’s current spatial reference system or the specified spatial reference

system is based on a projected coordinate system, a reverse projection is performed

to determine the geographic coordinate system that underlies the projected one.

If the given geometry is null, then null will be returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Transform (geometry , srs_id) ��

Parameters

geometry

A value of type ST_Geometry or one of its subtypes that represents the

geometry that is transformed to the spatial reference system identified by

srs_id.

srs_id A value of type INTEGER that identifies the spatial reference system for

the resulting geometry.

 If the transformation to the specified spatial reference system cannot be

performed because the current spatial reference system of geometry is not

compatible with the spatial reference system identified by srs_id, then an

exception condition is raised (SQLSTATE 38SUC).

 If srs_id does not identify a spatial reference system listed in the catalog

view DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS, then an exception

condition is raised (SQLSTATE 38SU1).

Return type

db2gse.ST_Geometry

Examples

Example 1

The following example illustrates the use of ST_Transform to convert a geometry

from one spatial reference system to another.

448 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

First, the state plane spatial reference system with an ID of 3 is created using a call

to db2se.

db2se create_srs SAMP_DB

 -srsId 3 -srsName z3101a -xOffset 0 -yOffset 0 -xScale 1 -yScale 1

 - coordsysName NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

Then, points are added to:

v The SAMPLE_POINTS_SP table in state plane coordinates using that spatial

reference system.

v The SAMPLE_POINTS_LL table using coordinates specified in latitude and

longitude.
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points_sp (id INTEGER, geometry ST_Point)

CREATE TABLE sample_points_ll (id INTEGER, geometry ST_Point)

INSERT INTO sample_points_sp

 VALUES (12457, ST_Point(’point (567176.0 1166411.0)’, 3))

INSERT INTO sample_points_sp

 VALUES (12477, ST_Point(’point (637948.0 1177640.0)’, 3))

INSERT INTO sample_points_ll

 VALUES (12457, ST_Point(’point (-74.22371600 42.03498700)’, 1))

INSERT INTO sample_points_ll

 VALUES (12477, ST_Point(’point (-73.96293200 42.06487900)’, 1))

Then the ST_Transform function is used to convert the geometries.

Example 2

This example converts points that are in latitude and longitude coordinates to state

plane coordinates.

SELECT id, CAST(ST_AsText(ST_Transform(geometry, 3))

 AS VARCHAR(100)) STATE_PLANE

 FROM sample_points_ll

Results:

ID STATE_PLANE

----------- ---

 12457 POINT (567176.00000000 1166411.00000000)

 12477 POINT (637948.00000000 1177640.00000000)

Example 3

This example converts points that are in state plane coordinates to latitude and

longitude coordinates.

SELECT id, CAST(ST_AsText(ST_Transform(geometry, 1))

 AS VARCHAR(100)) LAT_LONG

 FROM sample_points_sp

Results:

ID LAT_LONG

----------- ---

 12457 POINT (-74.22371500 42.03498800)

 12477 POINT (-73.96293100 42.06488000)

Chapter 23. Spatial functions: syntax and parameters 449

ST_Union

ST_Union takes two geometries as input parameters and returns the geometry that

is the union of the given geometries. The resulting geometry is represented in the

spatial reference system of the first geometry.

Both geometries must be of the same dimension. If any of the two given

geometries is null, null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

The resulting geometry is represented in the most appropriate spatial type. If it can

be represented as a point, linestring, or polygon, then one of those types is used.

Otherwise, the multipoint, multilinestring, or multipolygon type is used.

This function can also be called as a method.

Syntax

�� db2gse.ST_Union (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that is combined with

geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that is combined with

geometry1.

Restrictions for geodetic data: Both geometries must be geodetic and they both

must be in the same geodetic SRS.

Return type

db2gse.ST_Geometry

Examples

Example 1

The following SQL statements create and populate the SAMPLE_GEOMS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geoms (id INTEGER, geometry, ST_Geometry)

INSERT INTO sample_geoms

 VALUES (1, ST_Geometry(’polygon

 ((10 10, 10 20, 20 20, 20 10, 10 10))’, 0))

INSERT INTO sample_geoms

 VALUES (2, ST_Geometry(’polygon

 ((30 30, 30 50, 50 50, 50 30, 30 30))’, 0))

450 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

INSERT INTO sample_geoms

 VALUES (3, ST_Geometry(’polygon

 ((40 40, 40 60, 60 60, 60 40, 40 40))’, 0))

INSERT INTO sample_geoms

 VALUES (4, ST_Geometry(’linestring (70 70, 80 80)’, 0))

INSERT INTO sample_geoms

 VALUES (5, ST_Geometry(’linestring (80 80, 100 70)’, 0))

In the following examples, the results have been reformatted for readability. Your

results will vary according to your display.

Example 2

This example finds the union of two disjoint polygons.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))

 AS VARCHAR (350)) UNION

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 1 AND b.id = 2

Results:

ID ID UNION

----- ----- ---

 1 2 MULTIPOLYGON (((10.00000000 10.00000000, 20.00000000

 10.00000000, 20.00000000 20.00000000, 10.00000000

 20.00000000, 10.00000000 10.00000000))

 ((30.00000000 30.00000000, 50.00000000

 30.00000000,50.00000000 50.00000000, 30.00000000

 50.00000000,30.00000000 30.00000000)))

Example 3

This example finds the union of two intersecting polygons.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))

 AS VARCHAR (250)) UNION

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 2 AND b.id = 3

Results:

ID ID UNION

----- ----- --

 2 3 POLYGON ((30.00000000 30.00000000, 50.00000000

 30.00000000,50.00000000 40.00000000, 60.00000000

 40.00000000,60.00000000 60.00000000, 40.00000000

 60.00000000 40.00000000 50.00000000, 30.00000000

 50.00000000, 30.00000000 30.00000000))

Example 4

Find the union of two linestrings.

SELECT a.id, b.id, CAST (ST_AsText(ST_Union(a.geometry, b.geometry))

 AS VARCHAR (250)) UNION

 FROM sample_geoms a, sample_geoms b

 WHERE a.id = 4 AND b.id = 5

Results:

ID ID UNION

----- ----- ---

 4 5 MULTILINESTRING ((70.00000000 70.00000000, 80.00000000 80.00000000),

 (80.00000000 80.00000000, 100.00000000 70.00000000))

Chapter 23. Spatial functions: syntax and parameters 451

ST_Within

ST_Within takes two geometries as input parameters and returns 1 if the first

geometry is completely within the second geometry. Otherwise, 0 (zero) is

returned.

If any of the given geometries is null or is empty, null is returned.

For non–geodetic data, if the second geometry is not represented in the same

spatial reference system as the first geometry, it will be converted to the other

spatial reference system. For geodetic data, both geometries must be in the same

geodetic spatial reference system (SRS).

ST_Within performs the same logical operation that ST_Contains performs with the

parameters reversed.

Syntax

�� db2gse.ST_Within (geometry1 , geometry2) ��

Parameters

geometry1

A value of type ST_Geometry or one of its subtypes that is to be tested to

be fully within geometry2.

geometry2

A value of type ST_Geometry or one of its subtypes that is to be tested to

be fully within geometry1.

Restrictions for geodetic data: Both geometries must be geodetic and they both

must be in the same geodetic SRS.

Return type

INTEGER

Examples

Example 1

This example illustrates use of the ST_Within function. Geometries are created and

inserted into three tables, SAMPLE_POINTS, SAMPLE_LINES, and

SAMPLE_POLYGONS.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

CREATE TABLE sample_lines (id INTEGER, line ST_LineString)

CREATE TABLE sample_polygons (id INTEGER, geometry ST_Polygon)

INSERT INTO sample_points (id, geometry)

 VALUES (1, ST_Point (10, 20, 1)),

 (2, ST_Point (’point (41 41)’, 1))

INSERT INTO sample_lines (id, line)

 VALUES (10, ST_LineString (’linestring (1 10, 3 12, 10 10)’, 1)),

 (20, ST_LineString (’linestring (50 10, 50 12, 45 10)’, 1))

452 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

INSERT INTO sample_polygons (id, geometry)

 VALUES (100, ST_Polygon (’polygon ((0 0, 0 40, 40 40, 40 0, 0 0))’, 1))

Example 2

This example finds points from the SAMPLE_POINTS table that are in the

polygons in the SAMPLE_POLYGONS table.

SELECT a.id POINT_ID_WITHIN_POLYGONS

 FROM sample_points a, sample_polygons b

 WHERE ST_Within(b.geometry, a.geometry) = 0

Results:

POINT_ID_WITHIN_POLYGONS

 2

Example 3

This example finds linestrings from the SAMPLE_LINES table that are in the

polygons in the SAMPLE_POLYGONS table.

SELECT a.id LINE_ID_WITHIN_POLYGONS

 FROM sample_lines a, sample_polygons b

 WHERE ST_Within(b.geometry, a.geometry) = 0

Results:

LINE_ID_WITHIN_POLYGONS

 1

ST_WKBToSQL

ST_WKBToSQL takes a well-known binary representation of a geometry and

returns the corresponding geometry. The spatial reference system with the

identifier 0 (zero) is used for the resulting geometry.

If the given well-known binary representation is null, then null is returned.

ST_WKBToSQL(wkb) gives the same result as ST_Geometry(wkb,0). Using the

ST_Geometry function is recommended over using ST_WKBToSQL because of its

flexibility: ST_Geometry takes additional forms of input as well as the well-known

binary representation.

Syntax

�� db2gse.ST_WKBToSQL (wkb) ��

Parameter

wkb A value of type BLOB(2G) that contains the well-known binary

representation of the resulting geometry.

Return type

db2gse.ST_Geometry

Chapter 23. Spatial functions: syntax and parameters 453

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates use of the ST_WKBToSQL function. First, geometries are

stored in the SAMPLE_GEOMETRIES table in its GEOMETRY column. Then, their

well-known binary representations are stored in the WKB column using the

ST_AsBinary function in the UPDATE statement. Finally, the ST_WKBToSQL

function is used to return the coordinates of the geometries in the WKB column.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries

 (id INTEGER, geometry ST_Geometry, wkb BLOB(32K))

INSERT INTO sample_geometries (id, geometry)

 VALUES (10, ST_Point (’point (44 14)’, 0)),

 (11, ST_Point (’point (24 13)’, 0)),

 (12, ST_Polygon (’polygon ((50 20, 50 40, 70 30, 50 20))’, 0))

UPDATE sample_geometries AS temp_correlated

 SET wkb = ST_AsBinary(geometry)

 WHERE id = temp_correlated.id

Use this SELECT statement to see the geometries in the WKB column.

SELECT id, CAST(ST_AsText(ST_WKBToSQL(wkb)) AS VARCHAR(120)) GEOMETRIES

 FROM sample_geometries

Results:

ID GEOMETRIES

----------- ---

 10 POINT (44.00000000 14.00000000)

 11 POINT (24.00000000 13.00000000)

 12 POLYGON ((50.00000000 20.00000000, 70.00000000 30.00000000,

 50.00000000 40.00000000, 50.00000000 20.00000000))

ST_WKTToSQL

ST_WKTToSQL takes a well-known text representation of a geometry and returns

the corresponding geometry. The spatial reference system with the identifier 0

(zero) is used for the resulting geometry.

If the given well-known text representation is null, then null is returned.

ST_WKTToSQL(wkt) gives the same result as ST_Geometry(wkt,0). Using the

ST_Geometry function is recommended over using ST_WKTToSQL because of its

flexibility: ST_Geometry takes additional forms of input as well as the well-known

text representation.

Syntax

�� db2gse.ST_WKTToSQL (wkt) ��

Parameter

wkt A value of type CLOB(2G) that contains the well-known text representation

of the resulting geometry.

454 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Return type

db2gse.ST_Geometry

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how ST_WKTToSQL can create and insert geometries

using their well-known text representations.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_geometries (id INTEGER, geometry ST_Geometry)

INSERT INTO sample_geometries

 VALUES (10, ST_WKTToSQL(’point (44 14)’)),

 (11, ST_WKTTSQL (’point (24 13)’)),

 (12, ST_WKTToSQL (’polygon ((50 20, 50 40, 70 30, 50 20))’))

This SELECT statement returns the geometries that have been inserted.

SELECT id, CAST(ST_AsText(geometry) AS VARCHAR(120)) GEOMETRIES

 FROM sample_geometries

Results:

ID GEOMETRIES

----------- ---

 10 POINT (44.00000000 14.00000000)

 11 POINT (24.00000000 13.00000000)

 12 POLYGON ((50.00000000 20.00000000, 70.00000000 30.00000000,

 50.00000000 40.00000000, 50.00000000 20.00000000))

ST_X

ST_X takes either:

v A point as an input parameter and returns its X coordinate

v A point and an X coordinate and returns the point itself with its X coordinate set

to the given value

If the given point is null or is empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_X (point)

,

x_coordinate
 ��

Parameters

point A value of type ST_Point for which the X coordinate is returned or

modified.

x_coordinate

A value of type DOUBLE that represents the new X coordinate for point.

Chapter 23. Spatial functions: syntax and parameters 455

Return types

v DOUBLE, if x_coordinate is not specified

v db2gse.ST_Point, if x_coordinate is specified

Examples

Example 1

This example illustrates use of the ST_X function. Geometries are created and

inserted into the SAMPLE_POINTS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points (id, geometry)

 VALUES (1, ST_Point (2, 3, 32, 5, 1)),

 (2, ST_Point (4, 5, 20, 4, 1)),

 (3, ST_Point (3, 8, 23, 7, 1))

Example 2

This example finds the X coordinates of the points in the table.

SELECT id, ST_X (geometry) X_COORD

 FROM sample_points

Results:

ID X_COORD

---------- ----------------------

 1 +2.00000000000000E+000

 2 +4.00000000000000E+000

 3 +3.00000000000000E+000

Example 3

This example returns a point with its X coordinate set to 40.

SELECT id, CAST(ST_AsText(ST_X (geometry, 40)) AS VARCHAR(60))

 X_40

 FROM sample_points

 WHERE id=3

Results:

ID X_40

------ --

 3 POINT ZM (40.00000000 8.00000000 23.00000000 7.00000000)

ST_Y

ST_Y takes either:

v A point as an input parameter and returns its Y coordinate

v A point and a Y coordinate and returns the point itself with its Y coordinate set

to the given value

If the given point is null or is empty, then null is returned.

This function can also be called as a method.

456 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Syntax

�� db2gse.ST_Y (point)

,

y_coordinate
 ��

Parameters

point A value of type ST_Point for which the Y coordinate is returned or

modified.

y_coordinate

A value of type DOUBLE that represents the new Y coordinate for point.

Return types

v DOUBLE, if y_coordinate is not specified

v db2gse.ST_Point, if y_coordinate is specified

Examples

Example 1

This example illustrates use of the ST_Y function. Geometries are created and

inserted into the SAMPLE_POINTS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points (id, geometry)

 VALUES (1, ST_Point (2, 3, 32, 5, 1)),

 (2, ST_Point (4, 5, 20, 4, 1)),

 (3, ST_Point (3, 8, 23, 7, 1))

Example 2

This example finds the Y coordinates of the points in the table.

SELECT id, ST_Y (geometry) Y_COORD

 FROM sample_points

Results:

ID Y_COORD

---------- ----------------------

 1 +3.00000000000000E+000

 2 +5.00000000000000E+000

 3 +8.00000000000000E+000

Example 3

This example returns a point with its Y coordinate set to 40.

SELECT id, CAST(ST_AsText(ST_Y (geometry, 40)) AS VARCHAR(60))

 Y_40

 FROM sample_points

 WHERE id=3

Results:

ID Y_40

-------- ---

 3 POINT ZM (3.00000000 40.00000000 23.00000000 7.00000000)

Chapter 23. Spatial functions: syntax and parameters 457

ST_Z

ST_Z takes either:

v A point as an input parameter and returns its Z coordinate

v A point and a Z coordinate and returns the point itself with its Z coordinate set

to the given value, even if the specified point has no existing Z coordinate.

If the specified Z coordinate is null, then the Z coordinate is removed from the

point.

If the specified point is null or empty, then null is returned.

This function can also be called as a method.

Syntax

�� db2gse.ST_Z (point)

,

z_coordinate
 ��

Parameters

point A value of type ST_Point for which the Z coordinate is returned or

modified.

z_coordinate

A value of type DOUBLE that represents the new Z coordinate for point.

 If z_coordinate is null, then the Z coordinate is removed from point.

Return types

v DOUBLE, if z_coordinate is not specified

v db2gse.ST_Point, if z_coordinate is specified

Examples

Example 1

This example illustrates use of the ST_Z function. Geometries are created and

inserted into the SAMPLE_POINTS table.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points (id, geometry)

 VALUES (1, ST_Point (2, 3, 32, 5, 1)),

 (2, ST_Point (4, 5, 20, 4, 1)),

 (3, ST_Point (3, 8, 23, 7, 1))

Example 2

This example finds the Z coordinates of the points in the table.

SELECT id, ST_Z (geometry) Z_COORD

 FROM sample_points

Results:

458 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

ID Z_COORD

---------- ----------------------

 1 +3.20000000000000E+001

 2 +2.00000000000000E+001

 3 +2.30000000000000E+001

Example 3

This example returns a point with its Z coordinate set to 40.

SELECT id, CAST(ST_AsText(ST_Z (geometry, 40)) AS VARCHAR(60))

 Z_40

 FROM sample_points

 WHERE id=3

Results:

ID Z_40

------ ---

 3 POINT ZM (3.00000000 8.00000000 40.00000000 7.00000000)

Union aggregate

A union aggregate is the combination of the ST_BuildUnionAggr and

ST_GetAggrResult functions. This combination aggregates a column of geometries

in a table to single geometry by constructing the union.

If all of the geometries to be combined in the union are null , then null is returned.

If each of the geometries to be combined in the union are either null or are empty,

then an empty geometry of type ST_Point is returned.

The ST_BuildUnionAggr function can also be called as a method.

Syntax

�� db2gse.ST_GetAggrResult (�

� MAX (db2sge.ST_BuildUnionAggr (geometries))) ��

Parameters

geometries

A column in a table that has a type of ST_Geometry or one of its subtypes

and represents all the geometries that are to be combined into a union.

Return type

db2gse.ST_Geometry

Restrictions

You cannot construct the union aggregate of a spatial column in a table in any of

the following situations:

v In massively parallel processing (MPP) environments

v If a GROUP BY clause is used in the select

v If you use a function other than the DB2 aggregate function MAX

Chapter 23. Spatial functions: syntax and parameters 459

Example

In the following example, the lines of results have been reformatted for readability.

The spacing in your results will vary according to your online display.

This example illustrates how a union aggregate can be used to combine a set of

points into multipoints. Several points are added to the SAMPLE_POINTS table.

The ST_GetAggrResult and ST_BuildUnionAggr functions are used to construct the

union of the points.

SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, db2gse

CREATE TABLE sample_points (id INTEGER, geometry ST_Point)

INSERT INTO sample_points

 VALUES (1, ST_Point (2, 3, 1))

INSERT INTO sample_points

 VALUES (2, ST_Point (4, 5, 1))

INSERT INTO sample_points

 VALUES (3, ST_Point (13, 15, 1))

INSERT INTO sample_points

 VALUES (4, ST_Point (12, 5, 1))

INSERT INTO sample_points

 VALUES (5, ST_Point (23, 2, 1))

INSERT INTO sample_points

 VALUES (6, ST_Point (11, 4, 1))

SELECT CAST (ST_AsText(

 ST_GetAggrResult(MAX(ST_BuildUnionAggregate (geometry))))

 AS VARCHAR(160)) POINT_AGGREGATE

 FROM sample_points

Results:

POINT_AGGREGATE

--

MULTIPOINT (2.00000000 3.00000000, 4.00000000 5.00000000,

 11.00000000 4.00000000, 12.00000000 5.00000000,

 13.00000000 15.00000000, 23.00000000 2.00000000)

460 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 24. Transform groups

Transform groups

Spatial Extender provides four transform groups that are used to transfer

geometries between the DB2 server and a client application. These transform

groups accommodate the following data exchange formats:

v Well-known text (WKT) representation

v Well-known binary (WKB) representation

v ESRI shape representation

v Geography Markup Language (GML)

When data is retrieved from a table that contains a spatial column, the data from

the spatial column is transformed to either a CLOB(2G) or a BLOB(2G) data type,

depending on whether you indicated whether the transformed data was to be

represented in binary or text format. You can also use the transform groups to

transfer spatial data to the database.

To select which transform group is to be used when the data is transferred, use the

SET CURRENT DEFAULT TRANSFORM GROUP statement to modify the DB2

special register CURRENT DEFAULT TRANSFORM GROUP. DB2 uses the value of

this special register to determine which transform functions must be called to

perform the necessary conversions.

Transform groups can simplify application programming. Instead of explicitly

using conversion functions in the SQL statements, you can specify a transform

group, which lets DB2 handle that task.

ST_WellKnownText transform group

You can use the ST_WellKnownText transform group to transmit data to and from

DB2® using the well-known text (WKT) representation.

When binding out a value from the database server to the client, the same function

provided by ST_AsText() is used to convert a geometry to the WKT representation.

When the well-known text representation of a geometry is transferred to the

database server, the ST_Geometry(CLOB) function is implicitly used to perform the

conversions to an ST_Geometry value. Using the transform group for binding in

values to DB2 causes the geometries to be represented in the spatial reference

system with the numeric identifier 0 (zero).

Examples

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results might vary according to your online

display.

Example 1

© Copyright IBM Corp. 1998, 2006 461

The following SQL script shows how to use the ST_WellKnownText transform

group to retrieve a geometry in its well-known text representation without using

the explicit ST_AsText function.

CREATE TABLE transforms_sample (

 id INTEGER,

 geom db2gse.ST_Geometry)

INSERT

 INTO transforms_sample

 VALUES (1, db2gse.ST_LineString(’linestring

 (100 100, 200 100)’, 0))

SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownText

SELECT id, geom

 FROM transforms_sample

 WHERE id = 1

Results:

ID GEOM

--- ---

 1 LINESTRING (100.00000000 100.00000000, 200.00000000 100.00000000)

Example 2

The following C code shows how to use the ST_WellKnownText transform group

to insert geometries using the explicit ST_Geometry function for the host-variable

wkt_buffer, which is of type CLOB and contains the well-known text

representation of the point (10 10) that is to be inserted.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS db2gse.ST_Geometry AS CLOB(1000) wkt_buffer;

EXEC SQL END DECLARE SECTION;

// set the transform group for all subsequent SQL statements

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownText;

id = 100;

strcpy(wkt_buffer.data, "point (10 10)");

wkt_buffer.length = strlen(wkt_buffer.data);

// insert point using WKT into column of type ST_Geometry

EXEC SQL

 INSERT

 INTO transforms_sample(id, geom)

 VALUES (:id, :wkt_buffer);

ST_WellKnownBinary transform group

Use the ST_WellKnownBinary transform group to transmit data to and from DB2®

using the well-known binary (WKB) representation.

When binding out a value from the database server to the client, the same function

provided by ST_AsBinary() is used to convert a geometry to the WKB

representation. When the well-known binary representation of a geometry is

transferred to the database server, the ST_Geometry(BLOB) function is used

implicitly to perform the conversions to an ST_Geometry value. Using the

transform group for binding in values to DB2 causes the geometries to be

represented in the spatial reference system with the numeric identifier 0 (zero).

462 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Example

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results might vary according to your online

display.

Example 1

The following SQL script shows how to use the ST_WellKnownBinary transform

group to retrieve a geometry in its well-known binary representation without using

the explicit ST_AsBinary function.

CREATE TABLE transforms_sample (

 id INTEGER,

 geom db2gse.ST_Geometry)

INSERT

 INTO transforms_sample

 VALUES (1, db2gse.ST_Polygon(’polygon ((10 10, 20 10, 20 20,

 10 20, 10 10))’, 0))

SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownBinary

SELECT id, geom

 FROM transforms_sample

 WHERE id = 1

Results:

ID GEOM

---- --

 1 x’01030000000100000005000000000000000000244000

 0000000000244000000000000024400000000000003440

 0000000000003440000000000000344000000000000034

 4000000000000024400000000000002440000000000000

 2440’

Example 2

The following C code shows how to use the ST_WellKnownBinary transform

group for inserting geometries using the explicit ST_Geometry function for the

host-variable wkb_buffer, which is of type BLOB and contains the well-known

binary representation of a geometry that is to be inserted.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS db2gse.ST_Geometry AS BLOB(1000) wkb_buffer;

EXEC SQL END DECLARE SECTION;

// set the transform group for all subsequent SQL statements

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_WellKnownBinary;

// initialize host variables

...

// insert geometry using WKB into column of type ST_Geometry

EXEC SQL

 INSERT

 INTO transforms_sample(id, geom)

 VALUES (:id, :wkb_buffer);

Chapter 24. Transform groups 463

ST_Shape transform group

Use the ST_Shape transform group to transmit data to and from DB2® using the

ESRI shape representation.

When binding out a value from the database server to the client, the same function

provided by ST_AsShape() is used to convert a geometry to its shape

representation. When transferring the shape representation of a geometry to the

database server, the ST_Geometry(BLOB) function is used implicitly to perform the

conversions to an ST_Geometry value. Using the transform group for binding in

values to DB2 causes the geometries to be represented in the spatial reference

system with the numeric identifier 0 (zero).

Examples

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results might vary according to your online

display.

Example 1

The following SQL script shows how the ST_Shape transform group can be used to

retrieve a geometry in its shape representation without using the explicit

ST_AsShape function.

CREATE TABLE transforms_sample(

 id INTEGER,

 geom db2gse.ST_Geometry)

INSERT

 INTO transforms_sample

 VALUES (1, db2gse.ST_Point(20.0, 30.0, 0))

SET CURRENT DEFAULT TRANSFORM GROUP = ST_Shape

SELECT id, geom

 FROM transforms_sample

 WHERE id = 1

Results:

ID GEOM

---- ---

 1 x’0100000000000000000034400000000000003E40’

Example 2

The following C code shows how to use the ST_Shape transform group to insert

geometries using the explicit ST_Geometry function for the host-variable

shape_buffer, which is of type BLOB and contains the shape representation of a

geometry that is to be inserted.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS db2gse.ST_Geometry AS BLOB(1000) shape_buffer;

EXEC SQL END DECLARE SECTION;

// set the transform group for all subsequent SQL statements

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_Shape;

// initialize host variables

464 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

...

SET CURRENT DEFAULT TRANSFORM GROUP = ST_Shape;

// insert geometry using shape representation into column of type ST_Geometry

EXEC SQL

 INSERT

 INTO transforms_sample(id, geom)

 VALUES (:id, :shape_buffer);

ST_GML transform group

Use the ST_GML transform group to transmit data to and from DB2® using the

geography markup language (GML).

When binding out a value from the database server to the client, the same function

provided by ST_AsGML() is used to convert a geometry to its GML representation.

When the GML representation of a geometry is transferred to the database server,

the ST_Geometry(CLOB) function is used implicitly to perform the conversions to

an ST_Geometry value. Using the transform group for binding in values to DB2

causes the geometries to be represented in the spatial reference system with the

numeric identifier 0 (zero).

Examples

In the following examples, the lines of results have been reformatted for

readability. The spacing in your results might vary according to your online

display.

Example 1

The following SQL script shows how the ST_GML transform group can be used to

retrieve a geometry in its GML representation without using the explicit

ST_AsGML function.

CREATE TABLE transforms_sample (

 id INTEGER,

 geom db2gse.ST_Geometry)

INSERT

 INTO transforms_sample

 VALUES (1, db2gse.ST_Geometry(’multipoint z (10 10

 3, 20 20 4, 15 20 30)’, 0))

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_GML

SELECT id, geom

FROM transforms_sample

WHERE id = 1

Results:

ID GEOM

----- ---

 1 <gml:MultiPoint srsName=UNSPECIFIED><gml:PointMember>

 <gml:Point><gml:coord><gml:X>10</gml:X>

 <gml:Y>10</gml:Y><gml:Z>3</gml:Z>

 </gml:coord></gml:Point></gml:PointMember>

 <gml:PointMember><gml:Point><gml:coord>

 <gml:X>20</gml:X><gml:Y>20</gml:Y>

 <gml:Z>4</gml:Z></gml:coord></gml:Point>

 </gml:PointMember><gml:PointMember><gml:Point>

Chapter 24. Transform groups 465

<gml:coord><gml:X>15</gml:X><gml:Y>20

 </gml:Y><gml:Z>30</gml:Z></gml:coord>

 </gml:Point></gml:PointMember></gml:MultiPoint>

Example 2

The following C code shows how to use the ST_GML transform group for inserting

geometries without using the explicit ST_Geometry function for the host-variable

gml_buffer, which is of type CLOB and contains the GML representation of the

point (20,20) that is to be inserted.

EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 id = 0;

 SQL TYPE IS db2gse.ST_Geometry AS CLOB(1000) gml_buffer;

EXEC SQL END DECLARE SECTION;

// set the transform group for all subsequent SQL statements

EXEC SQL

 SET CURRENT DEFAULT TRANSFORM GROUP = ST_GML;

 id = 100;

strcpy(gml_buffer.data, "<gml:point><gml:coord>"

 "<gml:X>20</gml:X> <gml:Y>20</gml:Y></gml:coord></gml:point>");

//initialize host variables

wkt_buffer.length = strlen(gml_buffer.data);

// insert point using WKT into column of type ST_Geometry

EXEC SQL

 INSERT

 INTO transforms_sample(id, geom)

 VALUES (:id, :gml_buffer);

466 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 25. Supported data formats

This chapter describes the industry standard spatial data formats that can be used

with DB2 Spatial Extender. The following four spatial data formats are described:

v Well-known text (WKT) representation

v Well-known binary (WKB) representation

v Shape representation

v Geography Markup Language (GML) representation

Well-known text (WKT) representation

The OpenGIS Consortium ″Simple Features for SQL″ specification defines the

well-known text representation to exchange geometry data in ASCII format. This

representation is also referenced by the ISO ″SQL/MM Part: 3 Spatial″ standard.

See ″Spatial functions that convert geometries to and from data exchange formats″

for information on functions which accept and produce WKT data.

The well-known text representation of a geometry is defined as follows:

�� POINT

LINESTRING

POLYGON

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

 point-tagged-text

linestring-tagged text

polygon-tagged-text

multipoint-tagged-text

multilinestring-tagged-text

multipolygon-tagged-text

 ��

point-tagged-text:

 EMPTY

(

point-coordinates

)

Z

EMPTY

(

point-z-coordinates

)

M

EMPTY

(

point-m-coordinates

)

ZM

EMPTY

(

point-zm-coordinates

)

linestring-tagged-text:

 EMPTY

(

linestring-points

)

Z

EMPTY

(

linestring-z-points

)

M

EMPTY

(

linestring-m-points

)

ZM

EMPTY

(

linestring-zm-points

)

© Copyright IBM Corp. 1998, 2006 467

polygon-tagged-text:

 EMPTY

(

polygon-rings

)

Z

EMPTY

(

polygon-z-rings

)

M

EMPTY

(

polygon-m-rings

)

ZM

EMPTY

(

polygon-zm-rings

)

multipoint-tagged-text:

 EMPTY

(

multipoint-parts

)

Z

EMPTY

(

multipoint-z-parts

)

M

EMPTY

(

multipoint-m-parts

)

ZM

EMPTY

(

multipoint-zm-parts

)

multilinestring-tagged-text:

 EMPTY

(

multilinestring-parts

)

Z

EMPTY

(

multilinestring-z-parts

)

M

EMPTY

(

multilinestring-m-parts

)

ZM

EMPTY

(

multilinestring-zm-parts

)

multipolygon-tagged-text:

 EMPTY

(

multipolygon-parts

)

Z

EMPTY

(

multipolygon-z-parts

)

M

EMPTY

(

multipolygon-m-parts

)

ZM

EMPTY

(

multipolygon-zm-parts

)

point-coordinates:

 x_coord y_coord

point-z-coordinates:

 point-coordinates y_coord

468 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

point-m-coordinates:

 point-coordinates m_coord

point-zm-coordinates:

 point-coordinates y_coord m_coord

linestring-points:

point-coordinates

,

�

 ,

point-coordinates

linestring-z-points:

point-z-coordinates

,

�

 ,

point-z-coordinates

linestring-m-points:

point-m-coordinates

,

�

 ,

point-m-coordinates

linestring-zm-points:

point-zm-coordinates

,

�

 ,

point-zm-coordinates

polygon-rings:

�

 ,

(

linestring-points

linestring-points

)

polygon-z-rings:

�

 ,

(

linestring-z-points

linestring-z-points

)

polygon-m-rings:

�

 ,

(

linestring-m-points

linestring-m-points

)

Chapter 25. Supported data formats 469

polygon-zm-rings:

�

 ,

(

linestring-zm-points

linestring-zm-points

)

multipoint-parts:

�

 ,

point-coordinates

multipoint-z-parts:

�

 ,

point-z-coordinates

multipoint-m-parts:

�

 ,

point-m-coordinates

multipoint-zm-parts:

�

 ,

point-zm-coordinates

multilinestring-parts:

�

 ,

(

linestring-points

)

multilinestring-z-parts:

�

 ,

(

linestring-z-points

)

multilinestring-m-parts:

�

 ,

(

linestring-m-points

)

470 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

multilinestring-zm-parts:

�

 ,

(

linestring-zm-points

)

multipolygon-parts:

�

 ,

(

polygon-rings

)

multipolygon-z-parts:

�

 ,

(

polygon-z-rings

)

multipolygon-m-parts:

�

 ,

(

polygon-m-rings

)

multipolygon-zm-parts:

�

 ,

(

polygon-zm-rings

)

Parameters

x_coord

A numerical value (fixed, integer, or floating point), which represents the X

coordinate of a point.

y_coord

A numerical value (fixed, integer, or floating point), which represents the Y

coordinate of a point.

z_coord

A numerical value (fixed, integer, or floating point), which represents the Z

coordinate of a point.

m_coord

A numerical value (fixed, integer, or floating point), which represents the M

coordinate (measure) of a point.

Chapter 25. Supported data formats 471

If the geometry is empty, then the keyword EMPTY is to be specified instead of the

coordinate list. The EMPTY keyword must not be embedded within the coordinate

list

The following table provides some examples of possible text representations.

 Table 59. Geometry types and their text representations

Geometry type WKT representation Comment

point POINT EMPTY empty point

point POINT (10.05 10.28) point

point POINT Z(10.05 10.28 2.51) point with Z coordinate

point POINT M(10.05 10.28 4.72) point with M coordinate

point POINT ZM(10.05 10.28 2.51

4.72)

point with Z coordinate and

M coordinate

linestring LINESTRING EMPTY empty linestring

polygon POLYGON ((10 10, 10 20, 20

20, 20 15, 10 10))

polygon

multipoint MULTIPOINT Z(10 10 2, 20

20 3)

multipoint with Z

coordinates

multilinestring MULTILINESTRING M((310

30 1, 40 30 20, 50 20 10)(10

10 0, 20 20 1))

multilinestring with M

coordinates

multipolygon MULTIPOLYGON ZM(((1 1

1 1, 1 2 3 4, 2 2 5 6, 2 1 7 8, 1

1 1 1)))

multipolygon with Z

coordinates and M

coordinates

Well-known binary (WKB) representation

This section describes the well-known binary representation for geometries.

The OpenGIS Consortium ″Simple Features for SQL″ specification defines the

well-known binary representation. This representation is also defined by the

International Organization for Standardization (ISO) ″SQL/MM Part: 3 Spatial″

standard. See the related reference section at the end of this topic for information

on functions that accept and produce the WKB.

The basic building block for well-known binary representations is the byte stream

for a point, which consists of two double values. The byte streams for other

geometries are built using the byte streams for geometries that are already defined.

The following example illustrates the basic building block for well-known binary

representations.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)

// double : double precision number (8 bytes)

472 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

// Building Blocks : Point, LinearRing

Point {

 double x;

 double y;

};

LinearRing {

 uint32 numPoints;

 Point points[numPoints];

};

enum wkbGeometryType {

 wkbPoint = 1,

 wkbLineString = 2,

 wkbPolygon = 3,

 wkbMultiPoint = 4,

 wkbMultiLineString = 5,

 wkbMultiPolygon = 6

};

enum wkbByteOrder {

 wkbXDR = 0, // Big Endian

 wkbNDR = 1 // Little Endian

};

WKBPoint {

 byte byteOrder;

 uint32 wkbType; // 1=wkbPoint

 Point point;

};

WKBLineString {

 byte byteOrder;

 uint32 wkbType; // 2=wkbLineString

 uint32 numPoints;

 Point points[numPoints];

};

WKBPolygon {

 byte byteOrder;

 uint32 wkbType; // 3=wkbPolygon

 uint32 numRings;

 LinearRing rings[numRings];

};

WKBMultiPoint {

 byte byteOrder;

 uint32 wkbType; // 4=wkbMultipoint

 uint32 num_wkbPoints;

 WKBPoint WKBPoints[num_wkbPoints];

};

WKBMultiLineString {

 byte byteOrder;

 uint32 wkbType; // 5=wkbMultiLineString

 uint32 num_wkbLineStrings;

 WKBLineString WKBLineStrings[num_wkbLineStrings];

};

wkbMultiPolygon {

 byte byteOrder;

 uint32 wkbType; // 6=wkbMultiPolygon

 uint32 num_wkbPolygons;

 WKBPolygon wkbPolygons[num_wkbPolygons];

};

WKBGeometry {

 union {

 WKBPoint point;

 WKBLineString linestring;

 WKBPolygon polygon;

 WKBMultiPoint mpoint;

Chapter 25. Supported data formats 473

WKBMultiLineString mlinestring;

 WKBMultiPolygon mpolygon;

 }

};

The following figure shows an example of a geometry in well-known binary

representation using NDR coding.

Shape representation

Shape representation is a widely used industry standard defined by ESRI. For a

full description of shape representation, see the ESRI website at

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

Geography Markup Language (GML) representation

DB2 Spatial Extender has several functions that generate geometries from

representations in geography markup language(GML) representation.

The Geography Markup Language (GML) is an XML encoding for geographic

information defined by the OpenGIS Consortium ″Geography Markup Language

V2″ specification. This OpenGIS Consortium specification can be found at

http://www.opengis.org/techno/implementation.htm.

Figure 58. Geometry representation in NDR format. (B=1) of type polygon (T=3) with 2 linears (NR=2), where each

ring has 3 points (NP=3).

474 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.opengis.org/techno/implementation.htm

Chapter 26. Supported coordinate systems

This topic provides an explanation of coordinate systems syntax and lists the

coordinate system values that are supported by DB2 Spatial Extender.

Coordinate systems syntax

The well-known text representation of spatial reference systems provides a

standard textual representation for coordinate system information. The definitions

of the well-known text representation are defined by the OGC ″Simple Features for

SQL″ specification and the ISO SQL/MM Part 3: Spatial standard.

A coordinate system is a geographic (latitude-longitude), a projected (X,Y), or a

geocentric (X,Y,Z) coordinate system. The coordinate system is composed of several

objects. Each object has a keyword in uppercase (for example, DATUM or UNIT)

followed by the comma-delimited defining parameters of the object in brackets.

Some objects are composed of other objects, so the result is a nested structure.

Note: Implementations are free to substitute standard brackets () for square

brackets [] and should be able to read both forms of brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of

a coordinate system using square brackets is as follows (see note above regarding

the use of brackets):

<coordinate system> = <projected cs> |

<geographic cs> | <geocentric cs>

<projected cs> = PROJCS["<name>",

<geographic cs>, <projection>, {<parameter>,}*

<linear unit>]

<projection> = PROJECTION["<name>"]

<parameter> = PARAMETER["<name>",

<value>]

<value> = <number>

The type of coordinate system is identified by the keyword used:

PROJCS

A data set’s coordinate system is identified by the PROJCS keyword if the

data is in projected coordinates

GEOGCS

A data set’s coordinate system is identified by the GEOGCS keyword if the

data is in geographic coordinates

GEOCCS

A data set’s coordinate system is identified by the GEOCCS keyword if the

data is in geocentric coordinates

The PROJCS keyword is followed by all of the ″pieces″ that define the projected

coordinate system. The first piece of any object is always the name. Several objects

follow the projected coordinate system name: the geographic coordinate system,

the map projection, one or more parameters, and the linear unit of measure. All

projected coordinate systems are based upon a geographic coordinate system, so

this section describes the pieces specific to a projected coordinate system first. For

example, UTM zone 10N on the NAD83 datum is defined:

© Copyright IBM Corp. 1998, 2006 475

PROJCS["NAD_1983_UTM_Zone_10N",

<geographic cs>,

PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting",500000.0],

PARAMETER["False_Northing",0.0],

PARAMETER["Central_Meridian",-123.0],

PARAMETER["Scale_Factor",0.9996],

PARAMETER["Latitude_of_Origin",0.0],

UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in

turn: the datum, the prime meridian, and the angular unit of measure.

<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]

<datum> = DATUM["<name>", <spheroid>]

<spheroid> = SPHEROID["<name>", <semi-major axis>, <inverse flattening>]

<semi-major axis> = <number>

<inverse flattening> = <number>

<prime meridian> = PRIMEM["<name>", <longitude>]

<longitude> = <number>

The semi-major axis is measured in meters and must be greater than zero.

The geographic coordinate system string for UTM zone 10 on NAD83:

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures:

<angular unit> = <unit>

<linear unit> = <unit>

<unit> = UNIT["<name>", <conversion factor>]

<conversion factor> = <number>

The conversion factor specifies number of meters (for a linear unit) or number of

radians (for an angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is as follows:

PROJCS["NAD_1983_UTM_Zone_10N",

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],

PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],

PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],

PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],

UNIT["Meter",1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate system:

<geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

Supported linear units

 Table 60. Supported linear units

Unit Conversion factor

Meter 1.0

Foot (International) 0.3048

476 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 60. Supported linear units (continued)

Unit Conversion factor

U.S. Foot 12/39.37

Modified American Foot 12.0004584/39.37

Clarke’s Foot 12/39.370432

Indian Foot 12/39.370141

Link 7.92/39.370432

Link (Benoit) 7.92/39.370113

Link (Sears) 7.92/39.370147

Chain (Benoit) 792/39.370113

Chain (Sears) 792/39.370147

Yard (Indian) 36/39.370141

Yard (Sears) 36/39.370147

Fathom 1.8288

Nautical Mile 1852.0

Supported angular units

 Table 61. Supported angular units

Unit Valid range for

latitude

Valid range for

longitude

Conversion factor

Radian –pi/2 and pi/2

radians (inclusive)

–pi and pi radians

(inclusive)

1.0

Decimal Degree –90 and 90 degrees

(inclusive)

–180 and 180 degrees

(inclusive)

pi/180

Decimal Minute –5400 and 5400

minutes (inclusive)

–10800 and 10800

minutes (inclusive)

(pi/180)/60

Decimal Second –324000 and 324000

seconds (inclusive)

–648000 and 648000

seconds (inclusive)

(pi/180)*3600

Gon –100 and 100

gradians (inclusive)

–200 and 200

gradians (inclusive)

pi/200

Grad –100 and 100

gradians (inclusive)

–200 and 200

gradians (inclusive)

pi/200

Chapter 26. Supported coordinate systems 477

Supported spheroids

 Table 62. Supported spheroids

Name Semi-major axis Inverse flattening

Airy 1830 6377563.396 299.3249646

Airy Modified 1849 6377340.189 299.3249646

Average Terrestrial System

1977

6378135.0 298.257

Australian National Spheroid 6378160.0 298.25

Bessel 1841 6377397.155 299.1528128

Bessel Modified 6377492.018 299.1528128

Bessel Namibia 6377483.865 299.1528128

Clarke 1858 6378293.639 294.260676369

Clarke 1866 6378206.4 294.9786982

Clarke 1866 (Michigan) 6378450.047 294.978684677

Clarke 1880 6378249.138 293.466307656

Clarke 1880 (Arc) 6378249.145 293.466307656

Clarke 1880 (Benoit) 6378300.79 293.466234571

Clarke 1880 (IGN) 6378249.2 293.46602

Clarke 1880 (RGS) 6378249.145 293.465

Clarke 1880 (SGA 1922) 6378249.2 293.46598

Everest (1830 Definition) 6377299.36 300.8017

Everest 1830 Modified 6377304.063 300.8017

Everest Adjustment 1937 6377276.345 300.8017

Everest 1830 (1962 Definition) 6377301.243 300.8017255

Everest 1830 (1967 Definition) 6377298.556 300.8017

Everest 1830 (1975 Definition) 6377299.151 300.8017255

Everest 1969 Modified 6377295.664 300.8017

Fischer 1960 6378166.0 298.3

Fischer 1968 6378150 .0 298.3

Modified Fischer 6378155 .0 298.3

GEM 10C 6378137.0 298.257222101

GRS 1967 6378160.0 298.247167427

478 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 62. Supported spheroids (continued)

Name Semi-major axis Inverse flattening

GRS 1967 Truncated 6378160.0 298.25

GRS 1980 6378137.0 298.257222101

Helmert 1906 6378200.0 298.3

Hough 1960 6378270.0 297.0

Indonesian National Spheroid 6378160.0 298.247

International 1924 6378388.0 297.0

International 1967 6378160.0 298.25

Krassowsky 1940 6378245.0 298.3

NWL 9D 6378145.0 298.25

NWL 10D 6378135.0 298.26

OSU 86F 6378136.2 298.25722

OSU 91A 6378136.3 298.25722

Plessis 1817 6376523.0 308.64

Sphere 6371000.0 0.0

Sphere (ArcInfo) 6370997.0 0.0

Struve 1860 6378298.3 294.73

Walbeck 6376896.0 302.78

War Office 6378300.0 296.0

WGS 1966 6378145.0 298.25

WGS 1972 6378135.0 298.26

WGS 1984 6378137.0 298.257223563

Supported geodetic datums

 Table 63. Supported geodetic datums

Name Geodetic datum

Adindan Lisbon

Afgooye Loma Quintana

Agadez Lome

Australian Geodetic Datum 1966 Luzon 1911

Australian Geodetic Datum 1984 Mahe 1971

Chapter 26. Supported coordinate systems 479

Table 63. Supported geodetic datums (continued)

Name Geodetic datum

Ain el Abd 1970 Makassar

Amersfoort Malongo 1987

Aratu Manoca

Arc 1950 Massawa

Arc 1960 Merchich

Ancienne Triangulation Francaise Militar-Geographische Institute

Barbados Mhast

Batavia Minna

Beduaram Monte Mario

Beijing 1954 M’poraloko

Reseau National Belge 1950 NAD Michigan

Reseau National Belge 1972 North American Datum 1927

Bermuda 1957 North American Datum 1983

Bern 1898 Nahrwan 1967

Bern 1938 Naparima 1972

Ancienne Triangulation Francaise Militar-Geographische Institute

Barbados Mhast

Batavia Minna

Beduaram Monte Mario

Beijing 1954 M’poraloko

Reseau National Belge 1950 NAD Michigan

Reseau National Belge 1972 North American Datum 1927

Bermuda 1957 North American Datum 1983

Bern 1898 Nahrwan 1967

Bern 1938 Naparima 1972

Ancienne Triangulation Francaise Militar-Geographische Institute

Barbados Mhast

Batavia Minna

Beduaram Monte Mario

Beijing 1954 M’poraloko

480 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 63. Supported geodetic datums (continued)

Name Geodetic datum

Reseau National Belge 1950 NAD Michigan

Reseau National Belge 1972 North American Datum 1927

Bermuda 1957 North American Datum 1983

Bern 1898 Nahrwan 1967

Bern 1938 Naparima 1972

Bogota Nord de Guerre

Bukit Rimpah NGO 1948

Camacupa Nord Sahara 1959

Campo Inchauspe NSWC 9Z-2

Cape Nouvelle Triangulation Francaise

Carthage New Zealand Geodetic Datum 1949

Chua OS (SN) 1980

Conakry 1905 OSGB 1936

Corrego Alegre OSGB 1970 (SN)

Cote d’Ivoire Padang 1884

Datum 73 Palestine 1923

Deir ez Zor Pointe Noire

Deutsche Hauptdreiecksnetz Provisional South American Datum 1956

Douala Pulkovo 1942

European Datum 1950 Qatar

European Datum 1987 Qatar 1948

Egypt 1907 Qornoq

European Reference System 1989 RT38

Fahud South American Datum 1969

Gandajika 1970 Sapper Hill 1943

Garoua Schwarzeck

Geocentric Datum of Australia 1994 Segora

Guyane Francaise Serindung

Herat North Stockholm 1938

Hito XVIII 1963 Sudan

Chapter 26. Supported coordinate systems 481

Table 63. Supported geodetic datums (continued)

Name Geodetic datum

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbalai 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875 Trinidad 1903

Jamaica 1969 Trucial Coast 1948

Kalianpur Voirol 1875

Kandawala Voirol Unifie 1960

Kertau WGS 1972

Kuwait Oil Company WGS 1972 Transit Broadcast Ephemeris

La Canoa WGS 1984

Lake Yacare

Leigon Yoff

Liberia 1964 Zanderij

Supported prime meridians

 Table 64. Supported prime meridians

Location Coordinates

Greenwich 0° 0’ 0″

Bern 7° 26’ 22.5″ E

Bogota 74° 4’ 51.3″ W

Brussels 4° 22’ 4.71″ E

Ferro 17° 40’ 0″ W

Jakarta 106° 48’ 27.79″ E

Lisbon 9° 7’ 54.862″ W

Madrid 3° 41’ 16.58″ W

Paris 2° 20’ 14.025″ E

Rome 12° 27’ 8.4″ E

Stockholm 18° 3’ 29″ E

482 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Supported map projections

 Table 65. Cylindrical projections

Cylindrical projections Pseudocylindrical projections

Behrmann Craster parabolic

Cassini Eckert I

Cylindrical equal area Eckert II

Equirectangular Eckert III

Gall’s stereographic Eckert IV

Gauss-Kruger Eckert V

Mercator Eckert VI

Miller cylindrical McBryde-Thomas flat polar quartic

Oblique Mercator (Hotine) Mollweide

Plate-Carée Robinson

Times Sinusoidal (Sansom-Flamsteed)

Transverse Mercator Winkel I

 Table 66. Conic projections

Name Conic projection

Albers conic equal-area Chamberlin trimetric

Bipolar oblique conformal conic Two-point equidistant

Bonne Hammer-Aitoff equal-area

Equidistant conic Van der Grinten I

Lambert conformal conic Miscellaneous

Polyconic Alaska series E

Simple conic Alaska Grid (Modified-Stereographic by

Snyder)

 Table 67. Map projection parameters

Parameter Description

central_meridian The line of longitude chosen as the origin of

x-coordinates.

scale_factor Scale_factor is used generally to reduce the

amount of distortion in a map projection.

Chapter 26. Supported coordinate systems 483

Table 67. Map projection parameters (continued)

Parameter Description

standard_parallel_1 A line of latitude that has no distortion

generally. Also used for ″latitude of true

scale.″

standard_parallel_2 A line of longitude that has no distortion

generally.

longitude_of_center The longitude that defines the center point of

the map projection.

latitude_of_center The latitude that defines the center point of

the map projection.

longitude_of_origin The longitude chosen as the origin of

x-coordinates.

latitude_of_origin The latitude chosen as the origin of

y-coordinates.

false_easting A value added to x-coordinates so that all

x-coordinate values are positive.

false_northing A value added to y-coordinates so that all

y-coordinates are positive.

azimuth The angle east of north that defines the

center line of an oblique projection.

longitude_of_point_1 The longitude of the first point needed for a

map projection.

latitude_of_point_1 The latitude of the first point needed for a

map projection.

longitude_of_point_2 The longitude of the second point needed for

a map projection.

latitude_of_point_2 The latitude of the second point needed for a

map projection.

longitude_of_point_3 The longitude of the third point needed for a

map projection.

latitude_of_point_3 The latitude of the third point needed for a

map projection.

landsat_number The number of a Landsat satellite.

path_number The orbital path number for a particular

satellite.

perspective_point_height The height above the earth of the perspective

point of the map projection.

fipszone State Plane Coordinate System zone number.

zone UTM zone number.

484 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Chapter 27. Spatial tasks from the DB2 Control Center

Tasks that are available from the Spatial Extender user interface can help simplify

tasks.

You can run many tasks from a command prompt as a command, from an

application as a stored procedure, or from the DB2 Control Center. This section

describes tasks that you can do from the DB2 Control Center.

Altering a coordinate system

Altering a coordinate system can significantly change the real location of the

geometry and could render it useless. Be sure that you understand the

ramifications of the changes before you alter a coordinate system.

You can change any of the fields except Name.

v Organization and Organization ID: These are optional values. These parameters

must either both be null or both be non-null. The combination of the parameters

uniquely identifies the coordinate system.

v Definition: The definition can be up to 2048 characters. The vendor who

supplies the coordinate system usually includes this value.

Creating a coordinate system

Usually, you use an existing coordinate system.

If you must create your own coordinate system, verify that all of the coordinate

information that you are providing is accurate and is compatible with the

geobrowser that you are using.

v Name: This helps you identify the coordinate system. The Organization and

Organization ID identify the coordinate system.

v Organization and Organization ID: These are optional values. These parameters

must either both be null or both be non-null. The combination of the parameters

uniquely identifies the coordinate system.

v Definition: The definition can be up to 2048 characters. The vendor who

supplies the coordinate system usually includes this value.

Creating a spatial column

If you are adding spatial data to an existing table, create a spatial column and

register the column with a spatial reference system.

To create a spatial column by using the Create Spatial Column window, you must

open the Spatial Columns window from a table.

v Column: Type a name for the column.

v Type schema and Type name: Select values from the list.

v Spatial reference system: Optional: Select a spatial reference system from the

list. To register the column with a geodetic spatial reference system, specify a

geodetic reference system with an ID in the range 2000000000 to 2000001000.

© Copyright IBM Corp. 1998, 2006 485

Creating a spatial index

You can create a spatial grid index or a geodetic Voronoi index on a spatial

column. When you create an index, you can enhance performance by making the

data easier for DB2 UDB to locate and retrieve.

Recommendation: Use the same coordinate system for all data in a spatial column

on which you want to create an index to ensure that the index returns the correct

results. You can register a spatial column to constrain all data to use the same

spatial reference system and, correspondingly, the same coordinate system.

v Spatial column: Select the column on which the index will be created.

v Finest grid: To create a Voronoi index, type -1. Otherwise, type a number greater

than 0.

v Middle grid: To create a Voronoi index, type -1. You can enter 0 to not use a

middle grid, or type a number larger than the finest grid.

v Coarsest grid: To create a Voronoi index, type the identifier of the cell structure

to use (1 through 14). You must use a middle grid to use a coarsest grid. This

value must be larger than middle grid. You can enter 0 to not use a coarsest

grid.

Running geocoding

Use the Run Geocoding notebook in the DB2 Control Center to geocode spatial

data in batch mode.

Basic page

Specify the geocoder, and then select a result column. The Result type field is

automatically completed based on the geocoder that you specify. You can further

customize the batch job by specifying a commit scope and a WHERE clause.

Geocoder Parameters page

You can specify either your own column name or value for a parameter.

Setting up geocoding

When you set up geocoding, you associate a column with a geocoder that will be

used to geocode the data, and you set up the corresponding geocoding parameters

and other relevant information for later use by the geocoder.

Basic page

Select which geocoder to set up. The Result type field is automatically completed

based on the geocoder that you specify. You can use the Commit scope field to

select the number of rows to geocode before performing a commit.

Tip: You can select a geocoder from the list and select Autogeocode to

automatically geocode the spatial column when it is updated.

Geocoder Parameters page

You can specify either your own column name or value for a parameter.

486 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Altering a spatial reference system

Caution: If you alter any attribute other than the description, the values of all of

the spatial data associated with that spatial reference system are changed and

might no longer be valid.

v In the ID field, type the ID for the spatial reference system that you are altering.

For a geodetic spatial reference system, you can change only the ID values in the

range 2000000318 to 2000001000.

v Offset: For offset transformations, type the scale and offset values for the X, Y,

Z, or M coordinates. A scale value is the multiplier value for your measures. The

default value is 1. You can change the value to maintain accuracy when a

coordinate is converted from a decimal value to an integer. An offset value is the

number that will be subtracted from each value to get a positive integer for the

coordinate and measure values. The scale and offset values are required to create

a spatial reference system.

v Extent: For extent transformations, type the minimum and maximum values for

the X, Y, Z, or M coordinates. A scale value is the multiplier value for your

measures. The default value is 1. You can change the value to maintain accuracy

when a coordinate is converted from a decimal value to an integer. The scale

and extent values are required only when you select the Extent radio button.

Importing spatial data

You can import shape files or SDE files.

Basic page

Use this page to specify the source and target information. You can also specify

exception and message files, which can be helpful for troubleshooting if the

importing fails.

Advanced page

Use this page to specify table space details and details about how the import

should proceed.

Chapter 27. Spatial tasks from the DB2 Control Center 487

488 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 technical library in PDF format

The following tables describe the DB2® library available from the IBM®

Publications Center at www.ibm.com/shop/publications/order.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect™ or other DB2 products.

 Table 68. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide:

Planning

SC10-4223 Yes

Administrative API

Reference

SC10-4231 Yes

Administrative SQL Routines

and Views

SC10-4293 No

Call Level Interface Guide

and Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide

and Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities

Guide and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and

Reference

SC10-4228 Yes

Developing ADO.NET and

OLE DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

Developing Java™

Applications

SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with

Database Application

Development

SC10-4252 Yes

Getting started with DB2

installation and

administration on Linux®

and Windows®

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

© Copyright IBM Corp. 1998, 2006 489

www.ibm.com/shop/publications/order

Table 68. DB2 technical information (continued)

Name Form Number Available in print

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s

Guide

Note: HTML for this

document is not installed

from the HTML

documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller

Administration and User’s

Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and

Geodetic Data Management

Feature User’s Guide and

Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender

Administration and

Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 69. Technical information specific to DB2 Connect

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

490 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Table 70. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere® Information

Integration: Administration

Guide for Federated Systems

SC19-1001 Yes

WebSphere Information

Integration: ASNCLP

Program Reference for

Replication and Event

Publishing

SC19-1000 Yes

WebSphere Information

Integration: Configuration

Guide for Federated Data

Sources

No form number No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1002 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level.

DB2 technical library in PDF format 491

492 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions.

You can always order printed DB2 books from your local IBM representative. Keep

in mind that some softcopy books on the DB2 PDF Documentation CD are

unavailable in print. For example, neither volume of the DB2 Message Reference is

available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

To order printed DB2 books:

1. To find out whether you can order printed DB2 books online in your country

or region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

2. To order printed DB2 books from your local IBM representative, locate the

contact information for your local representative from one of the following Web

sites:

a. The IBM directory of world wide contacts at http://www.ibm.com/
planetwide.

b. The IBM Publications Web site at http://www.ibm.com/shop/publications/
order. You will need to select your country, region, or language to the access

appropriate publications home page for your location. From this page,

follow the ″About this site″ link.
3. When you call, specify that you want to order a DB2 publication.

4. Provide your representative with the titles and form numbers of the books that

you want to order.

© Copyright IBM Corp. 1998, 2006 493

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

494 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

The following resources are available:

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html.

© Copyright IBM Corp. 1998, 2006 495

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

496 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2006 497

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

498 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _ enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Itanium®, Pentium®, and Xeon™ are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 499

http://www.ibm.com/legal/copytrade.shtml

500 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Contacting IBM

To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide.

To learn more about DB2 products, go to http://www.ibm.com/software/data/
db2/.

© Copyright IBM Corp. 1998, 2006 501

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/db2/

502 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

Index

Numerics
180th meridian

geometries that cross 165

minimum bounding circles that

cross 174

180th meridian, lines that cross 165

A
administration notification log 129

aggregate function
spatial columns 301, 459

angular units
coordinate systems 475

applications
sample program 115

ArcExplorer
using as interface 101

automatic geocoding 75

azimuthal projections 50

B
batch geocoding 75

C
catalog views

ST_COORDINATE_ SYSTEMS 245

ST_GEOCODER_ PARAMETERS 247

ST_GEOCODERS 248

ST_GEOCODING 249

ST_GEOCODING_

PARAMETERS 250

ST_GEOMETRY_ COLUMNS 243,

246

ST_SIZINGS 251

ST_SPATIAL_

REFERENCE_SYSTEMS 252

ST_UNITS_OF_ MEASURE 254

command line processor (CLP)
messages 126

Spatial Extender commands 105

commands
db2se 105

comparison functions
container relationships 267

DE-9IM pattern matrix string 278

geometry envelopes 275

identical geometries 276

intersections between

geometries 270, 277

overview 265

conformal projections 50

constructor functions
ESRI shape representation 263

Geography Markup Language (GML)

representation 264

overview 257

constructor functions (continued)
well-known binary

representation 262

well-known text representation 261

Control Center
messages 128

conversions
improve processing coordinates 56,

60

spatial data between coordinate

systems 293

coordinate reference system
latitude and longitude 131

coordinate systems
overview 45

ST_COORDINATE_ SYSTEMS catalog

view 245

ST_SPATIAL_ REFERENCE_SYSTEMS

catalog view 252

supported 475

coordinates
conversion in spatial reference

system 52

conversions to improve

performance 56, 60

obtaining 279

spatial reference systems 52

CREATE INDEX statement
geodetic Voronoi index 148

spatial grid index 90

D
data formats

Geography Markup Language

(GML) 474

shape representation 474

well-known binary (WKB)

representation 472

well-known text (WKT)

representation 467

data-type information, obtaining 279

databases
enabling for spatial operations

overview 41

datum
geodetic 131, 132

in coordinate system definition 186

DB2 Geodetic Data Management Feature
spatial functions supported 174

db2se commands 105

DE_HDN _SRS_1004
spatial reference system 55

DEFAULT _SRS
spatial reference system 55

degrees
latitude and longitude 132

distance
along a geodesic 133

ST_Distance function 329

distance information for geometries 292

E
ellipsoids

Geodetic Extender 186

enabling
spatial operations 41

equal-area projections 50

equator 132

equatorial belt
polygons representing 165

equidistant projections 50

F
factors, conversion

coordinates 56, 60

formulas used in geocoding 56, 60

function messages 125

functions
spatial

data-exchange format

conversions 257

overview 257

G
GCS_NORTH _AMERICAN _1927

coordinate system 55

GCS_NORTH _AMERICAN _1983
coordinate system 55

GCS_WGS _1984
coordinate system 55

GCSW _DEUTSCHE _HAUPTDRE

IECKSNETZ
coordinate system 55

geocoders
overview 75

ST_GEOCODER_ PARAMETERS

catalog view 247

ST_GEOCODERS catalog view 248

ST_GEOCODING catalog view 249

ST_GEOCODING_ PARAMETERS

catalog view 250

ST_SIZINGS catalog view 251

geocoding
overview 75

geodesic
definition 133

example 165

Geodesy 131

geodetic behavior
ST_Area 304

ST_Buffer 313

ST_Contains 319

ST_Difference 324

ST_Distance 329

ST_Generalize 345

ST_Intersection 361

ST_Intersects 362

ST_Length 372

ST_Perimeter 415

© Copyright IBM Corp. 1998, 2006 503

geodetic behavior (continued)
ST_SymDifference 437

ST_Union 450

ST_Within 452

Geodetic Data Management Feature
description 131

ellipsoids 186

spatial catalog views supported 179

when to use 131

geodetic datum 132

geodetic datums
coordinate systems 475

description 131

ST_SPATIAL_

REFERENCE_SYSTEMS 252

Geodetic Extender
differences 165

spatial stored procedures

supported 179

ST_Geometry attributes 165

geodetic latitude 132

geodetic longitude 132

geodetic polygons 134

geodetic regions
description 134

geodetic spatial reference system (SRS)
description 52

geodetic spatial reference system ID
ST_create_srs 199

geodetic spatial reference systems 131

geodetic Voronoi indexes
compared to spatial grid indexes 81

CREATE INDEX statement 148

exploiting 102

functions that exploit 145

selecting alternate Voronoi

structure 146

geographic coordinate system 45

geographic features
description 1

Geographic Markup Language (GML),

data format 474

geometries
client-server data transfer 461

generating new
based on existing measures 290

conversion of one to another 285

modified forms 291

new space configurations 286

one from many 290

overview 285

overview 7

properties
overview 9

See also ″Spatial functions,

properties of geometries″ 279

spatial data 5

GET GEOMETRY command
syntax 97

grid indexes
overview 81

tuning 91

gse_disable_autogc stored

procedure 205

gse_disable_db stored procedure 207

gse_disable_sref stored procedure 209

gse_enable_autogc stored procedure 211

gse_enable_db stored procedure 213

gse_enable_sref stored procedure 199

GSE_export_sde stored procedure 188

gse_export_shape 214

gse_import_sde stored procedure 189

GSE_import_sde stored procedure 189

gse_import_shape stored procedure 218

gse_register_gc stored procedure 225

gse_register_layer stored procedure 229

gse_run_gc stored procedure 233

gse_unregist_gc stored procedure 239

gse_unregist_layer stored procedure 240

H
hardware requirements

Spatial Extender 20

hemispheres, polygons representing 165

I
Index Advisor

GET GEOMETRY command to

invoke 97

purpose 81, 91

when to use 83

index information for geometries 293

indexes
geodetic Voronoi

cell structure 146

CREATE INDEX statement 148

Index Advisor command 97

spatial grid indexes
CREATE INDEX statement 90

description 81

installing
DB2 Spatial Extender

hardware and software

requirements 20

interfaces
DB2 Spatial Extender 13

L
latitude, geodetic

definition of 132

legal notices 497

linear units
coordinate systems 475

linestrings 7

logs
diagnostic 129

longitude, geodetic
definition of 132

M
map projections

coordinate systems 475

measure information, obtaining 279

meridian 132

messages
Control Center 128

functions 125

migration information 126

messages (continued)
shape information 126

Spatial Extender
CLP 126

parts of 121

stored procedures 123

migrate command
description 33

migration
Spatial Extender 33

minimum bounding circle (MBC)
definition 145

spatial functions results 174

ST_Geometry attributes 165

minimum bounding rectangle (MBR)
definition 9

in spatial grid indexes 81

multilinestrings, Spatial Extender

homogeneous collection 7

multipliers to improve performance
processing coordinates 56, 60

multipoints, Spatial Extender

homogeneous collection 7

multipolygons, Spatial Extender

homogeneous collection 7

N
NAD27_ SRS_1002 (spatial reference

system) 55

NAD83_ SRS_1 (spatial reference

system) 55

O
offset values

overview 56, 60

ordering
books 493

P
performance

coordinate-data conversions 56, 60

points 7

poles
polygons enclosing 165

polygons
defining geodetic regions 134

geometry type 7

prime meridian 132

prime meridians
coordinate systems 475

problem determination 495

projected coordinate system 45

projected coordinate systems 50

properties of geometries
overview 9

spatial functions for 279

boundary information 283

configuration information 284

coordinate and measure

information 279

data-type information 279

dimensional information 284

geometries within a geometry 281

504 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

properties of geometries (continued)
spatial functions for (continued)

spatial reference system 285

Q
queries

spatial functions to perform 101

spatial indexes, exploiting 102

spatial, interfaces to submit 101

R
reference data

DB2 Spatial Extender
description 42

rings
defining geodetic regions 134

description 9

S
samples

Spatial Extender 115

scale factors
overview 56, 60

scenarios
Spatial Extender setup 13

shape representation, data format 474

software requirements
Spatial Extender 20

spatial catalog views
supported by Geodetic Data

Management Feature 179

spatial columns
geocoding 75

spatial data
columns 65

data types 65

description 1

exporting 71

geocoding 75

importing 71

retrieving and analyzing
exploiting indexes 102

functions 101

interfaces 101

ST_GEOMETRY_ COLUMNS 243,

246

transferring from client to server 461

using 5

Spatial Extender
reference data 42

spatial reference systems supplied

with 55

when to use 131

spatial extent
definition 52

spatial functions
associated data types 295

comparisons of geometries
container relationships 267

DE-9IM pattern matrix string 278

geometry envelopes 275

identical geometries 276

intersections 270, 277

spatial functions (continued)
comparisons of geometries (continued)

overview 265

considerations 295

converting geometries 257

data conversions between coordinate

systems 293

data-exchange format conversions
ESRI shape representation 263

Geography Markup Language

(GML) representation 264

overview 257

well-known binary

representation 262

well-known text

representation 261

distance information 292

EnvelopesIntersect 299

examples 101

generating new geometries
based on existing measures 290

conversion of one to another 285

modified forms 291

new space configurations 286

one from many 290

overview 285

geodetic difference in behavior 174

index information 293

MBR aggregate 301

overview 257

properties of geometries 279

boundary information 283

configuration information 284

coordinate and measure

information 279

data-type information 279

dimensional information 284

geometries within a geometry 281

spatial reference system 285

ST_AppendPoint 303

ST_Area 304

ST_AsBinary 307

ST_AsGML 308

ST_AsShape 309

ST_AsText 310

ST_Boundary 312

ST_Buffer 313

ST_Centroid 316

ST_ChangePoint 317

ST_Contains 319

ST_ConvexHull 320

ST_CoordDim 322

ST_Crosses 323

ST_Difference 324

ST_Dimension 326

ST_Disjoint 327

ST_Distance 329

ST_Edge_GC_USA 332

ST_Endpoint 336

ST_Envelope 336

ST_EnvIntersects 338

ST_EqualCoordsys 339

ST_Equals 340

ST_EqualSRS 341

ST_ExteriorRing 342

ST_FindMeasure
ST_LocateAlong 343

spatial functions (continued)
ST_Generalize 345

ST_GeomCollection 347

ST_GeomCollFromTxt 349

ST_GeomCollFromWKB 350

ST_Geometry 351

ST_GeometryN 353

ST_GeometryType 354

ST_GeomFromText 355

ST_GeomFromWKB 356

ST_GetIndexParms 357

ST_InteriorRingN 360

ST_Intersection 361

ST_Intersects 362

ST_Is3d 364

ST_IsClosed 365

ST_IsEmpty 367

ST_IsMeasured 368

ST_IsRing 369

ST_IsSimple 370

ST_IsValid 371

ST_Length 372

ST_LineFromText 374

ST_LineFromWKB 375

ST_LineString 376

ST_LineStringN 377

ST_LocateAlong
ST_FindMeasure 343

ST_LocateBetween
ST_MeasureBetween 388

ST_M 378

ST_MaxM 380

ST_MaxX 381

ST_MaxY 383

ST_MaxZ 384

ST_MBR 386

ST_MBRIntersects 387

ST_MeasureBetween
ST_LocateBetween 388

ST_MidPoint 390

ST_MinM 391

ST_MinX 392

ST_MinY 393

ST_MinZ 395

ST_MLineFromText 396

ST_MLineFromWKB 397

ST_MPointFromText 399

ST_MPointFromWKB 400

ST_MPolyFromText 401

ST_MPolyFromWKB 403

ST_MultiLineString 404

ST_MultiPoint 406

ST_MultiPolygon 407

ST_NumGeometries 409

ST_NumInteriorRing 409

ST_NumLineStrings 410

ST_NumPoints 411

ST_NumPolygons 412

ST_Overlaps 413

ST_Perimeter 415

ST_PerpPoints 417

ST_Point 419

ST_PointFromText 422

ST_PointFromWKB 423

ST_PointN 424

ST_PointOnSurface 425

ST_PolyFromText 426

Index 505

spatial functions (continued)
ST_PolyFromWKB 427

ST_Polygon 428

ST_PolygonN 430

ST_Relate 431

ST_RemovePoint 432

ST_SRID
ST_SrsId 434

ST_SrsID
ST_SRID 434

ST_SrsName 435

ST_StartPoint 436

ST_SymDifference 437

ST_ToGeomColl 439

ST_ToLineString 440

ST_ToMultiLine 441

ST_ToMultiPoint 442

ST_ToMultiPolygon 443

ST_ToPoint 444

ST_ToPolygon 445

ST_Touches 446

ST_Transform 448

ST_Union 450

ST_Within 452

ST_WKBToSQL 453

ST_WKTToSQL 454

ST_X 455

ST_Y 456

ST_Z 458

that use geodetic Voronoi

indexes 145, 148

Union aggregate 459

using to exploit spatial indexes 102

spatial grid index
CREATE INDEX statement 90

Index Advisor command 97

spatial functions that use 90

SQL statements that use 90

spatial grid indexes
compared to geodetic Voronoi

indexes 81

exploiting 102

grid levels and sizes 81, 83

spatial indexes
geodetic Voronoi 145

types of 81

spatial reference system identifier (SRID)
for geodetic 131, 132

spatial reference systems
creating 199

description 52

supplied with DB2 Spatial

Extender 55

spatial stored procedures
supported by Geodetic Data

Management Feature 179

spheroids
coordinate systems 475

definition 132

in coordinate system definition 186

SQL statements
that use geodetic Voronoi

indexes 148

ST_alter_coordsys stored procedure 192

ST_alter_srs 193

ST_COORDINATE_ SYSTEMS 245

ST_create_coordsys stored

procedure 197

ST_create_srs 199

ST_disable_autogeocoding 205

ST_disable_db stored procedure 207

ST_Distance 329

ST_drop_coordsys stored procedure 208

ST_drop_srs 209

ST_enable_autogeocoding stored

procedure 211

ST_enable_db stored procedure 213

ST_export_shape stored procedure 214

ST_GEOCODER_ PARAMETERS 247

ST_GEOCODERS 248

ST_GEOCODING 249

ST_GEOCODING_ PARAMETERS 250

ST_Geometry attributes
geodetic differences 165

ST_GEOMETRY_ COLUMNS 243, 246

ST_import_shape stored procedure 218

ST_register_geocoder stored

procedure 225

ST_register_spatial_column stored

procedure 229

ST_remove_geocoding_setup stored

procedure 231

ST_run_geocoding stored procedure 233

ST_setup_geocoding stored

procedure 236

ST_SIZINGS 251

ST_SPATIAL_

REFERENCE_SYSTEMS 252

ST_UNITS_OF_ MEASURE 254

ST_UNITS_OF_ MEASURE catalog

view 254

ST_unregister_geocoder stored

procedure 239

ST_unregister_spatial_column stored

procedure 240

stored procedures
GSE_export_sde 188

GSE_import_sde 189

problems 123

ST_alter_coordsys 192

ST_alter_srs 193

ST_create_coordsys 197

ST_create_srs 199

ST_disable_autogeocoding 205

ST_disable_db 207

ST_drop_coordsys 208

ST_drop_srs 209

ST_enable_autogeocoding 211

ST_enable_db 213

ST_export_shape 214

ST_import_shape 218

ST_register_geocoder 225

ST_register_spatial_column 229

ST_remove_geocoding_ setup 231

ST_run_geocoding 233

ST_setup_geocoding 236

ST_unregister_geocoder 239

ST_unregister_spatial_ column 240

T
tasks

Spatial Extender setup 13

technical library 489

transform groups
overview 461

troubleshooting
administration notification log 129

functions 125

information 495

migration messages 126

shape information messages 126

Spatial Extender
messages 121

stored procedures 123

true-direction projections 50

tuning spatial grid indexes
with Index Advisor 91

U
union aggregate functions 459

units for offset values and scale

factors 56, 60

V
Voronoi cell structures

description 145

selecting alternate for index 146

Voronoi tessellation 145

W
well-known binary (WKB) representation,

data format 472

well-known text (WKT) representation,

data format 467

WGS84_ SRS_1003
spatial reference system 55

whole earth
representing 165

World population density
Voronoi cell structure 145

506 IBM DB2 Spatial Extender and Geodetic Data Management Feature: User's Guide and Reference

����

Printed in USA

SC18-9749-00

	Contents
	Chapter 1. About DB2 Spatial Extender
	The purpose of DB2 Spatial Extender
	How data represents geographic features
	The nature of spatial data
	The nature of geodetic data
	Where spatial data comes from
	Using business data as source data
	Using functions to generate spatial data
	Importing spatial data

	How features, spatial information, spatial data, and geometries fit together

	Chapter 2. About geometries
	Geometries
	Properties of geometries
	Type
	Geometry coordinates
	X and Y coordinates
	Z coordinates
	M coordinates
	Interior, boundary, and exterior
	Simple or non-simple
	Closed
	Empty or not empty
	Minimum bounding rectangle (MBR)
	Dimension
	Spatial reference system identifier

	Chapter 3. How to use DB2 Spatial Extender
	How to use DB2 Spatial Extender
	Interfaces to DB2 Spatial Extender and associated functionality
	Tasks that you perform to set up DB2 Spatial Extender and create projects

	Chapter 4. Getting started with DB2 Spatial Extender
	Setting up and installing Spatial Extender
	System requirements for installing Spatial Extender
	Installing DB2 Spatial Extender for Windows
	Installing DB2 Spatial Extender for AIX
	DB2 Setup wizard
	db2_install script
	SMIT

	Installing DB2 Spatial Extender for HP-UX
	Install Spatial Extender for HP-UX using the DB2 Setup wizard
	Install Spatial Extender for HP-UX using the db2_install script
	Install Spatial Extender for HP-UX using the swinstall command

	Installing DB2 Spatial Extender for Solaris Operating Environment
	Install DB2 Spatial Extender for Solaris Operating Environments using the DB2 Setup wizard
	Install DB2 Spatial Extender using the db2_install script
	Install DB2 Spatial Extender for Solaris using the pkgadd command

	Installing DB2 Spatial Extender for Linux
	Installing DB2 Spatial Extender using the DB2 Setup wizard
	Install DB2 Spatial Extender using the db2_install script

	Creating the DB2 Spatial Extender instance environment
	Verifying the Spatial Extender installation
	Post-Installation considerations
	Downloading ArcExplorer for DB2

	Chapter 5. Migrating the Spatial Extender environment to a DB2 Version 9 database system
	Migrating a spatially-enabled database
	The db2se migrate command
	Migrating from a 32-bit to a 64-bit environment

	Chapter 6. Setting up a database
	Configuring a database to accommodate spatial data
	Tuning transaction log characteristics
	Tuning the application heap size
	Tuning the application control heap size

	Chapter 7. Setting up spatial resources for a database
	How to set up resources in your database
	Inventory of resources supplied for your database
	Enabling a database for spatial operations

	How to work with reference data
	Reference data
	Setting up access to reference data
	Registering a geocoder

	Chapter 8. Setting up spatial resources for a project
	How to use coordinate systems
	Coordinate systems
	Geographic coordinate system
	Projected coordinate systems
	Selecting or creating coordinate systems

	How to set up spatial reference systems
	Spatial reference systems
	Deciding whether to use a default spatial reference system or create a new system
	Spatial reference systems supplied with DB2 Spatial Extender
	Conversion factors that transform coordinate data into integers
	Offset values
	Scale factors
	Units for offset values and scale factors

	Creating a spatial reference system
	Calculating scale factors
	Conversion factors that transform coordinate data into integers
	Determining minimum and maximum coordinates and measures
	Calculating offset values
	Creating a spatial reference system

	Chapter 9. Setting up spatial columns
	Spatial columns
	Spatial columns with viewable content
	Spatial data types
	Data types for single-unit features
	Data types for multi-unit features
	A data type for all features

	Creating spatial columns
	Registering spatial columns

	Chapter 10. Populating spatial columns
	About importing and exporting spatial data
	Importing spatial data
	Importing shape data to a new or existing table
	Importing SDE transfer data to a new or existing table

	Exporting spatial data
	Exporting data to a shapefile
	Exporting data to an SDE transfer file

	How to use a geocoder
	Geocoders and geocoding
	Setting up geocoding operations
	Setting up a geocoder to run automatically
	Running a geocoder in batch mode

	Chapter 11. Using indexes and views to access spatial data
	Types of spatial indexes
	Spatial grid indexes
	Generation of spatial grid indexes
	Use of spatial functions in a query
	How a query uses a spatial grid index

	Considerations for number of index levels and grid sizes
	Number of grid levels
	Grid cell sizes

	Creating spatial grid indexes
	Creating a spatial grid index using SQL CREATE INDEX

	CREATE INDEX statement for a spatial grid index
	Tuning spatial grid indexes with the Index Advisor
	Tuning spatial grid indexes with the Index Advisor—Overview
	Determining grid sizes for a spatial grid index
	Analyzing spatial grid index statistics

	The gseidx command
	Using views to access spatial columns

	Chapter 12. Analyzing and Generating spatial information
	Environments for performing spatial analysis
	Examples of how spatial functions operate
	Functions that use indexes to optimize queries

	Chapter 13. DB2 Spatial Extender commands
	Invoking commands for setting up DB2 Spatial Extender and developing projects

	Chapter 14. Writing applications and using the sample program
	Writing applications for DB2 Spatial Extender
	Including the DB2 Spatial Extender header file in spatial applications
	Calling DB2 Spatial Extender stored procedures from an application
	The DB2 Spatial Extender sample program

	Chapter 15. Identifying DB2 Spatial Extender problems
	How to interpret DB2 Spatial Extender messages
	DB2 Spatial Extender stored procedure output parameters
	DB2 Spatial Extender function messages
	DB2 Spatial Extender CLP messages
	DB2 Control Center messages
	Tracing DB2 Spatial Extender problems with the db2trc command
	The administration notification file

	Chapter 16. DB2 Geodetic Data Management Feature
	DB2 Geodetic Data Management Feature
	When to use DB2 Geodetic Data Management Feature and when to use DB2 Spatial Extender
	Geodetic datums
	Geodetic latitude and longitude
	Geodesic distances
	Geodetic regions

	Chapter 17. Setting up DB2 Geodetic Data Management Feature
	Setting up and enabling DB2 Geodetic Data Management Feature
	Migrating from Informix Geodetic DataBlade to DB2 Geodetic Data Management Feature
	Populating spatial columns with geodetic data

	Chapter 18. Geodetic Indexes
	Geodetic Voronoi indexes
	Voronoi cell structures
	Considerations for selecting an alternate Voronoi cell structure
	Creating geodetic Voronoi indexes
	CREATE INDEX statement for a geodetic Voronoi index
	Voronoi cell structures supplied with DB2 Geodetic Data Management Feature
	World, based on population density (Voronoi ID: 1)
	United States (Voronoi ID: 2)
	Canada (Voronoi ID: 3)
	India (Voronoi ID: 4)
	Japan (Voronoi ID: 5)
	Africa (Voronoi ID: 6)
	Australia (Voronoi ID: 7)
	Europe (Voronoi ID: 8)
	North America (Voronoi ID: 9)
	South America (Voronoi ID: 10)
	Mediterranean (Voronoi ID: 11)
	World, uniform data distribution, medium resolution – dodeca04 (Voronoi ID: 12)
	World, industrial nations – G7 nations (Voronoi ID: 13)
	World, uniform data distribution, low resolution – isotype (Voronoi ID: 14)

	Chapter 19. Differences in using geodetic and spatial data
	Minimum and maximum x and y attributes
	Differences in working with flat-Earth and round-Earth representations
	Line segments that cross the 180th meridian
	Polygons that straddle the 180th meridian
	Polygons that enclose a pole
	Polygons that represent hemispheres, equatorial belts, and the whole Earth

	Spatial functions supported by DB2 Geodetic Data Management Feature
	DB2 Geodetic Data Management Feature stored procedures and catalog views
	Datums supported by DB2 Geodetic Data Management Feature
	Geodetic spheroids

	Chapter 20. Stored procedures
	GSE_export_sde
	GSE_import_sde
	ST_alter_coordsys
	ST_alter_srs
	ST_create_coordsys
	ST_create_srs
	ST_disable_autogeocoding
	ST_disable_db
	ST_drop_coordsys
	ST_drop_srs
	ST_enable_autogeocoding
	ST_enable_db
	ST_export_shape
	ST_import_shape
	ST_register_geocoder
	ST_register_spatial_column
	ST_remove_geocoding_setup
	ST_run_geocoding
	ST_setup_geocoding
	ST_unregister_geocoder
	ST_unregister_spatial_column

	Chapter 21. Catalog views
	The DB2GSE.ST_GEOMETRY_COLUMNS catalog view
	The DB2GSE.SPATIAL_REF_SYS catalog view
	The DB2GSE.ST_COORDINATE_SYSTEMS catalog view
	The DB2GSE.ST_GEOMETRY_COLUMNS catalog view
	The DB2GSE.ST_GEOCODER_PARAMETERS catalog view
	The DB2GSE.ST_GEOCODERS catalog view
	The DB2GSE.ST_GEOCODING catalog view
	The DB2GSE.ST_GEOCODING_PARAMETERS catalog view
	The DB2GSE.ST_SIZINGS catalog view
	The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view
	The DB2GSE.ST_UNITS_OF_MEASURE catalog view

	Chapter 22. Spatial functions: categories and uses
	Spatial functions: categories and uses
	Spatial functions that convert geometry values to data exchange formats
	Constructor functions
	Functions that operate on data exchange formats
	A function that creates geometries from coordinates
	Examples

	Conversion to well-known text (WKT) representation
	Conversion to well-known binary (WKB) representation
	Conversion to ESRI shape representation
	Conversion to Geography Markup Language (GML) representation
	Functions that compare geographic features
	Comparison functions
	Spatial comparison functions

	Functions that check whether one geometry contains another
	ST_Contains
	ST_Within

	Functions that check intersections between geometries
	ST_Intersects
	ST_Crosses
	ST_Overlaps
	ST_Touches

	Functions that compare geometries' envelopes
	ST_EnvIntersects
	ST_MBRIntersects

	Functions that check whether two things are identical
	ST_EqualCoordsys
	ST_Equals
	ST_EqualSRS

	Function that checks for no intersection between two geometries
	Function that compares geometries to the DE-9IM pattern matrix string
	Functions that return information about properties of geometries
	Function that returns data-type information
	Functions that return coordinate and measure information
	ST_CoordDim
	ST_IsMeasured
	ST_IsValid
	ST_Is3D
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_X
	ST_Y
	ST_Z

	Functions that return information about geometries within a geometry
	ST_Centroid
	ST_EndPoint
	ST_GeometryN
	ST_LineStringN
	ST_MidPoint
	ST_NumGeometries
	ST_NumLineStrings
	ST_NumPoints
	ST_NumPolygons
	ST_PointN
	ST_PolygonN
	ST_StartPoint

	Functions that show information about boundaries, envelopes, and rings
	ST_Envelope
	ST_EnvIntersects
	ST_ExteriorRing
	ST_InteriorRingN
	ST_MBR
	ST_MBRIntersects
	ST_NumInteriorRing
	ST_Perimeter

	Functions that return information about a geometry's dimensions
	ST_Area
	ST_Dimension
	ST_Length

	Functions that reveal whether a geometry is closed, empty, or simple
	ST_IsClosed
	ST_IsEmpty
	ST_IsSimple

	Functions that identify a geometry's spatial reference system
	ST_SrsId (also called ST_SRID)
	ST_SrsName

	Functions that generate new geometries from existing geometries
	Functions that convert one geometry to another
	ST_Polygon
	ST_ToGeomColl
	ST_ToLineString
	ST_ToMultiLine
	ST_ToMultiPoint
	ST_ToMultiPolygon
	ST_ToPoint
	ST_ToPolygon

	Functions that create new geometries with different space configurations
	ST_Buffer
	ST_ConvexHull
	ST_Difference
	ST_Intersection
	ST_SymDifference

	Functions that derive one geometry from many
	MBR Aggregate
	ST_Union
	Union Aggregate

	Functions that derive new geometries based on measures
	ST_FindMeasure (also called ST_LocateAlong)
	ST_MeasureBetween (also called ST_LocateBetween)

	Functions that create modified forms of existing geometries
	ST_AppendPoint
	ST_ChangePoint
	ST_Generalize
	ST_M
	ST_PerpPoints
	ST_RemovePoint
	ST_X
	ST_Y
	ST_Z

	Function that returns distance information
	Function that returns index information
	Conversions between coordinate systems

	Chapter 23. Spatial functions: syntax and parameters
	Spatial functions: considerations and associated data types
	Factors to consider
	Treating values of ST_Geometry as values of a subtype
	Spatial functions listed according to input type

	EnvelopesIntersect
	MBR Aggregate
	ST_AppendPoint
	ST_Area
	ST_AsBinary
	ST_AsGML
	ST_AsShape
	ST_AsText
	ST_Boundary
	ST_Buffer
	ST_Centroid
	ST_ChangePoint
	ST_Contains
	ST_ConvexHull
	ST_CoordDim
	ST_Crosses
	ST_Difference
	ST_Dimension
	ST_Disjoint
	ST_Distance
	ST_Edge_GC_USA
	ST_Endpoint
	ST_Envelope
	ST_EnvIntersects
	ST_EqualCoordsys
	ST_Equals
	ST_EqualSRS
	ST_ExteriorRing
	ST_FindMeasure or ST_LocateAlong
	ST_Generalize
	ST_GeomCollection
	ST_GeomCollFromTxt
	ST_GeomCollFromWKB
	ST_Geometry
	ST_GeometryN
	ST_GeometryType
	ST_GeomFromText
	ST_GeomFromWKB
	ST_GetIndexParms
	ST_InteriorRingN
	ST_Intersection
	ST_Intersects
	ST_Is3d
	ST_IsClosed
	ST_IsEmpty
	ST_IsMeasured
	ST_IsRing
	ST_IsSimple
	ST_IsValid
	ST_Length
	ST_LineFromText
	ST_LineFromWKB
	ST_LineString
	ST_LineStringN
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MBR
	ST_MBRIntersects
	ST_MeasureBetween, ST_LocateBetween
	ST_MidPoint
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_MLineFromText
	ST_MLineFromWKB
	ST_MPointFromText
	ST_MPointFromWKB
	ST_MPolyFromText
	ST_MPolyFromWKB
	ST_MultiLineString
	ST_MultiPoint
	ST_MultiPolygon
	ST_NumGeometries
	ST_NumInteriorRing
	ST_NumLineStrings
	ST_NumPoints
	ST_NumPolygons
	ST_Overlaps
	ST_Perimeter
	ST_PerpPoints
	ST_Point
	ST_PointFromText
	ST_PointFromWKB
	ST_PointN
	ST_PointOnSurface
	ST_PolyFromText
	ST_PolyFromWKB
	ST_Polygon
	ST_PolygonN
	ST_Relate
	ST_RemovePoint
	ST_SrsId, ST_SRID
	ST_SrsName
	ST_StartPoint
	ST_SymDifference
	ST_ToGeomColl
	ST_ToLineString
	ST_ToMultiLine
	ST_ToMultiPoint
	ST_ToMultiPolygon
	ST_ToPoint
	ST_ToPolygon
	ST_Touches
	ST_Transform
	ST_Union
	ST_Within
	ST_WKBToSQL
	ST_WKTToSQL
	ST_X
	ST_Y
	ST_Z
	Union aggregate

	Chapter 24. Transform groups
	Transform groups
	ST_WellKnownText transform group
	ST_WellKnownBinary transform group
	ST_Shape transform group
	ST_GML transform group

	Chapter 25. Supported data formats
	Well-known text (WKT) representation
	Well-known binary (WKB) representation
	Shape representation
	Geography Markup Language (GML) representation

	Chapter 26. Supported coordinate systems
	Coordinate systems syntax
	Supported linear units

	Supported angular units
	Supported spheroids
	Supported geodetic datums
	Supported prime meridians
	Supported map projections

	Chapter 27. Spatial tasks from the DB2 Control Center
	Altering a coordinate system
	Creating a coordinate system
	Creating a spatial column
	Creating a spatial index
	Running geocoding
	Setting up geocoding
	Altering a spatial reference system
	Importing spatial data

	DB2 technical library in PDF format
	Ordering printed DB2 books
	DB2 troubleshooting information
	Notices
	Contacting IBM
	Index

