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Chapter 1. Principles of Performance

Elements of performance

Performance is the way a computer system behaves given a particular workload.
Performance is measured in terms of system response time, throughput, and
availability. Performance is also affected by:

* The resources available in your system

* How well those resources are used and shared.

In general, you tune your system to improve its cost-benefit ratio. Specific goals
could include:

* Processing a larger, or more demanding, work load without increasing
processing costs

For example, to increase the work load without buying new hardware or using
more processor time

* Obtaining faster system response times, or higher throughput, without
increasing processing costs

* Reducing processing costs without degrading service to your users

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money in terms of user time as well as
processor time, so before you undertake a tuning project, weigh its costs against its
possible benefits. Some of these benefits are tangible:

e More efficient use of resources

* The ability to add more users to the system.

Other benefits, such as greater user satisfaction because of quicker response time,
are intangible. All of these benefits should be considered.

Related concepts:

* |“Quick-start tips for performance tuning” on page 6|

* [“Performance tuning guidelines” on page 3

Related tasks:

+ [“Developing a performance improvement process” on page 5|

Performance tuning guidelines

The following guidelines should help you develop an overall approach to
performance tuning.

Remember the law of diminishing returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce smaller
and smaller benefits and require more and more effort.

Do not tune just for the sake of tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems, this

has little or no effect on response time until you have relieved the major
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constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the performance
of the resources that are major factors in the response time.

Consider the whole system: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the system
as a whole.

Change one parameter at a time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change contributed.
You also cannot effectively judge the trade-off you have made by changing more
than one parameter at a time. Every time you adjust a parameter to improve one
area, you almost always affect at least one other area that you may not have
considered. By changing only one at a time, this allows you to have a benchmark
to evaluate whether the change does what you want.

Measure and reconfigure by levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You can
use the following list of levels within a system as a guide:

* Hardware

* Operating System

* Application Server and Requester
* Database Manager

e SQL and XQuery Statements

* Application Programs

Check for hardware as well as software problems: Some performance problems
may be corrected by applying service either to your hardware, or to your software,
or to both. Do not spend excessive time monitoring and tuning your system when
simply applying service may make it unnecessary.

Understand the problem before you upgrade your hardware: Even if it seems that
additional storage or processor power could immediately improve performance,
take the time to understand where your bottlenecks are. You may spend money on
additional disk storage only to find that you do not have the processing power or
the channels to exploit it.

Put fall-back procedures in place before you start tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former setup
is saved in such a manner that it can be simply recalled, the backing out of the
incorrect information becomes much simpler.

Related concepts:

* |“Elements of performance” on page 3|

* [“Quick-start tips for performance tuning” on page 6|

Related tasks:
+ [“Developing a performance improvement process” on page 5|




Developing a performance improvement process

The performance improvement process is an iterative, long term approach to
monitoring and tuning aspects of performance. Depending on the result of
monitoring, you and your performance team adjust the configuration of the
database server and make changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the
kinds of applications that use the data and the patterns of data access. Different
kinds of applications have different performance requirements.

Consider the following outline of the performance improvement process as a
guideline.

Procedure:

To develop a performance improvement process:

1. Define performance objectives.

2. Establish performance indicators for the major constraints in the system.

3. Develop and execute a performance monitoring plan.

4. Continually analyze the results of monitoring to determine which resources
require tuning.

5. Make one adjustment at a time.
Even if you think that more than one resource requires tuning, or if several
tuning options are available for the resource you want to tune, make only one
change at a time so that you can make sure that your tuning efforts are
producing the effect you want. At some point, you can no longer improve

performance by tuning the database server and applications. Then you need to
upgrade your hardware.

Actual performance tuning requires trade-offs among system resources. For
example, to provide improved I/O performance you might increase buffer pool
sizes, but larger buffer pools require more memory, which might degrade other
aspects of performance.

Related concepts:

* [“Elements of performance” on page 3|

+ [“Performance information that users can provide” on page 6|

* |“Quick-start tips for performance tuning” on page 6|

+ [“Performance tuning guidelines” on page 3|

* [“Performance tuning limits” on page 5|

Performance tuning limits

Tuning can make only a certain amount of change in the efficiency of a system.
Consider how much time and money you should spend on improving system
performance, and how much spending additional time and money will help the
users of the system.

For example, tuning can often improve performance if the system encounters a
performance bottleneck. If you are close to the performance limits of your system

and the number of users increases by about ten percent, the response time is likely
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to increase by much more than ten percent. In this situation, you need to
determine how to counterbalance this degradation in performance by tuning your
system.

However, there is a point beyond which tuning cannot help. At this point, consider
revising your goals and expectations within the limits of your environment. For
significant performance improvements, you might need to add more disk storage,
faster CPU, additional CPUs, more main memory, faster communication links, or a
combination of these.

Related concepts:

* “Management of database server capacity” in Administration Guide:
Implementation

Related tasks:

* |“Developing a performance improvement process” on page 5|

Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If
you do not have enough time to set performance objectives and to monitor and
tune in a comprehensive manner, you can address performance by listening to
your users. You can usually determine where to start looking for a problem by
asking a few simple questions. For example, you might ask your users:

* What do you mean by “slow response”? Is it 10 % slower than you expect it to
be, or tens of times slower?

* When did you notice the problem? Is it recent or has it always been there?

* Do other users have the same problem? Are these users one or two individuals
or a whole group?

 If a group of users is experiencing the same problems, are they connected to the
same local area network?

* Do the the problems seem to be related to a specific transaction or application
program?

* Do you notice any pattern in the problem occurrence? For example, does the
problem occur at a specific time of day, such as during lunch hour, or is it more
or less continuous?

Related concepts:

* [“Performance tuning guidelines” on page 3

Related tasks:

* |“Developing a performance improvement process”’ on page 5|

Quick-start tips for performance tuning

When you start a new instance of DB2®, consider the following suggestions for a
basic configuration:

* Use the Configuration Advisor in the Control Center to get advice about
reasonable beginning defaults for your system. The defaults shipped with DB2
should be tuned for your unique hardware environment.
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Gather information about the hardware at your site so you can answer the
wizard questions. You can apply the suggested configuration parameter settings
immediately or let the wizard create a script based on your answers and run the
script later.

This script also provides a list of the most commonly tuned parameters for later
reference.

* Use other wizards in the Control Center and Client Configuration Assistant for
performance-related administration tasks. These tasks are usually those in which
you can achieve significant performance improvements by spending spend a
little time and effort.

Other wizards can help you improve performance of individual tables and
general data access. These wizards include the Create Database, Create Table,
Index, and Configure Multisite Update wizards. The Health Center provides a
set of monitoring and tuning tools.

* Use the Design Advisor tool from the Control Center or using the db2advis
command to find out what indexes, materialized query tables, multi-dimensional
clustering tables, and database partitions will improve query performance.

* Use the ACTIVATE DATABASE command to start databases. In a partitioned
database, this command activates the database on all database partitions and
avoids the startup time required to initialize the database when the first
application connects.

Note: If you use the ACTIVATE DATABASE command, you must shut down the
database with the DEACTIVATE DATABASE command. The last
application that disconnects from the database does not shut it down.

* Consult the summary tables that list and briefly describe each configuration
parameter available for the database manager and each database.

These summary tables contain a column that indicates whether tuning the
parameter results in high, medium,low, or no performance changes, either for
better or for worse. Use this table to find the parameters that you might tune for
the largest performance improvements.

Related concepts:

* |Chapter 15, “The database system monitor information,” on page 353|

Related reference:

+ |“Configuration parameters summary” on page 264

Disk-storage performance factors

The hardware that makes up your system can influence the performance of your
system. As an example of the influence of hardware on performance, consider
some of the implications associated with disk storage.

Four aspects of disk-storage management affect performance:
* Division of storage

How you divide a limited amount of storage between indexes and data and
among table spaces determines to a large degree how each will perform in
different situations.

* Wasted storage

Chapter 1. Principles of Performance 7
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Wasted storage in itself may not affect the performance of the system that is
using it, but wasted storage is a resource that could be used to improve
performance elsewhere.

Distribution of disk I/O

How well you balance the demand for disk I/O across several disk storage
devices, and controllers can affect how fast the database manager can retrieve
information from disks.

Lack of available storage

Reaching the limit of available storage can degrade overall performance.

Related concepts:

“DMS device considerations” in Administration Guide: Planning
“DMS table spaces” in Administration Guide: Planning
“SMS table spaces” in Administration Guide: Planning

“Database directories and files” in Administration Guide: Planning

[Table and index management for MDC tables” on page 337]

[“Table and index management for standard tables” on page 333]




Part 2. Performance Issues in Database Design
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Chapter 2. Planning for Performance in Database Design

Performance enhancing features

Materialized query tables

Materialized query tables (MQTs) are a powerful way to improve response time for

complex queries, especially queries that might require some of the following

operations:

* Aggregated data over one or more dimensions

* Joins and aggregates data over a group of tables

* Data from a commonly accessed subset of data, that is, from a “hot” horizontal
or vertical database partition

* Repartitioned data from a table, or part of a table, in a partitioned database
environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. In the
compiler, the query rewrite phase and the optimizer match queries with MQTs and
determine whether to substitute an MQT for a query that accesses the base tables.
If an MQT is used, the EXPLAIN facility can provide information about which
MQT was selected.

Because MQTs behave like regular tables in many ways, the same guidelines for
optimizing data access using table space definitions, creating indexes, and issuing
RUNSTATS apply to MQTs.

To help you understand the power of MQTs, the following example shows a
multidimensional analysis query and how it takes advantage of MQTs.

In this example,