DB2.

DB2 Version 9
for Linux, UNIX, and Windows

Performance Guide

SC10-4222-00

DB2 Version 9
for Linux, UNIX, and Windows

Performance Guide

SC10-4222-00

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at [www.ibm.com /shop /publications/order]

 To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

Part 1. Introduction to Performance 1
Chapter 1. Principles of Performance . . 3
Elements of performance .3
Performance tuning guidelines . .3
Developing a performance 1mprovement process . .5
Performance tuning limits . . S .5
Performance information that users can provide .6
Quick-start tips for performance tuning . 6
Disk-storage performance factors .7
Part 2. Performance Issues in
Database Design . .9
Chapter 2. Planning for Performance in
Database Design .1
Performance enhancing features .1
Materialized query tables . .1
Table partitioning and multldlmensmnal
clustering tables13
Optimization strategies for MDC tables . . 18
Optimization strategies for partitioned tables . . 19
Chapter 3. Indexes. . 25
Using relational indexes to improve performance. . 25
Index structure 26
Relational index plannlng t1ps . . 28
Relational index performance tips . . 30
XML data indexing overview .33
Indexes in partitioned tables. .. 34
Understanding index behavior on part1t10ned
tables . 34
Understanding clusterlng 1ndex behavror on
partitioned tables . 38
Asynchronous index cleanup . 40
Chapter 4. Design Advisor . 43
The Design Advisor .43
Design Advisor output .44
Design advisor features . 45
Using the Design Advisor . 46
Defining a workload for the Des1gn AClVlSOI' .47
Using the Design Advisor to migrate from a
single-partition to a multiple-partition database . 48
Design Advisor limitations and restrictions . . 49
Chapter 5. Managing concurrency . . 51
Concurrency issues . . 51
Isolation levels . . 52
Isolation levels and perforrnance . 52
Specifying the isolation level . 55
Locking . . 58
Locks and concurrency control . 58

© Copyright IBM Corp. 2006

Lock attributes . . 60
Locks and types of appllcatlon processmg . . 61
Lock granularity. . . 62
Lock conversion . . 63
Lock escalation . . 64
Correcting lock escalat1on problems . 64
Deadlocks . . . 65
Lock waits and tlmeouts . . 68
Specifying a lock wait mode strategy . 68
Preventing lock-related performance issues . . 69
Lock type compatibility .71
Locks and data-access methods. . .72
Lock modes and access paths for standard tables 74
Index types and next-key locking . . .77
Evaluate uncommitted data via lock deferral . .78
Option to disregard uncommitted insertions . 81
Lock modes for table and RID index scans of
MDC tables . 81
Locking for block 1ndex scans for MDC tables . 85
Locking behavior on partitioned tables . . 89
Chapter 6. The DB2 Governor . . 91
The Governor utility .91
The Governor daemon. .92
Starting and stopping the governor . 93
Configuring the Governor . 94
The governor configuration file. . 95
Governor rule elements . .97
Example of a Governor conf1guratlon flle . . 101
Governor log files . . 102
Governor log file queries . 106
Chapter 7. Maximizing I/O Efficiency 107
Reducing I/O by Tuning SQL and XQuery
Statements .. 107
Specifying row blockmg to reduce overhead . 107
Efficient SELECT statements . . 108
Data sampling in SQL and XQuery querres . 109
Tuning sort performance. .o . 111
Buffer pools and prefetching . 112
Buffer pool management L 112
Management of multiple database buffer pools 114
Buffer pool management of data pages . . 116
Illustration of buffer pool data-page
management. o . 118
Update processing. . 119
Proactive page cleaning . . 120
Prefetching data into the buffer pool . 120
Sequential prefetching . . 121
Block-based buffer pools for 1mproved
sequential prefetching . 123
List prefetching. . 124
I/0 server configuration for prefetchmg and
parallelism . . .o 124
Ilustration of prefetchmg w1th parallel l/ O .. 125
iii

Parallel I/O management
Improving insert performance .

Reducing logging overhead to improve query

performance.

Chapter 8. Agent Management

Database agents

DB2 architecture and process overview .

The DB2 Process Model . .
Differences between Windows and UNIX

Database agent management

Agents in a partitioned database .

Configuration parameters that affect the number of

agents .
Client-server processmg model

Connection-concentrator improvements for chent

connections .

Chapter 9. Designing for Optimal Data

Access .

The SQL and XQuery compller process.
Choosing an optimization class
Optimization classes . .

Setting the optimization class .
Configuration parameters that affect query
optimization.

Database database partltlon group 1mpact on query

. 161
. 161
. lo4
. lo4
. 164
. 167
. 169
. 170
. 172

optimization. . e
Table space impact on query optimization .
Optimizing Access Plans
Data-access methods . .o
Data access through index scans .
Types of index access.
Index access and cluster ratlos
Predicate typology and access plans.
Effects of sorting and grouping
Using index and column group statistics to
compute grouping keycard .

Improving performance by binding w1th REOPT

Replicated materialized query tables in
partitioned database environments .
Optimization strategies for intra-partition
parallelism .

Statistical views
Statistical views
Using statistical views .
View statistics relevant to optlmlzatlon

Scenario: Improving cardinality estimates using

statistical views.

Joins
Joins
Join methods . .
Strategies for selecting optlmal]oms
Column correlation for multiple predicates
Join strategies in partitioned databases .
Join methods in partitioned database
environments

Query Rewriting
Query rewriting methods and examples
Compiler rewrite example: view merges

1V Performance Guide

. 127
. 128

. 129

. 131
. 131
. 132
. 134
. 139
. 139

. 140

. 141
. 142

. 146

. 149
. 149
. 153
. 154
. 157

. 158

. 174
175

. 175

. 177
. 179
. 179
. 180
. 182

. 182
. 187
. 187
. 188
. 191
. 193
. 195

. 197
. 203
. 203
. 205

Compiler rewrite example: DISTINCT

elimination . . 207
Compiler rewrite example 1mphed pred1cates 209
Access Plans in Federated Queries . 210
Federated database pushdown analysis. . 210
Guidelines for analyzing where a federated
query is evaluated. . . 214
Global analysis of federated database querles 215
Remote SQL generation and global optimization
in federated databases .. 217
Server options affecting federated databases .. 219
Chapter 10. Analyzing access plans
using the Explain facmty . 221
Explain facility . . 221
dynexpln . . 222
Explain tools . . . 222
Guidelines for using explam mformatlon . . 223
The explain tables and organization of explain
information . . 225
Explain information for data ob]ects . 227
Explain information for instances. . 227
Explain information for data operators . . 230
Guidelines for capturing explain information. . 231
Guidelines for analyzing explain information. . 233
Usage notes for dynexpln . 234
Chapter 11. Configuring DB2
instances and databases . 237
Configuration parameters ... 237
Configuring DB2 with conﬁguratlon parameters 238
Configuring parameters dynamically . 242
Generating recommendations for database
configuration . 245
Configuring DB2 memory allocatlon . 247
Memory allocation in DB2 . . 247
Database manager shared memory . L. . 249
The FCM buffer pool and memory requirements 252
Tuning memory allocation parameters . . 253
Automatic configuration using self tuning memory 255
Self tuning memory . . 255
Enabling self tuning memory . . 256
Disabling self tuning memory . . 257
Determining which memory consumers are
enabled for self tuning . 258
Self tuning memory in partltloned database
environments . . 259
Using self tuning memory in partltloned
database environments . . 261
Self tuning memory operational detalls and
limitations o . 263
Configuration parameters summary . . 264
Part 3. Maintaining Performance 275
Chapter 12. Collectlng statistics . 277
Catalog statistics . 277
Collecting catalog statlstlcs . . 279

Collecting distribution statistics for specific

columns . . 281
Collecting index stat1st1cs . 282
Guidelines for collecting and updatmg statlstlcs 283
Collecting statistics on a sample of the table data 285
Catalog statistics tables . . 286
Distribution statistics . . 291
Detailed index statistics . . 294
Sub-element statistics. . . 295
Statistics for user-defined functlons . . 296
Optimizer use of distribution statistics . .. 298
Extended examples of distribution-statistics use 299
Catalog statistics for modeling and what-if
planning 303
Statistics for modehng productlon databases . . 304
Updating catalog statistics manually. . 306
General rules for updating catalog statistics
manually . . 306
Rules for updating column statlstlcs manually 307
Rules for updating distribution statistics
manually . . 308
Rules for updating table and mckname statrstlcs
manually . .. 309
Rules for updating mdex statlstlcs manually . 310
Automatic statistics collection . . 311
Automatic statistics collection . .31
Using automatic statistics collection . . 312
Automatic statistics profiling . . 313
Collecting statistics using a statistics proﬁle . 313
Chapter 13. Table and index
maintenance. . 317
Table reorganization . . 317
Index reorganization . . 318
Determining when to reorgamze tables . 320
Choosing a table reorganization method . 323
Enabling automatic table and index reorganization 325
Using snapshot monitor data to monitor the
reorganization of a partitioned table. . 325
Table and index management for standard tables 333
Table and index management for MDC tables . 337
Index cleanup and maintenance . . 340
Online index defragmentation . . 341
Chapter 14. Data redistribution . . 343
Data redistribution . . 343
Determining whether to redlstrlbute data . . 344
Redistributing data across database partitions . 345
Log space requirements for data redistribution . . 347
Redistributing data using step-wise redistribute
procedures . 348
Usage example . . . 348
Redistribution error recovery . . 350
Chapter 15. The database system
monitor information . 353
Chapter 16. Measuring performance
through benchmarks . . 357

Benchmark testing. . 357
Benchmark preparation . . 358
Benchmark test creation . . 359
Examples of db2batch tests. . 360
Benchmark test execution . 371
Benchmark test analysis example . . 373
Part 4. Appendixes 375
Appendix A. DB2 Configuration
Parameters . 377
Parameter details by functlon . . 377
Capacity management . 378
Database shared memory . 378
Application shared memory . 392
Agent private memory39
Agent/application communication memory . . 403
Database manager instance memory . . 407
Locks . . 412
I/0 and storage . 416
Agents . 422
Stored procedures and user-defmed functlons 432
Logging and recovery . 435
Database log files . . 435
Database log activity . . 444
Recovery . . . 454
Distributed unit of work recovery . 465
Database management . 469
Query Enabler . . 469
Attributes . 469
Status . . . 473
Compiler settlngs . . 475
Automated maintenance. . 481
Communications . 483
Communication protocol setup . 483
DB2 Discovery . . 485
Partitioned database env1ronment . 486
Communications . 486
Parallel processing. . 491
Instance management . 493
Diagnostic . .o . . 493
Database system momtor parameters . 497
System management . . 498
Instance administration . . 506
DB2 Administration Server . . 520
authentication - Authentication type DAS . 520
contact_host - Location of contact list . 521
das_codepage - DAS code page . 521
das_territory - DAS territory . 522
dasadm_group - DAS admmlstratlon authorlty
group name . . 522
db2system - Name of the DB2 server system 523
discover - DAS discovery mode . . 523
exec_exp_task - Execute expired tasks . . . 524
jdk_64_path - 64-Bit Software Developer’s Kit
for Java installation path DAS . . 524
jdk_path - Software Developer’s Kit for]ava
installation path DAS . . 525
sched_enable - Scheduler mode . 526
sched_userid - Scheduler user ID . 526

Contents

A\

smtp_server - SMTP server 527
toolscat_db - Tools catalog database ... b2y
toolscat_inst - Tools catalog database instance 528
toolscat_schema - Tools catalog database schema 528

Appendix B. DB2 Registry and

Environment Variables . . . 531
DB2 registry and environment variables 531
Registry and environment variables by category 532

General registry variables 532

System environment variables. 536

Communications variablesb543

Command-line variables.549

MPP configuration variables 550

Query compiler variables55l

Performance variablesb556

Data links variables571

Miscellaneous variables572
Appendix C. Explain tables585
Explain tables58
EXPLAIN_ARGUMENT table586
EXPLAIN_DIAGNOSTIC table59
EXPLAIN_DIAGNOSTIC_DATA table 592
EXPLAIN_INSTANCE table59
EXPLAIN_OBJECT table.59
EXPLAIN_OPERATOR table59
EXPLAIN_PREDICATE table601
EXPLAIN_STATEMENT table. 604
EXPLAIN_STREAM table606
ADVISE_INDEX table608
ADVISE_INSTANCE table6ll
ADVISE_MQT table612
ADVISE_PARTITION table.613
ADVISE_TABLE table6l4
ADVISE_WORKLOAD table615
Appendix D. Explain operators . . 617
CMPEXP operator.617
DELETE operator617
EISCAN operator617
FETCH operator618
FILTER operator618
GENROW operator618
GRPBY operator619
HSJOIN operator619
INSERT operator620
IXAND operator620
IXSCAN operator621
MSJOIN operator621
NLJOIN operator622
PIPE operator622
RETURN operator.622
RIDSCN operator623
RPD operator623
SHIP operator623
SORT operator624
TBSCAN operator.624
TEMP operator.625
TQUEUE operator.625

Vi Performance Guide

UNION operator . . 626
UNIQUE operator . . 626
UPDATE operator . . 626
Appendix E. SQL and XQuery explaln
tools . . . 627
SQL and XQuery Explaln tools . 627
db2expln . . 628
db2expln - SQL and XQuery Explarn . 628
Usage notes for db2expln . 633
Explain output information. . 634
Description of db2expln and dynexpln output 634
Table access information. . 635
Temporary table information . . 640
Join information . 642
Data stream information. . . 644
Insert, update, and delete 1nforrnatron . . 645
Block and row identifier preparation
information . . 645
Aggregation 1nforrnatron . 646
Parallel processing information . 647
Federated query information . . 649
Miscellaneous explain information . . 650
Examples of db2expln and dynexpln Output . . 652
Examples of db2expln and dynexpln output . . 652
Example one: no parallelism . . 653
Example two: single-partition plan w1th
intra-partition parallelism . 654
Example three: multipartition plan wrth
inter-partition parallelism . 656
Example four: multipartition plan w1th
inter-partition and intra-partition parallelism . . 658
Example five: federated database plan . .. 660
Example six: XANDOR and XISCAN operators 662
Example seven: XSCAN operator. .. . 664
Example eight: XISCAN operator. . 665
Appendix F. db2exfmt - Explain table
format . 669
Appendix G. Using the Windows
Performance Monitor67
Windows performance monitor introduction . . 671
Registering DB2 with the Windows performance
monitor . . 671
Enabling remote access to DB2 performance
information . . 672
Displaying DB2 database and DBZ Connect
performance values e . 673
Windows performance ob]ects . . 673
Accessing remote DB2 database performance
information . . . 674
Resetting DB2 perforrnance Values . 674
Appendix H. DB2 Database technical
information . . 677
Overview of the DB2 technrcal 1nforrnat10n . 677
Documentation feedback . . 677
DB2 technical library in hardcopy or PDF format 678

Ordering printed DB2 books

Displaying SQL state help from the command hne
processor .

Accessing dlfferent versions of the DB2
Information Center .

Displaying topics in your preferred language in the
DB2 Information Center .

Updating the DB2 Information Center 1nstalled on
your computer or intranet server .

DB2 tutorials

. 680

. 681

. 682

. 682

. 683
. 685

DB2 troubleshooting information .

Terms and Conditions

Appendix I. Notices.

Trademarks .
Index .

Contacting IBM

. 685
. 686

. 687

. 689

. 691

. 709

Contents

vii

Viili Performance Guide

Part 1. Introduction to Performance

© Copyright IBM Corp. 2006

2 Performance Guide

Chapter 1. Principles of Performance

Elements of performance

Performance is the way a computer system behaves given a particular workload.
Performance is measured in terms of system response time, throughput, and
availability. Performance is also affected by:

* The resources available in your system

* How well those resources are used and shared.

In general, you tune your system to improve its cost-benefit ratio. Specific goals
could include:

* Processing a larger, or more demanding, work load without increasing
processing costs

For example, to increase the work load without buying new hardware or using
more processor time

* Obtaining faster system response times, or higher throughput, without
increasing processing costs

* Reducing processing costs without degrading service to your users

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money in terms of user time as well as
processor time, so before you undertake a tuning project, weigh its costs against its
possible benefits. Some of these benefits are tangible:

e More efficient use of resources

* The ability to add more users to the system.

Other benefits, such as greater user satisfaction because of quicker response time,
are intangible. All of these benefits should be considered.

Related concepts:

* |“Quick-start tips for performance tuning” on page 6|

* [“Performance tuning guidelines” on page 3

Related tasks:

+ [“Developing a performance improvement process” on page 5|

Performance tuning guidelines

The following guidelines should help you develop an overall approach to
performance tuning.

Remember the law of diminishing returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce smaller
and smaller benefits and require more and more effort.

Do not tune just for the sake of tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems, this

has little or no effect on response time until you have relieved the major

© Copyright IBM Corp. 2006 3

4 Performance Guide

constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the performance
of the resources that are major factors in the response time.

Consider the whole system: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the system
as a whole.

Change one parameter at a time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change contributed.
You also cannot effectively judge the trade-off you have made by changing more
than one parameter at a time. Every time you adjust a parameter to improve one
area, you almost always affect at least one other area that you may not have
considered. By changing only one at a time, this allows you to have a benchmark
to evaluate whether the change does what you want.

Measure and reconfigure by levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You can
use the following list of levels within a system as a guide:

* Hardware

* Operating System

* Application Server and Requester
* Database Manager

e SQL and XQuery Statements

* Application Programs

Check for hardware as well as software problems: Some performance problems
may be corrected by applying service either to your hardware, or to your software,
or to both. Do not spend excessive time monitoring and tuning your system when
simply applying service may make it unnecessary.

Understand the problem before you upgrade your hardware: Even if it seems that
additional storage or processor power could immediately improve performance,
take the time to understand where your bottlenecks are. You may spend money on
additional disk storage only to find that you do not have the processing power or
the channels to exploit it.

Put fall-back procedures in place before you start tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former setup
is saved in such a manner that it can be simply recalled, the backing out of the
incorrect information becomes much simpler.

Related concepts:

* |“Elements of performance” on page 3|

* [“Quick-start tips for performance tuning” on page 6|

Related tasks:
+ [“Developing a performance improvement process” on page 5|

Developing a performance improvement process

The performance improvement process is an iterative, long term approach to
monitoring and tuning aspects of performance. Depending on the result of
monitoring, you and your performance team adjust the configuration of the
database server and make changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the
kinds of applications that use the data and the patterns of data access. Different
kinds of applications have different performance requirements.

Consider the following outline of the performance improvement process as a
guideline.

Procedure:

To develop a performance improvement process:

1. Define performance objectives.

2. Establish performance indicators for the major constraints in the system.

3. Develop and execute a performance monitoring plan.

4. Continually analyze the results of monitoring to determine which resources
require tuning.

5. Make one adjustment at a time.
Even if you think that more than one resource requires tuning, or if several
tuning options are available for the resource you want to tune, make only one
change at a time so that you can make sure that your tuning efforts are
producing the effect you want. At some point, you can no longer improve

performance by tuning the database server and applications. Then you need to
upgrade your hardware.

Actual performance tuning requires trade-offs among system resources. For
example, to provide improved I/O performance you might increase buffer pool
sizes, but larger buffer pools require more memory, which might degrade other
aspects of performance.

Related concepts:

* [“Elements of performance” on page 3|

+ [“Performance information that users can provide” on page 6|

* |“Quick-start tips for performance tuning” on page 6|

+ [“Performance tuning guidelines” on page 3|

* [“Performance tuning limits” on page 5|

Performance tuning limits

Tuning can make only a certain amount of change in the efficiency of a system.
Consider how much time and money you should spend on improving system
performance, and how much spending additional time and money will help the
users of the system.

For example, tuning can often improve performance if the system encounters a
performance bottleneck. If you are close to the performance limits of your system

and the number of users increases by about ten percent, the response time is likely

Chapter 1. Principles of Performance 5

to increase by much more than ten percent. In this situation, you need to
determine how to counterbalance this degradation in performance by tuning your
system.

However, there is a point beyond which tuning cannot help. At this point, consider
revising your goals and expectations within the limits of your environment. For
significant performance improvements, you might need to add more disk storage,
faster CPU, additional CPUs, more main memory, faster communication links, or a
combination of these.

Related concepts:

* “Management of database server capacity” in Administration Guide:
Implementation

Related tasks:

* |“Developing a performance improvement process” on page 5|

Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If
you do not have enough time to set performance objectives and to monitor and
tune in a comprehensive manner, you can address performance by listening to
your users. You can usually determine where to start looking for a problem by
asking a few simple questions. For example, you might ask your users:

* What do you mean by “slow response”? Is it 10 % slower than you expect it to
be, or tens of times slower?

* When did you notice the problem? Is it recent or has it always been there?

* Do other users have the same problem? Are these users one or two individuals
or a whole group?

 If a group of users is experiencing the same problems, are they connected to the
same local area network?

* Do the the problems seem to be related to a specific transaction or application
program?

* Do you notice any pattern in the problem occurrence? For example, does the
problem occur at a specific time of day, such as during lunch hour, or is it more
or less continuous?

Related concepts:

* [“Performance tuning guidelines” on page 3

Related tasks:

* |“Developing a performance improvement process”’ on page 5|

Quick-start tips for performance tuning

When you start a new instance of DB2®, consider the following suggestions for a
basic configuration:

* Use the Configuration Advisor in the Control Center to get advice about
reasonable beginning defaults for your system. The defaults shipped with DB2
should be tuned for your unique hardware environment.

6 Performance Guide

Gather information about the hardware at your site so you can answer the
wizard questions. You can apply the suggested configuration parameter settings
immediately or let the wizard create a script based on your answers and run the
script later.

This script also provides a list of the most commonly tuned parameters for later
reference.

* Use other wizards in the Control Center and Client Configuration Assistant for
performance-related administration tasks. These tasks are usually those in which
you can achieve significant performance improvements by spending spend a
little time and effort.

Other wizards can help you improve performance of individual tables and
general data access. These wizards include the Create Database, Create Table,
Index, and Configure Multisite Update wizards. The Health Center provides a
set of monitoring and tuning tools.

* Use the Design Advisor tool from the Control Center or using the db2advis
command to find out what indexes, materialized query tables, multi-dimensional
clustering tables, and database partitions will improve query performance.

* Use the ACTIVATE DATABASE command to start databases. In a partitioned
database, this command activates the database on all database partitions and
avoids the startup time required to initialize the database when the first
application connects.

Note: If you use the ACTIVATE DATABASE command, you must shut down the
database with the DEACTIVATE DATABASE command. The last
application that disconnects from the database does not shut it down.

* Consult the summary tables that list and briefly describe each configuration
parameter available for the database manager and each database.

These summary tables contain a column that indicates whether tuning the
parameter results in high, medium,low, or no performance changes, either for
better or for worse. Use this table to find the parameters that you might tune for
the largest performance improvements.

Related concepts:

* |Chapter 15, “The database system monitor information,” on page 353|

Related reference:

+ |“Configuration parameters summary” on page 264

Disk-storage performance factors

The hardware that makes up your system can influence the performance of your
system. As an example of the influence of hardware on performance, consider
some of the implications associated with disk storage.

Four aspects of disk-storage management affect performance:
* Division of storage

How you divide a limited amount of storage between indexes and data and
among table spaces determines to a large degree how each will perform in
different situations.

* Wasted storage

Chapter 1. Principles of Performance 7

8 Performance Guide

Wasted storage in itself may not affect the performance of the system that is
using it, but wasted storage is a resource that could be used to improve
performance elsewhere.

Distribution of disk I/O

How well you balance the demand for disk I/O across several disk storage
devices, and controllers can affect how fast the database manager can retrieve
information from disks.

Lack of available storage

Reaching the limit of available storage can degrade overall performance.

Related concepts:

“DMS device considerations” in Administration Guide: Planning
“DMS table spaces” in Administration Guide: Planning
“SMS table spaces” in Administration Guide: Planning

“Database directories and files” in Administration Guide: Planning

[Table and index management for MDC tables” on page 337]

[“Table and index management for standard tables” on page 333]

Part 2. Performance Issues in Database Design

© Copyright IBM Corp. 2006

10 Performance Guide

Chapter 2. Planning for Performance in Database Design

Performance enhancing features

Materialized query tables

Materialized query tables (MQTs) are a powerful way to improve response time for

complex queries, especially queries that might require some of the following

operations:

* Aggregated data over one or more dimensions

* Joins and aggregates data over a group of tables

* Data from a commonly accessed subset of data, that is, from a “hot” horizontal
or vertical database partition

* Repartitioned data from a table, or part of a table, in a partitioned database
environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. In the
compiler, the query rewrite phase and the optimizer match queries with MQTs and
determine whether to substitute an MQT for a query that accesses the base tables.
If an MQT is used, the EXPLAIN facility can provide information about which
MQT was selected.

Because MQTs behave like regular tables in many ways, the same guidelines for
optimizing data access using table space definitions, creating indexes, and issuing
RUNSTATS apply to MQTs.

To help you understand the power of MQTs, the following example shows a
multidimensional analysis query and how it takes advantage of MQTs.

In this example,