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Introduction

• Motivation:
- Explosive growth of multimedia data
- Rapid spread of multimedia data (nowadays, almost all (mobile)
devices allow to generate and share multimedia data)

• How to search for multimedia data objects?
- A query is a description of the desired content and/or additional
meta data (e.g. format, size, quality, location, time)

- Most frequent query type: keyword(s)
• Content-based querying:

- Keywords of multimedia data objects can be wrong, incomplete,
ambiguous, or missing

⇒ In addition to keywords, content-based access in terms of features
is often desired (i.e. find objects which are similar to a given one)
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Content-based Access

• Similarity model:
- Feature representation describing the characteristic properties
- (Dis)similarity measure comparing two feature representations

Distance-based Multimedia Indexing

 A similarity model formalizes the notion of (dis)similarity

 Similarity of multimedia data objects is defined by a (dis)similarity measure
that is based on object representations

Similarity Model

13

(dis)similarity
measure

similarity
object

feature
representation

Similarity Search in Multimedia Data Fabian Panse

4



Feature Extraction

• Feature of a multimedia data object:
- Mathematical description of an inherent property
- Usually in the Euclidean space Rd

• Different types of features:
- Global features describe a multimedia data object as a whole
- Local features describe parts of a multimedia data object

• Different semantics of features:
- High-level features such as concepts, tags, etc.
- Low-level features such as
◦ color, texture, shape, etc. (images)
◦ pitch, loudness, etc. (audio objects)
◦ key-frame features, motion features, etc. (videos)
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Example: Image Features

• An image is a matrix of pixels
• A pixel is an atomic element which has a certain color
• An image I of width w ∈ N and height h ∈ N is modeled as
I(x , y)→ Rd for x ∈ {1, . . . ,w} and y ∈ {1, . . . , h}

• Value d depends on color model (e.g. CMYK d = 4, RGB d = 3)

Distance-based Multimedia Indexing

 An image is a matrix of pixels

 A pixel is an atomic element which has a certain color

 Pixel

 An image ℐ of width 𝑤 ∈ ℕ and height ℎ ∈ ℕ is modeled as ℐ 𝑥, 𝑦 → ℝ𝑑

for 𝑥 ∈ 1, … , 𝑤 and 𝑦 ∈ 1,… , ℎ

Example: Image Features

17

Similarity Search in Multimedia Data Fabian Panse

6



Tamura Features

• Six textural features corresponding to human visual perception proposed
by Hideyuki Tamura et al. in 1978

• Coarseness is the most fundamental textural feature and
reflects the size and the repetition of the texture elements

- It increases with bigger element sizes
and/or less element repetitions

• Contrast reflects the picture quality
- Dynamic range of gray-levels,
- Sharpness of edges
- Period of repeating patterns

• Directionality measures the total degree of the
direction of the patterns

- It involves both element shape and placement
• Line-likeness, regularity, roughness

Distance-based Multimedia Indexing

 Tamura et al. [TMY78] proposed six different textural features 
corresponding to human visual perception:

– Coarseness is the most fundamental 
textural feature and reflects the size
and the repetition of the texture elements

 It increases with bigger element sizes and/or
less element repetitions

– Contrast reflects the picture quality

 Dynamic range of gray-levels,

 Sharpness of edges

 Period of repeating patterns

– Directionality measures the total degree of the
direction of the patterns

 It involves both element shape and placement

– Line-likeness, regularity, roughness

Tamura Features

19

Distance-based Multimedia Indexing

 Tamura et al. [TMY78] proposed six different textural features 
corresponding to human visual perception:

– Coarseness is the most fundamental 
textural feature and reflects the size
and the repetition of the texture elements

 It increases with bigger element sizes and/or
less element repetitions

– Contrast reflects the picture quality

 Dynamic range of gray-levels,

 Sharpness of edges

 Period of repeating patterns

– Directionality measures the total degree of the
direction of the patterns

 It involves both element shape and placement

– Line-likeness, regularity, roughness

Tamura Features

19
Distance-based Multimedia Indexing

 Tamura et al. [TMY78] proposed six different textural features 
corresponding to human visual perception:

– Coarseness is the most fundamental 
textural feature and reflects the size
and the repetition of the texture elements

 It increases with bigger element sizes and/or
less element repetitions

– Contrast reflects the picture quality

 Dynamic range of gray-levels,

 Sharpness of edges

 Period of repeating patterns

– Directionality measures the total degree of the
direction of the patterns

 It involves both element shape and placement

– Line-likeness, regularity, roughness

Tamura Features

19
Similarity Search in Multimedia Data Fabian Panse

7



SIFT: Scale Invariant Feature Transform

• One of the most prominent local feature description method for images
• Proposed by David Lowe in 1999
• The SIFT method includes two parts:

- Keypoint detection
- Keypoint description

• A SIFT descriptor is a 128-dimensional
vector that is invariant to

- scale
- translation
- rotation

• A detailed analysis and implementation can be found at:
http://demo.ipol.im/demo/82/

Distance-based Multimedia Indexing

 One of the most prominent local feature description method for images 

 Proposed by David Lowe in 1999 [Lowe04]

 The SIFT method includes two parts:

1) Keypoint detection

2) Keypoint description

 A SIFT descriptor is a 128-dimensional
vector that is invariant to

– scale

– translation

– rotation

 A detailed analysis and implementation can be found in the work of Otera
and Delbracio [OD12], available online at: http://demo.ipol.im/demo/82/

SIFT: Scale Invariant Feature Transform
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Advanced Feature Descriptors

• Current research aims at improving or approximating SIFT descriptors
• A multitude of local feature descriptors have been proposed recently:

- PCA-SIFT: A more distinctive representation for local image descriptors
- CSIFT: A SIFT descriptor with color invariant characteristics
- SURF: Speeded-Up Robust Features
- ORB: An efficient alternative to SIFT or SURF
- BRISK: Binary Robust Invariant Scalable Keypoints
- BRIEF: Computing a local binary descriptor very fast
- CHoG: Compressed Histogram Of Gradients: A low-bitrate descriptor
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Software

• Many feature extraction and processing tools are available online:
- OpenCV: Open source Computer Vision

http://opencv.org/

- VLFeat: a cross-platform open source collection of vision algorithms
http://www.vlfeat.org/

- ImageJ: Image Processing and Analysis in Java
http://rsbweb.nih.gov/ij/

- OpenIMAJ: Open Intelligent Multimedia Analysis toolkit for Java
http://www.openimaj.org/

- Lire: An Open Source Java Content Based Image Retrieval Library
http://www.semanticmetadata.net/lire/

- Color Descriptor Software: Binary for local feature extraction
http://koen.me/research/colordescriptors/

Similarity Search in Multimedia Data Fabian Panse
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Feature Representation

Distance-based Multimedia Indexing

 Feature extraction: a multimedia data object is represented by means of 
features 𝑓1, … , 𝑓𝑛 ∈ 𝔽 in a feature space 𝔽

– SIFT features: 𝔽 = ℝ128

 Feature aggregation: the features 𝑓1, … , 𝑓𝑛 are aggregated into a compact 
feature representation

– clustering algorithms: k-means, expectation maximization, …

 A feature representation is defined as a function 𝐹: 𝔽 → ℝ

Feature Representation
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feature
extraction

feature
aggregation

multimedia data object feature representationfeatures 𝑓1, … , 𝑓𝑛 ∈ 𝔽

• Feature extraction: A multimedia data object is represented by means
of features f1, . . . , fn ∈ F in a feature space F

- SIFT features: F = R128

• Feature aggregation: The features f1, . . . , fn are aggregated into a
compact feature representation

- clustering algorithms: k-means, expectation maximization, . . .
• A feature representation is defined as a function F : F→ R
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Feature Extraction and Aggregation

Distance-based Multimedia Indexing

 Different means of feature aggregation:

– Feature Histogram: features are summarized according to a global partitioning 
which is fixed for all multimedia data objects

– Feature Signature: features are summarized individually (per object)

Feature Extraction and Aggregation
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• Different means of feature aggregation:
- Feature Histogram: features are summarized according to a global
partitioning which is fixed for all multimedia data objects

- Feature Signature: features are summarized individually
(per object)
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Feature Representation

• Given a feature space F, a feature representation F is defined as:

F : F→ R

• The value of zero is designated for features that are not relevant for a
certain multimedia data object

• The representatives RF ⊆ F of a feature representation F are defined as:

RF = {f ∈ F | F (f ) 6= 0}

• The weight of a single feature f ∈ F is defined as F (f ) ∈ R

Similarity Search in Multimedia Data Fabian Panse
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Feature Signature

• A feature signature S is defined as:

S : F→ R subject to |RS | <∞

• A multimedia data object is described by a finite number of features
• These features are the representatives RS = {f ∈ F | S(f ) 6= 0}
• Two feature signatures S1 and S2 may differ in their representatives and

weights
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Feature Histogram

• Let F be a feature space and R ⊆ F ∧ |R| <∞ be shared representatives
• A feature histogram HR w.r.t. the shared representatives R is defined as:

HR : F→ R subject to HR(F \ R) = {0}

• Every multimedia data object is described by the same finite number of
features, i.e. the shared representatives R

• Two feature histograms H1
R and H2

R can only differ in their weights

Similarity Search in Multimedia Data Fabian Panse

15



Relations of Feature Representations

• Class of feature representations:

RF = {F | F : F→ R}

• Class of feature signatures:

S = {S | S ∈ RF ∧ |RS | <∞}

• Class of feature histograms w.r.t. R ⊆ F, |R| <∞:

HR = {H | H ∈ RF ∧ HR(F \ R) = {0}}

• Union of all feature histograms:

H =
⋃

R⊆F,|R|<∞
HR = S

Distance-based Multimedia Indexing

 Class of feature representations:
ℝ𝔽 = 𝐹|𝐹: 𝔽 → ℝ

 Class of feature signatures:
𝕊 = 𝑆|𝑆 ∈ ℝ𝔽 ∧ R𝑆 < ∞

 Class of feature histograms w.r.t. R ⊆ 𝔽 ∧ R < ∞:

ℍR = 𝐻|𝐻 ∈ ℝ
𝔽 ∧ 𝐻R 𝔽\R = 0

 Union of all feature histograms:
ℍ =  R⊆𝔽∧ R <∞ℍR

Relations of Feature Representations
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Example: Feature Signatures

• 7-dimensional features: position, color, coarseness, and contrast
• Random sampling of 40.000 image pixels
• Increasing the number of representatives from 10 to 1000:

Distance-based Multimedia Indexing

 7-dimensional features: position, color, coarseness, and contrast

 Random sampling of 40.000 image pixels

 Increasing the number of representatives from 10 to 1000:

Example: Feature Signatures
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Distance-based Multimedia Indexing

 7-dimensional features: position, color, coarseness, and contrast

 Random sampling of 40.000 image pixels

 Increasing the number of representatives from 10 to 1000:

Example: Feature Signatures cont’d
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Similarity vs. Dissimilarity

Distance-based Multimedia Indexing

 A similarity measure (𝑠𝑖𝑚) assigns high values to similar objects:

– 𝑠𝑖𝑚 𝑜1, 𝑜2 ≥ 𝑠𝑖𝑚(𝑜1, 𝑜3)

 A dissimilarity measure (𝛿) assigns low values to similar objects:

– 𝛿 𝑜1, 𝑜2 ≤ 𝛿(𝑜1, 𝑜3)

Similarity vs. Dissimilarity
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object 𝑜1 object 𝑜2 object 𝑜3

• A similarity measure sim assigns high values to similar objects:
- sim(o1, o2) ≥ sim(o1, o3)

• A dissimilarity measure δ assigns low values to similar objects:
- δ(o1, o2) ≤ δ(o1, o3)
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Similarity Function & Metric Distance Function

• A similarity function s : X×X→ R quantifies the similarity between two
elements from a set X and satisfies the following properties:

- Symmetry: ∀x , y ∈ X : s(x , y) = s(y , x)
- Maximum self-similarity: ∀x , y ∈ X : s(x , x) ≥ s(x , y)

• Geometric distance between the feature representations defines
dissimilarity of multimedia objects
• A function δ : X× X→ R≥0 is called a metric distance function if it
satisfies the following properties:

- Identity of indiscernibles: ∀x , y ∈ X : δ(x , y) = 0⇔ x = y
- Non-negativity: ∀x , y ∈ X : δ(x , y) ≥ 0
- Symmetry: ∀x , y ∈ X : δ(x , y) = δ(y , x)
- Triangle inequality: ∀x , y , z ∈ X : δ(x , y) ≤ δ(x , z) + δ(z , y)

Similarity Search in Multimedia Data Fabian Panse
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From a Psychological Perspective . . .

• The distance-based approach has the advantage of a rigorous
mathematical interpretation
• There is a long-lasting discussion of whether the distance properties and in
particular the metric properties reflect the perceived dissimilarity correctly
• Consider the following example, where it holds that
δ(flame, ball) � δ(moon, ball) + δ(flame,moon):

Distance-based Multimedia Indexing

 The distance-based approach has the advantage of a rigorous 
mathematical interpretation [Shepard57]

 There is a long-lasting discussion of whether the distance properties and in 
particular the metric properties reflect the perceived dissimilarity 
correctly, see for instance [Tversky77, Krumhansl78]

 Consider the following example [James90], where it holds that
𝛿 flame, ball ≰ 𝛿 moon, ball + 𝛿 flame,moon :

From a Psychological Perspective…

61

similar w.r.t. 
luminosity

similar w.r.t. 
roundness

no properties 
shared alike

+≰
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Taking a closer look at this example . . .

• Validity clearly depends on the (dis)similarity model
• Consider the following two-dimensional “binary” feature representations

Distance-based Multimedia Indexing

 The distance-based approach has the advantage of a rigorous 
mathematical interpretation [Shepard57]

 There is a long-lasting discussion of whether the distance properties and in 
particular the metric properties reflect the perceived dissimilarity 
correctly, see for instance [Tversky77, Krumhansl78]

 Consider the following example [James90], where it holds that
𝛿 flame, ball ≰ 𝛿 moon, ball + 𝛿 flame,moon :
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0
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1
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1
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• Applying the Euclidean distance L2(x , y) =
√∑d

i=1(xi − yi)2 yields:

- L2(flame, ball) = L2
((1

0
)
,
(0

1
))

=
√
2 ' 1.41

- L2(ball ,moon) = L2
((0

1
)
,
(1

1
))

= 1

- L2(flame,moon) = L2
((1

0
)
,
(1

1
))

= 1

Distance-based Multimedia Indexing

 Validity of the previous example clearly depends on the similarity model

 Consider the following two-dimensional “binary” feature representations:

 Applying the Euclidean distance L2 𝑥, 𝑦 = 𝑖=1
𝑑 𝑥𝑖 − 𝑦𝑖

2 yields:

– L2 flame, ball = L2
1
0
,
0
1
= 2 ≈ 1.41

– L2 ball, moon = L2
0
1
,
1
1
= 1

– L2 flame,moon = L2
1
0
,
1
1
= 1

Taking a closer look at this example…
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From a Database Perspective . . .

• The distance-based approach provides a powerful tool
• Metric distance functions allow

- domain experts to model their notion of dissimilarity
- database experts to design efficient query processing approaches
(particularly the utilization of the triangle inequality)

• Thus, indexing approaches can be investigated without knowing the
inner-workings of a metric distance function

Similarity Search in Multimedia Data Fabian Panse
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Distance Functions for Feature Histograms

• Given two feature histograms X ,Y ∈ HR, how can we define a distance
between them?

• Consider the following color histograms for R = {r1, r2, . . . , r10}

Distance-based Multimedia Indexing

 Given two feature histograms 𝑋, 𝑌 ∈ ℍR, how can we define a distance 
between them?

 Consider the following color histograms for R = 𝑟1, … , 𝑟10 :

Distance Functions for Feature Histograms

66

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋
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𝑌
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Minkowski Distance

• Idea: Measure the dissimilarity by adding up the differences in all
dimensions, i.e. for all representatives f ∈ R ⊆ F

• Given two feature histograms X ,Y ∈ HR, the Minkowski Distance is
defined for p ∈ R≥0 ∪ {∞} as:

Lp(X ,Y ) =
(∑

f ∈R
|X (f )− Y (f )|p

) 1
p

• This corresponds to taking into account all pairwise differences:

Distance-based Multimedia Indexing

 Idea: Measure the dissimilarity by adding up the differences in all 
dimensions, i.e. for all representatives 𝑓 ∈ R ⊆ 𝔽

 Given two feature histograms 𝑋, 𝑌 ∈ ℍR, the Minkowski Distance is 
defined for 𝑝 ∈ ℝ≥0 ∪ ∞ as:

L𝑝 𝑋, 𝑌 =  

𝑓∈R

𝑋 𝑓 − 𝑌 𝑓 𝑝

1
𝑝

 This corresponds to taking into account all pairwise differences: 

Minkowski Distance
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𝑋
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Weighted Minkowski Distance

• Idea: Model the influence of the shared representatives R ⊆ F by a
weighting function w : F→ R≥0

• Given two feature histograms X ,Y ∈ HR, the Weighted Minkowski
Distance is defined for p ∈ R≥0 ∪ {∞} and a weighting function w as:

Lp(X ,Y ) =
(∑

f ∈R
w(f )× |X (f )− Y (f )|p

) 1
p

Distance-based Multimedia Indexing

 Idea: Model the influence of the shared representatives R ⊆ 𝔽 by a 
weighting function 𝑤:𝔽 → ℝ≥0

 Given two feature histograms 𝑋, 𝑌 ∈ ℍR, the Weighted Minkowski
Distance is defined for 𝑝 ∈ ℝ≥0 ∪ ∞ and a weighting function 𝑤 as:

L𝑝,𝑤 𝑋, 𝑌 =  

𝑓∈R

𝑤 𝑓 ⋅ 𝑋 𝑓 − 𝑌 𝑓 𝑝

1
𝑝

Weighted Minkowski Distance

68

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

Similarity Search in Multimedia Data Fabian Panse

25



Issues of Bin-by-bin Distance Functions

• Bin-by-bin distance functions define a distance value by taking into
account single representatives (dimensions)

• Neighboring representatives (dimensions) are neglected
• Consider the following color histograms X ,Y ,Z ∈ HR with

R = {r1, . . . , r10}

Distance-based Multimedia Indexing

 Bin-by-bin distance functions define a distance value by taking into account 
single representatives (dimensions)

 Neighboring representatives (dimensions) are neglected

 Consider the following color histograms 𝑋, 𝑌, 𝑍 ∈ ℍR with 𝑅 = 𝑟𝑖 𝑖=1
10 :

 In this example, it holds that L𝑝 𝑋, 𝑌 ≥ L𝑝(𝑋, 𝑍)

Issues of Bin-by-bin Distance Functions
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𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑍

• In this example, it holds that Lp(X ,Y ) ≥ Lp(X ,Z )
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Issues of Bin-by-bin Distance Functions

• Consider the following color histograms X ,Y ,Z ∈ HR

Distance-based Multimedia Indexing

 Consider the following color histograms 𝑋, 𝑌, 𝑍 ∈ ℍR with 𝑅 = 𝑟𝑖 𝑖=1
10 :

 All color histograms 𝑋, 𝑌, 𝑍 ∈ ℍR result in the same Minkowsi Distance:
L𝑝 𝑋, 𝑌 = L𝑝 𝑋, 𝑍 = L𝑝 𝑌, 𝑍

 The fact that the green color is more similar to the blue color than to the
red color is not taken into account

Issues of Bin-by-bin Distance Functions cont’d
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𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑍

• All color histograms X ,Y ,Z ∈ HR result in the same Minkowsi Distance:
Lp(X ,Y ) = Lp(X ,Z ) = Lp(Y ,Z )

• The fact that the color green is more similar to the color blue than to
the color red is not taken into account
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Cross-bin Distance Functions

• More flexible than bin-by-bin distance functions
• Basic Ideas:

- Replace the weighting of single representatives by a weighting of
pairs of representatives

- Model the influence not only for each single representative, but also
among different representatives

- This influence is often defined in terms of a similarity relation
- Thus, we can utilize a similarity function s : X× X→ R in order to
define the influence for all pairs of features

Similarity Search in Multimedia Data Fabian Panse
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Quadratic Form Distance

• The Quadratic Form Distance is a cross-bin distance function that takes
into account all pair-wise similarities

• Given two feature histograms X ,Y ∈ HR, the Quadratic Form Distance
w.r.t. a similarity function s : X× X→ R is defined as:

QFDs(X ,Y ) =
√∑

f ∈R
∑

g∈R (X (f )− Y (f ))× s(f , g)× (X (g)− Y (g))

Distance-based Multimedia Indexing

 The Quadratic Form Distance [Ioka89, NBE+93, FBF+94, HSE+95] is a cross-
bin distance function that takes into account all pair-wise similarities

 Given two feature histograms 𝑋, 𝑌 ∈ ℍR, the Quadratic Form Distance 
w.r.t. to a similarity function 𝑠: 𝔽 × 𝔽 → ℝ is defined as:

QFD𝑠 𝑋, 𝑌 =  

𝑓∈R

 

𝑔∈R

𝑋 𝑓 − 𝑌 𝑓 ⋅ 𝑠 𝑓, 𝑔 ⋅ 𝑋 𝑔 − 𝑌 𝑔

Quadratic Form Distance

72

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

…
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Quadratic Form Distance: Example

Distance-based Multimedia Indexing

 The Quadratic Form Distance is as follows:

– QFD𝑠 𝑋, 𝑌 = 1.6 ≈ 1.265

– QFD𝑠 𝑋, 𝑍 = 1.6 ≈ 1.265

– QFD𝑠 𝑌, 𝑍 = 0.8 ≈ 0.894

 Better fits our intuition of dissimilarity

Quadratic Form Distance: Example

73

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑍

𝒙 = 1,0,… , 0 𝒚 = 0,… , 0,1,0, … , 0 𝒛 = 0,… , 0,1,0,0

• Let s(ri , ri) = 1, s(r1, r6) = s(r1, r8) = 0.2 and s(r6, r8) = 0.6
• The Quadratic Form Distance is as follows:

- QFDs(X ,Y ) =
√
1.6 ' 1.265

- QFDs(X ,Z ) =
√
1.6 ' 1.265

- QFDs(Y ,Z ) =
√
0.8 ' 0.894

• Better fits our intuition of dissimilarity

Distance-based Multimedia Indexing

 The Quadratic Form Distance is as follows:

– QFD𝑠 𝑋, 𝑌 = 1.6 ≈ 1.265

– QFD𝑠 𝑋, 𝑍 = 1.6 ≈ 1.265

– QFD𝑠 𝑌, 𝑍 = 0.8 ≈ 0.894

 Better fits our intuition of dissimilarity

Quadratic Form Distance: Example

73

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑍

𝒙 = 1,0,… , 0 𝒚 = 0,… , 0,1,0, … , 0 𝒛 = 0,… , 0,1,0,0
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Distance Functions for Feature Histograms

• Distance functions are defined for feature histograms w.r.t. the same
shared representatives

• Weighted Minkowski Distances are limited w.r.t. adaptability but show
linear computation time complexity

• Quadratic Form Distances are very adaptable but show quadratic
computation time complexity

• Other distance functions
- Geometric measures such as cosine distance
- Information theoretic measures such as Kullback-Leibler
- Statistic measures such as χ2-statistics

Similarity Search in Multimedia Data Fabian Panse
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Conceptual Differences of Feature Representations

Feature histograms HR

• Multimedia data objects use the
same shared representatives:

- Sufficient to store the weights
- Feature histograms have the
same cardinality

- Can be thought of as vectors
(representatives = dimensions)

Distance-based Multimedia Indexing

Feature histograms ℍR

 Multimedia data objects use the 
same shared representatives:

– Sufficient to store the weights

– Feature histograms have the same 
cardinality

– Can be thought of as Eucl. vectors
(representatives = dimensions)

– Distance computation by means of 
differences in each dimension

Feature signatures 𝕊

 Multimedia data objects use 
individual representatives:

– Weights and representatives have 
to be stored

– Feature signatures have different 
cardinalities

– Distance computation along single 
dimensions not meaningful

Conceptual Differences of Feature Representations

75

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟5 𝑟6 𝑟9 𝑟10

𝑋

𝑟1 𝑟3 𝑟4 𝑟5 𝑟8 𝑟9 𝑟10

𝑌

- Distance computation by means
of differences in each dimension

Feature signatures S
• Multimedia data objects use
individual representatives:

- Weights and representatives
have to be stored

- Feature signatures have
different cardinalities

Distance-based Multimedia Indexing

Feature histograms ℍR

 Multimedia data objects use the 
same shared representatives:

– Sufficient to store the weights

– Feature histograms have the same 
cardinality

– Can be thought of as Eucl. vectors
(representatives = dimensions)

– Distance computation by means of 
differences in each dimension

Feature signatures 𝕊

 Multimedia data objects use 
individual representatives:

– Weights and representatives have 
to be stored

– Feature signatures have different 
cardinalities

– Distance computation along single 
dimensions not meaningful

Conceptual Differences of Feature Representations

75

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑋

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

𝑌

𝑟1 𝑟2 𝑟5 𝑟6 𝑟9 𝑟10

𝑋

𝑟1 𝑟3 𝑟4 𝑟5 𝑟8 𝑟9 𝑟10

𝑌

- Distance computation along
single dimensions not meaningful
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Concept of Using Ground Distance

• Idea: Utilization of a ground distance δ : F× F→ R≥0 on the
representatives RX ,RY ⊆ F of two feature signatures X ,Y ∈ S

Distance-based Multimedia Indexing

 Idea: Utilization of a ground distance 𝛿: 𝔽 × 𝔽 → ℝ≥0 on the 
representatives R𝑋, R𝑌 ⊆ 𝔽 of two feature signatures 𝑋, 𝑌 ∈ 𝕊

Concept Overview

77

Feature signature
𝑋 ∈ 𝕊

Distance function
D: 𝕊 × 𝕊 → ℝ≥0

Representatives R𝑋 ⊆ 𝔽
with weights 𝑋 𝑓 ∈ ℝ

Ground distance
𝛿: 𝔽 × 𝔽 → ℝ≥0

calculates distances

usesis represented by

applicable to
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Earth Mover’s Distance: Principle

• Given two color signatures X ,Y ∈ S

Distance-based Multimedia Indexing

 Given two color signatures 𝑋, 𝑌 ∈ 𝕊:

 The transportation (earth moving) problem is formalized by:

– Earth hills R𝑋 with capacities 𝑋(𝑟𝑖) for 𝑟𝑖 ∈ R𝑋

– Earth holes R𝑌 with capacities 𝑌 𝑟𝑖 for 𝑟𝑖 ∈ R𝑌

– Cost (ground distance) 𝛿: 𝔽 × 𝔽 → ℝ for moving earth

– All possible flows 𝐹 = 𝑓 | 𝑓: 𝔽 × 𝔽 → ℝ

 Solution: flow 𝑓𝑚𝑖𝑛 ∈ 𝐹 that minimizes cost flow  𝑔∈R𝑋
ℎ ∈R𝑌

𝑓𝑚𝑖𝑛 𝑔, ℎ ⋅ 𝛿(𝑔, ℎ)

Earth Mover’s Distance: Principle

80

𝑟1 𝑟2 𝑟5 𝑟6 𝑟9 𝑟10

𝑋

𝑟1 𝑟3 𝑟4 𝑟5 𝑟8 𝑟9 𝑟10

𝑌

R𝑋 = {𝑟1, 𝑟2, 𝑟5, 𝑟6, 𝑟9, 𝑟10} R𝑌 = {𝑟1, 𝑟3, 𝑟4, 𝑟5, 𝑟8, 𝑟9, 𝑟10}

• The transportation (earth moving) problem is formalized by:
- Earth hills RX with capacities X (ri) for ri ∈ RX

- Earth holes RY with capacities Y (ri) for ri ∈ RY

- Cost (ground distance) δ : F× F→ R≥0 for moving a unit of earth
- All possible flows F = {f | f : RX × RY → R≥0}

• Solution: flow fmin ∈ F that minimizes
∑

g∈RX ,h∈RY
fmin(g , h)× δ(g , h)
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Earth Mover’s Distance: Definition

• Given two feature signatures X ,Y ∈ S over a feature space F, the Earth
Mover’s Distance EMDδ : S× S→ R between X and Y is defined as:

EMDδ(X ,Y ) = min
{f |f : RX×RY→R≥0}

( ∑
g∈RX

∑
h∈RY

f (g , h)× δ(g , h)
min

(∑
g∈RX

X (g),
∑

h∈RY
Y (h)

))

subject to the constraints:

- CNNeg: ∀g ∈ RX , ∀h ∈ RY : f (g , h) ≥ 0

- CSource: ∀g ∈ RX :
∑

h∈RY
f (g , h) ≤ X (g)

- CTarget: ∀h ∈ RY :
∑

g∈RX
f (g , h) ≤ Y (h)

- CMaxFlow:
∑

g∈RX ,h∈RY
f (g , h) = min

(∑
g∈RX

X (g),
∑

h∈RY
Y (h)

)
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Earth Mover’s Distance: Example

• Consider the following two color signatures X ,Y ∈ S

Distance-based Multimedia Indexing

 Consider the following two color signatures 𝑋, 𝑌 ∈ 𝕊:

 Given the ground distance 𝛿 𝑟𝑖 , 𝑟𝑗 = 𝑖 − 𝑗 , we obtain the following 

distance value:
EMD𝛿 𝑋, 𝑌 = 𝑓 𝑟2, 𝑟1 ⋅ 𝛿 𝑟2, 𝑟1 + 𝑓 𝑟9, 𝑟7 ⋅ 𝛿 𝑟9, 𝑟7 + 𝑓 𝑟9, 𝑟8 ⋅ 𝛿 𝑟9, 𝑟8

= 0.25 ⋅ 1 + 0.125 ⋅ 2 + 0.125 ⋅ 1
= 0.625

Earth Mover’s Distance: Example

82

0.25 0.25
0.5

𝑟1 𝑟2 𝑟9

𝑋

0.5

0.125 0.125
0.25

𝑟1 𝑟7 𝑟8 𝑟9

𝑌

• Given the ground distance δ(ri , rj) = |i − j |, we obtain the following
distance value:
EMDδ(X ,Y ) = f (r2, r1)× δ(r2, r1) + f (r9, r7)× δ(r9, r7) + f (r9, r8)× δ(r9, r8)

= 0.25× 1 + 0.125× 2 + 0.125× 1
= 0.625
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Earth Mover’s Distance: Properties

• The Earth Mover’s Distance is defined as a linear optimization problem
• Finding an optimal solution can be computed based on a specific variant

of the simplex algorithm
• Exponential computation time complexity in the worst case
• Average empirical computation time complexity between O(|RX |3) and
O(|RX |4) for |RX | ≥ |RY |

• More efficient algorithms for specific classes of δ
• Earth Mover’s Distance is a metric if and only if

- feature signatures are normalized, i.e.
∑

f ∈RX
X (f ) =

∑
f ∈RY

Y (f )

- ground distance δ is a metric

Similarity Search in Multimedia Data Fabian Panse
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Distance-based Similarity Query

Distance-based Multimedia Indexing

 Mathematically, a distance-based similarity query is a function that defines 
a subset of database objects with respect to:

– a query object 𝑞 ∈ 𝕏

– a distance function 𝛿: 𝕏 × 𝕏 → ℝ

Distance-based Similarity Query

4

database 𝔻 ⊆ 𝕏

- query object 𝑞 ∈ 𝕏
- distance function 𝛿

results ⊆ 𝔻

• Different query types:
- Range Query
- K-Nearest-Neighbor Query
- Ranking Query

Different query types:
- (Top-k Query)
- (Skyline Query)
- (Reverse Nearest-Neighbor Query)
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Range Query

• Range query includes database objects whose distances to a query object
lie within a specific threshold

• Let X be a set, δ : X× X→ R be a distance function, D ⊆ X be a finite
database, and q ∈ X be a query object

• The query rangeε(q, δ,D) is defined w.r.t. the range ε ∈ R≥0 as:

rangeε(q, δ,D) = {x ∈ D | δ(q, x) ≤ ε}

Distance-based Multimedia Indexing

 Range query includes database objects whose distances to a query object 
lie within a specific threshold

 Let 𝕏 be a set, 𝛿:𝕏 × 𝕏 → ℝ be a distance function, 𝔻 ⊆ 𝕏 be a finite 
database, and 𝑞 ∈ 𝕏 be a query object.

 The query range𝜀 𝑞, 𝛿,𝔻 ⊆ 𝕏 is defined w.r.t. the range 𝜀 ∈ ℝ≥0 as:

range𝜀 𝑞, 𝛿,𝔻 = 𝑥 ∈ 𝔻 | 𝛿 𝑞, 𝑥 ≤ 𝜀

Range Query

5

𝑞
𝜀
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Range Query: Properties

• By performing a sequential scan (also linear scan or naïve scan) of the
entire database D, the computation time complexity lies in O(|D|)

• The result size is bounded by the database size, i.e. it holds that

|rangeε(q, δ,D)| ≤ |D|

• Problem: How to choose an appropriate range ε ∈ R≥0?
- Different data scales can result in very small or very large result sets

Distance-based Multimedia Indexing

 By performing a sequential scan (also linear scan or naïve scan) of the 
entire database 𝔻, the computation time complexity lies in 𝒪 𝔻

 The result size is bounded by the database size, i.e. it holds that 

range𝜀 𝑞, 𝛿,𝔻 ≤ 𝔻

 Problem: How to choose an appropriate range 𝜀 ∈ ℝ≥0?

– Different data scales can result in very small or very large result sets

Range Query: Properties

7

𝑞
𝜀

𝑞
𝜀
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K-Nearest-Neighbor Query

• K-nearest-neighbor query includes database objects up to the
kth-smallest distance to a query object

• Let X be a set, δ : X× X→ R be a distance function, D ⊆ X be a finite
database, and q ∈ X be a query object

• The query NNk(q, δ,D) is defined w.r.t. the number of nearest neighbors
k ∈ N as the smallest set NNk(q, δ,D) ⊆ D with |NNk(q, δ,D)| ≥ k
such that

∀x ∈ NNk(q, δ,D),∀x ′ ∈
(
D \ NNk(q, δ,D)

)
: δ(q, x) ≤ δ(q, x ′)
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K-Nearest-Neighbor Query: Properties

• By performing a sequential scan of the entire database D, the
computation time complexity lies in O(|D|)

• If the distances between the query object and the data objects are
unique, i.e. if it holds that ∀x , x ′ ∈ D : δ(q, x) 6= δ(q, x ′), the result size
is bounded by the minimum of database size and parameter k, i.e. it
holds that

|NNk(q, δ,D)| ≤ min(k, |D|)
• If two or more objects have the same distance to the query object,

NNk(q, δ,D) can comprise more than k objects

Distance-based Multimedia Indexing

 By performing a sequential scan of the entire database 𝔻, the computation 
time complexity lies in 𝒪 𝔻

 If the distances between the query object and the data objects are unique, 
i.e. if it holds that ∀𝑥, 𝑥′ ∈ 𝔻: 𝛿 𝑞, 𝑥 ≠ 𝛿 𝑞, 𝑥′ , the result size is bounded 
by the minimum of database size and parameter 𝑘, i.e. it holds that 

NN𝑘 𝑞, 𝛿, 𝔻 ≤ min 𝑘, 𝔻

 If two or more objects have the same distance to the query object, 
NN𝑘 𝑞, 𝛿,𝔻 can comprise more than 𝑘 objects

K-Nearest-Neighbor Query: Properties

10

𝑞

In this example:
NN1 𝑞, 𝛿, 𝔻 = 3
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Ranking Query

• Ranking query sorts a database in ascending order w.r.t. the distances to
a query object

• Let X be a set, δ : X× X→ R be a distance function, D ⊆ X be a finite
database, and q ∈ X be a query object

• The query ranking(q, δ,D) is a sequence of D that is defined as:

ranking(q, δ,D) = x1, . . . , x|D|
where it holds that

δ(q, xi) ≤ δ(q, xj) for all xi , xj ∈ D and 1 ≤ i ≤ j ≤ |D|

Distance-based Multimedia Indexing

 Ranking query sorts a database in ascending order w.r.t. the distances to 
a query object

 Let 𝕏 be a set, 𝛿:𝕏 × 𝕏 → ℝ be a distance function, 𝔻 ⊆ 𝕏 be a finite 
database, and 𝑞 ∈ 𝕏 be a query object.

 The query ranking 𝑞, 𝛿,𝔻 is a sequence of 𝔻 that is defined as:

ranking 𝑞, 𝛿,𝔻 = 𝑥1, … , 𝑥 𝔻 ,

where it holds that 𝛿 𝑞, 𝑥𝑖 ≤ 𝛿 𝑞, 𝑥𝑗 for all 𝑥𝑖 , 𝑥𝑗 ∈ 𝔻 and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝔻

Ranking Query

11

𝑞
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5𝑥6
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Ranking Query: Properties

• The computation time complexity of this ranking algorithm depends on
the computation time complexity of the sorting algorithm

- In general: O(|D| × log(|D|))

• The cardinality of ranking(q, δ,D) can be restricted by nesting the
ranking query with other query types

- Sorted sequence of the kth-nearest neighbors:

ranking(q, δ,NNk(q, δ,D))

- Sorted sequence of data objects within range ε:

ranking(q, δ, rangeε(q, δ,D))
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Multi-Step Query Architecture

• Processing of distance-based similarity queries in multiple steps
• Filter step is applied to all database objects

- Efficient generation of candidates
- Use of approximations

• Refinement step only necessary on candidates
- Use of exact distances
- Correctness: do not return wrong objects
- Completeness: do not discard correct objects
- Efficiency: short response times

Distance-based Multimedia Indexing

 Processing of distance-based similarity queries in multiple steps:

– Filter step is applied to all database objects

 Efficient generation of candidates

 Use of approximations

– Refinement step only necessary on candidates

 Use of exact distances

 Correctness: do not return wrong objects

 Completeness: do not discard correct objects

 Efficiency: short response times

Multi-Step Query Architecture

17

query 𝑞 ∈ 𝕏 candidates  𝒞 ⊆ ℛ results ℛ ⊆ 𝔻

index 
or filter

database
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Complexity of Distance-based Similarity Queries

• Problem: Quality determines complexity
- High dimensionality ⇒ better quality
- Complex distance measure (e.g. Earth Mover’s) ⇒ better quality
- But: both require much computing time

• Solution: Filter step for reduction of expensive computations
- Consider a range query rangeε(q, δ,D)
- Choose a filter distance δfilter with small computational effort
- Discard all objects with δfilter > ε
- Necessary condition: filter distance is a lower bound of the exact
distance, i.e.

Distance-based Multimedia Indexing

 Problem: quality determines complexity

– High dimensionality (high-resolution partitioning of color space)   better quality

– Complex distance measure (e.g. Earth Mover’s Distance)  better quality

– But: both require much computing time

 Solution: Filter step for reduction of expensive computations

– Consider a range query range𝜀 𝑞, 𝛿, 𝔻

– Choose a filter distance 𝛿𝑓𝑖𝑙𝑡𝑒𝑟 with small computational effort

– Discard all objects with 𝛿𝑓𝑖𝑙𝑡𝑒𝑟 > 𝜀

– Necessary condition: filter distance is a lower bound of the exact distance, i.e.

Complexity of Distance-based Similarity Queries

18

∀𝑥, 𝑦 ∈ 𝕏:

𝛿𝑓𝑖𝑙𝑡𝑒𝑟 𝑥, 𝑦 ≤ 𝛿 𝑥, 𝑦

𝛿𝑓𝑖𝑙𝑡𝑒𝑟 𝑥, 𝑦 > 𝜀 ⇒ 𝛿 𝑥, 𝑦 > 𝜀
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Lower Bound

• Let X be a set and δ : X× X→ R be a distance function. A function
δLB : X× X→ R is a lower bound of δ if it holds that:

∀x , y ∈ X : δLB(x , y) ≤ δ(x , y)

• Two approaches of deriving a lower bound:
- Model-specific approaches which exploit the inner workings of a
distance function

- Generic approaches which exploit the properties of the
corresponding metric distance space (X, δ)

• δLB is also denoted as the filter (distance) of δ, denoted by δLB ≤ δ
• Quality of a lower bound depends on the ICES criteria
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ICES Criteria for Lower Bounds

• Indexable:
- Filter function should be indexable in order to be applied with an
index structure

• Complete:
- No correct answers are dismissed in the filter step
- There are approximate systems with limited completeness and
correctness, e.g. PAC-NN (probably approximate correct)

• Efficient:
- Fast computation of filter distance, e.g., linear complexity w.r.t.
dimensionality

• Selective:
- Small candidate set generated in the filter step
- The larger the filter distance δfilter , the better the filter selectivity

Similarity Search in Multimedia Data Fabian Panse
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Multi-Step Range Query

• Given a set X, a database D ⊆ X, and a distance function δ : X×X→ R
• Given a lower bound δLB : X× X→ R of δ, how to process a query
rangeε(q, δ,D) = {x ∈ D | δ(q, x) ≤ ε} efficiently?
• Process:

- Filter step: evaluate range query with the
same ε ∈ R but cheaper filter distance δLB
to generate the candidates

C = {x ∈ D | δLB(q, x) ≤ ε}
- Refinement step: refine candidates with
the exact distance δ to obtain the results

R = {x ∈ C | δ(q, x) ≤ ε}

• It holds that R = rangeε(q, δ,D) iff δLB ≤ δ

Distance-based Multimedia Indexing

 Given a set 𝕏, a database 𝔻 ⊆ 𝕏, and a distance function 𝛿:𝕏 × 𝕏 → ℝ

 Given a lower bound 𝛿𝐿𝐵: 𝕏 × 𝕏 → ℝ of 𝛿, how to process a query 
range𝜀 𝑞, 𝛿, 𝔻 = 𝑥 ∈ 𝔻 | 𝛿 𝑞, 𝑥 ≤ 𝜀 efficiently?

 Process:

– Filter step: evaluate range query with the
same 𝜀 ∈ ℝ but cheaper filter distance 𝛿𝐿𝐵
to generate the candidates 

𝒞 = 𝑥 ∈ 𝔻 | 𝛿𝐿𝐵 𝑞, 𝑥 ≤ 𝜀

– Refinement step: refine candidates with the
exact distance 𝛿 to obtain the results 

ℛ = 𝑥 ∈ 𝒞 𝛿 𝑞, 𝑥 ≤ 𝜀}

 It holds that ℛ = range𝜀 𝑞, 𝛿, 𝔻 iff 𝛿𝐿𝐵 ≤ 𝛿

Multi-Step Range Query [FRM94]

21

filter step
𝛿𝑓𝑖𝑙𝑡𝑒𝑟 < 𝜀

refinement step
𝛿 < 𝜀

candidates 𝒞

results ℛ

complete database 𝔻
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Optimal Multi-Step k-NN Query

• Given a set X, a database D ⊆ X, and a distance function δ : X×X→ R
• How to process a query NNk(q, δ,D) efficiently by means of a lower

bound δLB : X× X→ R and an optimal number of candidates?
• Idea:

- Utilization of a ranking query
- Adaptation of εmax after each object

• Properties:
- It can be shown that the resulting algorithm is complete
- It can be shown that the number of candidates is optimal (minimal)

• Note:
- δLB(q, x) > δLB(q, y) ; δ(q, x) > δ(q, y)

Similarity Search in Multimedia Data Fabian Panse
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Optimal Multi-Step k-NN Query

Distance-based Multimedia Indexing

Optimal Multi-Step k-NN Query cont’d

24

NN𝑘 𝑞, 𝛿, 𝔻

database

index

ranking 𝑞, 𝛿𝐿𝐵, 𝔻

while 𝛿𝐿𝐵 𝑞, 𝑥 ≤ 𝜀𝑚𝑎𝑥 do
load object from database

and adjust 𝜀𝑚𝑎𝑥

result

final k-NN: 𝛿 𝑞, 𝑥 ≤ 𝜀𝑚𝑎𝑥
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Optimal Multi-Step k-NN Query: Pseudo Code

Distance-based Multimedia Indexing

procedure NN𝑘 𝑞, 𝛿, 𝔻 :

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ℛ ← ∅

𝑓𝑖𝑙𝑡𝑒𝑟𝑅𝑎𝑛𝑘𝑖𝑛𝑔 ← ranking 𝑞, 𝛿𝐿𝐵 , 𝔻

𝑥 ← 𝑓𝑖𝑙𝑡𝑒𝑟𝑅𝑎𝑛𝑘𝑖𝑛𝑔. 𝑔𝑒𝑡𝑛𝑒𝑥𝑡()

𝜀𝑚𝑎𝑥 ← ∞

while 𝛿𝐿𝐵 𝑞, 𝑥 ≤ 𝜀𝑚𝑎𝑥 do

if ℛ < 𝑘 then

ℛ ← ℛ ∪ 𝑥

else if 𝛿 𝑞, 𝑥 ≤ 𝜀𝑚𝑎𝑥 then

ℛ ← ℛ ∪ 𝑥

ℛ ← ℛ − argmax
𝑟∈ℛ
𝛿 𝑞, 𝑦

𝜀𝑚𝑎𝑥 ← max
𝑦∈ℛ
𝛿(𝑞, 𝑦)

𝑥 ← 𝑓𝑖𝑙𝑡𝑒𝑟𝑅𝑎𝑛𝑘𝑖𝑛𝑔. 𝑔𝑒𝑡𝑛𝑒𝑥𝑡()

return ℛ

Optimal Multi-Step k-NN Query: Pseudo Code
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Optimal Multi-Step k-NN Query: Properties

• Observation:
- Pruning distance εmax decreases
- Filter distance δLB increases
- Algorithm terminates when δLB ≥ εmax

Distance-based Multimedia Indexing

 Observation:

– Pruning distance 𝜀𝑚𝑎𝑥 decreases

– Filter distance 𝛿𝐿𝐵 increases

– Algorithm terminates when 𝛿𝐿𝐵 ≥ 𝜀𝑚𝑎𝑥

Optimal Multi-Step k-NN Query: Properties

26

𝑞

𝛿𝐿𝐵

𝜀𝑚𝑎𝑥
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Optimal Multi-Step k-NN Query: Example

Given:
• objects o1 − o7

• distance function δ, lower bound function δLB
• k = 3

δLB δ k-NN εmax remark
o1 0.01 0.01 {o1} ∞
o2 0.2 0.25 {o1, o2} ∞
o3 0.25 0.35 {o1, o2, o3} 0.35
o4 0.27 0.3 {o1, o2, o4} 0.3
o5 0.28 0.4 {o1, o2, o4} 0.3 εmax < δLB ⇒ stop
o6 0.4 - - -
o7 0.42 - - -
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Optimal Multi-Step k-NN Query: Example

Given:
• objects o1 − o7

• distance function δ, lower bound function δLB
• k = 3

δLB δ k-NN εmax remark
o1 0.01 0.01 {o1} ∞
o2 0.2 0.25 {o1, o2} ∞
o3 0.25 0.35 {o1, o2, o3} 0.35
o4 0.27 0.3 {o1, o2, o4} 0.3
o5 0.28 0.4 {o1, o2, o4} 0.3 εmax < δLB ⇒ stop
o6 0.4 0.5 {o1, o2, o4} 0.3 saved computationso7 0.42 0.45 {o1, o2, o4} 0.3
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Lower Bound of Minkowski Distance

• Given two feature histograms X ,Y ∈ HR and the Minkowski Distance

Lp(X ,Y ) =
(∑

f ∈R |X (f )− Y (f )|p
) 1

p

• Any subset R’ ⊆ R defines a lower bound, i.e. it holds for all X ,Y ∈ HR

Lp(X |R’,Y |R’) =
(∑

f ∈R’ |X (f )− Y (f )|p
) 1

p

≤
(∑

f ∈R |X (f )− Y (f )|p
) 1

p = Lp(X ,Y )
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Generic Lower Bound of EMD

• Given two ground distance functions δ, δLB : F× F→ R≥0 with δLB ≤ δ
it holds for all feature signatures X ,Y ∈ S that:

EMDδLB (X ,Y ) ≤ EMDδ(X ,Y )
• Proof:

- Let m = min
(∑

g∈RX
X (g),

∑
h∈RY

Y (h)
)
be the minimum total

weight of X and Y
- Let the flow fmin ∈ RF×F define a minimum solution:

EMDδ(X ,Y ) = 1
m

(∑
g ,h∈F fmin(g , h)× δ(g , h)

)
≥ 1

m

(∑
g ,h∈F fmin(g , h)× δLB(g , h)

)
≥ EMDδLB (X ,Y )
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Centroid-based Lower Bound

• Given a ground distance function δ : F× F→ R≥0, it holds for all
feature signatures X ,Y ∈ S that:

LBRubner (X ,Y ) = δ(x , y) ≤ EMDδ(X ,Y )

where x , y ∈ F are defined as the centroids (mean representatives) of X
and Y , i.e. x =

∑
g∈RX

g × X (g) and y =
∑

h∈RY
h × Y (h) if the total

weight for every signature is 1.

• Properties:
- LBRubner is applicable to feature signatures and histograms
- Centroids can be computed prior to query processing
- Computation time complexity of LBRubner solely depends on the
dimensionality of the feature space and not on the size of the
feature representations
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Independent Minimization Lower Bound of EMD

• Idea: Approximation of the EMD through constraint relaxation
• Approach: Given two feature signatures X ,Y ∈ Sm, the Earth Mover’s
Distance is defined w.r.t. a metric ground distance δ as:

EMDδ(X ,Y ) = min{f |f : RX×RY→R≥0}
1
m

(∑
g∈RX

∑
h∈RY

f (g , h)× δ(g , h)
)

subject to the constraints:

- CNNeg: ∀g ∈ RX ,∀h ∈ RY : f (g , h) ≥ 0

- CSource: ∀g ∈ RX :
∑

h∈RY
f (g , h) ≤ X (g)

- CTarget: ∀h ∈ RY :
∑

g∈RX
f (g , h) ≤ Y (h)

- CMaxFlow:
∑

g∈RX ,h∈RY
f (g , h) = m

• Lower bound LBIM results from replacing CTarget with CTargetIM
• The minimization within LBIM can be computed individually for each
representative g ∈ RX
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Independent Minimization Lower Bound of EMD

• Idea: Approximation of the EMD through constraint relaxation
• Approach: Given two feature signatures X ,Y ∈ Sm, the LBIM Distance
is defined w.r.t. a metric ground distance δ as:

LBIM(X ,Y ) = min{f |f : RX×RY→R≥0}
1
m

(∑
g∈RX

∑
h∈RY

f (g , h)× δ(g , h)
)

subject to the constraints:

- CNNeg: ∀g ∈ RX ,∀h ∈ RY : f (g , h) ≥ 0

- CSource: ∀g ∈ RX :
∑

h∈RY
f (g , h) ≤ X (g)

- CTargetIM: ∀g ∈ RX , ∀h ∈ RY : f (g , h) ≤ Y (h)

- CMaxFlow:
∑

g∈RX ,h∈RY
f (g , h) = m

• Lower bound LBIM results from replacing CTarget with CTargetIM

• The minimization within LBIM can be computed individually for each
representative g ∈ RX

Replace CTarget with
the relaxed constraint
CTargetIM
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Independent Minimization Lower Bound of EMD

• Idea: Approximation of the EMD through constraint relaxation
• Approach: Given two feature signatures X ,Y ∈ Sm, the LBIM Distance
is defined w.r.t. a metric ground distance δ as:

LBIM(X ,Y ) =
∑

g∈RX
min{f |f : RX×RY→R≥0}

1
m

(∑
h∈RY

f (g , h)× δ(g , h)
)

subject to the constraints:

- CNNeg: ∀g ∈ RX ,∀h ∈ RY : f (g , h) ≥ 0

- CSource: ∀g ∈ RX :
∑

h∈RY
f (g , h) ≤ X (g)

- CTargetIM: ∀g ∈ RX , ∀h ∈ RY : f (g , h) ≤ Y (h)

- CMaxFlow:
∑

g∈RX ,h∈RY
f (g , h) = m

• Lower bound LBIM results from replacing CTarget with CTargetIM
• The minimization within LBIM can be computed individually for each
representative g ∈ RX

Replace CTarget with
the relaxed constraint
CTargetIM
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Flow computation

• Idea:
- For each representative g ∈ RX , define SX ,Y of nearest neighbor
representatives h ∈ RY according to δ(g , h) in ascending order

- Capacity of g may not exceed total weight of elements in SX ,Y

• Example:
- Representative sets: RX = {x1, x2},
RY = {y1, y2, y3}

- Weights: X (x1) = 3, X (x2) = 7,
Y (y1) = 5, Y (y2) = 2, Y (y3) = 3

- SX ,Y (x1) = (y2, y1) and
SX ,Y (x2) = (y2, y3, y1)

LBIM(X ,Y ) = 1
10(1× 2 + 2× 1 + 2× 5 + 2× 2 + 3× 4) = 3.0

EMD(X ,Y ) = 3.2 LBIM(X ,Y ) = 3.0

Distance-based Multimedia Indexing

 Idea: 

– For each representative 𝑔 ∈ R𝑋, define 𝑆𝑋,𝑌 of nearest neighbor representatives 
ℎ ∈ R𝑌 according to 𝛿(𝑔, ℎ) in ascending order

– Capacity of 𝑔 may not exceed total weight of elements in 𝑆𝑋,𝑌

 Example:

– Representative sets:  R𝑋 = {𝑥1, 𝑥2}
R𝑌 = {𝑦1, 𝑦2, 𝑦3}

– Weights    
𝑋(𝑥1) = 3 ; 𝑋(𝑥2) = 7

𝑌(𝑦1) = 5 ; 𝑌(𝑦2) = 2 ; 𝑌(𝑦2) = 3

– 𝑆𝑋,𝑌 𝑥1 = (𝑦2 , 𝑦1) and  

𝑆𝑋,𝑌 𝑥2 = 𝑦2 , 𝑦3, 𝑦1

LB𝐼𝑀−𝑆𝑖𝑔(𝑋, 𝑌) = 
1

10
1 ∙ 2 + 2 ∙ 1 + 2 ∙ 5 + 2 ∙ 2 + 3 ∙ 4 = 3.0

Flow computation

46
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Flow computation

• Idea:
- For each representative g ∈ RX , define SX ,Y of nearest neighbor
representatives h ∈ RY according to δ(g , h) in ascending order

- Capacity of g may not exceed total weight of elements in SX ,Y

• Example:

Distance-based Multimedia Indexing

 Idea: 

– For each representative 𝑔 ∈ R𝑋, define 𝑆𝑋,𝑌 of nearest neighbor representatives
ℎ ∈ R𝑌 according to 𝛿(𝑔, ℎ) in ascending order

– Capacity of 𝑔 may not exceed total weight of elements in 𝑆𝑋,𝑌

𝐸𝑀𝐷 𝑋, 𝑌 = 3.2 LB𝐼𝑀−𝑆𝑖𝑔 𝑋, 𝑌 = 3.0

Flow computation 

47

LBIM(X ,Y ) = 1
10(1× 2 + 2× 1 + 2× 5 + 2× 2 + 3× 4) = 3.0

EMD(X ,Y ) = 3.2 LBIM(X ,Y ) = 3.0

Distance-based Multimedia Indexing

 Idea: 

– For each representative 𝑔 ∈ R𝑋, define 𝑆𝑋,𝑌 of nearest neighbor representatives 
ℎ ∈ R𝑌 according to 𝛿(𝑔, ℎ) in ascending order

– Capacity of 𝑔 may not exceed total weight of elements in 𝑆𝑋,𝑌

 Example:

– Representative sets:  R𝑋 = {𝑥1, 𝑥2}
R𝑌 = {𝑦1, 𝑦2, 𝑦3}

– Weights    
𝑋(𝑥1) = 3 ; 𝑋(𝑥2) = 7

𝑌(𝑦1) = 5 ; 𝑌(𝑦2) = 2 ; 𝑌(𝑦2) = 3

– 𝑆𝑋,𝑌 𝑥1 = (𝑦2 , 𝑦1) and  

𝑆𝑋,𝑌 𝑥2 = 𝑦2 , 𝑦3, 𝑦1

LB𝐼𝑀−𝑆𝑖𝑔(𝑋, 𝑌) = 
1

10
1 ∙ 2 + 2 ∙ 1 + 2 ∙ 5 + 2 ∙ 2 + 3 ∙ 4 = 3.0

Flow computation

46
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Metric Space Properties

• Given a metric space (X, δ) how to estimate the distance
δ : X× X→ R≥0 between two distinct objects x , y ∈ X?

- identity of indiscernibles: δ(x , y) 6= 0
- non-negativity: δ(x , y) ≥ 0
- symmetry: δ(x , y) = δ(y , x)
- triangle inequality: δ(x , y) ≤ δ(x , z) + δ(z , y) for any z ∈ X

Distance-based Multimedia Indexing

 Given a metric space 𝕏, 𝛿 how to estimate the distance 𝛿: 𝕏 × 𝕏 → ℝ
between two objects 𝑥, 𝑦 ∈ 𝕏?

– identity of indiscernibles: 𝛿 𝑥, 𝑦 ≠ 0

– non-negativity: 𝛿 𝑥, 𝑦 ≥ 0

– symmetry: 𝛿 𝑥, 𝑦 = 𝛿(𝑦, 𝑥)

– triangle inequality: 𝛿 𝑥, 𝑦 ≤ 𝛿 𝑥, 𝑧 + 𝛿(𝑧, 𝑦)

 Triangle inequality puts into relation three objects

 Triangle inequality is the only means that allows to estimate the distance 
between two objects by using another additional object

Metric Space Properties
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𝑧

𝑦

𝑥

• Triangle inequality puts into relation three objects
• Triangle inequality is the only means that allows to estimate the distance

between two objects by using another additional object
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Geometric Derivation of Triangle Lower Bound

• Goal: Lower bounding δ(x , y) w.r.t. an object z by using the triangle
inequality

• Suppose δ(x , z) ≥ δ(z , y):

Distance-based Multimedia Indexing

 Goal: Lower bounding 𝛿(𝑥, 𝑦) w.r.t. an object 𝑧 by the triangle inequality

 Suppose 𝛿 𝑥, 𝑧 ≥ 𝛿 𝑧, 𝑦 :

 We then have: 𝛿 𝑥, 𝑧 − 𝛿 𝑧, 𝑦 ≤ 𝛿 𝑥, 𝑦

Geometric Derivation of Triangle Lower Bound (1)
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𝑧

𝑦

𝑥

• We then have: δ(x , z)− δ(z , y) ≤ δ(x , y)
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Algebraic Derivation of Triangle Lower Bound

• Given a metric space (X, δ), it holds for all objects x , y , z ∈ X that:
δ(x , z) ≤ δ(x , y) + δ(y , z) ⇒ δ(x , z)− δ(y , z) ≤ δ(x , y)
δ(y , z) ≤ δ(y , x) + δ(x , z) ⇒ δ(y , z)− δ(x , z) ≤ δ(y , x)
δ(y , z) ≤ δ(y , x) + δ(x , z) ⇒ −(δ(x , z)− δ(y , z)) ≤ δ(y , x)
δ(y , z) ≤ δ(y , x) + δ(x , z) ⇒ δ(x , z)− δ(y , z) ≥ −δ(y , x)

• Combining both inequalities yields:
−δ(x , y) ≤ δ(x , z)− δ(y , z) ≤ δ(x , y)

• This leads to the reverse or inverse triangle inequality:
δMz (x , y) = |δ(x , z)− δ(y , z)| ≤ δ(x , y)

• δMz (x , y) is a lower bound of δ(x , y) w.r.t. any object z ∈ X
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Algebraic Derivation of Triangle Lower Bound

• Multiple lower bounds δMz1 , . . . , δ
M
zk w.r.t. objects {z1, . . . , zk} ⊆ X are

combined to a single lower bound by using their maximum
• Let (X, δ) be a metric space and P ⊆ X be a finite set of pivot elements,

the triangle lower bound δMP : X× X→ R w.r.t. P is defined for all
x , y ∈ X as follows:

δMP (x , y) = maxp∈P |δ(x , p)− δ(p, y)|

• Triangle lower bound δMP can be utilized directly in the multi-step query
processing algorithm

• Problem: Direct utilization not meaningful since a single lower bound
computation requires 2× |P| distance evaluations

• Solution: Precomputation of distances (i.e. indexing)
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Pivot Table

• The idea of a pivot table consists of storing the distances between each
database object and each pivot element

• Approach:
- Given a database D = {o1, . . . , on} and a set of pivot elements
P = {p1, . . . , pk}

- Pivot table T ∈ Rn×k stores distances between all pairs of database
objects oi ∈ D and pivot elements pi ∈ P:

T δ(·, p1) . . . δ(·, pk)
o1
...
on

- |D| × |P| = n × k distance computations necessary prior to query
processing
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Pivot Table: Query Processing & Properties

• A query q ∈ X is processed as follows:
1. Distances δ(q, pi) are computed for all pi ∈ P
2. Linear scan of the pivot table T with δMP to generate candidates
3. Refinement of candidates with original distance δ

• Properties:
- Pivot table is regarded as one of the most simplistic yet effective
metric access method

- It applies caching of distances
- Due to the linear behavior, a pivot table scales for
small-to-moderate size databases
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Pivot Space

• A pivot table can be understood as an embedding of objects from a
metric space into a multidimensional Euclidean space

• This Euclidean space Rk whose dimensions are given by the distances to
the pivot elements P = {p1, . . . , pk} is denoted as pivot space

Distance-based Multimedia Indexing

 A pivot table can be understood as an embedding of objects from a metric 
space into a multidimensional Euclidean space

 This Euclidean space ℝ𝑘 whose dimensions are given by the distances to 

the pivot elements ℙ = 𝑝𝑖 𝑖=1
𝑘 is denoted as pivot space

Pivot Space
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𝑞

𝑝2

𝑝1

𝛿 ⋅, 𝑝1

𝛿 ⋅, 𝑝2

metric space pivot space
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Pivot Space and Triangle Inequality

• Consider a query rangeε(q, δ,D) with range ε ∈ R≥0

• The triangle inequality implies the following bounds in the pivot space:

Distance-based Multimedia Indexing

 Consider a query range𝜀 𝑞, 𝛿, DB with range 𝜀 ∈ ℝ+

 The triangle inequality implies the following bounds in the pivot space:

Pivot Space and Triangle Inequality
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𝑞

𝛿 ⋅, 𝑝1

𝛿 ⋅, 𝑝2

𝛿 𝑞, 𝑝1 − 𝜀 𝛿 𝑞, 𝑝1 + 𝜀

𝛿 𝑞, 𝑝2 + 𝜀

𝛿 𝑞, 𝑝2 − 𝜀
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Pivoting

• Searching by means of precomputed distances to pivot elements P and
the triangle lower bound δMP
• Filtering Principle for P = {p} and range query with ε ∈ R≥0:

- Objects o inside the inner ball around p
are filtered out because it holds that
δ(q, p)− δ(p, o) > ε

- Objects o outside the outer ball around p
are filtered out because it holds that
δ(p, o)− δ(q, p) > ε

- Thus only objects o inside the shell between
the two balls are candidates because it holds
that δMP = |δ(q, p)− δ(p, o)| ≤ ε

Distance-based Multimedia Indexing

𝑞
𝜀

𝑝

𝛿 𝑞, 𝑝 + 𝜀

𝛿 𝑞, 𝑝 − 𝜀

 Searching by means of precomputed distances to pivot elements ℙ and the 

triangle lower bound 𝛿ℙ
Δ

 Filtering Principle for ℙ = {𝑝} and range query with 𝜀 ∈ ℝ+:

– Objects 𝑜 inside the inner ball around 𝑝
are filtered out because it holds that
𝛿 𝑞, 𝑝 − 𝛿 𝑝, 𝑜 > 𝜀

– Objects 𝑜 outside the outer ball around 𝑝
are filtered out because it holds that
𝛿 𝑝, 𝑜 − 𝛿 𝑞, 𝑝 > 𝜀

– Thus only objects 𝑜 inside the shell between
the two balls are candidates because it holds

that 𝛿ℙ
Δ = 𝛿 𝑞, 𝑝 − 𝛿 𝑝, 𝑜 ≤ 𝜀
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Pivoting - Example

• Given: Pivot table T with pivot objects P, database D = {o1, o2, o3},
query object q = (1, 2, 2), range ε = 1, δ = L1 (Manhattan Distance)

p1 = (0, 0, 2) p2 = (1, 3, 0) p3 = (1, 1, 1)T
δ(·, p1) δ(·, p2) δ(·, p3) δMP (q, ·)

o1 3 1 4
o2 5 2 1
o3 4 4 2

δ(q, ·)

• Compute distances between q and pivot objects
• Compute δMpi (q, oi) for every object oi ∈ D and pivot object pi ∈ P
• Compute δMP (q, oi) = maxpi∈P

(
δMpi (q, oi)

)
for every object oi ∈ D

• Select every object oi where δMP (q, oi) ≤ ε as candidate
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• Given: Pivot table T with pivot objects P, database D = {o1, o2, o3},
query object q = (1, 2, 2), range ε = 1, δ = L1 (Manhattan Distance)
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(q, ·) δMp3

(q, ·) δMP (q, ·)
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)
for every object oi ∈ D
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Summary

• Object representations
- How to model and represent multimedia data?

• Fundamental similarity models for multimedia data
- What is a distance-based similarity model?
- What metric distance functions can be used for histograms and
signatures?

• Efficient query processing
- What types of distance-based similarity queries exist?
- How to process such queries efficiently?

• Indexing
- How to index high-dimensional multimedia data?
- What are the principles behind the metric indexing approach?
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distances between q and the two pivot objects.

• δ(q, p1) =
√

(1− 1)2 + (4− 2)2 =
√
4 = 2

• δ(q, p2) =
√

(3− 1)2 + ((2−
√
5)− 2)2 =

√
4 + 5 = 3

Similarity Search in Multimedia Data Fabian Panse

71



Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distances between q and the two pivot objects.

• δ(q, p1) =
√

(1− 1)2 + (4− 2)2 =
√
4 = 2

• δ(q, p2) =
√

(3− 1)2 + ((2−
√
5)− 2)2 =

√
4 + 5 = 3

Similarity Search in Multimedia Data Fabian Panse

71



Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distance δMpi (q, oi) for every pair of database object oi ∈ D
and pivot object pi ∈ P.

• δMp1
(q, o1) =

• δMp1
(q, o2) =

• . . .
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distance δMpi (q, oi) for every pair of database object oi ∈ D
and pivot object pi ∈ P.

• δMp1
(q, o1) = |δ(o1, p1)− δ(q, p1)| = |1− 2| = 1

• δMp1
(q, o2) = |δ(o2, p1)− δ(q, p1)| = |4− 2| = 2

• δMp1
(q, o3) = |δ(o3, p1)− δ(q, p1)| = |2− 2| = 0

Similarity Search in Multimedia Data Fabian Panse

71



Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distance δMpi (q, oi) for every pair of database object oi ∈ D
and pivot object pi ∈ P.

• δMp2
(q, o1) = |δ(o1, p2)− δ(q, p2)| = |3− 3| = 0

• δMp2
(q, o2) = |δ(o2, p2)− δ(q, p2)| = |0− 3| = 3

• δMp2
(q, o3) = |δ(o3, p2)− δ(q, p2)| = |1− 3| = 2
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Compute the distance δMP (q, oi) for every database object oi ∈ D.

• δMP (q, o1) = max
(
δMp1

(q, o1), δMp2
(q, o1)

)
= 1

• δMP (q, o2) = max
(
δMp1

(q, o2), δMp2
(q, o2)

)
= 3

• δMP (q, o3) = max
(
δMp1

(q, o3), δMp2
(q, o3)

)
= 2
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Determine which database objects oi ∈ D are candidates for a correct
query answer based on the previously computed distances (mark each
correct answer with a cross). Briefly justify your answer.

• o1 is
© a candidate
© not a candidate because

• . . .
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Excercise

Consider the query rangeε = (q,D, δ) with the query object q = (1, 2),
the database D = {o1, o2, o3}, the range ε = 2 and the Euclidean
distance function δ. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2}:

p1 = (1, 4) p2 = (3, 2−
√
5)

o1 1 3
o2 4 0
o3 2 1

Determine which database objects oi ∈ D are candidates for a correct
query answer based on the previously computed distances (mark each
correct answer with a cross). Briefly justify your answer.
• o1 is a candidate (YES) because δMP (q, o1) = 1 ≤ 2 = ε

• o2 is a candidate (NO) because δMP (q, o2) = 3 � 2 = ε

• o3 is a candidate (YES) because δMP (q, o3) = 2 ≤ 2 = ε
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