Similarity Search in Multimedia Data Databases and Information Systems

Fabian Panse

panse@informatik.uni-hamburg.de

University of Hamburg

Acknowledgements

These slides are based on slides provided by

- Prof. Dr. Thomas Seidl Ludwig-Maximilians-Universität München http://www.dbs.ifi.lmu.de/cms/
- Dr. Christian Beecks RWTH Aachen University http://dme.rwth-aachen.de/de
- Dipl.-Inform. Merih Seran Uysal RWTH Aachen University http://dme.rwth-aachen.de/de

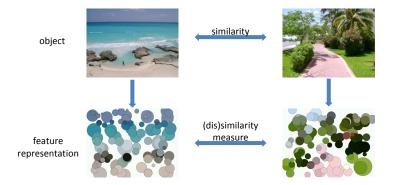
Introduction

- Motivation:
 - Explosive growth of multimedia data
 - Rapid spread of multimedia data (nowadays, almost all (mobile) devices allow to generate and share multimedia data)
- How to search for multimedia data objects?
 - A query is a description of the desired content and/or additional meta data (e.g. format, size, quality, location, time)
 - Most frequent query type: keyword(s)
- Content-based querying:
 - Keywords of multimedia data objects can be wrong, incomplete, ambiguous, or missing
 - \Rightarrow In addition to keywords, content-based access in terms of features is often desired (i.e. find objects which are similar to a given one)

3

Content-based Access

- Similarity model:
 - Feature representation describing the characteristic properties
 - (Dis)similarity measure comparing two feature representations



Δ

n r

Feature Extraction

• Feature of a multimedia data object:

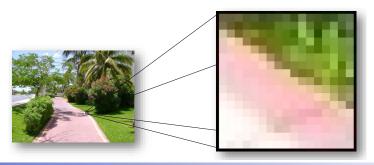
- Mathematical description of an inherent property
- Usually in the Euclidean space \mathbb{R}^d

• Different types of features:

- Global features describe a multimedia data object as a whole
- Local features describe parts of a multimedia data object
- Different semantics of features:
 - High-level features such as concepts, tags, etc.
 - Low-level features such as
 - color, texture, shape, etc. (images)
 - pitch, loudness, etc. (audio objects)
 - key-frame features, motion features, etc. (videos)

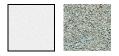
Example: Image Features

- An image is a matrix of pixels
- A pixel is an atomic element which has a certain color
- An image \mathcal{I} of width $w \in \mathbb{N}$ and height $h \in \mathbb{N}$ is modeled as $\mathcal{I}(x, y) \to \mathbb{R}^d$ for $x \in \{1, \dots, w\}$ and $y \in \{1, \dots, h\}$
- Value d depends on color model (e.g. CMYK d = 4, RGB d = 3)



Tamura Features

- Six textural features corresponding to human visual perception proposed by Hideyuki Tamura et al. in 1978
- **Coarseness** is the most fundamental textural feature and reflects the size and the repetition of the texture elements
 - It increases with bigger element sizes and/or less element repetitions
- Contrast reflects the picture quality
 - Dynamic range of gray-levels,
 - Sharpness of edges
 - Period of repeating patterns
- **Directionality** measures the total degree of the direction of the patterns
 - It involves both element shape and placement
- Line-likeness, regularity, roughness



Fabian Panse

SIFT: Scale Invariant Feature Transform

- One of the most prominent local feature description method for images
- Proposed by David Lowe in 1999
- The SIFT method includes two parts:
 - Keypoint detection
 - Keypoint description
- A SIFT descriptor is a 128-dimensional vector that is invariant to
 - scale
 - translation
 - rotation
- A detailed analysis and implementation can be found at: http://demo.ipol.im/demo/82/

Eabian Panse

SIFT: Scale Invariant Feature Transform

- One of the most prominent local feature description method for images
- Proposed by David Lowe in 1999
- The SIFT method includes two parts:
 - Keypoint detection
 - Keypoint description
- A SIFT descriptor is a 128-dimensional vector that is invariant to
 - scale
 - translation
 - rotation
- A detailed analysis and implementation can be found at: http://demo.ipol.im/demo/82/

TH

Eabian Panse

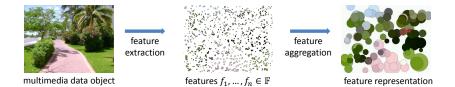
Advanced Feature Descriptors

- Current research aims at improving or approximating SIFT descriptors
- A multitude of local feature descriptors have been proposed recently:
 - PCA-SIFT: A more distinctive representation for local image descriptors
 - CSIFT: A SIFT descriptor with color invariant characteristics
 - SURF: Speeded-Up Robust Features
 - ORB: An efficient alternative to SIFT or SURF
 - BRISK: Binary Robust Invariant Scalable Keypoints
 - BRIEF: Computing a local binary descriptor very fast
 - CHoG: Compressed Histogram Of Gradients: A low-bitrate descriptor

Software

- Many feature extraction and processing tools are available online:
 - **OpenCV:** Open source Computer Vision http://opencv.org/
 - **VLFeat:** a cross-platform open source collection of vision algorithms http://www.vlfeat.org/
 - ImageJ: Image Processing and Analysis in Java http://rsbweb.nih.gov/ij/
 - **OpenIMAJ:** Open Intelligent Multimedia Analysis toolkit for Java http://www.openimaj.org/
 - Lire: An Open Source Java Content Based Image Retrieval Library http://www.semanticmetadata.net/lire/
 - Color Descriptor Software: Binary for local feature extraction http://koen.me/research/colordescriptors/

Feature Representation

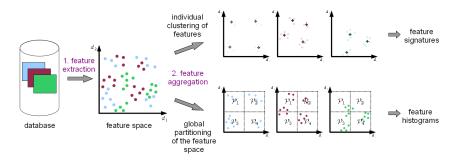


 Feature extraction: A multimedia data object is represented by means of features f₁,..., f_n ∈ F in a feature space F

- SIFT features: $\mathbb{F}=\mathbb{R}^{128}$

- Feature aggregation: The features f_1, \ldots, f_n are aggregated into a compact feature representation
 - clustering algorithms: k-means, expectation maximization, ...
- A feature representation is defined as a function $F \colon \mathbb{F} \to \mathbb{R}$

Feature Extraction and Aggregation



- Different means of feature aggregation:
 - **Feature Histogram:** features are summarized according to a global partitioning which is fixed for all multimedia data objects
 - Feature Signature: features are summarized individually (per object)

Feature Representation

• Given a feature space \mathbb{F} , a feature representation F is defined as:

 $F \colon \mathbb{F} \to \mathbb{R}$

- The value of zero is designated for features that are not relevant for a certain multimedia data object
- The representatives $\mathsf{R}_F \subseteq \mathbb{F}$ of a feature representation F are defined as:

 $\mathsf{R}_{\mathsf{F}} = \{f \in \mathbb{F} \mid \mathsf{F}(f) \neq 0\}$

• The weight of a single feature $f \in \mathbb{F}$ is defined as $F(f) \in \mathbb{R}$

Feature Signature

• A feature signature S is defined as:

 $S \colon \mathbb{F} o \mathbb{R}$ subject to $|\mathsf{R}_S| < \infty$

- A multimedia data object is described by a finite number of features
- These features are the representatives $\mathsf{R}_S = \{f \in \mathbb{F} \mid S(f) \neq 0\}$
- Two feature signatures S_1 and S_2 may differ in their representatives and weights

Feature Histogram

- Let $\mathbb F$ be a feature space and $\mathsf R\subseteq\mathbb F\wedge|\mathsf R|<\infty$ be shared representatives
- A feature histogram H_R w.r.t. the shared representatives R is defined as:

 $H_{\mathsf{R}} \colon \mathbb{F} \to \mathbb{R}$ subject to $H_{\mathsf{R}}(\mathbb{F} \setminus \mathsf{R}) = \{0\}$

- Every multimedia data object is described by the same finite number of features, i.e. the shared representatives R
- Two feature histograms H^1_R and H^2_R can only differ in their weights

Relations of Feature Representations

• Class of feature representations:

 $\mathbb{R}^{\mathbb{F}} = \{F \mid F \colon \mathbb{F} \to \mathbb{R}\}$

• Class of feature signatures:

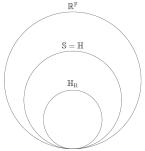
 $\mathbb{S} = \{ S \mid S \in \mathbb{R}^{\mathbb{F}} \land |\mathsf{R}_{S}| < \infty \}$

• Class of feature histograms w.r.t. $\mathsf{R}\subseteq\mathbb{F}, |\mathsf{R}|<\infty:$

$$\mathbb{H}_{\mathsf{R}} = \{H \mid H \in \mathbb{R}^{\mathbb{F}} \land H_{\mathsf{R}}(\mathbb{F} \setminus \mathsf{R}) = \{0\}\}$$

• Union of all feature histograms:

$$\mathbb{H} = \bigcup_{R \subseteq \mathbb{F}, |R| < \infty} \mathbb{H}_R = \mathbb{S}$$



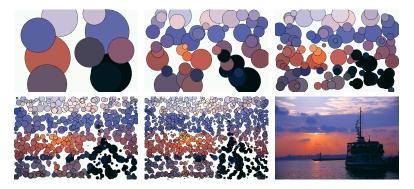
Fabian Panse

16

THH

Example: Feature Signatures

- 7-dimensional features: position, color, coarseness, and contrast
- Random sampling of 40.000 image pixels
- Increasing the number of representatives from 10 to 1000:



Example: Feature Signatures

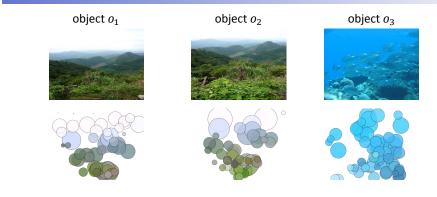
- 7-dimensional features: position, color, coarseness, and contrast
- Random sampling of 40.000 image pixels
- Increasing the number of representatives from 10 to 1000:

Example: Feature Signatures

- 7-dimensional features: position, color, coarseness, and contrast
- Random sampling of 40.000 image pixels
- Increasing the number of representatives from 10 to 1000:



Similarity vs. Dissimilarity



- A similarity measure *sim* assigns high values to similar objects:
 - $sim(o_1, o_2) \ge sim(o_1, o_3)$
- A dissimilarity measure δ assigns low values to similar objects:
 - $\delta(o_1, o_2) \leq \delta(o_1, o_3)$

n r

Similarity Function & Metric Distance Function

- A similarity function s: X × X → R quantifies the similarity between two elements from a set X and satisfies the following properties:
 - Symmetry: $\forall x, y \in \mathbb{X}$: s(x, y) = s(y, x)
 - Maximum self-similarity: $\forall x, y \in \mathbb{X}$: $s(x, x) \ge s(x, y)$
- Geometric distance between the feature representations defines dissimilarity of multimedia objects
- A function δ: X × X → R^{≥0} is called a metric distance function if it satisfies the following properties:
 - Identity of indiscernibles: $\forall x, y \in \mathbb{X} : \delta(x, y) = 0 \Leftrightarrow x = y$
 - Non-negativity: $\forall x, y \in \mathbb{X} : \delta(x, y) \geq 0$
 - Symmetry: $\forall x, y \in \mathbb{X} \colon \delta(x, y) = \delta(y, x)$
 - Triangle inequality: $\forall x, y, z \in \mathbb{X} \colon \delta(x, y) \leq \delta(x, z) + \delta(z, y)$

From a Psychological Perspective ...

- The distance-based approach has the advantage of a rigorous mathematical interpretation
- There is a long-lasting discussion of whether the distance properties and in particular the metric properties reflect the perceived dissimilarity correctly
- Consider the following example, where it holds that δ (flame, ball) $\neq \delta$ (moon, ball) + δ (flame, moon):

Taking a closer look at this example ...

- Validity clearly depends on the (dis)similarity model
- Consider the following two-dimensional "binary" feature representations

• Applying the Euclidean distance $L_2(x, y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$ yields:

-
$$L_2(\mathit{flame}, \mathit{ball}) = L_2ig(ig(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} ig), ig(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} ig) ig) = \sqrt{2} \simeq 1.41$$

-
$$L_2(ball, moon) = L_2(\binom{0}{1}, \binom{1}{1}) = 1$$

 $\delta(\text{moon, ball}) + \delta(\text{flame, moon})$

-
$$L_2(\textit{flame, moon}) = L_2(\binom{1}{0}, \binom{1}{1}) = 1$$

Similarity Search in Multimedia Data

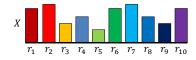
<

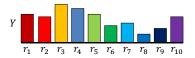
From a Database Perspective ...

- The distance-based approach provides a powerful tool
- Metric distance functions allow
 - domain experts to model their notion of dissimilarity
 - database experts to design efficient query processing approaches (particularly the utilization of the triangle inequality)
- Thus, indexing approaches can be investigated without knowing the inner-workings of a metric distance function

Distance Functions for Feature Histograms

- Given two feature histograms $X, Y \in \mathbb{H}_{\mathsf{R}}$, how can we define a distance between them?
- Consider the following color histograms for $R = \{r_1, r_2, \dots, r_{10}\}$



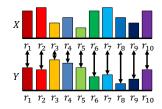


Minkowski Distance

- Idea: Measure the dissimilarity by adding up the differences in all dimensions, i.e. for all representatives f ∈ R ⊆ F
- Given two feature histograms $X, Y \in \mathbb{H}_{R}$, the Minkowski Distance is defined for $p \in \mathbb{R}^{\geq 0} \cup \{\infty\}$ as:

$$L_p(X,Y) = \left(\sum_{f \in \mathbb{R}} |X(f) - Y(f)|^p\right)^{\frac{1}{p}}$$

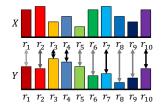
• This corresponds to taking into account all pairwise differences:



Weighted Minkowski Distance

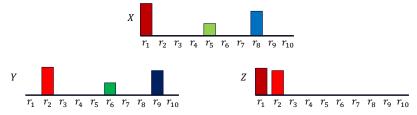
- Idea: Model the influence of the shared representatives $R \subseteq \mathbb{F}$ by a weighting function $w \colon \mathbb{F} \to \mathbb{R}^{\geq 0}$
- Given two feature histograms $X, Y \in \mathbb{H}_{R}$, the Weighted Minkowski Distance is defined for $p \in \mathbb{R}^{\geq 0} \cup \{\infty\}$ and a weighting function w as:

$$L_{\rho}(X,Y) = \left(\sum_{f \in \mathbb{R}} w(f) \times |X(f) - Y(f)|^{\rho}\right)^{\frac{1}{\rho}}$$



Issues of Bin-by-bin Distance Functions

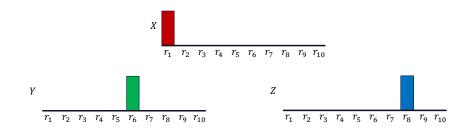
- Bin-by-bin distance functions define a distance value by taking into account single representatives (dimensions)
- Neighboring representatives (dimensions) are neglected
- Consider the following color histograms $X,Y,Z\in\mathbb{H}_R$ with $\mathsf{R}=\{r_1,\ldots,r_{10}\}$



• In this example, it holds that $L_p(X, Y) \ge L_p(X, Z)$

Issues of Bin-by-bin Distance Functions

• Consider the following color histograms $X, Y, Z \in \mathbb{H}_{\mathsf{R}}$



- All color histograms $X, Y, Z \in \mathbb{H}_{R}$ result in the same Minkowsi Distance: $L_{p}(X, Y) = L_{p}(X, Z) = L_{p}(Y, Z)$
- The fact that the color green is more similar to the color blue than to the color red is not taken into account

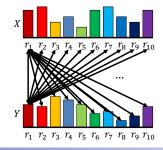
Cross-bin Distance Functions

- More flexible than bin-by-bin distance functions
- Basic Ideas:
 - Replace the weighting of single representatives by a weighting of pairs of representatives
 - Model the influence not only for each single representative, but also among different representatives
 - This influence is often defined in terms of a similarity relation
 - Thus, we can utilize a similarity function $s \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ in order to define the influence for all pairs of features

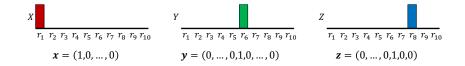
Quadratic Form Distance

- The Quadratic Form Distance is a cross-bin distance function that takes into account all pair-wise similarities
- Given two feature histograms $X, Y \in \mathbb{H}_R$, the Quadratic Form Distance w.r.t. a similarity function $s \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ is defined as:

$$QFD_{s}(X,Y) = \sqrt{\sum_{f \in \mathsf{R}} \sum_{g \in \mathsf{R}} (X(f) - Y(f)) \times s(f,g) \times (X(g) - Y(g))}$$



Quadratic Form Distance: Example



• Let
$$s(r_i, r_i) = 1$$
, $s(r_1, r_6) = s(r_1, r_8) = 0.2$ and $s(r_6, r_8) = 0.6$

• The Quadratic Form Distance is as follows:

-
$$QFD_s(X, Y) = \sqrt{1.6} \simeq 1.265$$

-
$$QFD_s(X, Z) = \sqrt{1.6} \simeq 1.265$$

-
$$QFD_s(Y,Z) = \sqrt{0.8} \simeq 0.894$$

• Better fits our intuition of dissimilarity

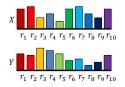
Distance Functions for Feature Histograms

- Distance functions are defined for feature histograms w.r.t. the same shared representatives
- Weighted Minkowski Distances are limited w.r.t. adaptability but show linear computation time complexity
- Quadratic Form Distances are very adaptable but show quadratic computation time complexity
- Other distance functions
 - Geometric measures such as cosine distance
 - Information theoretic measures such as Kullback-Leibler
 - Statistic measures such as χ^2 -statistics

Conceptual Differences of Feature Representations

Feature histograms \mathbb{H}_{R}

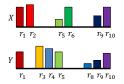
- Multimedia data objects use the same shared representatives:
 - Sufficient to store the weights
 - Feature histograms have the same cardinality
 - Can be thought of as vectors (representatives = dimensions)



- Distance computation by means of differences in each dimension

Feature signatures S

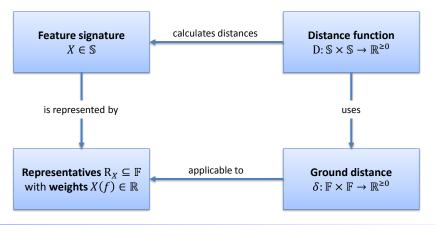
- Multimedia data objects use individual representatives:
 - Weights and representatives have to be stored
 - Feature signatures have different cardinalities



- Distance computation along single dimensions not meaningful

Concept of Using Ground Distance

• Idea: Utilization of a ground distance $\delta \colon \mathbb{F} \times \mathbb{F} \to \mathbb{R}^{\geq 0}$ on the representatives $\mathsf{R}_X, \mathsf{R}_Y \subseteq \mathbb{F}$ of two feature signatures $X, Y \in \mathbb{S}$



Similarity Search in Multimedia Data

Fabian Panse

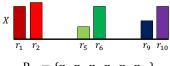
33

THH

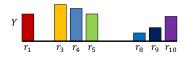
μî,

Earth Mover's Distance: Principle

• Given two color signatures $X, Y \in \mathbb{S}$



 $\mathbf{R}_X = \{r_1, r_2, r_5, r_6, r_9, r_{10}\}$



 $\mathbf{R}_Y = \{r_1, r_3, r_4, r_5, r_8, r_9, r_{10}\}$

- The transportation (earth moving) problem is formalized by:
 - Earth hills R_X with capacities $X(r_i)$ for $r_i \in R_X$
 - Earth holes R_Y with capacities $Y(r_i)$ for $r_i \in R_Y$
 - Cost (ground distance) $\delta \colon \mathbb{F} \times \mathbb{F} \to \mathbb{R}^{\geq 0}$ for moving a unit of earth
 - All possible flows $F = \{f \mid f \colon \mathsf{R}_X \times \mathsf{R}_Y \to \mathbb{R}^{\geq 0}\}$
- Solution: flow $f_{min} \in F$ that minimizes $\sum_{g \in R_X, h \in R_Y} f_{min}(g, h) \times \delta(g, h)$

Earth Mover's Distance: Definition

 Given two feature signatures X, Y ∈ S over a feature space F, the Earth Mover's Distance EMD_δ: S × S → R between X and Y is defined as:

$$\mathsf{EMD}_{\delta}(X,Y) = \min_{\{f \mid f \colon \mathsf{R}_X \times \mathsf{R}_Y \to \mathbb{R}^{\ge 0}\}} \left(\frac{\sum_{g \in \mathsf{R}_X} \sum_{h \in \mathsf{R}_Y} f(g,h) \times \delta(g,h)}{\min\left(\sum_{g \in \mathsf{R}_X} X(g), \sum_{h \in \mathsf{R}_Y} Y(h)\right)} \right)$$

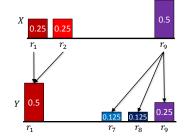
subject to the constraints:

- CNNeg: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g, h) \geq 0$
- CSource: $\forall g \in \mathsf{R}_X : \sum_{h \in \mathsf{R}_Y} f(g, h) \leq X(g)$
- CTarget: $\forall h \in \mathsf{R}_Y : \sum_{g \in \mathsf{R}_X} f(g, h) \le Y(h)$
- CMaxFlow: $\sum_{g \in R_X, h \in R_Y} f(g, h) = \min \left(\sum_{g \in R_X} X(g), \sum_{h \in R_Y} Y(h) \right)$

Fabian Panse UH 35

Earth Mover's Distance: Example

• Consider the following two color signatures $X, Y \in \mathbb{S}$



• Given the ground distance $\delta(r_i, r_j) = |i - j|$, we obtain the following distance value:

$$\mathsf{EMD}_{\delta}(X, Y) = f(r_2, r_1) \times \delta(r_2, r_1) + f(r_9, r_7) \times \delta(r_9, r_7) + f(r_9, r_8) \times \delta(r_9, r_8)$$

= 0.25 \times 1 + 0.125 \times 2 + 0.125 \times 1
= 0.625 \$

Fabian Panse

36

THH

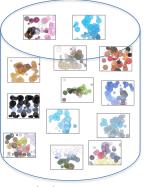
ΠÌ

Earth Mover's Distance: Properties

- The Earth Mover's Distance is defined as a linear optimization problem
- Finding an optimal solution can be computed based on a specific variant of the simplex algorithm
- Exponential computation time complexity in the worst case
- Average empirical computation time complexity between $\mathcal{O}(|\mathsf{R}_X|^3)$ and $\mathcal{O}(|\mathsf{R}_X|^4)$ for $|\mathsf{R}_X|\ge |\mathsf{R}_Y|$
- More efficient algorithms for specific classes of δ
- Earth Mover's Distance is a metric if and only if
 - feature signatures are normalized, i.e. $\sum_{f \in \mathsf{R}_X} X(f) = \sum_{f \in \mathsf{R}_Y} Y(f)$
 - ground distance δ is a metric

Distance-based Similarity Query

- query object $q \in \mathbb{X}$ - distance function δ



results $\subseteq \mathbb{D}$

database $\mathbb{D} \subseteq \mathbb{X}$

- Different query types:
 - Range Query
 - K-Nearest-Neighbor Query
 - Ranking Query

- (Top-k Query)
- (Skyline Query)
- (Reverse Nearest-Neighbor Query)

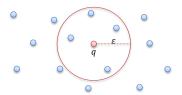
Fabian Panse

38

Range Query

- Range query includes database objects whose distances to a query object lie within a specific threshold
- Let \mathbb{X} be a set, $\delta \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a distance function, $\mathbb{D} \subseteq \mathbb{X}$ be a finite database, and $q \in \mathbb{X}$ be a query object
- The query $range_{\epsilon}(q, \delta, \mathbb{D})$ is defined w.r.t. the range $\epsilon \in \mathbb{R}^{\geq 0}$ as:

 $range_{\epsilon}(q, \delta, \mathbb{D}) = \{x \in \mathbb{D} \mid \delta(q, x) \leq \epsilon\}$



Range Query: Properties

- By performing a sequential scan (also linear scan or naïve scan) of the entire database D, the computation time complexity lies in O(|D|)
- The result size is bounded by the database size, i.e. it holds that

 $|range_{\epsilon}(q, \delta, \mathbb{D})| \leq |\mathbb{D}|$

- **Problem:** How to choose an appropriate range $\epsilon \in \mathbb{R}^{\geq 0}$?
 - Different data scales can result in very small or very large result sets

40

K-Nearest-Neighbor Query

- K-nearest-neighbor query includes database objects up to the *k*th-smallest distance to a query object
- Let \mathbb{X} be a set, $\delta \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a distance function, $\mathbb{D} \subseteq \mathbb{X}$ be a finite database, and $q \in \mathbb{X}$ be a query object
- The query $NN_k(q, \delta, \mathbb{D})$ is defined w.r.t. the number of nearest neighbors $k \in \mathbb{N}$ as the smallest set $NN_k(q, \delta, \mathbb{D}) \subseteq \mathbb{D}$ with $|NN_k(q, \delta, \mathbb{D})| \ge k$ such that

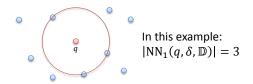
 $\forall x \in \mathit{NN}_k(q, \delta, \mathbb{D}), \forall x' \in (\mathbb{D} \setminus \mathit{NN}_k(q, \delta, \mathbb{D})) \colon \delta(q, x) \leq \delta(q, x')$

K-Nearest-Neighbor Query: Properties

- By performing a sequential scan of the entire database D, the computation time complexity lies in O(|D|)
- If the distances between the query object and the data objects are unique, i.e. if it holds that ∀x, x' ∈ D: δ(q, x) ≠ δ(q, x'), the result size is bounded by the minimum of database size and parameter k, i.e. it holds that

$$|\mathsf{NN}_k(q,\delta,\mathbb{D})|\leq \min(k,|\mathbb{D}|)$$

• If two or more objects have the same distance to the query object, $NN_k(q, \delta, \mathbb{D})$ can comprise more than k objects



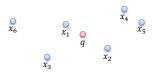
Ranking Query

- Ranking query sorts a database in ascending order w.r.t. the distances to a query object
- Let \mathbb{X} be a set, $\delta \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a distance function, $\mathbb{D} \subseteq \mathbb{X}$ be a finite database, and $q \in \mathbb{X}$ be a query object
- The query $ranking(q, \delta, \mathbb{D})$ is a sequence of \mathbb{D} that is defined as:

 $ranking(q, \delta, \mathbb{D}) = x_1, \ldots, x_{|\mathbb{D}|}$

where it holds that

 $\delta(q, x_i) \leq \delta(q, x_j)$ for all $x_i, x_j \in \mathbb{D}$ and $1 \leq i \leq j \leq |\mathbb{D}|$



Fabian Panse UH

Ranking Query: Properties

- The computation time complexity of this ranking algorithm depends on the computation time complexity of the sorting algorithm
 - In general: $\mathcal{O}(|\mathbb{D}| imes \mathsf{log}(|\mathbb{D}|))$
- The cardinality of $ranking(q, \delta, \mathbb{D})$ can be restricted by nesting the ranking query with other query types
 - Sorted sequence of the k^{th} -nearest neighbors:

 $ranking(q, \delta, NN_k(q, \delta, \mathbb{D}))$

- Sorted sequence of data objects within range ϵ :

 $ranking(q, \delta, range_{\epsilon}(q, \delta, \mathbb{D}))$

Multi-Step Query Architecture

- Processing of distance-based similarity queries in multiple steps
- Filter step is applied to all database objects
 - Efficient generation of candidates
 - Use of approximations
- Refinement step only necessary on candidates
 - Use of exact distances
 - Correctness: do not return wrong objects
 - Completeness: do not discard correct objects
 - Efficiency: short response times

Eabian Panse

45

Complexity of Distance-based Similarity Queries

- Problem: Quality determines complexity
 - High dimensionality \Rightarrow better quality
 - Complex distance measure (e.g. Earth Mover's) \Rightarrow better quality
 - But: both require much computing time
- Solution: Filter step for reduction of expensive computations
 - Consider a range query $range_{\epsilon}(q, \delta, \mathbb{D})$
 - Choose a filter distance $\delta_{\textit{filter}}$ with small computational effort
 - Discard all objects with $\delta_{\textit{filter}} > \epsilon$
 - Necessary condition: filter distance is a lower bound of the exact distance, i.e.

$$\begin{aligned} \forall x, y \in \mathbb{X}: \\ \delta_{filter}(x, y) &\leq \delta(x, y) \\ \delta_{filter}(x, y) &> \varepsilon \Rightarrow \delta(x, y) > \varepsilon \end{aligned}$$

Fabian Panse U+

Lower Bound

• Let \mathbb{X} be a set and $\delta : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a distance function. A function $\delta_{LB} : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ is a lower bound of δ if it holds that:

 $\forall x, y \in \mathbb{X} \colon \delta_{LB}(x, y) \leq \delta(x, y)$

- Two approaches of deriving a lower bound:
 - Model-specific approaches which exploit the inner workings of a distance function
 - Generic approaches which exploit the properties of the corresponding metric distance space (\mathbb{X}, δ)
- δ_{LB} is also denoted as the filter (distance) of δ , denoted by $\delta_{LB} \leq \delta$
- Quality of a lower bound depends on the ICES criteria

ICES Criteria for Lower Bounds

• Indexable:

- Filter function should be indexable in order to be applied with an index structure
- Complete:
 - No correct answers are dismissed in the filter step
 - There are approximate systems with limited completeness and correctness, e.g. PAC-NN (probably approximate correct)
- Efficient:
 - Fast computation of filter distance, e.g., linear complexity w.r.t. dimensionality
- Selective:
 - Small candidate set generated in the filter step
 - The larger the filter distance $\delta_{\it filter},$ the better the filter selectivity

48

Multi-Step Range Query

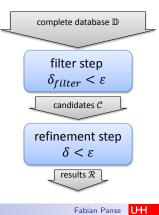
- Given a set \mathbb{X} , a database $\mathbb{D} \subseteq \mathbb{X}$, and a distance function $\delta \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$
- Given a lower bound $\delta_{LB} \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ of δ , how to process a query $range_{\epsilon}(q, \delta, \mathbb{D}) = \{x \in \mathbb{D} \mid \delta(q, x) \leq \epsilon\}$ efficiently?
- Process:
 - **Filter step:** evaluate range query with the same $\epsilon \in \mathbb{R}$ but cheaper filter distance δ_{LB} to generate the candidates

$$\mathcal{C} = \{x \in \mathbb{D} \mid \delta_{LB}(q, x) \leq \epsilon\}$$

- Refinement step: refine candidates with the exact distance δ to obtain the results

$$\mathcal{R} = \{ x \in \mathcal{C} \mid \delta(q, x) \leq \epsilon \}$$

• It holds that $\mathcal{R} = range_{\epsilon}(q, \delta, \mathbb{D})$ iff $\delta_{LB} \leq \delta$



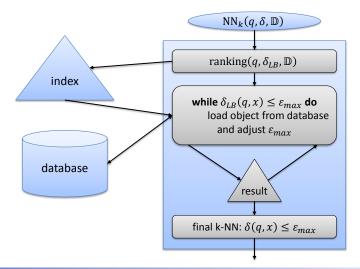
49

Optimal Multi-Step k-NN Query

- Given a set \mathbb{X} , a database $\mathbb{D} \subseteq \mathbb{X}$, and a distance function $\delta \colon \mathbb{X} \times \mathbb{X} \to \mathbb{R}$
- How to process a query NN_k(q, δ, D) efficiently by means of a lower bound δ_{LB}: X × X → R and an optimal number of candidates?
- Idea:
 - Utilization of a ranking query
 - Adaptation of ϵ_{max} after each object
- Properties:
 - It can be shown that the resulting algorithm is complete
 - It can be shown that the number of candidates is optimal (minimal)
- Note:

- $\delta_{LB}(q,x) > \delta_{LB}(q,y) \Rightarrow \delta(q,x) > \delta(q,y)$

Optimal Multi-Step k-NN Query



Fabian Panse

51

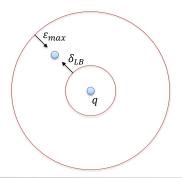
Optimal Multi-Step k-NN Query: Pseudo Code

```
procedure NN<sub>k</sub>(q, \delta, \mathbb{D}):
                   results \mathcal{R} \leftarrow \emptyset
                   filterRanking \leftarrow ranking(q, \delta_{I,B}, \mathbb{D})
                   x \leftarrow filterRanking.getnext()
                   \varepsilon_{max} \leftarrow \infty
                   while \delta_{LB}(q, x) \leq \varepsilon_{max} do
                                       if |\mathcal{R}| < k then
                                                           \mathcal{R} \leftarrow \mathcal{R} \cup \{x\}
                                       else if \delta(q, x) \leq \varepsilon_{max} then
                                                          \mathcal{R} \leftarrow \mathcal{R} \cup \{x\}
                                                          \mathcal{R} \leftarrow \mathcal{R} - \left\{ \operatorname*{argmax}_{r \in \mathcal{R}} \delta(q, y) \right\}
                                                          \varepsilon_{max} \leftarrow \max_{y \in \mathcal{R}} \delta(q, y)
                                       x \leftarrow filterRanking.getnext()
                   return \mathcal{R}
```

Similarity Search in Multimedia Data

Optimal Multi-Step k-NN Query: Properties

- Observation:
 - Pruning distance $\epsilon_{\textit{max}}$ decreases
 - Filter distance δ_{LB} increases
 - Algorithm terminates when $\delta_{\textit{LB}} \geq \epsilon_{\textit{max}}$



Optimal Multi-Step k-NN Query: Example

Given:

- objects *o*₁ − *o*₇
- distance function δ , lower bound function δ_{LB}

• *k* = 3

	δ_{LB}	δ	k-NN	ϵ_{max}	remark
<i>o</i> ₁	0.01	0.01	{ <i>o</i> ₁ }	∞	
<i>o</i> ₂	0.2	0.25	$\{o_1, o_2\}$	∞	
03	0.25	0.35	$\{o_1, o_2, o_3\}$	0.35	
<i>0</i> 4	0.27	0.3	$\{o_1, o_2, o_4\}$	0.3	
<i>0</i> 5	0.28	0.4	$\{o_1, o_2, o_4\}$	0.3	$\epsilon_{max} < \delta_{LB} \Rightarrow \text{stop}$
<i>0</i> 6	0.4	-	-	-	
07	0.42	-	-	-	

ΪÌ

Optimal Multi-Step k-NN Query: Example

Given:

- objects *o*₁ − *o*₇
- distance function δ , lower bound function δ_{LB}

• *k* = 3

	δ_{LB}	δ	k-NN	ϵ_{max}	remark
<i>o</i> ₁	0.01	0.01	${o_1}$	∞	
<i>o</i> ₂	0.2	0.25	$\{o_1, o_2\}$	∞	
03	0.25	0.35	$\{o_1, o_2, o_3\}$	0.35	
<i>o</i> 4	0.27	0.3	$\{o_1, o_2, o_4\}$	0.3	
<i>0</i> 5	0.28	0.4	$\{o_1, o_2, o_4\}$	0.3	$\epsilon_{max} < \delta_{LB} \Rightarrow \text{stop}$
<i>o</i> 6	0.4	0.5	$\{o_1, o_2, o_4\}$	0.3	saved computations
07	0.42	0.45	$\{o_1, o_2, o_4\}$	0.3	saved computations

Lower Bound of Minkowski Distance

- Given two feature histograms $X,Y\in\mathbb{H}_{\mathsf{R}}$ and the Minkowski Distance

$$L_p(X,Y) = \left(\sum_{f\in \mathbb{R}} |X(f) - Y(f)|^p\right)^{\frac{1}{p}}$$

• Any subset $\mathsf{R}' \subseteq \mathsf{R}$ defines a lower bound, i.e. it holds for all $X, Y \in \mathbb{H}_\mathsf{R}$

$$L_{p}(X|_{\mathsf{R}'}, Y|_{\mathsf{R}'}) = \left(\sum_{f \in \mathsf{R}'} |X(f) - Y(f)|^{p} \right)^{\frac{1}{p}} \\ \leq \left(\sum_{f \in \mathsf{R}} |X(f) - Y(f)|^{p} \right)^{\frac{1}{p}} = L_{p}(X, Y)$$

Generic Lower Bound of EMD

• Given two ground distance functions $\delta, \delta_{LB} \colon \mathbb{F} \times \mathbb{F} \to \mathbb{R}^{\geq 0}$ with $\delta_{LB} \leq \delta$ it holds for all feature signatures $X, Y \in \mathbb{S}$ that:

$$\mathsf{EMD}_{\delta_{LB}}(X,Y) \leq \mathsf{EMD}_{\delta}(X,Y)$$

- Proof:
 - Let $m = \min\left(\sum_{g \in \mathsf{R}_X} X(g), \sum_{h \in \mathsf{R}_Y} Y(h)\right)$ be the minimum total weight of X and Y
 - Let the flow $f_{min} \in \mathbb{R}^{\mathbb{F} \times \mathbb{F}}$ define a minimum solution:

$$\begin{split} \mathsf{EMD}_{\delta}(X,Y) &= \frac{1}{m} \Big(\sum_{g,h \in \mathbb{F}} f_{min}(g,h) \times \delta(g,h) \Big) \\ &\geq \frac{1}{m} \Big(\sum_{g,h \in \mathbb{F}} f_{min}(g,h) \times \delta_{LB}(g,h) \Big) \\ &\geq \mathsf{EMD}_{\delta_{LB}}(X,Y) \end{split}$$

Centroid-based Lower Bound

• Given a ground distance function $\delta \colon \mathbb{F} \times \mathbb{F} \to \mathbb{R}^{\geq 0}$, it holds for all feature signatures $X, Y \in \mathbb{S}$ that:

$$LB_{Rubner}(X, Y) = \delta(\overline{x}, \overline{y}) \leq \mathsf{EMD}_{\delta}(X, Y)$$

where $\overline{x}, \overline{y} \in \mathbb{F}$ are defined as the centroids (mean representatives) of X and Y, i.e. $\overline{x} = \sum_{g \in \mathbb{R}_X} g \times X(g)$ and $\overline{y} = \sum_{h \in \mathbb{R}_Y} h \times Y(h)$ if the total weight for every signature is 1.

• Properties:

- LB_{Rubner} is applicable to feature signatures and histograms
- Centroids can be computed prior to query processing
- Computation time complexity of LB_{Rubner} solely depends on the dimensionality of the feature space and not on the size of the feature representations

اہر ا

Independent Minimization Lower Bound of EMD

- Idea: Approximation of the EMD through constraint relaxation
- Approach: Given two feature signatures $X, Y \in \mathbb{S}_m$, the Earth Mover's Distance is defined w.r.t. a metric ground distance δ as:

 $\mathsf{EMD}_{\delta}(X,Y) = \min_{\{f \mid f \colon \mathsf{R}_X \times \mathsf{R}_Y \to \mathbb{R}^{\geq 0}\}} \frac{1}{m} \Big(\sum_{g \in \mathsf{R}_X} \sum_{h \in \mathsf{R}_Y} f(g,h) \times \delta(g,h) \Big)$ subject to the constraints:

- CNNeg: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g,h) \ge 0$
- CSource: $\forall g \in \mathsf{R}_X \colon \sum_{h \in \mathsf{R}_Y} f(g,h) \leq X(g)$
- CTarget: $\forall h \in \mathsf{R}_Y \colon \sum_{g \in \mathsf{R}_X} f(g, h) \leq Y(h)$
- CMaxFlow: $\sum_{g \in \mathsf{R}_X, h \in \mathsf{R}_Y} f(g, h) = m$

Independent Minimization Lower Bound of EMD

- Idea: Approximation of the EMD through constraint relaxation
- Approach: Given two feature signatures X, Y ∈ S_m, the LB_{IM} Distance is defined w.r.t. a metric ground distance δ as:

 $LB_{IM}(X,Y) = \min_{\{f \mid f: R_X \times R_Y \to \mathbb{R}^{\ge 0}\}} \frac{1}{m} \Big(\sum_{g \in R_X} \sum_{h \in R_Y} f(g,h) \times \delta(g,h) \Big)$

subject to the constraints:

- CNNeg: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g,h) \geq 0$
- CSource: $\forall g \in \mathsf{R}_X : \sum_{h \in \mathsf{R}_Y} f(g, h) \leq X(g)$
- CTargetIM: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g,h) \leq Y(h)$
- CMaxFlow: $\sum_{g \in \mathsf{R}_X, h \in \mathsf{R}_Y} f(g, h) = m$
- Lower bound LB_{IM} results from replacing CTarget with CTargetIM

Replace CTarget with the relaxed constraint CTargetIM

Fabian Panse

THH

Independent Minimization Lower Bound of EMD

- Idea: Approximation of the EMD through constraint relaxation
- Approach: Given two feature signatures X, Y ∈ S_m, the LB_{IM} Distance is defined w.r.t. a metric ground distance δ as:

 $LB_{IM}(X,Y) = \sum_{g \in \mathsf{R}_X} \min_{\{f \mid f : \mathsf{R}_X \times \mathsf{R}_Y \to \mathbb{R}^{\ge 0}\}} \frac{1}{m} \Big(\sum_{h \in \mathsf{R}_Y} f(g,h) \times \delta(g,h) \Big)$

subject to the constraints:

- CNNeg: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g,h) \geq 0$
- CSource: $\forall g \in \mathsf{R}_X : \sum_{h \in \mathsf{R}_Y} f(g, h) \leq X(g)$
- CTargetIM: $\forall g \in \mathsf{R}_X, \forall h \in \mathsf{R}_Y \colon f(g,h) \leq Y(h)$
- CMaxFlow: $\sum_{g \in \mathsf{R}_X, h \in \mathsf{R}_Y} f(g, h) = m$
- Lower bound LB_{IM} results from replacing CTarget with CTargetIM
- The minimization within LB_{IM} can be computed individually for each representative $g \in R_X$

Replace CTarget with the relaxed constraint CTargetIM

Fabian Panse

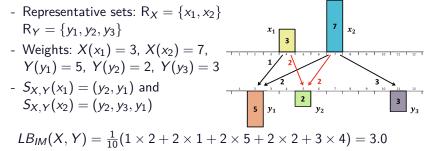
ĪН

Flow computation

• Idea:

- For each representative $g \in R_X$, define $S_{X,Y}$ of nearest neighbor representatives $h \in R_Y$ according to $\delta(g, h)$ in ascending order
- Capacity of g may not exceed total weight of elements in $S_{X,Y}$

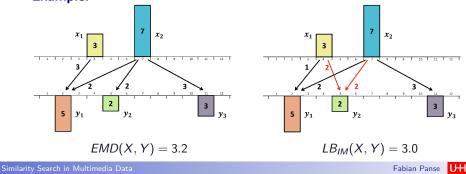
• Example:



Flow computation

Idea: •

- For each representative $g \in \mathsf{R}_X$, define $S_{X,Y}$ of nearest neighbor representatives $h \in \mathsf{R}_Y$ according to $\delta(g, h)$ in ascending order
- Capacity of g may not exceed total weight of elements in $S_{X,Y}$
- Example:

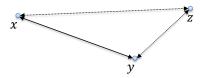


ΠÌ

59

Metric Space Properties

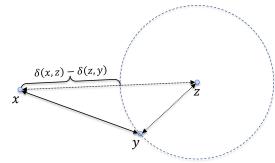
- Given a metric space (\mathbb{X},δ) how to estimate the distance
 - $\delta \colon \mathbb{X} imes \mathbb{X} o \mathbb{R}^{\geq 0}$ between two distinct objects $x, y \in \mathbb{X}$?
 - identity of indiscernibles: $\delta(x, y) \neq 0$
 - non-negativity: $\delta(x,y) \ge 0$
 - symmetry: $\delta(x, y) = \delta(y, x)$
 - triangle inequality: $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$ for any $z \in \mathbb{X}$



- Triangle inequality puts into relation three objects
- Triangle inequality is the only means that allows to estimate the distance between two objects by using another additional object

Geometric Derivation of Triangle Lower Bound

- Goal: Lower bounding δ(x, y) w.r.t. an object z by using the triangle inequality
- Suppose $\delta(x, z) \ge \delta(z, y)$:



• We then have: $\delta(x,z) - \delta(z,y) \le \delta(x,y)$

Algebraic Derivation of Triangle Lower Bound

- Given a metric space (\mathbb{X}, δ) , it holds for all objects $x, y, z \in \mathbb{X}$ that: $\delta(x, z) \leq \delta(x, y) + \delta(y, z) \Rightarrow \delta(x, z) - \delta(y, z) \leq \delta(x, y)$ $\delta(y, z) \leq \delta(y, x) + \delta(x, z) \Rightarrow \delta(y, z) - \delta(x, z) \leq \delta(y, x)$ $\Rightarrow -(\delta(x, z) - \delta(y, z)) \leq \delta(y, x)$ $\Rightarrow \delta(x, z) - \delta(y, z) \geq -\delta(y, x)$
- Combining both inequalities yields:

 $-\delta(x,y) \leq \delta(x,z) - \delta(y,z) \leq \delta(x,y)$

- This leads to the **reverse** or **inverse triangle inequality**: $\delta_z^{\triangle}(x,y) = |\delta(x,z) - \delta(y,z)| \le \delta(x,y)$
- $\delta_z^{\vartriangle}(x,y)$ is a lower bound of $\delta(x,y)$ w.r.t. any object $z \in \mathbb{X}$

Algebraic Derivation of Triangle Lower Bound

- Multiple lower bounds δ^Δ_{z1},...,δ^Δ_{zk} w.r.t. objects {z₁,..., z_k} ⊆ X are combined to a single lower bound by using their maximum
- Let (X, δ) be a metric space and P ⊆ X be a finite set of pivot elements, the triangle lower bound δ^Δ_P: X × X → R w.r.t. P is defined for all x, y ∈ X as follows:

$$\delta^{\vartriangle}_{\mathbb{P}}(x,y) = \max_{p \in \mathbb{P}} |\delta(x,p) - \delta(p,y)|$$

- Triangle lower bound $\delta^{\vartriangle}_{\mathbb{P}}$ can be utilized directly in the multi-step query processing algorithm
- Problem: Direct utilization not meaningful since a single lower bound computation requires 2 × |ℙ| distance evaluations
- Solution: Precomputation of distances (i.e. indexing)

Pivot Table

- The idea of a pivot table consists of storing the distances between each database object and each pivot element
- Approach:
 - Given a database $\mathbb{D}=\{o_1,\ldots,o_n\}$ and a set of pivot elements $\mathbb{P}=\{p_1,\ldots,p_k\}$
 - Pivot table *T* ∈ ℝ^{n×k} stores distances between all pairs of database objects *o_i* ∈ D and pivot elements *p_i* ∈ P:

\mathcal{T}	$\delta(\cdot, p_1)$	 $\delta(\cdot, p_k)$
01		
÷		
0 _n		

- $|\mathbb{D}| \times |\mathbb{P}| = n \times k$ distance computations necessary prior to query processing

Pivot Table: Query Processing & Properties

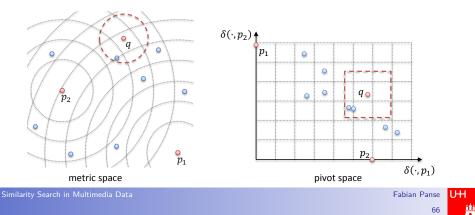
- A query $q \in \mathbb{X}$ is processed as follows:
 - 1. Distances $\delta(q, p_i)$ are computed for all $p_i \in \mathbb{P}$
 - 2. Linear scan of the pivot table ${\mathcal T}$ with $\delta^{\vartriangle}_{\mathbb P}$ to generate candidates
 - 3. Refinement of candidates with original distance $\boldsymbol{\delta}$

• Properties:

- Pivot table is regarded as one of the most simplistic yet effective metric access method
- It applies caching of distances
- Due to the linear behavior, a pivot table scales for small-to-moderate size databases

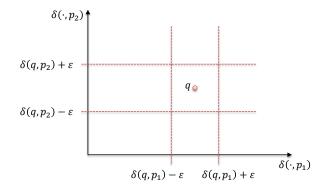
Pivot Space

- A pivot table can be understood as an embedding of objects from a metric space into a multidimensional Euclidean space
- This Euclidean space \mathbb{R}^k whose dimensions are given by the distances to the pivot elements $\mathbb{P} = \{p_1, \dots, p_k\}$ is denoted as pivot space



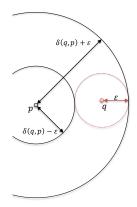
Pivot Space and Triangle Inequality

- Consider a query $\mathit{range}_\epsilon(q,\delta,\mathbb{D})$ with range $\epsilon\in\mathbb{R}^{\geq 0}$
- The triangle inequality implies the following bounds in the pivot space:



Pivoting

- Searching by means of precomputed distances to pivot elements $\mathbb P$ and the triangle lower bound $\delta^{\vartriangle}_{\mathbb P}$
- Filtering Principle for $\mathbb{P} = \{p\}$ and range query with $\epsilon \in \mathbb{R}^{\geq 0}$:
 - Objects o inside the inner ball around p are filtered out because it holds that $\delta(q, p) - \delta(p, o) > \epsilon$
 - Objects *o* outside the outer ball around *p* are filtered out because it holds that $\delta(p, o) \delta(q, p) > \epsilon$
 - Thus only objects o inside the shell between the two balls are candidates because it holds that $\delta_{\mathbb{P}}^{\Delta} = |\delta(q, p) - \delta(p, o)| \leq \epsilon$



Fabian Panse

68

τ	$p_1 = (0, 0, 2)$	$p_2 = (1, 3, 0)$	$p_3 = (1, 1, 1)$	
,	$\delta(\cdot, p_1)$	$\delta(\cdot, p_2)$	$\delta(\cdot, p_3)$	
<i>o</i> ₁	3	1	4	
<i>o</i> ₂	5	2	1	
<i>o</i> 3	4	4	2	
$\delta(q, \cdot)$				

• Given: Pivot table \mathcal{T} with pivot objects \mathbb{P} , database $\mathbb{D} = \{o_1, o_2, o_3\}$, query object q = (1, 2, 2), range $\epsilon = 1$, $\delta = L_1$ (Manhattan Distance)

Τ	$p_1 = (0, 0, 2)$ $\delta(\cdot, p_1)$	$p_2 = (1,3,0) \ \delta(\cdot,p_2)$	$egin{aligned} p_3 &= (1,1,1) \ \delta(\cdot,p_3) \end{aligned}$	
<i>o</i> ₁	3	1	4	
<i>o</i> ₂	5	2	1	
<i>o</i> 3	4	4	2	
$\delta(q, \cdot)$	3	3	2	

• Compute distances between q and pivot objects

\mathcal{T}	$p_1=(0,0,2) \ \delta^{\scriptscriptstyle riangle}_{ ho_1}(q,\cdot)$	$p_2=(1,3,0) \ \delta^{\scriptscriptstyle riangle}_{p_2}(q,\cdot)$	$p_3=(1,1,1) \ \delta^{\scriptscriptstyle riangle}_{p_3}(q,\cdot)$	
	$0_{p_1}(q, r)$	$0_{p_2}(q, r)$	$0_{p_3}(q, r)$	
01	0	2	2	
<i>o</i> ₂	2	1	1	
<i>o</i> 3	1	1	0	
$\delta(q, \cdot)$	3	3	2	

- Compute distances between q and pivot objects
- Compute $\delta^{\scriptscriptstyle riangle}_{\mathcal{D}_i}(q,o_i)$ for every object $o_i\in\mathbb{D}$ and pivot object $p_i\in\mathbb{P}$

τ	$p_1 = (0, 0, 2)$	$p_2 = (1, 3, 0)$	$p_3 = (1, 1, 1)$	
,	$\delta^{\scriptscriptstyle riangle}_{ ho_1}(oldsymbol{q},\cdot)$	$\delta^{\scriptscriptstyle riangle}_{p_2}(q,\cdot)$	$\delta^{\scriptscriptstyle riangle}_{ ho_3}(q,\cdot)$	$\delta^{\scriptscriptstyle{ riangle}}_{\mathbb{P}}(q,\cdot)$
<i>o</i> ₁	0	2	2	2
<i>o</i> ₂	2	1	1	2
<i>0</i> 3	1	1	0	1
$\delta(q, \cdot)$	3	3	2	

- Compute distances between q and pivot objects
- Compute $\delta^{\vartriangle}_{p_i}(q,o_i)$ for every object $o_i \in \mathbb{D}$ and pivot object $p_i \in \mathbb{P}$
- Compute $\delta^{\vartriangle}_{\mathbb{P}}(q, o_i) = \max_{\rho_i \in \mathbb{P}} \left(\delta^{\vartriangle}_{\rho_i}(q, o_i) \right)$ for every object $o_i \in \mathbb{D}$

τ	$p_1 = (0, 0, 2)$	$p_2 = (1, 3, 0)$	$p_3 = (1, 1, 1)$	
,	$\delta^{\scriptscriptstyle riangle}_{ ho_1}(q,\cdot)$	$\delta^{\scriptscriptstyle riangle}_{p_2}(q,\cdot)$	$\delta^{\scriptscriptstyle riangle}_{ ho_3}(q,\cdot)$	$\delta^{\scriptscriptstyle{ riangle}}_{\mathbb{P}}(q,\cdot)$
<i>o</i> ₁	0	2	2	2
<i>o</i> ₂	2	1	1	2
<i>0</i> 3	1	1	0	1
$\delta(q, \cdot)$	3	3	2	

- Compute distances between q and pivot objects
- Compute $\delta^{\vartriangle}_{p_i}(q,o_i)$ for every object $o_i \in \mathbb{D}$ and pivot object $p_i \in \mathbb{P}$
- Compute $\delta^{\vartriangle}_{\mathbb{P}}(q, o_i) = \max_{p_i \in \mathbb{P}} \left(\delta^{\vartriangle}_{p_i}(q, o_i) \right)$ for every object $o_i \in \mathbb{D}$
- Select every object o_i where $\delta_{\mathbb{P}}^{\vartriangle}(q, o_i) \leq \epsilon$ as candidate

Summary

- Object representations
 - How to model and represent multimedia data?
- Fundamental similarity models for multimedia data
 - What is a distance-based similarity model?
 - What metric distance functions can be used for histograms and signatures?
- Efficient query processing
 - What types of distance-based similarity queries exist?
 - How to process such queries efficiently?
- Indexing
 - How to index high-dimensional multimedia data?
 - What are the principles behind the metric indexing approach?

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
<i>o</i> ₁	1	3
<i>o</i> ₂	4	0
<i>o</i> 3	2	1

Compute the distances between q and the two pivot objects.

•
$$\delta(q, p_1) =$$

•
$$\delta(q, p_2) =$$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>o</i> ₂	4	0
<i>O</i> 3	2	1

Compute the distances between q and the two pivot objects.

• $\delta(q, p_1) = \sqrt{(1-1)^2 + (4-2)^2} = \sqrt{4} = 2$ • $\delta(q, p_2) = \sqrt{(3-1)^2 + ((2-\sqrt{5})-2)^2} = \sqrt{4+5} = 3$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>O</i> ₂	4	0
<i>o</i> 3	2	1

Compute the distance $\delta_{p_i}^{\Delta}(q, o_i)$ for every pair of database object $o_i \in \mathbb{D}$ and pivot object $p_i \in \mathbb{P}$.

- $\delta^{\scriptscriptstyle { riangle}}_{\rho_1}(q,o_1) =$
- $\delta^{\scriptscriptstyle riangle}_{p_1}(q,o_2) =$
- . . .

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>o</i> ₂	4	0
03	2	1

Compute the distance $\delta_{p_i}^{\vartriangle}(q, o_i)$ for every pair of database object $o_i \in \mathbb{D}$ and pivot object $p_i \in \mathbb{P}$.

- $\delta^{\vartriangle}_{p_1}(q,o_1) = |\delta(o_1,p_1) \delta(q,p_1)| = |1-2| = 1$
- $\delta^{\Delta}_{p_1}(q,o_2) = |\delta(o_2,p_1) \delta(q,p_1)| = |4-2| = 2$
- $\delta^{\scriptscriptstyle \triangle}_{p_1}(q,o_3) = |\delta(o_3,p_1) \delta(q,p_1)| = |2-2| = 0$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>o</i> ₂	4	0
03	2	1

Compute the distance $\delta_{p_i}^{\vartriangle}(q, o_i)$ for every pair of database object $o_i \in \mathbb{D}$ and pivot object $p_i \in \mathbb{P}$.

- $\delta^{\Delta}_{p_2}(q,o_1) = |\delta(o_1,p_2) \delta(q,p_2)| = |3-3| = 0$
- $\delta^{\vartriangle}_{p_2}(q,o_2) = |\delta(o_2,p_2) \delta(q,p_2)| = |0-3| = 3$
- $\delta^{\scriptscriptstyle \Delta}_{p_2}(q,o_3) = |\delta(o_3,p_2) \delta(q,p_2)| = |1-3| = 2$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>O</i> ₂	4	0
<i>o</i> 3	2	1

Compute the distance $\delta_{\mathbb{P}}^{\vartriangle}(q, o_i)$ for every database object $o_i \in \mathbb{D}$.

- $\delta^{\scriptscriptstyle riangle}_{\mathbb{P}}(q,o_1) =$
- $\delta^{\scriptscriptstyle{ riangle}}_{\mathbb{P}}(q,o_2) =$
- $\delta^{\scriptscriptstyle{ riangle}}_{\mathbb{P}}(q,o_3) =$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>O</i> ₂	4	0
<i>o</i> 3	2	1

Compute the distance $\delta_{\mathbb{P}}^{\wedge}(q, o_i)$ for every database object $o_i \in \mathbb{D}$.

• $\delta^{\scriptscriptstyle{\bigtriangleup}}_{\mathbb{P}}(q,o_1) = \max\left(\delta^{\scriptscriptstyle{\bigtriangleup}}_{p_1}(q,o_1),\delta^{\scriptscriptstyle{\bigtriangleup}}_{p_2}(q,o_1)\right) = 1$

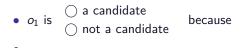
•
$$\delta_{\mathbb{P}}^{\Delta}(q,o_2) = \max\left(\delta_{p_1}^{\Delta}(q,o_2),\delta_{p_2}^{\Delta}(q,o_2)\right) = 3$$

•
$$\delta_{\mathbb{P}}^{\vartriangle}(q,o_3) = \max\left(\delta_{\rho_1}^{\vartriangle}(q,o_3),\delta_{\rho_2}^{\vartriangle}(q,o_3)\right) = 2$$

Consider the query $range_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
<i>o</i> ₁	1	3
<i>o</i> ₂	4	0
03	2	1

Determine which database objects $o_i \in \mathbb{D}$ are candidates for a correct query answer based on the previously computed distances (mark each correct answer with a cross). Briefly justify your answer.



Consider the query range $e_{\epsilon} = (q, \mathbb{D}, \delta)$ with the query object q = (1, 2), the database $\mathbb{D} = \{o_1, o_2, o_3\}$, the range $\epsilon = 2$ and the Euclidean distance function δ . Moreover, consider the following pivot table with the pivot objects $\mathbb{P} = \{p_1, p_2\}$:

	$p_1 = (1, 4)$	$p_2 = (3, 2 - \sqrt{5})$
01	1	3
<i>O</i> ₂	4	0
03	2	1

Determine which database objects $o_i \in \mathbb{D}$ are candidates for a correct query answer based on the previously computed distances (mark each correct answer with a cross). Briefly justify your answer.

- o_1 is a candidate (YES) because $\delta_{\mathbb{P}}^{\Delta}(q, o_1) = 1 < 2 = \epsilon$
- o_2 is a candidate (NO) because $\delta_{\mathbb{P}}^{\wedge}(q, o_2) = 3 \nleq 2 = \epsilon$
- o_3 is a candidate (YES) because $\delta_{\mathbb{P}}^{\Delta}(q, o_3) = 2 \leq 2 = \epsilon$

71