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Introduction

e Motivation:
- Explosive growth of multimedia data
- Rapid spread of multimedia data (nowadays, almost all (mobile)
devices allow to generate and share multimedia data)

e How to search for multimedia data objects?
- A query is a description of the desired content and/or additional
meta data (e.g. format, size, quality, location, time)
- Most frequent query type: keyword(s)

e Content-based querying:
- Keywords of multimedia data objects can be wrong, incomplete,
ambiguous, or missing
= In addition to keywords, content-based access in terms of features
is often desired (i.e. find objects which are similar to a given one)
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Content-based Access

e Similarity model:
- Feature representation describing the characteristic properties
- (Dis)similarity measure comparing two feature representations

object
(dis)similarity
feature pr—. (N

representation
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Feature Extraction

e Feature of a multimedia data object:
- Mathematical description of an inherent property
- Usually in the Euclidean space R

e Different types of features:
- Global features describe a multimedia data object as a whole
- Local features describe parts of a multimedia data object

e Different semantics of features:
- High-level features such as concepts, tags, etc.
- Low-level features such as
o color, texture, shape, etc. (images)
o pitch, loudness, etc. (audio objects)
o key-frame features, motion features, etc. (videos)
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Example: Image Features

e An image is a matrix of pixels
e A pixel is an atomic element which has a certain color

e An image Z of width w € N and height h € N is modeled as
I(x,y) - RY forx € {1,...,w}and y € {1,..., h}
e Value d depends on color model (e.g. CMYK d =4, RGB d = 3)
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Tamura Features

e Six textural features corresponding to human visual perception proposed
by Hideyuki Tamura et al. in 1978

e Coarseness is the most fundamental textural feature and
reflects the size and the repetition of the texture elements
- It increases with bigger element sizes
and/or less element repetitions

e Contrast reflects the picture quality
- Dynamic range of gray-levels,
- Sharpness of edges
- Period of repeating patterns

e Directionality measures the total degree of the
direction of the patterns
- It involves both element shape and placement

e Line-likeness, regularity, roughness
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SIFT: Scale Invariant Feature Transform

e One of the most prominent local feature description method for images
e Proposed by David Lowe in 1999

e The SIFT method includes two parts:
- Keypoint detection
- Keypoint description

e A SIFT descriptor is a 128-dimensional
vector that is invariant to
- scale
- translation
- rotation

e A detailed analysis and implementation can be found at:
http://demo.ipol.im/demo/82/
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Advanced Feature Descriptors

e Current research aims at improving or approximating SIFT descriptors

e A multitude of local feature descriptors have been proposed recently:
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PCA-SIFT: A more distinctive representation for local image descriptors
CSIFT: A SIFT descriptor with color invariant characteristics

SURF: Speeded-Up Robust Features

ORB: An efficient alternative to SIFT or SURF

BRISK: Binary Robust Invariant Scalable Keypoints

BRIEF: Computing a local binary descriptor very fast

CHoG: Compressed Histogram Of Gradients: A low-bitrate descriptor




Software

e Many feature extraction and processing tools are available online:
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OpenCV: Open source Computer Vision
http://opencv.org/

VLFeat: a cross-platform open source collection of vision algorithms
http://www.vlfeat.org/

ImageJ: Image Processing and Analysis in Java
http://rsbweb.nih.gov/ij/

OpenlMAJ: Open Intelligent Multimedia Analysis toolkit for Java
http://www.openimaj.org/

Lire: An Open Source Java Content Based Image Retrieval Library
http://www.semanticmetadata.net/lire/

Color Descriptor Software: Binary for local feature extraction
http://koen.me/research/colordescriptors/
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Feature Representation
Yy s
feature Q

—
feature
extraction aggregation b
multimedia data object features fy, ..., fn € F feature representatlon

e Feature extraction: A multimedia data object is represented by means

of features fi, ..., f, € F in a feature space F
- SIFT features: F = R'?8
e Feature aggregation: The features fi, ..., f, are aggregated into a

compact feature representation
- clustering algorithms: k-means, expectation maximization,

e A feature representation is defined as a function F: F — R
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Feature Extraction and Aggregation
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e Different means of feature aggregation:
- Feature Histogram: features are summarized according to a global

partitioning which is fixed for all multimedia data objects

- Feature Signature: features are summarized individually

(per object)
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Feature Representation

e Given a feature space [, a feature representation F is defined as:
F:F—-R

e The value of zero is designated for features that are not relevant for a
certain multimedia data object

e The representatives Rg C IF of a feature representation F are defined as:
R = {f € F| F(f) # 0}

e The weight of a single feature f € F is defined as F(f) € R
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Feature Signature

e A feature signature S is defined as:
S:F — R subjectto |Rs| < o0

e A multimedia data object is described by a finite number of features
e These features are the representatives Rs = {f € F | 5(f) # 0}

e Two feature signatures S; and S, may differ in their representatives and
weights
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Feature Histogram

e Let F be a feature space and R C F A |R| < oo be shared representatives

e A feature histogram Hg w.r.t. the shared representatives R is defined as:
Hgr:F — R subject to Hgr(F\R)={0}

e Every multimedia data object is described by the same finite number of
features, i.e. the shared representatives R

e Two feature histograms H,% and H,% can only differ in their weights

Fabian Panse [Ugg]
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Relations of Feature Representations

e Class of feature representations:

R ={F|F:F—R}

e Class of feature signatures:
S={S|SeRFA|Rs| < o0}
e Class of feature histograms w.r.t. R C F, |R| < oo:

Hg = {H | H € R A Hr(F \ R) = {0}}
e Union of all feature histograms:

H = URgF,|R|<oo Hg =S
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Example: Feature Signatures

e 7-dimensional features: position, color, coarseness, and contrast
e Random sampling of 40.000 image pixels

e Increasing the number of representatives from 10 to 1000:
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Similarity vs. Dissimilarity

object 04 object 0, object 03

e A similarity measure sim assigns high values to similar objects:
- sim(o1, 02) > sim(o1, 03)

e A dissimilarity measure 0 assigns low values to similar objects:
- 6(o1,02) < 6(01,03)
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Similarity Function & Metric Distance Function

e A similarity function s: X x X — R quantifies the similarity between two
elements from a set X and satisfies the following properties:

- Symmetry: Vx,y € X: s(x,y) = s(y, x)
- Maximum self-similarity: Vx, y € X: s(x,x) > s(x,y)

e Geometric distance between the feature representations defines
dissimilarity of multimedia objects

e A function §: X x X — RZ0 is called a metric distance function if it
satisfies the following properties:

- ldentity of indiscernibles: Vx,y € X: §(x,y) =0 x =y
Non-negativity: Vx,y € X: §(x,y) >0

Symmetry: Vx,y € X: §(x, y) = §(y, x)

Triangle inequality: Vx,y,z € X: §(x,y) < d(x,z) + 6(z,y)
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From a Psychological Perspective . ..

e The distance-based approach has the advantage of a rigorous
mathematical interpretation

e There is a long-lasting discussion of whether the distance properties and in
particular the metric properties reflect the perceived dissimilarity correctly

e Consider the following example, where it holds that
§(flame, ball) £ 6(moon, ball) + 6(flame, moon):

e - Loy -

no properties similar w.r.t. similar w.r.t.
shared alike roundness luminosity

Fabian Panse [Ugg]
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Taking a closer look at this example ...

e Validity clearly depends on the (dis)similarity model

e Consider the following two-dimensional “binary” feature representations

a5

luminosity: (1 (0) G)

roundness: 0 1
o Applying the Euclidean distance Ly(x,y) = /2L, (x; — yi)? yields:
- Lo(flame, ball) = L5((g), (9)) = V2~ 1.41
o 1 &(flame, ball) /
- Ly(ball, moon) = Lz((l), (1)) - = P

&(moon, ball) +_6(ﬂame, moon)
- Ly(flame, moon) = Lg((é), (i)) =1
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From a Database Perspective ...

e The distance-based approach provides a powerful tool
e Metric distance functions allow
- domain experts to model their notion of dissimilarity

- database experts to design efficient query processing approaches
(particularly the utilization of the triangle inequality)

e Thus, indexing approaches can be investigated without knowing the
inner-workings of a metric distance function

Fabian Panse [Ugg]
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Distance Functions for Feature Histograms

e Given two feature histograms X, Y € Hg, how can we define a distance
between them?

e Consider the following color histograms for R = {r,r,...,no}

T T2 T3 Ty Ts5 Te 17 Tg T9 Tyo T T2 T3 Ty T5 Te 17 Tg T9 Tyo
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Minkowski Distance

e ldea: Measure the dissimilarity by adding up the differences in all
dimensions, i.e. for all representatives f € R C F

e Given two feature histograms X, Y € Hg, the Minkowski Distance is
defined for p € RZ0 U {oo} as:

Lo(X, Y) = (D2, IX(F) = Y(F)PP)”

e This corresponds to taking into account all pairwise differences:

Alan-Alinal

T T 13Ty 15 Tg T7 Tg T9 Tyo

T T2 13 Ty T5 Te 17 Tg T9 T10
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Weighted Minkowski Distance

e ldea: Model the influence of the shared representatives R C F by a
weighting function w: F — R=0

e Given two feature histograms X, Y € Hg, the Weighted Minkowski
Distance is defined for p € RZ% U {co} and a weighting function w as:
1

Lo(X, Y) = (3, o w(f) x [X(F) = Y(F)P)*

XIID.I.I.I.I.I...I
T T2 131y 15 76 77 78 T9 T70
Ymtmm

T T2 13 74 T5 Te T7 Tg T9 T1o
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Issues of Bin-by-bin Distance Functions

e Bin-by-bin distance functions define a distance value by taking into
account single representatives (dimensions)

e Neighboring representatives (dimensions) are neglected

e Consider the following color histograms X, Y, Z € Hg with

R:{rl,...,rlo}
1 i
O

T T2 T3 Ty Ts Tg T7 Tg To Tyo

g B B d ||

T T2 T3 Ty 15 Tg T7 Tg Tg9 Tyo n Ty T3 Ty Ts Te T7 Tg T9 Tio

e In this example, it holds that L,(X,Y) > Ly(X, Z)
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Issues of Bin-by-bin Distance Functions

e Consider the following color histograms X, Y, Z € Hg

XI

n T T3 Ty Ts Tg Ty Tg Tg9 Tyo

v I 2 I

n T, T3 1y Ts Te 17 Tg To Tig T T2 T3 Ty Ts T 17 Tg Tg Tio

e All color histograms X, Y, Z € Hp result in the same Minkowsi Distance:
LP(X7 Y) = LP(sz) = LP(Y7 Z)

e The fact that the color green is more similar to the color blue than to
the color red is not taken into account

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Cross-bin Distance Functions

e More flexible than bin-by-bin distance functions
e Basic Ideas:
- Replace the weighting of single representatives by a weighting of
pairs of representatives
- Model the influence not only for each single representative, but also
among different representatives
- This influence is often defined in terms of a similarity relation
- Thus, we can utilize a similarity function s: X x X — R in order to
define the influence for all pairs of features

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Quadratic Form Distance

e The Quadratic Form Distance is a cross-bin distance function that takes
into account all pair-wise similarities

e Given two feature histograms X, Y € Hg, the Quadratic Form Distance
w.r.t. a similarity function s: X x X — R is defined as:

QFDs(X,Y) = \/ZfeR Yger (X(F) = Y(£)) x s(f, g) x (X(g) — Y(g))

T T2 13 74 15 6 17 1g T9 T1o

Fabian Panse [Ugg]

29 ik

Similarity Search in Multimedia Data




Quadratic Form Distance: Example

{ 1 Z L

T 12 1374 15 76 17 Tg T9 T1o 71 127374 75 76 17 Tg T9 T1o T T2 7374 75 76 77 Tg T9 T1o

x = (1,0, ...,0) y = (0, ...,0,1,0, ..., 0) z=(0,...,0,1,0,0)

o Let s(ri,r;) =1, s(r,r6) = s(r,rg) =0.2 and s(rg, rg) = 0.6
e The Quadratic Form Distance is as follows:

- QFD4(X,Y) = /1.6 ~ 1.265

- QFDy(X,Z) = /1.6 ~ 1.265

- QFD,(Y,Z) = /0.8 ~ 0.894

e Better fits our intuition of dissimilarity /

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Distance Functions for Feature Histograms

e Distance functions are defined for feature histograms w.r.t. the same
shared representatives

e Weighted Minkowski Distances are limited w.r.t. adaptability but show
linear computation time complexity

e Quadratic Form Distances are very adaptable but show quadratic
computation time complexity

e Other distance functions
- Geometric measures such as cosine distance
- Information theoretic measures such as Kullback-Leibler

- Statistic measures such as y?-statistics

Fabian Panse [Ugg]
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Conceptual Differences of Feature Representations

Feature histograms Hpg Feature signatures S
e Multimedia data objects use the e Multimedia data objects use
same shared representatives: individual representatives:
- Sufficient to store the weights - Weights and representatives
- Feature histograms have the have to be stored
same cardinality - Feature signatures have
- Can be thought of as vectors different cardinalities

(representatives = dimensions)

/llan-lnal Al Al

T1 127374 T5 76 77 T3 T9 g 2 Ts 7 T9 T10
d [ I e ALl _an
1 T2T374 7576 77 T3 T9T10 T T3NS Tg T9T10
- Distance computation by means - Distance computation along
of differences in each dimension single dimensions not meaningful

Fabian Panse [Ugg]
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Concept of Using Ground Distance

e ldea: Utilization of a ground distance §: F x F — R0 on the
representatives Rx, Ry C IF of two feature signatures X, Y € S

Feature signature ~ caleulates distances Distance function
X€eS D:S xS — R
is represented by uses
y A 4
Representatives Ry € F | applicable to Ground distance
with weights X(f) € R §:F x F » R

Fabian Panse [Ugg]
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Earth Mover's Distance: Principle

e Given two color signatures X, Y € S

d | IS I [ A (o

n T s Te Ty T1o 3 74 Ts Tg Ty Tio

Ry = {1, 72, 75,76, 79, 710} Ry = {ry, 73,74, 75, 78,79, 110}
e The transportation (earth moving) problem is formalized by:
- Earth hills Rx with capacities X(r;) for r; € Rx
- Earth holes Ry with capacities Y(r;) for ri € Ry

Cost (ground distance) 6: F x F — R=0 for moving a unit of earth
All possible flows F = {f | f: Rx x Ry — R=0}

e Solution: flow fy;, € F that minimizes 3", cr, her, fmin(g, h) % (g, h)

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Earth Mover's Distance: Definition

e Given two feature signatures X, Y € S over a feature space I, the Earth
Mover's Distance EMDg: S x S — R between X and Y is defined as:

( deRX EhERY f(g’ h) X 5(g) h) )
{f|f: Rxny—>R>°} min (ZgERx X(&), YXhery, Y(h)

subject to the constraints:

CNNeg: Vg € Rx,Yh e Ry: f(g,h) >0

CSource: Vg € Rx: Y per, flg,h) < X(g)

CTarget: Vh € Ry: 3 ,cr, (g, h) < Y(h)

CMaxFlow: 3 cr, hery f(8,h) = min (Xger, X(8), Zher, Y (h)

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Earth Mover's Distance: Example

e Consider the following two color signatures X, Y € S

e Given the ground distance 0(r;, rj) = |i — j|, we obtain the following
distance value:

EMD;(X,Y) f(ra,n) x 0(ra, r) + f(ro, rr) x 8(ro, r7) + f(ro, rs) x 6(ro, rg)
= 025x1+0.125x2+0.125 x 1

= 0.625

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Earth Mover's Distance: Properties

e The Earth Mover's Distance is defined as a linear optimization problem

e Finding an optimal solution can be computed based on a specific variant
of the simplex algorithm

e Exponential computation time complexity in the worst case

e Average empirical computation time complexity between O(|Rx|3) and
O(|Rx[*) for [Rx| = [Ry]

e More efficient algorithms for specific classes of §

e Earth Mover's Distance is a metric if and only if
- feature signatures are normalized, i.e. 3 rcr, X(f) = Xrer, Y(f)

- ground distance § is a metric

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Distance-based Similarity Query

&

- query object g € X
- distance function &

results € D
e Different query types:
- Range Query - (Top-k Query)
- K-Nearest-Neighbor Query - (Skyline Query)
- Ranking Query - (Reverse Nearest-Neighbor Query)

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Range Query

e Range query includes database objects whose distances to a query object
lie within a specific threshold

o Let X be aset, §: X x X — R be a distance function, D C X be a finite
database, and g € X be a query object

e The query range.(q,d,D) is defined w.r.t. the range € € RZ0 as:
range(q,6,D) = {x € D | 6(q,x) < ¢}

Fabian Panse [Ugg]

39 ik

Similarity Search in Multimedia Data




Range Query: Properties

e By performing a sequential scan (also linear scan or naive scan) of the
entire database DD, the computation time complexity lies in O(|D|)

e The result size is bounded by the database size, i.e. it holds that
|range.(q, 6, D)| < D]

e Problem: How to choose an appropriate range ¢ € R=0?
- Different data scales can result in very small or very large result sets

Fabian Panse
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K-Nearest-Neighbor Query

e K-nearest-neighbor query includes database objects up to the
kth-smallest distance to a query object

o Let X be aset, §: X x X — R be a distance function, D C X be a finite
database, and g € X be a query object

e The query NNi(q,0,D) is defined w.r.t. the number of nearest neighbors
k € N as the smallest set NNi(q,d,D) C D with |[NNk(q,0,D)| > k
such that

Vx € NNk(q,6,D),Vx" € (D\ NNk(q,8,D)): 6(q,x) < d(q,x")

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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K-Nearest-Neighbor Query: Properties

e By performing a sequential scan of the entire database D, the
computation time complexity lies in O(|D|)

e If the distances between the query object and the data objects are
unique, i.e. if it holds that Vx,x’ € D: 6(q, x) # 6(q, x’), the result size
is bounded by the minimum of database size and parameter k, i.e. it
holds that

[NNk(q,d,D)| < min(k, |D|)

e If two or more objects have the same distance to the query object,

NNk (q,0,D) can comprise more than k objects

o

In this example:
0) |NN1(q,6, ]D))l =3

o o
o
Similarity Search in Multimedia Data
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Ranking Query

e Ranking query sorts a database in ascending order w.r.t. the distances to
a query object

o Let X be aset, §: X x X — R be a distance function, D C X be a finite
database, and g € X be a query object

e The query ranking(q,d,D) is a sequence of D that is defined as:

ranking(q,d,D) = x1,..., x|
where it holds that
3(q,x;) < 6(q,x;) forall x;,x; e Dand 1 <i<j< (D

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Ranking Query: Properties

e The computation time complexity of this ranking algorithm depends on
the computation time complexity of the sorting algorithm

- In general: O(|D| x log(|D]))

e The cardinality of ranking(gq,d, D) can be restricted by nesting the
ranking query with other query types

- Sorted sequence of the k-nearest neighbors:
ranking(qa 57 NNk(qa 57 ]D)))
- Sorted sequence of data objects within range e:

ranking(q, 0, range.(q, 0, D))

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Multi-Step Query Architecture

e Processing of distance-based similarity queries in multiple steps

o Filter step is applied to all database objects
- Efficient generation of candidates
- Use of approximations

e Refinement step only necessary on candidates
- Use of exact distances
- Correctness: do not return wrong objects
- Completeness: do not discard correct objects
- Efficiency: short response times

queryq €EX === candidates C S R === results RS D

index database
or filter
Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Complexity of Distance-based Similarity Queries

e Problem: Quality determines complexity
- High dimensionality = better quality
- Complex distance measure (e.g. Earth Mover's) = better quality
- But: both require much computing time

e Solution: Filter step for reduction of expensive computations
- Consider a range query range.(q,,D)
- Choose a filter distance e, with small computational effort
- Discard all objects with e, > €
- Necessary condition: filter distance is a lower bound of the exact
distance, i.e.

vx,y € X:

5filter(x: }’) < 6(xl )’)

6filter(x:y) > &= 6(x,y) >¢€

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Lower Bound

Let X be a set and §: X x X — R be a distance function. A function
01g: X x X — R is a lower bound of ¢ if it holds that:

VX,y e X: 6LB(X7y) < 6(X7y)

Two approaches of deriving a lower bound:
- Model-specific approaches which exploit the inner workings of a
distance function

- Generic approaches which exploit the properties of the
corresponding metric distance space (X, )

01 is also denoted as the filter (distance) of d, denoted by 0,5 <
Quality of a lower bound depends on the ICES criteria

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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ICES Criteria for Lower Bounds

¢ Indexable:
- Filter function should be indexable in order to be applied with an
index structure
e Complete:
- No correct answers are dismissed in the filter step
- There are approximate systems with limited completeness and
correctness, e.g. PAC-NN (probably approximate correct)
o Efficient:

- Fast computation of filter distance, e.g., linear complexity w.r.t.
dimensionality

Selective:

- Small candidate set generated in the filter step
- The larger the filter distance e, the better the filter selectivity

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Multi-Step Range Query

e Given a set X, a database D C X, and a distance function §: X x X — R

e Given a lower bound §;5: X x X — R of §, how to process a query
range.(q,0,D) = {x € D | 6(q, x) < €} efficiently?

e Process:
. . complete database D
- Filter step: evaluate range query with the v

same € € R but cheaper filter distance 0,5
to generate the candidates L filter step J

Or; <e&
C={xeD|dp(g,x)<e} sitter

i i ; . didates €
- Refinement step: refine candidates with

the exact distance § to obtain the results L refinement step J

R={xcC|d(q.x) < e} 5<e

e It holds that R = range.(q,d,D) iff 6,5 < 0

Fabian Panse [Ugg]
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Optimal Multi-Step k-NN Query

e Given a set X, a database D C X, and a distance function §: X x X - R

e How to process a query NNi(q, §, D) efficiently by means of a lower
bound d;5: X x X — R and an optimal number of candidates?

e ldea:
- Utilization of a ranking query
- Adaptation of €, after each object

Properties:
- It can be shown that the resulting algorithm is complete

- It can be shown that the number of candidates is optimal (minimal)

e Note:
- 5LB(q7X) > 6LB(q7y) +* (S(Q,X) > 5(q7y)

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Optimal Multi-Step k-NN Query

v
—-{ ranking(q, 8,5, D)
index !

while §;5(q, x) < €pqy do
load object from database
and adjust &4y

database g

[ final k-NN: §(q, X) < &nax ]

il
Similarity Search in Multimedia Data
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Optimal Multi-Step k-NN Query: Pseudo Code

procedure NN, (q, 6, D):
results R « @
filterRanking « ranking(q, 6.5, D)
x « filterRanking. getnext()

Emax < O
while §;5(q, x) < gpqx do
if [R| < k then
R« RU{x}
else if §(q, x) < enqx then
R« RU{x}
R« R-— {argmax 6(q,y)}
TER
Emax < Max6(q,y)
x « filterRanking. getnext()
return R

Fabian Panse [Ugg]
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Optimal Multi-Step k-NN Query: Properties

e Observation:
- Pruning distance €.« decreases
- Filter distance §; g increases

- Algorithm terminates when §; 53 > €max

emax
© Oz

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Optimal Multi-Step k-NN Query: Example

Given:
e objects 0; — o7

e distance function ¢, lower bound function d, g

e k=3
oig | 0 k-NN €max remark
oo 001 | 001 {o1} 00

oo 0.2 0.25 {o1,02} 00
o3 025 | 035 {o01,02,03} 0.35
o, 027 |03 {o1,00,04} 0.3

os 028 |04 {o1,02,04} 0.3 €Emax < 018 = stop
Op 0.4 - - -
o7 0.42 |- ; .

Fabian Panse [Ugg]
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Optimal Multi-Step k-NN Query: Example

Given:
e objects 0; — o7

e distance function ¢, lower bound function d, g

e k=3
oig | 0 k-NN €max remark
oo 001 | 001 {o1} 00

oo 0.2 0.25 {o1,02} 00
o3 025 | 035 {o01,02,03} 0.35
o, 027 |03 {o1,00,04} 0.3

os 028 |04 {o1,02,04} 0.3 €Emax < 018 = stop
Op 0.4
oy 042
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Lower Bound of Minkowski Distance

e Given two feature histograms X, Y € Hg and the Minkowski Distance
1

Lo(X, ¥) = (Zrer IX(F) = Y(F)I?)’
e Any subset R' C R defines a lower bound, i.e. it holds for all X, Y € Hg
1
L(XIr, YIR) = (Srer IX(F) = Y(F)IP)”

(SrerlX(O) = Y(AIP)" = Ly(X,Y)

IN
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e
Generic Lower Bound of EMD

e Given two ground distance functions 6,8,5: F x F — RZ0 with §;5 < §
it holds for all feature signatures X, Y € S that:

EMDjy, (X, Y) < EMDs(X, Y)
e Proof:

- Let m = min (ZgERx X(g): Xohery Y(h)) be the minimum total
weight of X and Y
- Let the flow fini, € RFXF define a minimum solution:

EMD&(Xv Y) = #(Zg,heF fmin(ga h) X 6(g7 h))

% ( Zg,hEIF' fmin(g, h) X 6LB(g7 h))
EMDy;, (X, Y)

AV
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Centroid-based Lower Bound

e Given a ground distance function §: F x F — R=9, it holds for all
feature signatures X, Y € S that:

LBRubner(Xu Y) = 6(Y7 )7) < EMD5(X7 Y)

where X,y € F are defined as the centroids (mean representatives) of X
and Y, i.e. X = 3 ,cr, 8 X X(g) and y = 3" 4cg, h x Y(h) if the total
weight for every signature is 1.

e Properties:
- LBRybner is applicable to feature signatures and histograms
- Centroids can be computed prior to query processing

- Computation time complexity of LBgrypner solely depends on the
dimensionality of the feature space and not on the size of the
feature representations
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Independent Minimization Lower Bound of EMD

e lIdea: Approximation of the EMD through constraint relaxation

e Approach: Given two feature signatures X, Y € S,,, the Earth Mover's
Distance is defined w.r.t. a metric ground distance J as:

EMD;(X, Y) = minrir. gy xry 220} 5 ( Lecky Lher, F(8:h) x 5(g. h))
subject to the constraints:

- CNNeg: Vg € Rx,Yh € Ry: f(g,h) >0

- CSource: Vg € Rx: > per, f(g, h) < X(g)

- CTarget: Vh € Ry: 3 g, f(g, h) < Y(h)

- CMaxFlow: 3" cr, her, f(g:h) = m

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Independent Minimization Lower Bound of EMD

e lIdea: Approximation of the EMD through constraint relaxation

e Approach: Given two feature signatures X, Y € S;,, the LBy Distance
is defined w.r.t. a metric ground distance J as:

LB/M(Xa Y) = min{f\f: Rx xRy —R>0} #(deRX ZheRy f(ga h) X 5(& h))
subject to the constraints:
- : : >
CNNeg Vg < RX7Vh € RY f(g7 h) 20 Replace CTarget with
CSource: Vg € Rx: > 4er, f(g, h) < X(g) the relaxed constraint
CTargetIM
- CTargetIM: Vg € Rx, Vh € Ry: f(g,h) < Y(h)

- CMaxFlow: 3" cr, her, f(g:h) = m
e Lower bound LBy results from replacing CTarget with CTargetIM
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Independent Minimization Lower Bound of EMD

e lIdea: Approximation of the EMD through constraint relaxation

e Approach: Given two feature signatures X, Y € S;,, the LBy Distance
is defined w.r.t. a metric ground distance J as:

LBim(X,Y) = > geRx MiNgf1F: Ry xRy R0} #(ZheRy f(g,h) x i(g. h))
subject to the constraints:

) CNNeg: Vg € Rx; Vh € Ry f(g’ h) =0 Replace CTarget with
CSource: Vg € Rx: 2 heRy f(g,h) < X(g) Eh_?a:?:tﬁ/cli constraint
- CTargetIM: Vg € Rx, Vh € Ry: f(g,h) < Y(h)

- CMaxFlow: 3" cr, her, f(g:h) = m
e Lower bound LBy results from replacing CTarget with CTargetIM

e The minimization within LBy, can be computed individually for each
representative g € Rx
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Flow computation

e |dea:

- For each representative g € Ry, define Sx y of nearest neighbor
representatives h € Ry according to (g, h) in ascending order

- Capacity of g may not exceed total weight of elements in Sx y

e Example:
- Representative sets: Rx = {x1, x2}
Ry = {y1,y2,y3} xl %
- Weights: X(x1) = 3, X(x2) =

Y(y1) =5, Y(y2) =2, Y(y3) _3 M \

- Sx,y(x1) = (y2,5) and
Sx,y (x2) = (v2,y3, 1) U El rh
LBm(X,Y)=1(1x242x1+2x5+2x2+3x4)=3.0

Similarity Search in Multimedia Data Fabian Panse
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Flow computation

e |dea:

- For each representative g € Ry, define Sx y of nearest neighbor
representatives h € Ry according to (g, h) in ascending order

- Capacity of g may not exceed total weight of elements in Sx y

e Example:

x1 x1 X2

A : 7 5. M S
. B, El, 1 e, (.
EMD(X,Y)=3.2 LBim(X,Y)=3.0

Similarity Search in Multimedia Data

Fabian Panse

59

iti
n



Metric Space Properties

e Given a metric space (X, d) how to estimate the distance
§: X x X — R2% between two distinct objects x, y € X?

- identity of indiscernibles: 6(x,y) # 0
non-negativity: 6(x,y) >0

symmetry: 0(x,y) = 0(y, x)
triangle inequality: d(x, y) < d(x,z) + d(z,y) for any z € X

e Triangle inequality puts into relation three objects

e Triangle inequality is the only means that allows to estimate the distance
between two objects by using another additional object

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Geometric Derivation of Triangle Lower Bound

e Goal: Lower bounding d(x, y) w.r.t. an object z by using the triangle
inequality
e Suppose §(x,z) > d(z,y):

5(x,2) — 6(zy)

e We then have: d(x,z) — d(z,y) < d(x,y)

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Algebraic Derivation of Triangle Lower Bound

e Given a metric space (X, d), it holds for all objects x, y,z € X that:
6(x,2) <6(x,y) +6(y,2) = 0(x,2) =6(y,z) < d(x,y)
6(y,z) <6y, x) +6(x,2) = d(y,z) —d(x,z) <i(y,x)

= —(0(x,2) = d(y,2)) < d(y,x)
= 0(x,z) —0(y,z) > =d(y,x)

e Combining both inequalities yields:

—0(x,y) <d(x,2) = d(y,z) < d(x,y)

e This leads to the reverse or inverse triangle inequality:
6ZA(X7y) = |5(X,Z) - 6(y72)| < 5(Xay)

e 02(x,y) is a lower bound of §(x,y) w.r.t. any object z € X

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Algebraic Derivation of Triangle Lower Bound

e Multiple lower bounds &7, ..., 07 w.r.t. objects {z;,...,zx} C X are
combined to a single lower bound by using their maximum

e Let (X, ) be a metric space and P C X be a finite set of pivot elements,
the triangle lower bound 65 : X x X — R w.r.t. P is defined for all
x,y € X as follows:
d (x, y) = maxpep [6(x, p) — d(p, y)|
e Triangle lower bound 6§ can be utilized directly in the multi-step query
processing algorithm

e Problem: Direct utilization not meaningful since a single lower bound
computation requires 2 x |P| distance evaluations

e Solution: Precomputation of distances (i.e. indexing)
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Pivot Table

e The idea of a pivot table consists of storing the distances between each
database object and each pivot element
e Approach:
- Given a database D = {o1,...,0,} and a set of pivot elements

P= {pla"'>pk}
- Pivot table 7 € R™*k stores distances between all pairs of database
objects o; € D and pivot elements p; € P:

T 6('7pl) 6('7pk)

01

On

- |D| x |P] = n x k distance computations necessary prior to query
processing

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Pivot Table: Query Processing & Properties

e A query g € X is processed as follows:
1. Distances 6(q, p;) are computed for all p; € P
2. Linear scan of the pivot table 7" with 65 to generate candidates

3. Refinement of candidates with original distance ¢

e Properties:

- Pivot table is regarded as one of the most simplistic yet effective
metric access method

- It applies caching of distances

- Due to the linear behavior, a pivot table scales for
small-to-moderate size databases
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Pivot Space

e A pivot table can be understood as an embedding of objects from a
metric space into a multidimensional Euclidean space

e This Euclidean space R¥ whose dimensions are given by the distances to
the pivot elements P = {p1, ..., px} is denoted as pivot space

5('! pZ) f

P1 Q

o
o
|mim—
<
o

P2 .
6('! pl)
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Pivot Space and Triangle Inequality

e Consider a query range.(q, J,D) with range ¢ € R=0

e The triangle inequality implies the following bounds in the pivot space:

6(" Pz) I

6(q,p2) + ¢
qdo

5(q,pz) — €

8(gp) —¢  8(qp) +e

Similarity Search in Multimedia Data
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Pivoting

e Searching by means of precomputed distances to pivot elements P and
the triangle lower bound 65
e Filtering Principle for P = {p} and range query with ¢ € R=0:
- Objects o inside the inner ball around p
are filtered out because it holds that
6(q,p) —d(p,0) > ¢
- Objects o outside the outer ball around p
are filtered out because it holds that
o(p,0) —d(q,p) > ¢
- Thus only objects o inside the shell between

the two balls are candidates because it holds
that o = [0(q, p) — d(p,0)| < ¢

Similarity Search in Multimedia Data
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Pivoting - Example

e Given: Pivot table 7 with pivot objects IP, database D = {01, 02, 03},
query object g = (1,2,2), range e = 1, 6 = L; (Manhattan Distance)

T p1=1(0,0,2) | pp=(1,3,0) | p3 =(1,1,1)
6('7P1) 6(7p2) 5(',[’3)
01 3 1 4
0 5 2 1
03 4 4 2
‘ 6(q") ‘

Similarity Search in Multimedia Data
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Pivoting - Example

e Given: Pivot table 7 with pivot objects IP, database D = {01, 02, 03},
query object g = (1,2,2), range e = 1, 6 = L; (Manhattan Distance)

r | = 0,0,2) | p»=(1,3,0) | p3=(1,1,1)
(- p1) (- p2) (-, p3)
01 3 1 4
0 5 2 1
03 4 4 2
| 8(q.") | 3 3 | 2

e Compute distances between g and pivot objects
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Pivoting - Example

e Given: Pivot table 7 with pivot objects IP, database D = {01, 02, 03},
query object g = (1,2,2), range e = 1, 6 = L; (Manhattan Distance)

7+ | =002 ]p=(130 =(1,1,1)
UACED) 95 (9:°) 5A(q, )

01 0 2 2

02 2 1 1

03 1 1 0

e Compute distances between g and pivot objects

e Compute 65(q, o;) for every object o; € D and pivot object p; € P

Similarity Search in Multimedia Data Fabian Panse [Ugg]
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Pivoting - Example

e Given: Pivot table 7 with pivot objects P, database D = {01, 03, 03},
query object g = (1,2,2), range e = 1, 6 = L; (Manhattan Distance)

T p1=(0,0,2) | p»=(1,3,0) =(1,1,1)
UACHD) 95,(q:°) 5A(q’ ) | 08(a,)
o 0 2 2 2
o 2 1 1 2
o 1 1 0 1
oy | 3 | 3 | 2

e Compute distances between g and pivot objects

e Compute 65(q, o;) for every object o; € D and pivot object p; € P

e Compute 5 (g, 0;) = maxpcr (95.(q, 0;)) for every object o; € D

Similarity Search in Multimedia Data
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Pivoting - Example

e Given: Pivot table 7 with pivot objects P, database D = {01, 03, 03},
query object g = (1,2,2), range e = 1, 6 = L; (Manhattan Distance)

T p1=1(0,0,2) | p» =(1,3,0) =(1,1,1)
UACHD) 95,(q:°) 5A(q’ ) | 08(a,)
o 0 2 2 2
o 2 1 1 2
o 1 1 0 1
oy | 3 | 3 | 2

Compute distances between g and pivot objects

Compute d5 (g, 0;) for every object o; € D and pivot object p; € P

Compute 05 (q, 0;) = maxp,ep (05,(g, 0;)) for every object 0; € D

Select every object o; where 5(q, 0;) < € as candidate

Similarity Search in Multimedia Data
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Summary

e Object representations
- How to model and represent multimedia data?

e Fundamental similarity models for multimedia data
- What is a distance-based similarity model?
- What metric distance functions can be used for histograms and
signatures?
o Efficient query processing
- What types of distance-based similarity queries exist?
- How to process such queries efficiently?

e Indexing
- How to index high-dimensional multimedia data?
- What are the principles behind the metric indexing approach?
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2—/5)
(o5} 1 3
0 4 0
O3 2 1

Compute the distances between g and the two pivot objects.

e 0(q,p1) =

° (q,p2) =
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

pL=(1,4) p2 = (3,2 V5)
(o5} 1 3
02 4 0
O3 2 1

Compute the distances between g and the two pivot objects.
e 3(g,p1)=+(1-12+(@4-22=V4=2
o 5(a.p2) = /3172 + (2~ V)~ 22 = VAT 5 =3
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

pL=(1,4) p2 = (3,2 V5)
(o5} 1 3
02 4 0
O3 2 1

Compute the distance (53_(q, o;) for every pair of database object o; € D
and pivot object p; € P.

° (5’?1((], 01) =

e 0p(q,0) =

Similarity Search in Multimedia Data
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2 +5)
(o5} 1 3
02 4 0
O3 2 1

Compute the distance (53_(q, o;) for every pair of database object o; € D
and pivot object p; € P.

° 5,?1(% o1) = [6(o1,p1) = d(q,p1)| =1 2| =1
e 65(q,00) = [6(02, p1) — (g, p1)| = [4 —2[ =2
e 05(q,03) = 10(03,p1) — (g, p1)| = [2—-2[ =0
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2 +5)
(o5} 1 3
02 4 0
O3 2 1

Compute the distance (53_(q, o;) for every pair of database object o; € D
and pivot object p; € P.

* 95(q,01) = [0(o1,p2) — (g, p2)| =[3-3[ =0
® 05,(q,02) = [6(02,p2) — (g, p2)| = 10— 3] =3
e 05(q,03) = [0(03,p2) — (g, p2)| = |1 =3[ =2
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2—/5)
(o5} 1 3
0 4 0
O3 2 1

Compute the distance 65 (g, o) for every database object o; € D.
* 53(q,01) =
* 53(q,0) =
* dp(q,03) =
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2 +5)
(o5} 1 3
02 4 0
O3 2 1

Compute the distance 65 (g, o) for every database object o; € D.
e 05(q,01) = max (65 (g, 01),05(q,01)) =1
o 02(q, 02) = max (6;,(q, 02),05,(q, 02)) =3
* 03 (q,03) = max (d5,(q, 03), 95,(q, 03)) =2
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2 +5)
(o5} 1 3
02 4 0
O3 2 1

Determine which database objects o; € D are candidates for a correct
query answer based on the previously computed distances (mark each
correct answer with a cross). Briefly justify your answer.

(O a candidate

e 0 is . because
(O not a candidate
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Excercise

Consider the query range. = (g,DD, §) with the query object g = (1, 2),
the database D = {0y, 02, 03}, the range e = 2 and the Euclidean
distance function d. Moreover, consider the following pivot table with the
pivot objects P = {p1, p2 }:

p1=(1,4) p2 = (3,2 +5)
(o5} 1 3
02 4 0
O3 2 1

Determine which database objects o; € D are candidates for a correct
query answer based on the previously computed distances (mark each
correct answer with a cross). Briefly justify your answer.

e 0; is a candidate (YES) because 65(q,01) =1<2=¢
e 0, is a candidate (NO) because §5(q,00) =3 £ 2=¢
e 03 is a candidate (YES) because 65(q,03) =2<2=¢
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