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Recommended Literature: Blogs

https://martin.kleppmann.com/

http://www.dzone.com/mz/nosql

http://www.infoq.com/nosql/

http://blog.baqend.com/

http://highscalability.com/

http://www.nosqlweekly.com/



The Database Explosion
Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content



The Database Explosion
Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites 
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration



 Gartner‘s 3 Vs:

Motivation Big Data

Volume

Velocity

Variety
TableMobile, Social, 

Web, 
unstructured

MB

PB

Batch

Near-Realtime, Realtime



4Vs 

IBM Infographic (McKinsey, Twitter, Cisco, Gartner, 
EMC, SAS, IBM, MEPTEC, QAS) 
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Hype Cycle

Big Data

http://www.gartner.com/newsroom/id/2819918



14

1.4 Billion Members

140 Billion friendships

290 Billion Photos



Climate Research: The Deutsche Klimarechenzentrum (DKRZ) stores 
60 PB climate data.

Archiving: The Internet Archive stores 10 PB of archived websites.

Gaming: World of Warcraft needs 1.3 PB for storing the game state. 
Steam delivers over 30 PB of data per month.

Movies: The CGI-effects in Avatar (2009) needed over 1 PB storage 
for rendering.

Supercomputing: The Blue Waters Supercomputer is planned to 
have a storage capacity of 500 PB.

Particle Physics: In search of the Higgs-Boson CERN gathered 200 PB 
of data.

Email: In May 2013 Microsoft announced that for the migration of 
Hotmail to oulook.com over 150 PB user data were transferred.

Data flood

Wikipedia



Dropping storage costs

HBlock.net



 Big Data has two sides:

Big Data Defined

Big Data

Big Data Management

• OLTP

• Often referred to as "NoSQL"

• e.g. MongoDB, HBase, 
Cassandra

Big Data Analytics

• OLAP

• Often referred to as „Big 
Data“

• e.g. Hadoop, Storm
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NoSQL Databases

Scalability Impedance Mismatch

?

ID

Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

Customers
Payment

 Two main motivations:

User-generated data,
Request load

Payment: Credit Card, …



 „NoSQL“ term coined in 2009

 Interpretation: „Not Only SQL“

 Typical properties:
◦ Non-relational

◦ Open-Source

◦ Schema-less (schema-free)

◦ Optimized for distribution (clusters)

◦ Tunable consistency

NoSQL Databases

NoSQL-Databases.org:
Current list has over 150 

NoSQL systems



Big Data Analytics

 Idea: make existing massive, unstructured data
amounts usable

• Structured data (DBs)
• Log files
• Documents, Texts, Tables
• Images, Videos
• Sensor data
• Social Media, Data Services

sources

Analyst, Data Scientist, 
Software Developer

• Statistics, Cubes, Reports
• Recommender
• Classificators, Clustering
• Knowledge



Scale-up vs Scale-out

Scale-Up (vertical
scaling):

More RAM

More CPU

More HDD

Scale-Out (horizontal
scaling):

Same Hardware

Connected by
network



Schema-free Data Modeling

RDBMS: NoSQL DB:

SELECT Name, Age
FROM   Customers

Customers

Explicit
schema

Item[Price] -
Item[Discount]

Implicit
schema



Highly Available Storage (SAN, 
RAID, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Specialized DB hardware
(Oracle Exadata, etc.)

Commercial DBMS

Paradigm Shift

Commodity drives (standard
HDDs, JBOD)

Commodity network
(Ethernet, etc.)

Commodity hardware

Open-Source DBMS



Paradigm Shift

Shared Memory
e.g. "Oracle 11g"

Shared Disk
e.g. "Oracle RAC"

Shared Nothing
e.g. "NoSQL"

 Shift towards distributed computing architectures



Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Functional
Require-

ments from
the

application

Central
techniques

NoSQL
databases

employ

Operational 
Require-
ments

enable enable



Sharding (aka Partitioning, Fragmentation)

Shard 1

Shard 2

Shard 3

[G-O]
FranzPeter

 Horizontal distribution of data over server nodes

 Paritioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)



Sharding (aka Partitioning, Fragmentation)

Shard 1

Shard 2

Shard 3

[G-O]
FranzPeter

 Horizontal distribution of data over server nodes

 Paritioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)

• MongoDB
• HBase
• Riak
• Cassandra
• HDFS

Implemented in



Hash-based Sharding
◦ Builds hash of data values (e.g. over the key) to determine a 

partition (shard) for a data item (tuple)

◦ Pro: Perfectly even distribution

◦ Contra: No data locality – data items are pseudorandomly
scattered over partitions

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions

◦ Pro: Data locality preserved (for shard keys)

◦ Contra: distribution might grow uneven
repartitioning/balancing required

Sharding



Example: Tumblr

 Caching

 Sharding from
application

Moved towards:

 Redis

 HBase

Traditional Sharding

Web

Servers

MySQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

Web

Servers

My

SQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

My

SQL

My

SQL

Memcached Memcached

Manual

Sharding

Web

Server

MySQL

Web

Servers

MySQL

W W W

Memcached1 2

3 4



 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication

Slave

Slave

Master



 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication

Slave

Slave

Master

• Redis
• MongoDB
• CouchDB
• HBase
• HDFS

Implementiert in



Asynchronous
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: consistency models



Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are

read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously

propagates the update or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs complicated coordination protocols (e.g. 
Paxos) or is inconsistent

Replication: coordination



Synchronous Replication: 2PC

DB-ServerDB-ServerClient Coordinator DB-Server

Prepare
Phase

Commit
Phase

prepare

ready

commit

prepared

commited

Commited/written

commit

Commit/write

Log prepared



Error scenarios (timeouts)

In INITIAL:
◦ No consequence

In WAIT:
◦ Abort

In ABORT oder COMMIT:
◦ Resend commit/abort and wait for

all responses

INITIAL

WAIT

prepare

commit

ABORT COMMIT

abort

Coordinator



Error scenarios (timeouts)

In INITIAL:
◦ Coordinator probably crashed

Abort („Presumed-Abort-Protocol“)

In WAIT:
◦ Wait for message from coordinator

INITIAL

WAIT

prepare

commit

ABORT COMMIT

abort

Resource-Manager



2PC is not available

prepared

prepared

prepared

prepared

prepared

commited

commited

commitedcommited

commited

co
m

m
it

co
m

m
it

ed

prepared

preparecommit

commited



 Provide atomic propagation of writes or commits

 Most prominent implementation: 2-Phase-Commit

Commit protocols

Commit protocol Messages Property

1-Phase-Commit 2N Not always possible

Linear 2PC 2N+1 Not parallel

Hierarchical and normal 
2PC

4N-2R Might block indefinitely

3-Phase-Commit 6N-4R No consistency guarantee

Paxos-Commit 3N+2F(N+1)+1 F failures tolerated

Distributed 2PC N2 No 2nd phase

R Read-RMs, W Read/Write-RMs, N=R+W



 Classifies distributed databases
 Only 2 out of 3 properties are

achievable at a time:
◦ Consistency: all clients have the same 

view on the data

◦ Availability: every request to a non-
failed node most result in correct
response

◦ Partition tolerance: the system has to
continue working, even under arbitrary
network partitions

CAP-Theorem

Eric Brewer, ACM-PODC Keynote, Juli 2000

Gilbert, Lynch: Brewer's Conjecture and the Feasibility of 
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

Consistency

Availability
Partition 
Tolerance

Not reachable



 Intuition for the impossibility of simultaneously
achieving C, A and P at once:

CAP-Theorem: simplified proof

Value = V0

K2

Value = V0

K1

Sch
reib

en
Le

se
n

Value is replicated to two nodes



 Failure-free reading and writing:

CAP-Theorem: simplified proof

Value = V1

K2

Value = V1

K1

W
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Replication
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 Problem: when a network partition occurs, either
consistency or availability have to be given up

CAP-Theorem: simplified proof

Replikation Value = V0

K2

Value = V1

K1

Response before
successful replication
 Availability

Block response until
ACK arrives
 Consistency

Network partition



CAP-Theorem: Wrap-up

Consistency

Availability
Partition 
Tolerance

CP

AP

CA

CP example:
Distributed DBMS with 2PC 
replication

CA example:
Centralized DBMS

AP example:
Dynamo



NoSQL triangle

A

C P

Every client can always
read and write

All nodes continue
working under network
partitions

All clients share the
same view on the data

Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

CA
Oracle, MySQL, …

Data models

Relational
Key-Value
Wide-Column
Document-Oriented

AP
Dynamo, Redis
Cassandra
SimpleDB, Riak

CP
Postgres, MySQL Cluster, 
Oracle RAC
BigTable, HBase, Azure Table
MongoDB



ACID vs BASE 

ACID

Atomicity

Consistency

Isolation

Durability

BASE

Basically 
Available

Soft State

Eventually 
Consistent

„Gold standard“
for RDBMSs

Model of many
NoSQL systems

http://queue.acm.org/detail.cfm?id=1394128



 Idea: Classify system according to their heaviour during
network partitions

PACELC – an alternative CAP formulation

Partiti

on

yes no

Abadi, Daniel. "Consistency tradeoffs in modern distributed 
database system design: CAP is only part of the story."

Avail-

ability

Con-

sistency

Laten-

cy

Con-

sistency

Dynamo-Style AL: 
Cassandra, Riak, etc.

MongoDB AC Consistent CC:
HBase, BigTable and ACID systems

No consequence of the
CAP theorem



Negative Results
In Distributed Computing

Asychronous Network, 

Unreliable Channel

Impossible: 
2 Generals Problem

Consensus

Atomic Storage

Impossible:
CAP Theorem

Asychronous Network, 

Reliable Channel

Impossible: 
Fisher Lynch Patterson (FLP) 
Theorem

Consensus

Atomic Storage

Possible:
Attiya, Bar-Noy, Dolev (ABD)
Algorithm



 Consensus:
◦ Agreement: No two processes can commit different decisions

◦ Validity (Non-triviality): If all initial values are same, nodes must 
commit that value

◦ Termination: Nodes commit eventually

 No algorithm guarantees termination (FLP)

 Algorithms:
◦ Paxos (e.g. Google Chubby, Spanner, Megastore, Cassandra 

Lightweight Transactions)

◦ Raft (e.g. etcd service)

◦ Zookeeper Atomic Broadcast (ZAB)

Negative Results
Consensus Algorithms Safety

Properties

Liveness
Property



 Weaker isolations levels are possible:
◦ RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, „Scalable

Atomic Visibility with RAMP Transactions“, SIGMOD 2014)

 Consequence: trade-offs are important

Negative Results
Correctness/Serializability

Distributed ACID and availability are incompatible:

Write A=1
Read B

Write B=1
Read A

𝑤1 𝑎 = 1 𝑟1(𝑏 = ⊥) 𝑤2 𝑏 = 1 𝑟2(𝑎 = ⊥)



Read Performance Write Performance

Latency Durability

Synchronous replication Asynchronous replication

Row-based Column-based

Transactions Availability

REST RPC

Commodity servers High-end hardware

Normalisation Denormalisation

Schemas Schemafreeness

Typical Trade-offs



Client-Centric Consistency Models

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

 Define models that relax strong consistency (=linearizability) in 
different aspects

Read: Is
weaker than

Consistency
Model

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.



Definition: Once the user has written a value, subsequent reads will 
return this value (or newer versions if other writes occurred in 
between); the user will never see versions older than his last write.

Read Your Writes (RYW)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: Once a user has read a version of a data item on one replica 
server, it will never see an older version on any other replica server

Monotonic Reads (MR)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: Once a user has written a new value for a data item in a 
session, any previous write has to be processed before the current 
one. I.e., the order of writes inside the session is strictly maintained.

Montonic Writes (MW)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



Definition: When a user reads a value written in a session after that 
session already read some other items, the user must be able to see 
those causally relevant values too.

Writes Follow Reads (WFR)

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

https://blog.acolyer.org/2016/02/26/distributed-consistency-
and-session-anomalies/



PRAM and Causal Consistency

 Combinations of previous session consistency guarantess

◦ PRAM = MR + MW + RYW

◦ Causal Consistency = PRAM + WFR

 All consistency level up to causal consistency can be
guaranteed with high availability

 Example: Bolt-on causal consistency

Bailis, Peter, et al. "Bolt-on causal consistency." 
Proceedings of the 2013 ACM SIGMOD, 2013.



Bounded Staleness

 Either time-based:

 Or version-based:

 Both are not achievable with high availability

Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud 
and Distributed Databases. De Gruyter, 2015.

t-Visibility (Δ-atomicity): the inconsistency window comprises 
at most t time units; that is, any value that is returned upon 
a read request was up to date t time units ago.

k-Staleness: the inconsistency window comprises at most k 
versions; that is, lags at most k versions behind the most 
recent version.



NoSQL Storage Management
In a Nutshell
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 Caching
 Logging
 Primary Storage

 Logging
 Primary Storage

High Performance

Typical Uses in DBMSs:

Low  Performance RR: Random Reads 
RW: Random Writes

SR: Sequential Reads 
SW: Sequential Writes
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d
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RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/ 
Caching

Log

Data

Promotes durability of 
write operations.

Increases write 
throughput.

Is good for 
read latency.

Improves 
latency.
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Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Red [12,77]

Blue [56]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Yellow [104]

Blue [188,192]

D
at

a
In

d
ex

WHERE color=blue

Scatter-gather query 
pattern.

Indexing is always 
local to a partition.• MongoDB

• Riak
• Cassandra
• Elasticsearch
• SolrCloud
• VoltDB

Implemented in



Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Red [12,77]

Blue [56]
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Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Yellow [104]

Blue [188,192]
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WHERE color=blue

Scatter-gather query 
pattern.

Indexing is always 
local to a partition.



Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Yellow [104]

Blue [56, 188, 192]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Red [12,77]

D
at

a
In

d
ex

WHERE color=blue

Targeted Query

Consistent Index-
maintenance requires 
distributed transaction.• DynamoDB

• Oracle Datawarehouse
• Riak (Search)
• Cassandra (Search)

Implemented in



Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Yellow [104]

Blue [56, 188, 192]

D
at
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In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Red [12,77]

D
at

a
In

d
ex

WHERE color=blue

Targeted Query

Consistent Index-
maintenance requires 
distributed transaction.



 High data volumes, unstructured sources and new kinds of
applications triggered BigData and NoSQL technologies

 Shared Nothing architectures for horizontal scalability
◦ Replication enables read scalability and fault tolerance

◦ Sharding enables write scalability and data volume scalability

 CAP Theorem: Consistency, Availability and Partition Tolerance
cannot be achieved at the same time
◦ BASE (Basically available, soft-state, eventually consistent) paradigm as

an alternative to ACID

 2-Phase-Commit (2PC): popular protocol for atomic
commitment; without availability guarantee

 Consistency can be relaxed in various ways

Wrap-up



Outline

• Key-Value stores
• Wide-Column stores
• Document stores
• Graph databases
• Other classes

Foundations: Big Data, 
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APIs

Cloud Databases



 Data model: (key) -> value

 Interface: CRUD (Create, Read, Update, Delete)

 Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key-Value Stores

{23, 76, 233, 11}users:2:friends

[234, 3466, 86,55]users:2:inbox

Theme → "dark", cookies → "false"users:2:settings

Value: 
An opaque blob

Key



 Data model: (rowkey, column, timestamp) -> value

 Interface: CRUD, Scan

 Examples: Cassandra (AP), Google BigTable (CP), 
HBase (CP)

Wide-Column Stores

com.cnn.www crawled: …
content : "<html>…"

content : "<html>…"content : "<html>…" title : "CNN"

Row Key Column
Versions (timestamped)



 Data model: (collection, key) -> document

 Interface: CRUD, Querys, Map-Reduce

 Examples: CouchDB (AP), Amazon SimpleDB (AP), 
MongoDB (CP)

Document Stores

order-12338 {
order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [ {product-name : "x", …} , …]

}

ID/Key JSON Document



 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties



 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties



 Data model: vectorspace model, docs + metadata
 Examples: Solr, ElasticSearch

Search Platforms

Inverted Index

Doc. 3

Key Value

Key Value

Key Value

Doc. 1

Key Value

Key Value

Key Value

Doc. 4

Key Value

Key Value

Key Value

Term Document

database 3,4,1

ritter 1

Search Server

POST /lectures/dis
{ „topic": „databases",
„lecturer": „ritter",
… }

REST API



 Data model: Classes, objects, relations (references)

 Interface: CRUD, querys, transactions

 Examples: Versant (CA), db4o (CA), Objectivity (CA)

Object-oriented Databases

Classes
Properties



 Data model: Classes, objects, relations (references)

 Interface: CRUD, querys, transactions

 Examples: Versant (CA), db4o (CA), Objectivity (CA)

Object-oriented Databases

Classes
Properties



 Data model: XML, RDF

 Interface: CRUD, querys (XPath, XQuerys, SPARQL), 
transactions (some)

 Examples: MarkLogic (CA), AllegroGraph (CA)

XML databases, RDF Stores



 Data model: XML, RDF

 Interface: CRUD, querys (XPath, XQuerys, SPARQL), 
transactions (some)

 Examples: MarkLogic (CA), AllegroGraph (CA)

XML databases, RDF Stores



 Data model: files + folders

Distributed File System

Server
Stub

RPC

I/O Nodes

SAN

RPC RPC

Client

Network FS Cluster FS

NFS, AFS GPFS, Lustre HDFS

Distributed FS



 Data model: arbitrary (frequently unstructured)

 Examples: Hadoop, Spark, Flink, DryadLink, Pregel

Big Data Frameworks

Data Batch Analytics

Statistics,
Models

Log files

Unstructured
Files

Databases

Algorithms

-Aggregation
-Machine
Learning
-Correlation
-Clustering



 4 core NoSQL classes
◦ Key-Value Stores: store opaque key-value pairs

◦ Document Stores: store nested, rich, schema-free
documents

◦ Wide-Column Stores: extensible table data model

◦ Graph Databases: graph-property-model (vertices and
edges)

 Other NoSQL-related systems: Object-oriented
databases, Search platforms, XML databases, Big Data 
Frameworks, Distributed File Systems

Wrap-up



Outline

• MapReduce (Hadoop)
• Dynamo (Riak)
• BigTable (HBase)
• MongoDB
• Others

Foundations: Big Data, 
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APIs

Cloud Databases



 Modelled after: Googles GFS (2003)

 Master-Slave Replication
◦ Namenode: Metadata (files + block locations)

◦ Datanodes: Save file blocks (usually 64 MB)

 Design goal: Maximum Throughput and data locality for
Map-Reduce

Hadoop Distributed FS (CP)
H

D
D

 S
iz

e

Year
1990 2015

Size: 1,4 GB
Reading: 4,8 MB/s
→ 5 min/HDD

Size: 1 TB
Reading: 100 MB/s
→ 2,5 h/HDD

HDFS

Model:

File System

License:

Apache 2

Written in:

Java



Holds filesystem data and
block locations in RAMSends data operations to

DataNodes and metadata
operations to the NameNode

DataNodes communicate to
perform 3-way replication Files are split into blocks and

scattered over DataNodes

Holmes, Alex. Hadoop in Practice. Manning, 2012.



 For many synonymous to Big Data Analytics

 Large Ecosystem

 Creator: Doug Cutting (Lucene)

 Distributors: Cloudera, MapR, HortonWorks

 Gartner Prognosis: By 2015 65% of all complex analytic
applications will be based on Hadoop

 Users: Facebook, Ebay, Amazon, IBM, Apple, Microsoft, 
NSA

Hadoop Hadoop

Model:

Batch-Analytics 

Framework

License:

Apache 2

Written in:

Java

http://de.slideshare.net/cultureofperformance/g
artner-predictions-for-hadoop-predictions



Map Reduce

MapReduce

Convert Each Input to a key-
value pair

Sort & Group  
everything by key

Process the list of 
values for each key



MapReduce: Word Count

map(zeilennr, text):

for each word in text:

emit(word, 1)

reduce(word, values):

sum = 0

for each v in values:

sum = sum + v

emit(word, sum)

1: ich bin ich

(ich, 1) (bin, 1) (ich, 1)

(ich, [1,1])

(ich, 2)

(bin, [1])

(bin, 1)



MapReduce: Example
Constructing a reverse-index

cat sat mat

cat sat dog

doc2.txt

doc1.txt

Input
(HDFS)

Mappers Intermediate
Output

cat, doc1.txt
sat, doc1.txt
mat, doc1.txt

cat, doc2.txt
sat, doc2.txt
dog, doc2.txt

Reducers Output

cat: doc1.txt, doc2.txt

part-r-0000

sat: doc1.txt, doc2.txt

dog: doc2.txt

part-r-0001

mat: doc1.txt

part-r-0002

Holmes, Alex. Hadoop in Practice



The client sends job
and configuration to
the Jobtracker

The JobTracker
coordinates the cluster
and assigns tasks

TaskTrackers execute Mappers 
and Reducers as child-processes

Arun Murthy “Apache Hadoop YARN”

Cluster Architecture



 Hadoop: Ecosystem for Big Data Analytics

 Hadoop Distributed File System: scalable, shared-nothing file
system for thoughput-oriented workloads

 Map-Reduce: Paradigm for performing scalable distributed
batch analysis

 Other Hadoop projects:
◦ Hive: SQL(-dialect) compiled to YARN jobs (Facebook)

◦ Pig: workflow-oriented scripting language (Yahoo)

◦ Mahout: Machine-Learning algorithm library in Map-Reduce

◦ Flume: Log-Collection and processing framework

◦ Whirr: Hadoop provisioning for cloud environments

◦ Giraph: Graph processing à la Google Pregel

◦ Drill, Presto, Impala: SQL Engines

Summary: Hadoop Ecosystem



NoSQL landscape

Document

Wide Column

Graph

Key-Value

Project Voldemort

Google
Datastore



Popularity

Rang DBMS Modell Punkte

1. Oracle Relational DBMS 1514,90

2. MySQL Relational DBMS 1334,94

3. Microsoft SQL Server Relational DBMS 1286,22

4. PostgreSQL Relational DBMS 199,39

5. DB2 Relational DBMS 177,04

6. Microsoft Access Relational DBMS 149,66

7. MongoDB Document Store 137,49

8. Sybase Relational DBMS 88,41

9. SQLite Relational DBMS 87,81

10. Teradata Relational DBMS 51,11

11. Solr Suchmaschine 46,43

12. Cassandra Wide Column Store 37,64

13. Redis Key-Value Store 34,22

Rang DBMS Modell Punkte

14. Memcached Key-Value Store 30,73

15. HBase Wide Column Store 25,78

16. Informix Relational DBMS 24,73

17. Hive Relational DBMS 22,16

18. CouchDB Document Store 15,93

19. Firebird Relational DBMS 14,55

20. Netezza Relational DBMS 11,44

21. dBASE Relational DBMS 10,44

22. Elasticsearch Suchmaschine 9,51

23. Sphinx Suchmaschine 9,02

24. Riak Key-Value Store 8,99

25. Neo4j Graph DBMS 8,83

http://db-engines.com/de/ranking

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn



2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

History
Google File System

MapReduce

CouchDB

MongoDBDynamo

Cassandra

Riak

MegaStore

F1

Redis

HyperDeX Spanner

CouchBase

Dremel

Hadoop &HDFS
HBase

BigTable



 BigTable (2006, Google)
◦ Consistent, Partition Tolerant

◦ Wide-Column data model

◦ Master-based, fault-tolerant, large clusters (1.000+ Nodes), 
HBase, Cassandra, HyperTable, Accumolo

 Dynamo (2007, Amazon)
◦ Available, Partition tolerant

◦ Key-Value interface

◦ Eventually Consistent, always writable, fault-tolerant

◦ Riak, Cassandra, Voldemort, DynamoDB

NoSQL foundations

Chang, Fay, et al. "Bigtable: A distributed storage system 
for structured data."

DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."



 Developed at Amazon (2007)

 Sharding of data over a ring of nodes

 Each node holds multiple partitions

 Each partition N-times replicated

Dynamo (AP)

DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."



 Naive approach: Hash-partitioning (e.g. in Memcache, 
Redis)

Consistent Hashing

partition = key % server_count



 Solution: Consistent Hashing – mapping of data to
nodes is stable under topology changes

Consistent Hashing

hash(key)

position = hash(ip)

02160



Reading and Writing

 An  arbitrary node acts as a coordinator
 N:  number of replicas

 R:  number of nodes that need to confirm a read

 W: number of nodes that need to confirm a write

N=3
R=2
W=1



Versioning and Consistency

 𝑅 + 𝑊 ≤ 𝑁 ⇒ no consistency guarantee

 𝑅 + 𝑊 > 𝑁 ⇒ newest value included in any read

 Vector Clocks used for versioning



𝑅 + 𝑊> 𝑁 does not imply linearizability

 Consider the following execution:

Writer

Replica 1

Replica 2

Replica 3

Reader A

Reader B

set x=1

ok

ok

0

1

get x  1

0

0

get x  0

ok

Kleppmann, Martin. "Designing data-
intensive applications." (2015).



 Goal: avoid manual conflict-resolution

 Approach:
◦ State-based – commutative, idempotent merge function

◦ Operation-based – broadcasts of commutative upates

 Example: State-based Grow-only-Set (G-Set)

CRDTs
Convergent/Commutative Replicated Data Types

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek 
Zawirski "Conflict-free Replicated Data Types"

Node 1 Node 2

𝑆1 = {} 𝑆2 = {}

add(x)
𝑆1 = {𝑥}

add(y)
𝑆2 = {𝑦}

𝑆2 = 𝑚𝑒𝑟𝑔𝑒 𝑦 , 𝑥
= {𝑥, 𝑦}

𝑆1 = 𝑚𝑒𝑟𝑔𝑒 𝑥 , 𝑦
= {𝑥, 𝑦}

𝑆1

𝑆2



 Open-Source Dynamo-Implementation

 Extends Dynamo:
◦ Keys are grouped to Buckets

◦ KV-pairs may have metadata and links

◦ Map-Reduce support

◦ Secondary Indices, Update Hooks, Solr Integration

◦ REST-API

Riak (AP) Riak

Model:

Key-Value

License:

Apache 2

Written in:

Erlang und C

Consistency Level: N, R, W, DW

Storage Backend: Bit-Cask, Memory, LevelDB

BucketData: KV-Pairs



 Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

 Parameters: N (Replicas), R (Read Acks), W (Write Acks)
◦ N=3, R=W=1  fast, potentially inconsistent

◦ N=3, R=3, W=1  slower reads, most recent object version contained

 Available and Partition-Tolerant

 Vector Clocks: concurrent modification can be detected, 
inconsistencies are healed through the application

 API: Create, Read, Update, Delete (CRUD) on key-value pairs

 Riak: Open-Source Implementation of the Dynamo paper

Summary: Dynamo and Riak



 Remote Dictionary Server

 In-Memory Key-Value Store

 Asynchronous Master-Slave Replication

 Data model: rich data structures stored under key

 Tunable persistence: logging and snapshots

 Single-threaded event-loop design (similar to Node.js)

 Optimistic batch transactions (Multi blocks)

 Very high performance: >100k ops/sec on one machine

 Redis Cluster adds sharding

Redis (CA) Redis

Model:

Key-Value

License:

BSD

Written in:

C



 String, List, Set, Hash, Sorted Set

Data structures

"<html><head>…"String

{23, 76, 233, 11}Set

web:index

users:2:friends

[234, 3466, 86,55]List users:2:inbox

Theme → "dark", cookies → "false"Hash users:2:settings

466 → "2", 344  → "16"Sorted Set top-posters

"{event: 'comment posted', time : …"Pub/Sub users:2:notifs



Example Redis Data Structure: lists

 (Linked) Lists:

234 3466 86

LPUSH RPUSH

RPOP

LREM inbox 0 3466

BLPOP

LPOP

Blocks until element
arrives

55

LINDEX inbox 2

LRANGE inbox 1 2

LLEN

inbox

4

LPUSHX

Only if list
exists



Example Redis Use-Case: Twitter

http://www.infoq.com/presentations/Real-Time-Delivery-Twitter

>150 million users
~300k timeline querys/s

 Per User: one
materialized timeline in 
Redis

 Timeline = List

 Key: User ID

RPUSHX user_id tweet



Classification: Redis
Techniques

Range-
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Sharding
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Planning
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Materialized

Views



 Published by Google in 2006

 Original purpose: storing the Google search index

 Data model also used in: HBase, Cassandra, HyperTable, 
Accumolo

Google BigTable (CP)

A Bigtable is a sparse, 
distributed, persistent 

multidimensional sorted map. 

Chang, Fay, et al. "Bigtable: A distributed storage system 
for structured data."



 Storage of crawled web-sites („Webtable“):

Wide-Column Data Modelling

Column-Family:  
contents

com.cnn.www cnnsi.com : "CNN" my.look.ca : "CNN.com"

Column-Family:  
anchor

content : "<html>…"
content : "<html>…"

content : "<html>…"

t5

t3

t6

1. Dimension: 
Row Key

2. Dimension: 
CF:Column

3. Dimension: 
Timestamp

Sparse
Sorted



Architecture

Tablet Server Tablet Server Tablet Server

Master Chubby

GFS

SSTables

Commit
Log

ACLs, Garbage
Collection, 
Rebalancing

Master Lock, Root 
Metadata Tablet

Stores Ranges,
Answers client
requests

Stores data and
commit log



Rows

A-C

C-F

F-I

I-M

M-T

T-Z

Range-based Sharding

Tablet Server 1

A-C

I-M

Tablet Server 2

C-F

M-T

Tablet Server 3

F-I

T-Z

Master

Controls Ranges, Splits, Rebalancing



 Goal: Append-Only IO when writing (no disk seeks)

 Achieved through: Log-Structured Merge Trees

 Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

 Reads query memtable and all SSTables

Storage: Sorted-String Tables

Variable Length

Key Value Key Value Key Value

Sorted String Table

Key Block

Key Block

Key Block

Block Index

...

...

Block (e.g. 64KB)

Row-Key



 Open-Source Implementation of BigTable

 Hadoop-Integration
◦ Data source for Map-Reduce

◦ Uses Zookeeper and HDFS

 Data modelling challenges: key design, tall vs wide
◦ Row Key: only access key (no indices)  key design important

◦ Tall: good for scans

◦ Wide: good for gets, consistent (single-row atomicity)

 No typing: application handles serialization

 Interface: REST, Avro, Thrift

Apache HBase (CP) HBase

Model:

Wide-Column

License:

Apache 2

Written in:

Java



HBase Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

r1:cf2:c1:t1:<value>

r2:cf2:c2:t1:<value>

r3:cf2:c2:t2:<value>

r3:cf2:c2:t1:<value>

r5:cf2:c1:t1:<value>

r1:cf1:c1:t1:<value>

r2:cf1:c2:t1:<value>

r3:cf1:c2:t1:<value>

r3:cf1:c1:t2:<value>

r5:cf1:c1:t1:<value>

HFile cf2

HFile cf1

 Logical to physical mapping:
Key Design – where to store data:
r2:cf2:c2:t1:<value>
r2-<value>:cf2:c2:t1:_
r2:cf2:c2<value>:t1:_

George, Lars. HBase: the definitive guide. 2011.

In Value

In Key

In Column



Example: Facebook Insights

Extraction
every 30 min

Log

6PM
Total

6PM
Male

… 01.01
Total

01.01
Male

… Total Male …

10 7 100 65 1000 567

MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key

CF:Daily CF:Monthly CF:All

Lars George: “Advanced 
HBase Schema Design”

Atomic HBase
Counter

TTL – automatic deletion of
old rows



 Data model: 𝑟𝑜𝑤𝑘𝑒𝑦, 𝑐𝑓: 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 → 𝑣𝑎𝑙𝑢𝑒

 API: CRUD + Scan(start-key, end-key) 

 Uses distributed file system (GFS/HDFS)

 Storage structure: Memtable (in-memory data structure) + 
SSTable (persistent; append-only-IO)

 Schema design: only primary key access implicit schema
(key design) needs to be carefully planned

 HBase: very literal open-source implementation BigTable

 Cassandra: combination of Dynamo and BigTable ideas

Summary: BigTable, HBase
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 Published 2007 by Facebook

 Idea:
◦ BigTable‘s wide-column data model

◦ Dynamo ring for replication and sharding

 Cassandra Query Language (CQL): SQL-like query- and
DDL-language

 Compound indices: partition key (shard key) + clustering
key (ordered per partition key)  Limited range queries

 Secondary indices: hidden table with mapping
queries with simple equality condition

Apache Cassandra (AP) Cassandra

Model:

Wide-Column

License:

Apache 2

Written in:

Java
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 From humongous ≅ gigantic

 Tunable consistency

 Schema-free document database

 Allows complex queries and indexing

 Sharding (either range- or hash-based)

 Replication (either synchronous or asynchronous)

 Storage Management:
◦ Write-ahead logging for redos (journaling)

◦ Memory-mapped storage files, buffer management handled by
operating system (paging)

MongoDB (CP) MongoDB

Model:

Document

License:

GNU AGPL 3.0

Written in:

C++



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11

{
"_id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013,
rating : 7.6,
director: "Shane Block",
genre : [ "Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",
"Paltrow , Gwyneth"],

tweets : [ {
"user" : "Franz Kafka",
"text" : "#nowwatching Iron Man 3",
"retweet" : false,
"date" : ISODate("2013-05-29T13:15:51Z")

}]
}

Movie Document

Denormalisation instead
of joins

Nesting replaces 1:n  
and 1:1 relations

Schemafreeness: 
Attributes per document

Unit of atomicity: 
document

Principles



Sharding:
-Sharding attribute
-Hash vs. range sharding

Sharding und Replication

Client

Client

configconfigconfig

mongos

Replica Set

Replica Set

Master

Slave

Slave

Master

Slave

Slave

-Receives all writes
-Replicates asynchronously

-Load-Balancing
-can trigger rebalancing of
chunks (64MB) and splitting

mongos

Controls Write Concern:
Unacknowledged, Acknowledged, 
Journaled, Replica Acknowledged
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Outline

• Database-as-a-Service
• Backend-as-a-Service

Foundations: Big Data, 
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APIs

Cloud Databases



Cloud Databases

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Cloud SQL

Amazon RDS

SQL Azure

Cloudant

MongoHQ

Parse

Orestes

Google F1

DynamoDB

Managed
NoSQL DBs

Managed
RDBMSs

Backend-as-a-
Service

Storage APIs

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

GCS

S3

Object
Stores



 Cloud databases with a pay-per-use pricing model

 Managed Database Service: Existing DBMS deployed
and managed in the cloud
◦ Managed NoSQL System (e.g. MongoHQ, Redis2Go)

◦ Managed RDBMS (e.g. Amazon Relational Database Service)

 Proprietary Database Service: special DBMS built for
cloud environments (e.g. Amazon DynamoDB)

 Object Stores: cloud-based file storage (e.g. Amazon S3)

 Backend-as-a-Service: Database + Implementation of
standard app concerns (e.g. user management, push)

Database-as-a-Service



Presentation
is loading



Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms500 ms

-20% Traffic

1s

-7% Conversions



If perceived speed is such an 
import factor

...what causes slow page load times?



State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time



Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.



Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time



The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing



Stale
Data

The Problem with today‘s caching
Changes invalidate cached data



Our Research
Keep Data up-to-date through Cache Sketches

Bloom filter

updateIs up-to-date? 1 0 11 0 0 10 1 1



Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann, 
Malte Lauenroth, Michael Schaarschmidt

19. August 2014



Backend-as-a-Service 
Feature Sets

Data
Storage

Real-
Time

Query,
Search

Backend
Code

Users,
OAuth

File
Storage

Access
Control

API for 
application 

features

Hosting and 
Delivery

REST API 
and JS SDK



GET /app.html
GET /js/main-34da93.js
GET /css/main-9ad7ca3.css

Frontend



GET /app.html
GET /js/main-34da93.js
GET /css/main-9ad7ca3.css

dash

Compatible with:



GET /app.html
GET /js/main-34da93.js
GET /css/main-9ad7ca3.css

db.Page.load('main')
.done(...);

GET /img/pic005.jpg
GET /img/pic017.jpg
GET /img/pic022.jpg

db.Page.find()
.descending('published')
.limit(3)
.resultList(...);

Frontend



Development
On Baqend

Dashboard

Create Schema, configure, 
browse data, etc.

CLI

Develop, deploy and test
frontend und backend Code

REST & SDK

Website logic: load site, 
get data, login, etc.



Orestes & Baqend
Learn more

Bachelor and Master thesis topics
http://tiny.cc/orestes (frequently updated)

If you are interested in topics combining web/mobile with
scalable data management:

Hiwi/student positions

Tasks: building real applications using cutting edge technology
(e.g. ES6, Angular, React, MongoDB, Redis, Node.js,…)

Contact me directly or at fg@baqend.com

http://tiny.cc/orestes


 Variety of different NoSQL systems:
 HDFS and Hadoop: Map-Reduce platform for batch analytics

 Dynamo and Riak: KV-store with consistent hashing

 Redis: replicated, in-memory KV-store

 BigTable, HBase, Cassandra: wide-column stores

 MongoDB: sharded and replicated document store

 Cloud Databases
◦ Database-as-a-Service: managed (NoSQL) database provided as a 

pay-per-use service

◦ Orestes and Baqend: Backend-as-a-Service research project and
startup with the goal of solving the web‘s latency problem

Summary


