Lecture

Felix Gessert, Norbert Ritter
(22.05.2017)

Outline

P Xtys

(

0B

Foundations: Big Data,
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APls

Cloud Databases

Literature
Motivation
* Big Data
 NoSQL
CAP Theorem
2-Phase-Commit
NoSQL Triangle
ACID vs BASE

Recommended Literature: NoSQL

Lena Wiese

ADVANCED DATA
MANAGEMENT

FORBAL, NOSGL, CLOUD AND DlSTRiBUTED DATABASES

Designing
Data-Intensive
Applicatio

THE BIG IDEAS BEHIND RELIABLE, SCALABLE,
AND MAINTAINABLE SYSTEMS

Martin Kleppmann

Other Literature

Coprrighted Material

A
Dan Sullivan it ERHARD RAHM - GUNTER SAAKE
KAI-UWE SATTLER

Verteiltes und Paralleles
Datenmanagement

Von verteilten Datenbanken
zu Big Data und Cloud

L
L]
o
[
o
c
o
E
C
x
o

@ Springer Vieweg

Recommended Literature: Blogs

NoSQL Weekly

https://martin.kleppmann.com/ http://www.nosglweekly.com/
& (A
a\ve
- BaQend
DZone
http://www.dzone.com/mz/nosq| http://blog.bagend.com/

InfoQ

http://www.infoq.com/nosql/ http://highscalability.com/

The Database Explosion

Sweetspots

RDBMS

General-purpose
ACID transactions

I ¥ °
®

HBASE
Wide-Column Store

Long scans over
structured data

?® Neoyj

@ the graph database

Graph Database

Graph algorithms
& queries

74 Greenplum

Parallel DWH

Aggregations/OLAP for
massive data amounts

. mongoDB

Document Store

Deeply nested
data models

&B redis

In-Memory KV-Store
Counting & statistics

Volt

NewSQL

High throughput
relational OLTP

sriak
Key-Value Store

Large-scale
session storage

o

cassandra

Wide-Column Store

Massive user-
generated content

The Database Explosion
Cloud-Database Sweetspots

g Firebase . Amazon RDS
Managed RDBMS

General-purpose
ACID transactions

Realtime BaaS

Communication and
collaboration

Amazon

‘—| Azure Tables DynamoDB
Wide-Column Store Wide-Column Store
Very large tables Massive user-

generated content

Google Cloud
Managed NoSQL Object Store
Full-Text Search Massive File

Storage

Amazon
=% ElastiCache

Managed Cache

Caching and
transient storage

Backend-as-a-Service

Small Websites
and Apps

‘ Amazon Elastic
MapReduce
Hadoop-as-a-Service

Big Data Analytics

Motivation Big Data

Gartner’s 3 Vs: / P
Volume
| ~ Variety
Mobile, Social, Table MB
Web, <+—
unstructured Bat\
Velocity

\

Near-Realtime, Realtime

4\/s

40 ZETTABYTES

[43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

6 BILLION
PEOPLE

have cell
phones

WORLD POPULATION: 7 BILLION

It's estimated that

2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES]
of data are created each day

Most companies in the
U.S. have at least

100 TERABYTES

[100,000 GIGABYTES]
of data stored

o

IBM Infographic (McKinsey, Twitter, Cisco, Gartner,
EMC, SAS, IBM, MEPTEC, QAS)

4\/s

fuel level and tire pressure

INFORMATION

during each trading session

The New York Stock Exchange — ?B‘E}eggﬁ'gaa’esc'm %
captures
1718 UF TRADE (\ (that monitor items such as

Velocity

ANALYSIS OF
STREAMING DATA

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYY Y SerY YY
e YYTTTTTIT

8 |ule=<

IBM Infographic (McKinsey, Twitter, Cisco, Gartner,
EMC, SAS, IBM, MEPTEC, QAS)

4\/s

As of 2011, the global size of . By 2014, it's anticipated
data in healthcare was there will be

estimated to be ' 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[161 BILLION GIGABYTES] HEALTH MONITORS

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You
 Tube

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook
every month

m IBM Infographic (McKinsey, Twitter, Cisco, Gartner,
EMC, SAS, IBM, MEPTEC, QAS)

4\/s

don't trust the information
they use to make decisions

in one survey were unsure of
how much of their data was
inaccurate

Veracity

UNCERTAINTY
OF DATA

Poor data quality costs the US
economy around

¢ 1 TH NM A VEAD
A 9 NAYREAK
’ Sald

m IBM Infographic (McKinsey, Twitter, Cisco, Gartner,

EMC, SAS, IBM, MEPTEC, QAS)

Hype Cycle

expectations Internet of Things
‘ Natural-Language Question Answerng
/ \Wearable Userinterfaces
Speech-to-Speech Translation
Autonomous Vehicles Consumer 3D Printing

Cryptocurrencies

Complex-EventProcessing

s Big Data

Prescriptive Ang O In-Memory Database Management Systems
Neurobusigges O Content Analytics

Bi g i
D Bwpnnhng Systems

Volumetric and Holographic Displays
Software-Defined Anything

@ Hybrid Cloud Computing
Gamification
Augmented Reality
Machine-to-Machine
Communication
Services

Speech Recognition
Consumer Telematics

3D Scanners

Quantum Computin N :
Human Augmeriaton — 5 Quantified Self Mooy SIAVDIR 0L TN
Brain-Computerinterface 9 Activity Streams
n Hom i
ConnectedHome Cloud Com A 9 g:g'eur:‘eogog?rgllyucs
NFC
Virtual Personal Assistants Vinual Real
Digital Securty SmartWorkspace ity
Bioacoustic Sensing A
As of July 2014
Innovation Peak of Trough of Plateau of
Inflated Slope of Enlightenment
Trigger Expectations Disillusionment Productivity
time v
Plateau will be reached in: obsolete

Olessthan 2years ©2to5years @5to10years A morethan 10years & before plateau

m http://www.gartner.com/newsroom/id/2819918

facebook.

140 Billion friendships

290 Billion Photos

14

Data flood

Climate Research: The Deutsche Klimarechenzentrum (DKRZ) stores
60 PB climate data.

Archiving: The Internet Archive stores 10 PB of archived websites.

Gaming: World of Warcraft needs 1.3 PB for storing the game state.
Steam delivers over 30 PB of data per month.

Movies: The CGl-effects in Avatar (2009) needed over 1 PB storage
for rendering.

Supercomputing: The Blue Waters Supercomputer is planned to
have a storage capacity of 500 PB.

Particle Physics: In search of the Higgs-Boson CERN gathered 200 PB
of data.

Email: In May 2013 Microsoft announced that for the migration of
Hotmail to oulook.com over 150 PB user data were transferred.

[0 wikipedia

Dropping storage costs

Historical Cost of Computer Memory and Storage
1le+09

- =0 'g" " FlipFlops &
On 2 Core]]
le+08 * 58 % ICs on boards
3y 2 SIMMs v
le+07 5 55 DIMMs ~ x 73
oo . i
; 5 oo S Big drives s}
le+06 E = g=< U Floppy drives 3 =
g " o Small drives +
100000 g Flash sticks / cards]
: a 55Ds
10000 k N2
3
0 i e + S
= 1000 } %
- : ==
2 100 [© ’
-
5t : T+
£ 10k St =
| | v
1| R
0.1 E £ bi
] #ﬁ& x >
0.01 ﬂh X
0.001 E "hﬁ; |
3
0.0001 F——=d
le-05 L

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

m HBlock.net

Big Data Defined

Big Data has two sides:

Big Data

Big Data Management

e OLTP
e Often referred to as "NoSQL"

e e.g. MongoDB, HBase,
Cassandra

Big Data Analytics

e OLAP

e Often referred to as ,Big
Data“

e e.g. Hadoop, Storm

Architectural Change

RS Analytics Reporting Data Mining pum

Y -

» :

= Velocity

<S(Data VETIE) Big Data ﬁ

.§ Warehouse Volume Platform

A

""""""""""" = [y
e L unstructured
V

é Operational ..4 ..' NoSQL SS

Ny Databases - DBs =

N Scalability .

§ Availability

< Ease-of-Use

+$+

S Application

S pp l % I l % I

Architectural Change

4 Analytics Reporting Data Mining pum
+
)
S
<§(D Big D

ata ig Data

— A © <

4§ Warehouse — Platform
QA
--------------------- 0oy
42 unstructured
QV
S Operational NoSQL SS
S =
%7 Databases DBs ==
g A
S
Y
S
S Application
a PP

NoSQL Databases

Two main motivations:

Scalability Impedance Mismatch

,ID <> | Line Item 1: ...
Customer /\\Lme ltem2: ... Q\\
Payment: Credit Card, ... \
[}
e
User-generated data, —
Request load
> o S Line Items
aP - == Orders
— 11—

I A___

Payment
y Customers

NoSQL Databases

,NoSQL" term coined in 2009
Interpretation: ,,Not Only SQL?

Typical properties:
Non-relational
Open-Source
Schema-less (schema-free
Optimized for distribution (clusters
Tunable consistency

NoSQL-Databases.org:
Curvent list has over 150
NoSQL systems

wicc Column Storc / Column Fami

on, .
Fully CONSISLENE 15 550

REST
=Scripe Funcs
~ Erizng

I protobut-bEsce JoTy
unificc chaina! Ty |@NEuEET (incl. [OINs,
sub-gucrics, MapRocucs, SroupccklspRocucs)
Symic & i

nEs cucrics, Pro
Partitioncc with consistone ha:
PCr-[CCOMD SETiCEt CONSiStEnCy.

y REST OD=ts Sy
s Tlucnt Quiry AP

Big Data Analytics

ldea: make existing massive, unstructured data

amounts usable

» Structured data (DBs)

* Logfiles

 Documents, Texts, Tables

* Images, Videos

* Sensor data

* Social Media, Data Services

sources

e Statistics, Cubes, Reports

| . e Recommender
Analyst, Data Scientist, e Classificators, Clustering

Software Developer * Knowledge

Scale-up vs Scale-out

Scale-Up (vertical Scale-Out (horizontal

Same Hardware

Connected by
network

scaling): i scaling):
: — =
More RAM | | —
D ;; More CPU | | > .., .~,
g More HDD i g v
l - &
! —
i — A ——

Schema-free Data Modeling

>0
O
o
<
»

NoSQL DB:

Item[Price] -
Item[Discount]

SELECT Name, Age

FROM Customers lW\p(icit
schema

I N N I
I EgiT=

(@

EEEEEE—

\

(

Explicit
schema

Paradigm Shift

Commercial DBMS

Specialized DB hardware
(Oracle Exadata, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Highly Available Storage (SAN,
RAID, etc.)

EEE 4
|

Open-Source DBMS

Commodity hardware

Commodity network
(Ethernet, etc.)

Commodity drives (standard
HDDs, JBOD)

Paradigm Shift

Shift towards distributed computing architectures

20000006 000¢
MEMMMMEMMMM

M| M| M
i L 1 s
Shared Memory | Shared Disk | Shared Nothing
e.g. "Oracle 11g" e.g. "Oracle RAC" e.g. "NoSQL"

enable enable

Functional Central
Require- techniques Operational
ments from NoSQL Require-
the databases ments
application employ

"«

Elo \i:‘

Sharding (aka Partitioning, Fragmentation)

Horizontal distribution of data over server nodes
Paritioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)

|
|
Peter
|
|

Shard 3

Sharding (aka Partitioning, Fragmentation)

Horizontal distribution of data over server nodes
Paritioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)

* MongoDB I
* Riak
AL < e Cassandra ard 2 \I I
| e HDFS I
|| * Shard 3 \I ||

Sharding

Hash-based Sharding

Builds hash of data values (e.g. over the key) to determine a
partition (shard) for a data item (tuple)

Pro: Perfectly even distribution

Contra: No data locality — data items are pseudorandomly
scattered over partitions

Range-based Sharding
Assigns ranges defined over fields (shard keys) to partitions
Pro: Data locality preserved (for shard keys)

Contra: distribution might grow uneven =2
repartitioning/balancing required

Traditional Sharding

Example: Tumblr
Caching

Sharding from
application

Moved towards:
Redis
HBase

Web
Server

@

MySQL

Replication

Stores N copies of each data item
Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

Replication

Stores N copies of each data item
Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

Redis I
MongoDB Slave I
CouchDB ||

HBase

HDFS
‘ Slave \ "
T S |

Replication: consistency models

Asynchronous
Writes are acknowledged immdediately

Performed through log shipping or update propagation
Pro: Fast writes, no coordination needed
Contra: Replica data potentially stale (inconsistent)

Synchronous

The node accepting writes synchronously propagates
updates/transactions before acknowledging
Pro: Consistent

Contra: needs a commit protocol (more roundtrips),
unavaialable under certain network partitions

Replication: coordination

Master-Slave (Primary Copy)

Only a dedicated master is allowed to accept writes, slaves are
read-replicas

Pro: reads from the master are consistent
Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
The server node accepting the writes synchronously
propagates the update or transaction before acknowledging
Pro: fast and highly-available

Contra: either needs complicated coordination protocols (e.g.
Paxos) or is inconsistent

Synchronous Replication: 2PC

ld _ =
k Client j Coordinator j L DB-Server

I Commit/write : I
: —> :
p b Jl. ... e
: — prepare :
Prepare : | =
ohase < : i ready _ 4 prepared
L Log prepared &« ¢ i" :
S edecsrsncnesrsnrssrsrsenssrasrassrssessensessensers I Lo secneesenase st eanasenenese e asn e senen e e Rasr e nanens L.
. : L commit :
Commit | : el -
Phase | ! i commited i =4 commit
[== [
S e
' Commited/written__, !
- | :
v v v

Error scenarios (timeouts)

In INITIAL: Coordinator
No consequence

In WAIT:
Abort l prepare

In ABORT oder COMMIT:

Resend commit/abort and wait for @
all responses aboy

ABORT @

commit

Error scenarios (timeouts)

in INITIAL: Resource-Manager

Coordinator probably crashed 2
Abort (,Presumed-Abort-Protocol”)

In WAIT:

Wait for message from coordinator

2

prepare

—]

abort

commit

ABORT @

2PC is not available

((
‘ }
Tcomm'ted | IE

]

Commit protocols

Provide atomic propagation of writes or commits
Most prominent implementation: 2-Phase-Commit

R Read-RMs, W Read/Write-RMs, N=R+W

— —

1-Phase-Commit 2N Not always possible
Linear 2PC 2N+1 Not parallel

Hierarchical and normal 4N-2R Might block indefinitely
2PC

3-Phase-Commit 6N-4R No consistency guarantee
Paxos-Commit 3N+2F(N+1)+1 F failures tolerated

Distributed 2PC N2 No 2nd phase

CAP-Theorem

Classifies distributed databases

| Only 2 out of 3 properties are
Consistency achievable at a time:

Consistency: all clients have the same
view on the data

Partition

Availability: every request to a non-
Tolerance

failed node most result in correct
response

Partition tolerance: the system has to
continue working, even under arbitrary
network partitions

' Availability |

Not reachable

1] Eric Brewer, ACM-PODC Keynote, Juli 2000

m Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

CAP-Theorem: simplified proof

Intuition for the impossibility of simultaneously
achieving C, A and P at once:

Value is replicated to two nodes

CAP-Theorem: simplified proof

Failure-free reading and writing:

TA& [anjea]m
(=
R[Value]
V1
(w)

. p—
— 2) (—
Value =V, Replication Value =V,

CAP-Theorem: simplified proof

Problem: when a network partition occurs, either

consistency or availability have to be given up

Block response until

ACK arrives

- Consistency

Value =V,

Response before

successful replication

= Availability

Value =V,

Rep kat|

Network partition

CAP-Theorem: Wrap-up

CA example:
Centralized DBMS
CP example:

Distributed DBMS with 2PC
replication

AP example:
Dynamo

NoSQL triangle

Relational

_ Data models | Key-Value
Every client can always

read and write

A

AP
CA y
Oracle, MySQL, ... Dynamo, Redis

Document-Oriented

SimpleDB, Riak

. Ccp .
All c.Ilents share the Postgres, MySQL Cluster, All nc.>des continue
same view on the data Oracle RAC working under network
partitions
MongoDB

m Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

ACID vs BASE
A

,,gold standard‘
for RDBMSs Atomicity

Consistency

Isolation

Durability

<~

Model of many
Basically NoSQL systems

Available
Soft State

Eventually
Consistent

m http://queue.acm.org/detail.cfm?id=1394128

PACELC - an alternative CAP formulation

ldea: Classify system according to their heaviour during
network partitions

es
y Partiti no
on
| | No consequence of the |

CAP theorem

Avail- Con- Con-
ability sistency sistency
Dynamo-Style AL’ MongoDB'ACT Consistent €&
Cassandra, Riak, etc. HBase, BigTable and ACID systems

m Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."

Negative Results
In Distributed Computing

Asychronous Network, Asychronous Network,
Unreliable Channel Reliable Channel
Atomic Storage Atomic Storage

Impossible: Possible:

CAP Theorem Attiya, Bar-Noy, Dolev (ABD)
Algorithm

Impossible: Impossible:

2 Generals Problem Fisher Lynch Patterson (FLP)

Theorem

Negative Results
Consensus Algorithms Safety]

Properties

Consensus:
Agreement: No two processes can comr «t different decisions
Vaalidity (Non-triviality): If all initial values are same, nodes must

commit that value Liveness
Termination: Nodes commit eventually Property

No algorithm guarantees termination (FLP)

Algorithms:

Paxos (e.g. Google Chubby, Spanner, Megastore, Cassandra
Lightweight Transactions)

Raft (e.g. etcd service)
Zookeeper Atomic Broadcast (ZAB)

Negative Results
Correctness/Serializability

Distributed ACID and availability are incompatible:

C_J Write B=1
— Read A

Write A=1
Read B ==

wi(a=1)r(b=1) wy(b=1)r(a=1)

Weaker isolations levels are possible:

RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, ,Scalable
Atomic Visibility with RAMP Transactions”, SIGMOD 2014)

Consequence: trade-offs are important

Typical Trade-offs

Read Performance
Latency

Synchronous replication
Row-based
Transactions

REST

Commodity servers
Normalisation

Schemas

Write Performance
Durability

Asynchronous replication
Column-based
Availability

RPC

High-end hardware
Denormalisation

Schemafreeness

Client-Centric Consistency Models

Define models that relax strong consistency (=linearizability) in
different aspects

Lineari-
Causal

zability Read- Is
weaker than
Consistency

//‘\

Writes Read Your Monotonic Monotonic Bounded
Follow Reads Writes Reads Writes Staleness

Consistency
Model

m Bailis, Peter, et al. "Highly available transactions: Virtues and
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Read Your Writes (RYW)

Definition: Once the user has written a value, subsequent reads will
return this value (or newer versions if other writes occurred in
between); the user will never see versions older than his last write.

A2 N Reoding Vowr Locves

Seson,

2C

. i K \2 \2)

(epicay
X
2 ® 3 Q 2.
Cons\zvem o 274 < /
m https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud

and-session-anomalies/ and Distributed Databases. De Gruyter, 2015.

Monotonic Reads (MR)

Definition: Once a user has read a version of a data item on one replica
server, it will never see an older version on any other replica server

sess/ b4 A1 Non-monoronac
& ,"’ ! g
4 ’.X.-‘_ ®V10 B \ @v.‘." sy \(DV:\ P i ‘wv'.\ —— \Ovu - \@\I;\ —
(cp\'.us 1 B
’x’l @v:o -—-—————'®v:° s @vgb iy \qu — ‘st\‘. _....___.‘Ov:‘ s —
v XX 3 O i
=0 mam——— @ -
vz @vzo — @“D == ev:o \ Ovzy
Consisventy 2 \/ X D4 1% "¢ \/
m https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud

and-session-anomalies/ and Distributed Databases. De Gruyter, 2015.

Montonic Writes (MW)

Definition: Once a user has written a new value for a data item in a
session, any previous write has to be processed before the current
one. l.e., the order of writes inside the session is strictly maintained.

Sesswong .
NON -~onGFon C
7' LAk (owr A orr}~n.r-)
Sesywon 2 : , ol AR s g
x, O S S S S S
a O o) o 10 s)
[(TANT " 10 1)
A O (o) (o)
4 VA= 0 s
1 O (o) R
o 10 10 \o
commsent) v ~ - o X iy
https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.

m and-session-anomalies/

Writes Follow Reads (WFR)

Definition: When a user reads a value written in a session after that
session already read some other items, the user must be able to see

those causally relevant values too.

S€>§\m 4
Sessvon
-, 5¢
g t()\/lm} Wy o Ta)
A~ O o
Conmviskenr 2 N4

m https://blog.acolyer.org/2016/02/26/distributed-consistency-

and-session-anomalies/

WoRes ‘. FO\AM3

/7\ Recely
s [r s ¢ S
Oy ™ 10 o /< 10
0 0 \O

m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.

PRAM and Causal Consistency

Combinations of previous session consistency guarantess
PRAM = MR + MW + RYW

Causal Consistency = PRAM + WFR

All consistency level up to causal consistency can be
guaranteed with high availability

Example: Bolt-on causal consistency

Client Machine
| client | { client | | client |

n put (k,v,a) lT get(k)lT

Shim local

metadata | store

put(k,v') |T get(k)
F———-=-- __—
Eventually
. , —
gotnSISsttent - | m Bailis, Peter, et al. "Bolt-on causal consistency."
| ata store

Proceedings of the 2013 ACM SIGMOD, 2013.

Bounded Staleness

Either time-based:

t-Visibility (A-atomicity): the inconsistency window comprises
at most t time units; that is, any value that is returned upon
a read request was up to date t time units ago.

Or version-based:

k-Staleness: the inconsistency window comprises at most k
versions; that is, lags at most k versions behind the most
recent version.

Both are not achievable with high availability

m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.

NoSQL Storage Management

In a Nutshell

Improves
latency.
Typical Uses in DBMSs:
A In-Memory/

< RR|| SR | , Exdifing Data [¢ Caching

LO" e Primary Storage -

> RW || SW e Data Structures Is good for
2 read latency.
Q \. ___/ ™~ Update-In-
< RR || SR | e Caching
5 § e Logging If |; - Place
S S\W | ¢ Primary Storage
n <@ Increases write

© T Append-Only

g throughput. /0

g . >R * Logging Log < Logging
T W e Primary Storage
S Persistent Storage yd
\ —

. Low Performance RR: Random Reads SR: Sequential Reads Promotes durability of

[] High Performance RW: Random Writes SW: Sequential Writes write operations.

NoSQL Storage Management

In a Nutshell
A o RR || SR
o rRW |[sw
S RR || SR
7 o | Il W sw

a
a - SR
-
SW
\ 4

[Low Performance
[] High Performance

RR: Random Reads
RW: Random Writes

Typical Uses in DBMSs:

Caching
Primary Storage
Data Structures

Caching

Logging
Primary Storage

Logging
Primary Storage

In-Memo
Data [. v/
Caching
RAM
Update-In-
f f Place
Data < Append-Only
I/O
Log < Logging
Persistent Storage

SR: Sequential Reads
SW: Sequential Writes

Local Secondary Indexing
Partitioning By Document

-

~N

Partition | Partition Il

= Implemented in Koy Color
oS 12 F Yellow
A 56 £ * MongoDB Blue

77 r* Riak Blue

e (Cassandra
% Red N SolrCloud (104]
~ Blue | ° VoltDB [188,192]
Scatter-gather query
pattern.
WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Local Secondary Indexing
Partitioning By Document

4 Partition | Partition Il)

Key Color Color

(0]

= = fE0 Indexing is always yellos

0O 56 Blue | local to a partition. 88 Blue
77 Red 192 Blue

5 Term Match 5 Term Match

'g Red [12,77] 'g Yellow [104]

" Blue [56] " Blue [188,192]

Scatter-gather query
pattern.

WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Global Secondary Indexing
Partitioning By Term

-

~N

Partition | Partition Il
Key Color Key Color
T 12 .] 104 Yellow
© SUBEE Implemented in
O 56 maint Blue
77 distrit « DynamoDB Blue
* Oracle Datawarehouse
Term | » Riak (Search
) () Match
S Yellow | * Cassandra (Search)
< [12,77]
Blue [56, 188, 192] A/} k\¥
[Targeted Query

WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Global Secondary Indexing
Partitioning By Term

-

(Index

Partition |

~N

~

Key Color
(©
S 12 Consistent Index-
0O 56 maintenance requires
77 distributed transaction.
Term Match ,
Yellow [104] 7 1
Blue [56, 188, 192]
[Targeted Query

\
o/
(Index \ Data

Key
104
188
» 192

Term
Red

Partition Il

~N

Color
Yellow
Blue

Blue

Match
[12,77]

WHERE color=blue

s

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Wrap-up

High data volumes, unstructured sources and new kinds of
applications triggered BigData and NoSQL technologies
Shared Nothing architectures for horizontal scalability
Replication enables read scalability and fault tolerance
Sharding enables write scalability and data volume scalability
CAP Theorem: Consistency, Availability and Partition Tolerance

cannot be achieved at the same time

BASE (Basically available, soft-state, eventually consistent) paradigm as
an alternative to ACID

2-Phase-Commit (2PC): popular protocol for atomic
commitment; without availability guarantee

Consistency can be relaxed in various ways

Outline

P Xtys

0B

Foundations: Big Data,
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APls

Cloud Databases

Key-Value stores
Wide-Column stores
Document stores
Graph databases
Other classes

Key-Value Stores

Data model: (key) -> value
Interface: CRUD (Create, Read, Update, Delete)

users:2:friends —> {23, 76, 233, 11}
Value:

users:2:inbox —> [234, 3466, 86,55] An opaque blob

users:2:settings —> Theme — "dark", cookies — "false" Z

%

Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key

Wide-Column Stores

Data model: (rowkey, column, timestamp) -> value
Interface: CRUD, Scan

Versions (timestamped)

Row Key Column M
com.chn.www content : "<html>..." title:"CNN" crawled: ...

Examples: Cassandra (AP), Google BigTable (CP),
HBase (CP)

Document Stores

Data model: (collection, key) -> document
Interface: CRUD, Querys, Map-Reduce

ID/Key JSON Document

N\order-12338 - {

order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [{product-name : "x", ...}, ...]

}

—

Examples: CouchDB (AP), Amazon SimpleDB (AP),
MongoDB (CP)

Graph Databases

Data model: G = (V, E): Graph-Property Modell
Interface: Traversal algorithms, querys, transactions

~usually unscalable
Nodes

\ ~veryN@RBéFoRlata Properties
company: modelnee: 999 /
Apple) salary: 140K I
value:) John Doe
300Mrd
Edges

Examples: Neo4j (CA), InfiniteGraph (CA)

Graph Databases

Data model: G = (V, E): Graph-Property Modell
Interface: Trave ' '~ ; ., transactions

~usually unscalable
Nodes

\ ~very unspecific data Properties
company: model /
AR F name:
value: John Doe
300Mrd

Examples: NEULI-J (LAY, I|||||n|LC\JId}Jh (CA)

Search Platforms

Data model: vectorspace model, docs + metadata
Examples: Solr, ElasticSearch

POST /lectures/dis

{ ,,topic": ,,databases", REST API
slecturer": ,ritter",

-}

Doc.
Search Server oc.3
| | | Key Value
Term Document Value
database 3,4,1 Value
ritter 1
Doc. 4
Inverted Index
Key Value
Key Value Key Value
Key Value Key Value
Key Value

Object-oriented Databases

Data model: Classes, objects, relations (references)
Interface: CRUD, querys, transactions

-not scalable
Propert:es —7 “’““—Efzm P

etweem progmm in Classes
amggk@ge and datab &

| [
‘ S

Examples: Versant (CA), db4o (CA), Objectivity (CA)

Object-oriented Databases

Data model: Classes, objects, relations (references)
Interface: CRUI '

- -not scalable

Properties — -strong coupling
between programming Classes
l[anguage and database &

Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML databases, RDF Stores

Data model: XML, RDF

Interface: CRUD, querys (XPath, XQuerys, SPARQL),

transactions (some
-not scalable

Examples: MarkLagiaidet)usbdlegroGraph (CA)
-specialized data
model

XML databases, RDF Stores

Data model: XML, RDF

Interface: CRUTI - 7 ys, SPARQL),
transactions (s

-not scalable
Examples: Ma -not widely used iph (CA)

-specialized data
model

Distributed File System

Data model: files + folders

Network FS Cluster FS
Client SQ

l RPC
Stub

—

NFS, AFS

Distributed FS

Big Data Frameworks

Data model: arbitrary (frequently unstructured)

Examples: Hadoop, Spark, Flink, DryadLink, Pregel

Log files

Unstructured
=== | Files

g Databases

Data

Algorithms

-Aggregation
-Machine
Learning
-Correlation
-Clustering

Batch Analytics

Statistics,
Models

Wrap-up .

4 core NoSQL classes

Key-Value Stores: store opaque key-value pairs
Document Stores: store nested, rich, schema-free
documents

Wide-Column Stores: extensible table data model

Graph Databases: graph-property-model (vertices and
edges)
Other NoSQL-related systems: Object-oriented
databases, Search platforms, XML databases, Big Data

Frameworks, Distributed File Systems

Outline

P Xtys

0B

Foundations: Big Data,
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APls

Cloud Databases

MapReduce (Hadoop)
Dynamo (Riak)
BigTable (HBase)
MongoDB

Others

o
Hadoop Distributed FS (cp) HDFS

Model:
O Size: 1,4 GB ‘ File System
'(% Reading: 4,8 MB/S . License:

. Size: 1 TB
- — 5 min/HDD , Apache 2
0 Reading: 100 MB/s o
L Written in:
—> 2,5 h/HDD
Java
Year

1990 2015

Modelled after: Googles GFS (2003)

Master-Slave Replication
Namenode: Metadata (files + block locations)
Datanodes: Save file blocks (usually 64 MB)

Design goal: Maximum Throughput and data locality for
Map-Reduce

Holds filesystem data and

Sends data operations to block locations in RAM
DataNodes and metadata \'
operations to the NameNode
J NameNode
- DataNode 2
/tmpf/file1.txt l<: Block A
Client l Block B DataNode 3
application DataNode 1

DataNode 3
Hadoop file L
system client

DataNode 1 DataNode 2 DataNode 3
C B P A D e B C
D C \ f A
4
DataNodes communicate to { /
perform 3-way replication Files are split into blocks and

scattered over DataNodes

m Holmes, Alex. Hadoop in Practice. Manning, 2012.

ERbED
Hadoop

Model:

.) Batch-Analytics
For many synonymous to Big Data Analytics | Framework

License:

Large Ecosystem p—
Creator: Doug Cutting (Lucene) Written in;
Distributors: Cloudera, MapR, HortonWorks 2
Gartner Prognosis: By 2015 65% of all complex analytic
applications will be based on Hadoop

Users: Facebook, Ebay, Amazon, IBM, Apple, Microsoft,
NSA

m http://de.slideshare.net/cultureofperformance/g
artner-predictions-for-hadoop-predictions

MapReduce

Sort & Group
everything by key

Convert Each Input to a key- Process the list of
value pair values for each key

MapReduce: Word Count

map (zellennr, text):

1:ich bin ich
for each word 1n text:

emit (word, 1)
reduce (word, values): (ich, [1,1])

sum = 0
(bin, [1])

for each v 1n wvalues:
sum = sum + v

MapReduce: Example
Constructing a reverse-index

Input Mappers Intermediate Reducers Output

(HDFS) Output
part-r-0000

cat: docl.txt, doc2.txt

docl.txt
cat, docl.txt
cat sat mat I—} sat, docl.txt
mat, docl.txt oart-r-0001

mmlp sat: docl.txt, doc2.txt

doc2.txt
dog: doc2.txt

/cat, doc2.txt

cat sat dog ’—’l <:sat, doc2.txt
dog, doc2.tx part-r-0002

mat: docl.txt ‘

m Holmes, Alex. Hadoop in Practice

Cluster Architecture

The JobTracker
coordinates the cluster
and assigns tasks

Job Task
Tracker Tracker
Task
Tracker

The client sends job
and configuration to
the Jobtracker

MapReduce Status ———>

Job Submission =======) o

TaskTrackers execute Mappers
and Reducers as child-processes

m Arun Murthy “Apache Hadoop YARN”

Summary: Hadoop Ecosystem e, T

Hadoop: Ecosystem for Big Data Analytics

Hadoop Distributed File System: scalable, shared-nothing file
system for thoughput-oriented workloads

Map-Reduce: Paradigm for performing scalable distributed
batch analysis

Other Hadoop projects:
Hive: SQL(-dialect) compiled to YARN jobs (Facebook)
Pig: workflow-oriented scripting language (Yahoo)
Mahout: Machine-Learning algorithm library in Map-Reduce
Flume: Log-Collection and processing framework
Whirr: Hadoop provisioning for cloud environments
Giraph: Graph processing a la Google Pregel
Drill, Presto, Impala: SQL Engines

NoSQL landscape

T I\, Wil HYPERTABLE

Q,_\
W omaon HBASE € 7
Document Qsmazan DynamoDB> Google W

=ZZ) Datastore Cassandra

‘ mongoDB

Wide Column

K: Key-Value é redis

CouchDB e
sriak amaz,onul S3 g{

RA% NDB webservices’
Graph CoucHBase

» Neoa; “ Project Voldemort

8’ the graph database
4. InfiniteGraph

Popularity

Rang DBMS

Oracle

MySQL
Microsoft SQL Server
PostgreSQL

DB2

Microsoft Access
MongoDB
Sybase

SQlite

Teradata

Solr

Cassandra

Redis

WO NOUMAEWDNR

T
W N B o

Modell
Relational DBMS
Relational DBMS
Relational DBMS
Relational DBMS
Relational DBMS
Relational DBMS
Document Store
Relational DBMS
Relational DBMS
Relational DBMS
Suchmaschine
Wide Column Store
Key-Value Store

Punkte
1514,90
1334,94
1286,22

199,39

177,04

149,66

137,49

88,41
87,81
51,11
46,43
37,64
34,22

http://db-engines.com/de/ranking

Rang DBMS Modell Punkte
14. Memcached Key-Value Store 30,73
15. HBase Wide Column Store 25,78
16. Informix Relational DBMS 24,73
17. Hive Relational DBMS 22,16
18. CouchDB Document Store 15,93
19. Firebird Relational DBMS 14,55
20. Netezza Relational DBMS 11,44
21. dBASE Relational DBMS 10,44
22. Elasticsearch Suchmaschine 9,51
23. Sphinx Suchmaschine 9,02
24. Riak Key-Value Store 8,99
25. Neod;j Graph DBMS 8,83

Scoring: Google/Bing results, Google Trends, Stackoverflow, job

offers, LinkedIn

History

Google File System 2003

MapReduce 2004

CouchDB 2005
BigTable 2006

MongoDB Hadoop &HDFs IRASSH

Cassandra

CouchBase

y
MegaStore

HyperDeX Spanner

NoSQL foundations

BigTable (2006, Google) Coc ,g[e

Consistent, Partition Tolerant
Wide-Column data model

Master-based, fault-tolerant, large clusters (1.000+ Nodes),
HBase, Cassandra, HyperTable, Accumolo

Dynamo (2007, Amazon) amazon

Available, Partition tolerant

Key-Value interface

Eventually Consistent, always writable, fault-tolerant
Riak, Cassandra, Voldemort, DynamoDB

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

m DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."

Dynamo (ap)

Developed at Amazon (2007)
Sharding of data over a ring of nodes
Each node holds multiple partitions
Each partition N-times replicated

o
8,0
s
\

o]

m DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."

Consistent Hashing

Naive approach: Hash-partitioning (e.g. in Memcache,
Redis)

. [B gwrvermunt
0 c

Consistent Hashing

Solution: Consistent Hashing — mapping of data to
nodes is stable under topology changes

2160 0

\/

/- hash(key)
B

c | position = hash(ip)

Reading and Writing

An arbitrary node acts as a coordinator

N: number of replicas

R: number of nodes that need to confirm a read
W: number of nodes that need to confirm a write

= 0 =2
nm un 1
RN W

Versioning and Consistency

R + W < N = no consistency guarantee

R + W > N = newest value included in any read
Vector Clocks used for versioning

R + W> N does not imply linearizability

Consider the following execution:

Replica 1 & -------}-------femmmmmee T
N~

Replica 2 L (Y A o

Replica3 b ---------¥ed g N b
N~

getx—>0

m Kleppmann, Martin. "Designing data-
intensive applications." (2015).

CRDTs

Convergent/Commutative Replicated Data Types

Goal: avoid manual conflict-resolution
Approach:

State-based — commutative, idempotent merge function
Operation-based — broadcasts of commutative upates

Example: State-based Grow-only-Set (G-Set)

S:={} . S, ={}
M S1 = {x} —51> S, = {y} ﬂ)
2

S; = merge({x},{y}) [S2=merge({y},{x}

= {x,y} = {x, ¥}
Node 1 Node 2

m Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek
Zawirski "Conflict-free Replicated Data Types"

. sriak
Riak (ap) Riak

Model:
. Key-Value
Open-Source Dynamo-Implementation cance.
Extends Dynamo: Apache 2
Written in:
Keys are grouped to Buckets ST R——

KV-pairs may have metadata and links

Map-Reduce support
Secondary Indices, Update Hooks, Solr Integration

REST-API

1 —

rg Consistency Level: N, R, W, DW
2

3] Storage Backend: Bit-Cask, Memory, LevelDB
Data: KV-Pairs Bucket

Summary: Dynamo and Riak . I

Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

Parameters: N (Replicas), R (Read Acks), W (Write Acks)
N=3, R=W=1 - fast, potentially inconsistent
N=3, R=3, W=1 = slower reads, most recent object version contained

Available and Partition-Tolerant

Vector Clocks: concurrent modification can be detected,
inconsistencies are healed through the application

API: Create, Read, Update, Delete (CRUD) on key-value pairs
Riak: Open-Source Implementation of the Dynamo paper

. &8 redis
Redis (ca) —

Model:
Remote Dictionary Server Ll
In-Memory Key-Value Store BSD
Asynchronous Master-Slave Replication R

Data model: rich data structures stored under key
Tunable persistence: logging and snapshots
Single-threaded event-loop design (similar to Node.js)
Optimistic batch transactions (Multi blocks)

Very high performance: >100k ops/sec on one machine
Redis Cluster adds sharding

Data structures

String, List, Set, Hash, Sorted Set

String web:index — "<html><head>..."

Set users:2:friends — {23, 76, 233, 11}

List users:2:inbox — [234, 3466, 86,55]

Hash users:2:settings —> Theme — "dark", cookies — "false"
Sorted Set top-posters —> 466 — "2",344 — "16"

Pub/Sub users:2:notifs — "{event: 'comment posted’, time: ..."

Example Redis Data Structure: lists

(Linked) Lists:

HPUSHX LPUSH : RPUSH
Only ifIist‘\ LRANGE inbox 1 2
exists TS / A \

inbox — 234 —— 3% I— 36 L 55
: _

4 l :l LREM inbox © 3466 l l

LLEN |
LPOP LINDEX inbox 2 RPOP

. I
Blocks until element |
. I
arrives

BLPOP

Example Redis Use-Case: Twitter

Per User: one
materialized timeline in
Redis

Timeline = List
Key: User ID

RPUSHX user_id tweet

spiing it e

@ s =

Write API

—

Fanout

&

>150 million users
~300k timeline querys/s

Tweet ID User ID Bits

Redis

Tweet ID User ID Bits
Tweet ID User ID Bits

Tweet ID User ID Bits Tweet ID

Tweet ID User ID Bits Tweet ID '

Tweet ID User ID Bits

m http://www.infoq.com/presentations/Real-Time-Delivery-Twitter

Classification: Redis

Techniques

0 Sharding

Replication

Storage
Management

Query
Processing

Range- Hash- Entity-Group Consistent Shared
Sharding Sharding Sharding Hashing Disk
Trans- Sync. Async. Pri g
action Replica- Replica- gmary AUp ite
Protocol tion tion opy nywhere
L - L - L. L N
: Update- : In- Append-Only
Logging in-Place Caching Memory Storage
| i L . o L _ L _ L .
Global Local Query Analvti Materialized
Index Index Planning nalyes Views

Google BigTable (cp)

Published by Google in 2006
Original purpose: storing the Google search index

A Bigtable is a sparse,
distributed, persistent
multidimensional sorted map.

Data model also used in: HBase, Cassandra, HyperTable,
Accumolo

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

Wide-Column Data Modelling

Storage of crawled web-sites (,Webtable®):

[Column-Family:
contents

1. Dimension: i | 2. Dimension:
Row Key i 1 CF:Column
1 i [/ L [T 1

——

Column-Family:
anchor

t; 3. Dimension:
E5 Timestamp

com.cnn.www 1 content : "<htmI>..." cnnsi.com : "CNN" my.look.ca : "CNN.com"

Sparse I

B L L e L L T T e e e s

4
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

——

Architecture

ACLs, Garbage P I Master Lock, Root __—
Collection, = g Metadata Tablet
=7

Rebalancing

e "Tea
e Cea
- L
.. .a
ce
e Cea
- e
- oo
- -
-
e
Sa

Stores Ranges,
Answers client
requests

»

Tablet Server Tablet Server Tablet Server

N
N

Stores data and
SSTables

commit log
GFS

- |Commit

Range-based Sharding

Rows

Tablet Server 1 Tablet Server 2
"""" A-C
» C-F
-------- 1-M
> M-T

Master

Tablet Server 3

F-I

T-Z

Controls Ranges, Splits, Rebalancing

Storage: Sorted-String Tables

Goal: Append-Only IO when writing (no disk seeks)
Achieved through: Log-Structured Merge Trees

Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

Reads query memtable and all SSTables

/ Row-Key
Key Block _/\:'B|0Ck (eg 64KB)

Key Block Key Value Key Value Key Value

Ke Block !
V ' Variable Length

Block Index Sorted String Table

T 1\
o

HBASE

Apache HBase (cp)

Model:

: . Wide-Column
Open-Source Implementation of BigTable oem—
Hadoop-Integration Apache 2

Written in:
Data source for Map-Reduce

Uses Zookeeper and HDFS
Data modelling challenges: key design, tall vs wide
Row Key: only access key (no indices) = key design important

Tall: good for scans
Wide: good for gets, consistent (single-row atomaicity)

No typing: application handles serialization
Interface: REST, Avro, Thrift

Java

HBase Storage

Logical to physical mapping:

In Value \Key Design — where to store data:
r2:cf2:c2:tl:<value>

In Key Tr2-<value>:cf2:c2:t1:_
In Column — r2:cf2:c2<value>:tl:_

Key | cfl:cl | cfl:c2 | cf2:cl | cf2:c2

rl II II
r2 [] I
r3 |ii
r4 II
rS iil II

:<value>

:<value>
:<value>
:<value>

:<value>
HFile cf2

:<value>

:<value>

:<value>

:<value>

:<value>
HFile cfl1

m George, Lars. HBase: the definitive guide. 2011.

Example: Facebook Insights

EXtraCtion Dally Active Users Daily New Users Total installed Users
every30 min J_¥gYe [
> . W\/\‘W—O—O\
HBASE
MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key
6PM 6PM 01.01 01.01 Total Male
Total Male Total Male
10 7 100 65 \/I Sl [Esse] 567
LCounter)
I
g N AL W
N ~N" N
CF:Daily CF:Monthly CF:All

TTL — automatic deletion of
old rows

m Lars George: “Advanced
HBase Schema Design”

Summary: BigTable, HBase . TP

Data model: (rowkey, cf: column, timestamp) — value
APIl: CRUD + Scan(start-key, end-key)
Uses distributed file system (GFS/HDFS)

Storage structure: Memtable (in-memory data structure) +
SSTable (persistent; append-only-10)

Schema design: only primary key access = implicit schema
(key design) needs to be carefully planned

HBase: very literal open-source implementation BigTable
Cassandra: combination of Dynamo and BigTable ideas

Classification: HBase
Techniques

. Range-
0 AR Sharding

Sync.

Replication Replica-
tion

H Storage
s Management

Logging

'® Query
N Processing

Caching

Primary
Copy

Append-Only
Storage

Cassandra

Apache Cassandra (apr)

Model:
Wide-Column

Published 2007 by Facebook icace

|dea: Apache 2
BigTable‘s wide-column data model e
Dynamo ring for replication and sharding

Cassandra Query Language (CQL): SQL-like query- and

DDL-language

Compound indices: partition key (shard key) + clustering

key (ordered per partition key) = Limited range queries

Secondary indices: hidden table with mapping =2
gueries with simple equality condition

Java

Classification: Cassandra

Techniques

0 Sharding
O Replication

H Storage
. Management

'® Query
N Processing

Hash-
Sharding
Async.
Replica-
tion

Logging Caching
Global Local
Index Index

Consistent

Hashing

Update
Anywhere

Append-Only
Storage

Materialized
Views

. mongoDB

MongoDB (cp)

Model:
~ . Document
From humongous = gigantic icance
Tunable consistency GNU AGPL 3.0
Written in:
Schema-free document database Cot

Allows complex queries and indexing
Sharding (either range- or hash-based)
Replication (either synchronous or asynchronous)

Storage Management:

Write-ahead logging for redos (journaling)
Memory-mapped storage files, buffer management handled by
operating system (paging)

Data Modelling

m |

tltle 1 n m

year

rating

director n 1 1

: text name
coordinates location

retweets

Data

ll_i

Modelling

title
year
rating
director

d" : ObjectId("51a5d316d70beffe74ecc940")

title : "Iron Man 3",
year : 2013,

rating : 7.6,

director: "Shane Block",
genre : ["Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",

"Paltrow , Gwyneth"],

tweets : [{

}]

"user" : "Franz Kafka",

"text" : "#nowwatching Iron Man 3",
"retweet" : false,

"date" : ISODate("2013-05-29T13:15:51Z")

Movie Document

text
coordinates

name
location

retweets

Denormalisation instead
of joins

Nesting replaces 1:n
and 1:1 relations

Schemafreeness:
Attributes per document

Unit of atomicity:
document

Principles

Sharding und Replication

Sharding:
-Sharding attribute

~~~~~ Config i Master \
i M - -Load-Balancing
Client mongos ~ ~ ~| -can trigger rebalancing of
= | / "~ chunks (64MB) and splitting
=1 T~ %
Client Master ~
|

Controls Write Concern:
Unacknowledged, Acknowledged,
Journaled, Replica Acknowledged

-Hash vs. range sharding .‘

-Receives all writes

-Replicates asynchronously




Classification: MongoDB
Techniques

) Range- Hash-
o Sharding  oharding  Sharding

Sync. Async.

Replication Replica- Replica-
tion tion

H Storage
. Management

Logging Caching

'® Query Local Query
N Processing Index Planning

Primary
Copy
In- Append-Only
Memory Storage
Analytics



Outline

CX+ys

0B

Foundations: Big Data,
Scalability, Avaialbility

The 4 Classes of NoSQL
Databases

NoSQL Examples: concrete
Architectures, Systems, APls

Cloud Databases

Database-as-a-Service
Backend-as-a-Service



Cloud Databases

Managed Cloud -only Analuti
NoSQL DBs  DBaaS-Systems 49 ICs—as-
a-Service

MongoHQ | DynamoDB [BBi€ Al S3

Cloudant | Google F1 | | ccs

ROloject

: Stores
Database-as-a-Service

Backend -as-a-

Sevrvice N

=

Platform-as-a-Service

@ Storage APIs
Eg Infrastructure-as-a-Service

amazon
webservices"

K Cloud -Deployment
of DBMSs



Database-as-a-Service

Cloud databases with a pay-per-use pricing model

Managed Database Service: Existing DBMS deployed
and managed in the cloud
Managed NoSQL System (e.g. MongoHQ, Redis2Go)
Managed RDBMS (e.g. Amazon Relational Database Service)
Proprietary Database Service: special DBMS built for
cloud environments (e.g. Amazon DynamoDB)

Object Stores: cloud-based file storage (e.g. Amazon S3)

Backend-as-a-Service: Database + Implementation of
standard app concerns (e.g. user management, push)



e

Presentation
is loading



The Latency Problem

1000B(IN S

Average: 9,3s

Loading...

1°Conver5|ons

o Traffic

?% Visitors

Revenue

I

Aberdeen Group
Google
YaHoO!

amazon.com



Webseite
wird geladen

before T, ek
apys bewre Ty
o

a8
- * {'
% 2
MOoDoDoDDoOL === -
—_— e e J — "3“"~
(S 3 (3 (53 (£ (N (C3 3 [ (4 1 BN
shitt A-ﬁf A
) ([ T Y [ = =t

If perceived speed is such an
import factor

..what causes slow page load times?



State of the art

Two bottlenecks: latency und processing

High Latency o

Processing Time

-l
—E




Network Latency

The underlying problem of high page load times

Page Load Time (ms)

Page Load Time (ms)

3500 1
3000 1
2500 1
2000 7
1500 1

1000 -

1 Mbps

200 ms

2 Mbps

180 ms

3 Mbps

160 ms

Page Load Time as bandwidth increases

4Mbps  5Mbps  6Mbps  7Mbps  8Mbps  9Mbps 10 Mbps

Page Load Time as latency decreases

140 ms 120 ms 100 ms 80 ms 60 ms 40 ms 20ms

m . Grigorik, High performance browser networking.
O’Reilly Media, 2013.




2x Bandwidth

Same Load Time

Q

/2 Latency 2 Load Time



The low-latency vision
Data is served by ubiquitous web-caches




The Problem with today‘s caching

Changes invalidate cached data

[=)

Stale 2

Data

%

!

D)




Our Research
Keep Data up-to-date through Cache Sketches

Bloom filter

Isup—to—date?/,———" Of1J1)1J1f1J0 1+"~~~\ update

-




Vv Eﬁ'ild/a faster web.

i‘i

3} f‘“-.me:rezt?
%W

é/' ‘\r




Backend-as-a-Service
Feature Sets

v | B

application
Data Real-

features _
Storage  Time

Delivery

02060

Query,
Search

Backend
Code

Users,
OAuth

File Access
Storage Control

BaQend

REST API
and JS SDK




Frontend

BaQend

{{heading}}

;;;;;;;

{{headline}}

{{anticle}}

{{heading}}

ieaser))

{{heading}}

-

GET /app.html
GET /js/main-34da93.js
GET /css/main-9ad7ca3.css




Compatible with:

NGULARJS

handlebars

Xnockout.

UNDERSCORE.JS

M

Vue.js




Frontend

BaQend

{i} g -
[JSON g
My Web App

Cras justo odio, dapibus ac facilisis in, egestas eget quam. Fusce dapibus, tellus ac cursus commodo, tortor
mauris condimentum nibh, ut fermentum massa justo sit amet

Heading Heading Heading

[Fp— - Vi oot »

GET /app.html
GET /js/main-34da93.js
GET /css/main-9ad7ca3.css

db.Page.load( 'main")
.done(...);

db.Page.find()
.descending( 'published")
L1limit(3)
.resultList(...);

GET /img/pic005.jpg
GET /img/pic017.jpg
GET /img/pic022.jpg



Development
On Bagend

Dashboard

BaQend resa- oneomc moni oo e TR i o |

The World's Fastest Backend

Bulld websites and apps that load Instantly.
- : )

Create Schema, configure,
browse data, etc.

CLI

1:~% bagend --help

: ba qen d [-:: ommand : [ o p:il:l ns :

Develop, deploy and test
frontend und backend Code

REST & SDK

scrptys

1 function leaveMessage(name, message) {

var msg DB.Message();

msg.name - name;
msg.message - message;
msg.date Date();

msg.insert().then(showMessages);

¥

function showMessages() {
DB.Message.find()
.descending("date")
.1imit(30)
.resultList()

Website logic: load site,
get data, login, etc.



Orestes & Bagend

Learn more

If you are interested in topics combining web/mobile with
scalable data management:

Bachelor and Master thesis topics
nttp://tiny.cc/orestes (frequently updated)

Hiwi/student positions

Tasks: building real applications using cutting edge technology
(e.g. ES6, Angular, React, MongoDB, Redis, Node.js,...)

Contact me directly or at fg@bagend.com



http://tiny.cc/orestes

Summary .

Variety of different NoSQL systems:
HDFS and Hadoop: Map-Reduce platform for batch analytics

v Vv

Dynamo and Riak: KV-store with consistent hashing

v

Redis: replicated, in-memory KV-store
BigTable, HBase, Cassandra: wide-column stores
MongoDB: sharded and replicated document store

Cloud Databases
Database-as-a-Service: managed (NoSQL) database provided as a
pay-per-use service
Orestes and Bagend: Backend-as-a-Service research project and
startup with the goal of solving the web’s latency problem

v Vv



