
© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 1 of 8

Hanseatic Mainframe Summit

z/OS DB2 access using JAVA

Lab Version V2.00

Tuesday, 14 September, 2010

Overview
This lab describes how to connect to a DB2 running on z/OS and how to run SQL
statements with Java.

Lab Requirements

Eclipse, Network access to a DB2 z/OS

Lab Steps

Summary of the steps
 Part 1: JDBC program accessing DB2 for z/OS data
How to connect to a DB2 database on a z/OS server with java
 Part 2: Explanation of the code
How to execute SQL statements on the DB2
 Part 3: Optional To-Dos
If you have time, choose additional Labs
 Part 4: Additional Resources
Where to get more information

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 2 of 8

Part 1: JDBC program accessing DB2 for z/OS data

This part shows a very simple approach to connect to DB2. It demonstrates the
basic concepts of a JDBC connection. The created sample Java program
connects from your workstation to the Host DB2 database and uses the DB2
Universal Java Driver to establish the connection.

Part 2 describes the necessary steps in more detail.

 In Eclipse or WDz, create a new Java
project.(File�NewProject�JavaProject)
Enter JavaDB2 as name and click on Finish

 Right-click on the newly created project and select Properties

 Go to Java Build Path

 In the Libraries tab, select Add External Jars to import the DB2 Universal
Driver classes (db2jcc.jar and db2_license_cisuz.jar) into your Java
classpath.

db2jcc.jar contains the driver classes and db2_license_cisuz.jar is the
required license file that allows you to connect to a DB2 for z/OS server.
To use JDBC 4.0 Standard, you can also use db2jcc4.jar alternatively.

 Click OK.

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 3 of 8

 Right-click on the JavaDB2 project and select New � Package. Type
com.ibm.db2.jdbc as Name

 Click Finish.

 Right-click on the newly created package and select New ���� Class

Fill in the following settings to create the Class SimpleJDBC

Click Finish to start editing the class.

 You have to type in your code into the created class. (Alternatively, copy the
code from the PDF file). The following part 2 explains the inserted code.
Ensure to enter your correct username and password.

JavaDB2/src

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 4 of 8

package com.ibm.db2.jdbc;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

public class SimpleJDBC {

 public static void main(String[] args) {

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 System.out.println("**** Loaded the JDBC driver");

 String url = "jdbc:db2://192.168.7.253:9446/ZOS10101";

 Connection jdbcConn = DriverManager.

 getConnection(url, "TEAM##", "PASSWORD");

 jdbcConn.setAutoCommit(false);

 System.out.println("**** Created JDBC connection");

 String select = "SELECT OWNER, NAME FROM SYSIBM.SYSTABLES WHERE

OWNER = ?";

 PreparedStatement presta = jdbcConn.prepareStatement(select);

 System.out.println("**** Created JDBC Statement object");

 presta.setString(1, "TEAM##");

 ResultSet rs = presta.executeQuery();

 while (rs.next()) {

 System.out.println("Table: "+rs.getString(1)+"."

+rs.getString(2));

 }

 System.out.println("**** Fetched all rows from JDBC ResultSet");

 rs.close();

 System.out.println("**** Closed JDBC ResultSet");

 presta.close();

 System.out.println("**** Closed JDBC Statement");

 jdbcConn.commit();

 System.out.println("**** Transaction committed");

 jdbcConn.close();

 System.out.println("**** Disconnected from data source");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not load JDBC driver");

 System.out.println("Exception: " + e);

 e.printStackTrace();

 } catch (SQLException ex) {

 System.err.println("SQLException information");

 while (ex != null) {

 System.err.println("Error msg: " + ex.getMessage());

 System.err.println("SQLSTATE: " + ex.getSQLState());

 System.err.println("Error code: " + ex.getErrorCode());

 ex.printStackTrace();

 ex = ex.getNextException();

 }

 }

 } // End main

} // End SimpleJDBC

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 5 of 8

 Right-click the SimpleJDBC.java file and select Run as� Java
Application.
This will run the application on your local workstation and connect to DB2z
via a Type4 connection.

This should produce the following output:

**** Loaded the JDBC driver

**** Created JDBC connection

**** Created JDBC Statement object

Table: TEAM11.AIRPORT

Table: TEAM11.AIRLINE

Table: TEAM11.SEATCLAS

Table: TEAM11.SEATCLASS

Table: TEAM11.FLIGHTS

**** Fetched all rows from JDBC ResultSet

**** Closed JDBC ResultSet

**** Closed JDBC Statement

**** Transaction committed

**** Disconnected from data source

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 6 of 8

Part 2: Explanation of the code

This chapter explains the code sample in part1 in more detail.

In order to work with SQL in a java program you have to import the java.sql
classes.
Absolutely necessary are
import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

Those imports are required to establish a connection to DB2 and to execute SQL
statements.
In order to use Prepared Statements and Queries you also need the imports
import java.sql.PreparedStatement;

import java.sql.ResultSet;

You need PreparedStatements to make use of DB2´s dynamic statement cache.

The first statement in the main method loads the correct JDBC driver with the
Class.forName command. The correct driver class for connecting to DB2 is
“com.ibm.db2.jcc.DB2Driver”.
Class.forName("com.ibm.db2.jcc.DB2Driver");

Then you need to connect to the DB2 subsystem. The syntax for the database
URL is: “Protocol//IP:Port/DB2 Location Name”

In our case this looks like:
String url = "jdbc:db2://IP-ADDRESS:Error! Reference source not

found./Locationname";

Now you can establish the connection. You need to create a connection object
which serves as a handle for the connection and then attach it to an actual
connection which you can get from the Drive Manager. The DriverManager
needs the URL of the database, the username and password, either by hard
coding them into the source code or by user input.
Connection jdbcConn = DriverManager.getConnection(url, user, password);

If nothing went wrong, you are now connected to the DB2. Before you quit the
java program, don’t forget to close the connection. This is done by
jdbcConn.close();

Working with DB2

Prepared Statements should be used for SQL statements which have many
variables like INSERT or SELECT … WHERE statements. Prepared Statements

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 7 of 8

allow you to replace the values of the SQL datatypes in your statement by “?”
and then to fill them later by using the set<Datatype>() Methods. Using
PreparedStatements helps to use DB2s dynamic statement cache more
efficiently.

Assuming this SQL statement:
String select = " SELECT OWNER, NAME FROM SYSIBM.SYSTABLES WHERE OWNER = ?

Then you need to create a PreparedStatement object and to use the
prepareStatement method of the Connection to convert the SQL string into a
prepared Statement.
PreparedStatement presta = jdbcConn.prepareStatement(select);

Then you can use the set<Datatype> methods of the PreparedStatements to set
the value of the “?” in the Statement. As arguments you need the position of the
“?” (beginning with 1) and the value for the variable.
For example to fill the statement with the integer value of “TEAM##” as its first
operand.
presta.setInt(1, "TEAM##");

Finally you need to execute the PreparedStatement itself. The result of the query
is given back to the program as resultset.
ResultSet rs = presta.executeQuery();

You can now print out the contents of the resultset to the console:
while (rs.next()) {

 System.out.println(("Table: "+rs.getString(1)+"." +rs.getString(2));

}

It is very important to clean up your program and the DB2 connection after the
access. Therefore issue the following commands afterwards:
rs.close();

stmt.close();

con.commit();

jdbcConn.close();

End of lab ☺

© Copyright IBM Corporation 2006. All rights reserved.

9/14/2010 Hanseatic Mainframe Summit

 Page 8 of 8

Part 3: Optional ToDos

• Insert Data via JDBC

• Update Data via JDBC

• Call a Stored Procedure via JDBC

• Use the JPA Standard to Persist Java Objects in DB2

Part 4: Additional resources

DB2 for z/OS Application Programming Guide and Reference for Java (2.58 MB)
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.ja
va/dsnjvk15.pdf?noframes=true

DB2 Information Center
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc/db
2prodhome.htm

JDBC official WebSite
http://java.sun.com/products/jdbc/

Wikipedia
http://en.wikipedia.org/wiki/Java_Database_Connectivity

OpenJPA
http://openjpa.apache.org/

