
An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 1

© 2008 IBM Corporation

IBM Software Group

WebSphere MQ V7.0

Application Development

Application Development Considerations© 2008 IBM Corporation 2

TechWorks

Unit Agenda

● Basic WebSphere MQ API Constructs

●Java Message Service (JMS) Programming
Considerations

●Additional Languages / APIs

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 2

Application Development Considerations© 2008 IBM Corporation 3

TechWorks

Using the Native WebSphere MQ API

Application Development Considerations© 2008 IBM Corporation 4

TechWorks

Programming - Common MQ API Calls
● MQCONN

Connect to Queue Manager

● MQOPEN
Open Queue or Topic

● MQSUB
Register Subscription

● MQGET
Get message from Queue

● MQPUT
Put message to Queue/Topic

● MQCLOSE
Close Queue/Topic/Subscription

● MQDISC
Disconnect from Queue Manager

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 3

Application Development Considerations© 2008 IBM Corporation 5

TechWorks

Programming - More Advanced MQ API Calls
● MQINQ

Inquire attributes of QMgr or Queue
● MQSET

Set attributes of QMgr or Queue
● MQGETMP

Get a Message Property
● MQSETMP

Set a Message Property
● MQCB

Register a Callback
● MQCTL

Start/Suspend/End a Callback
● MQBEGIN

Start transaction
● MQCMIT

Commit transaction
● MQBACK

Backout transaction

Application Development Considerations© 2008 IBM Corporation 6

TechWorks

Programming – Message Producer

MQ
Application

MQ
Application

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQCMIT

MQCLOSE

MQCLOSE

MQDISC

Queue
Manager
Queue

Manager

●Connect to the server
●Open the queues
●Put messages

In/out of syncpoint
●Commit the updates

If inside syncpoint
●Close the queues
●Disconnect from the server

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 4

Application Development Considerations© 2008 IBM Corporation 7

TechWorks

Programming – Message Consumer

MQ
Application

MQ
Application

MQCONN

MQOPEN

MQGET

MQGET

MQGET

MQCLOSE

MQDISC

Queue
Manager
Queue

Manager

●Connect to the server
●Open the queue
●Get messages

If queue empty, can wait
for messages to arrive

●Close the queue
●Disconnect from the server

Application Development Considerations© 2008 IBM Corporation 8

TechWorks

Client/ServerClient/Server

Programming - Asynchronous Consumption of Messages

●Benefits of Async message consumption
Simplifies programming
Allocates message buffers
Wait on multiple queues
Easy to cancel
Can register an Event handler

MQCONN

MQOPEN
MQCB

MQOPEN
MQCB

MQCTL

MQPUT
MQCMIT

Callback function

●Connect to the server
●Open the queue(s)
●Register callback(s)

Using MQCB
●Start the async consumer

Using MQCTL
●Callback driven when

messages arrive on either
queue

●Callback can be
transactional

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 5

Application Development Considerations© 2008 IBM Corporation 9

TechWorks

Programming – Message Consumer - Subscriber

MQ
Application

MQ
Application

MQCONN

MQSUB

MQGET

MQGET

MQGET

MQCLOSE

MQDISC

Queue
Manager
Queue

Manager

●Connect to the server
●Subscribe to topic(s)

Wildcards can be used
No need to manage
destination

●Get messages
If queue empty, can wait
for messages to arrive

●Deregister the subscription
Using MQClose

●Disconnect from the server

Application Development Considerations© 2008 IBM Corporation 10

TechWorks

Programming – Message Request / Reply

MQ
Application

MQ
Application

MQCONN

MQOPEN

MQOPEN

MQPUT

MQGET

MQCLOSE

MQCLOSE

MQDISC

Queue
Manager
Queue

Manager

●Synchronous Requests can
be implemented over MQ

●Request and reply queues
can be the same, or
different (as shown here)

●Reply queue can be
dynamic

Simplifies administration
Automatically deleted
when closed

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 6

Application Development Considerations© 2008 IBM Corporation 11

TechWorks

Programming – Additional Considerations
● Selectors

A message selector is a variable-length string, containing an
SQL92 query
Used by applications to select only those messages whose
message properties satisfy that query
For example, a message selector like

“sport = football”
could be used to only select messages from a queue where the
message property “sport” was equal to the value “football”

● Message Browsing
Queues can be browsed and select messages marked or
removed
Alternative to selectors when selection criteria is too complex, or
may change dynamically
Provides a mechanism to implement multiple instances of co-
operating programs

For example, Message Driven Beans in Java
Dispatcher application browses the queue, selects
messages
Then dispatcher initializes a consumer and passes the
message token to selected message processing

Application Development Considerations© 2008 IBM Corporation 12

TechWorks

Applications can be transactional

●WebSphere MQ can participate in an XA Transaction
Messages can be put or got under a logical unit of work
Messages can be committed or rolled back as an atomic unit
A queue and a database operation can be performed under a single logical unit-
of-work using commit / rollback logic

For example. get a message from a queue and insert into a database with a
single commit

●A queue manager can participate in an XA transaction:
As a resource manager, under the control of an external transaction
manager like IBM CICS® or a J2EE application server
As the transaction manager, coordinating updates to MQ and other resource
managers such as relational database managers

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 7

Application Development Considerations© 2008 IBM Corporation 13

TechWorks

Using the JMS API with WebSphere MQ

Application Development Considerations© 2008 IBM Corporation 14

TechWorks

Overview of JMS Programming Model

JMS

Client
(your app)

JMS

Client
(your app)

JMS

Server
(MQ Provider)

JMS

Server
(MQ Provider)

Destination
Connection Factory

JNDI* Namespace

Connection.createSession(…)
Producer.send(Message)

Message Consumer.receive()

Connection factories
and destinations are
retrieved from JNDI.

Connection factories
are used to create

connections!

Connection factories
and destinations are
retrieved from JNDI.

Connection factories
are used to create

connections!

Connections are used to
communicate with the JMS

server.

Sessions are used in
conjunction with destinations to
create messages and message

consumers/ producers

Connections are used to
communicate with the JMS

server.

Sessions are used in
conjunction with destinations to
create messages and message

consumers/ producers

* Java Naming and Directory Interface

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 8

Application Development Considerations© 2008 IBM Corporation 15

TechWorks

Comparing JMS and MQ Native API Functions
JMS Application MQ Application

Retrieve Objects from JNDI*

Create Connection

Create Session MQCONN
Create Message Producer MQOPEN (Queue or Topic)
Create Message Consumer MQOPEN (Queue) or MQSUB

Set Message Listener MQCB / MQCTL
Get Message MQGET
Send Message MQPUT
Close Producer or Consumer MQCLOSE
Close Session MQDISC
Close Connection

* Java Naming and Directory Interface

Application Development Considerations© 2008 IBM Corporation 16

TechWorks

Sample JMS program - Sending Messages

try {

InitialContext ctx = new InitialContext();

Connection Factory cf = (ConnectionFactory) PortableRemoteObject.narrow

(ctx.lookup(“CFName”), ConnectionFactory.class);

Destination dest = (Destination) PortableRemoteObject.narrow

(ctx.lookup(“DestName”), Destination.class);

Connection conn = cf.createConnection();

Session sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);

MessageProducer msgProd = sess.createProducer(dest);

TextMessage txtMsg = sess.createTextMessage(“My Message Text”);

msgProd.send(txtMsg);

sess.close();

conn.close();

} catch (JMSException e) {}

catch (NamingException e) {}

Setup

Access
Server

Send
Message

Cleanup

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 9

Application Development Considerations© 2008 IBM Corporation 17

TechWorks

Access to full MQ message contents
●Customers using the WebSphere MQ JMS provider have the option to access

native MQ messages (MQMD and payload) through the JMS API
e.g. they may require interoperation with non-JMS applications
Considered advanced usage of MQ/JMS - useful to MQ/JMS customers who are
willing to extend the JMS spec

●Enables developers to read/write MQMD fields when using the JMS API
Adds 27 new properties for a JMS Message
e.g. JMS_IBM_MQMD_Priority, JMS_IBM_MQMD_Persistence,
JMS_IBM_MQMD_CorrelId, i.e. MQMD

●Can now receive a message that is a BytesMessage – i.e. the JMS message
body is the unaltered message data returned by the underlying MQGET API call

●Can now send to a queue or a topic with the message body containing the
application payload as-is; without any auto-generated WebSphere MQ headers
(e.g. MQRFH2) added to the body

Useful for things like adding explicit MQ headers such as PCF headers

Application Development Considerations© 2008 IBM Corporation 18

TechWorks

Additional WebSphere MQ
Application Programming Interfaces

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 10

Application Development Considerations© 2008 IBM Corporation 19

TechWorks

HP-UX Windows® zLinux Solaris™ AIX® i5/OS® NSS® OVMS®

WebSphere MQ Provides Universal Connectivity
Enterprises with a diverse collection
of platforms and languages can use a
single product (WebSphere MQ) to
enable applications to interoperate in
a reliable manner.

z/OS® Linux
* IBM Message Service API

WebSphere MQ

MQ Interface

COBOL, C, C++, RPG,
…others.

JMS
Java / JEE

XMS*
C, C++, .NET C#

.NET (C#)
Microsoft©

SOAP
Web Services

Other Interfaces
HTTP, FTP, …

Multiple APIs

Application Interoperability:
WebSphere MQ supports the broadest range of APIs,
programming languages and OS platforms
Provides the only JMS engine that can be implemented
on “any” standards-compliant JEE server
Provides rich web services interfaces for customers
needing reliable SOAP message delivery
Offers a broad range of qualities of service and
messaging methods including publish/subscribe
Supports major transaction monitors and database
managers
Offers the most scalable, most manageable messaging
system available
Assures transactional message delivery end-to-end.

Application Development Considerations© 2008 IBM Corporation 20

TechWorks

IBM Message Service Clients
●In the MQ world there are essentially two programming models

MQI (available in a number of languages: C, C++, C#, Java, COBOL, PL/I, RPG, TAL, etc)
JMS (Java only)

●The simplified JMS messaging model, and JMS messaging constructs
such as administered objects, are both very useful, but only available in
the Java environment

●The IBM Message Service Clients are implementations of the JMS API
in the C/C++/C# languages

These bring the benefits of JMS -- a standard, abstracted messaging API for pub/sub and point-to-
point messaging, as well as externally administered objects -- to the non-Java world

●Applications created in this way can be used to exchange messages
between other Message Service Client applications, JMS applications
or native MQI applications

●These applications can also be easily ported between the WebSphere
MQ, WebSphere Message Broker and WebSphere Application Server
messaging providers with little or no rework

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 11

Application Development Considerations© 2008 IBM Corporation 21

TechWorks

WebSphere MQ API Choices Available in the .NET Environment

●We have already discussed:
WebSphere MQ Base Classes

Allow access to full range of MQ capabilities
Enable reuse of existing MQ skills

…and IBM Message Service Clients (XMS):
Enable reuse of JMS skills in other languages (C/C++/C#)
Simplify interoperation between Java and non-Java systems
To abstract application configuration to administered objects
To enable applications to be portable between IBM providers

●Additional programming options for .NET include:
.NET Monitor
Microsoft Windows Communication Foundation (WCF) Custom Channel for
MQ

Application Development Considerations© 2008 IBM Corporation 22

TechWorks

.NET Monitor for MQ
●Provides a triggering mechanism for .NET applications that

conform to the current .NET interface requirements
Can run standalone or can itself be triggered
Support for either MQ or .NET transactions
Support for backout threshold processing

●In order to be run from the .NET Monitor, user written
applications must implement the IMQObjectTrigger interface

Information passed across this interface includes
The queue manager connection object being used
The queue being used
The message removed from the queue
User parameter specified on the command line

●Applications that use this interface do not need to access MQ
directly

They can use the MQMessage object

An IBM Proof of Technology

Discovering the value of WebSphere MQ V7
for Your Enterprise Messaging Needs 12

Application Development Considerations© 2008 IBM Corporation 23

TechWorks

WCF (Indigo) Custom Channel for MQ
● Windows Communication Foundation underpins .NET Web services and Messaging

Built-in Transports e.g. MSMQ, HTTP(S), Named Pipes, TCP/IP, etc.

Transports can be extended with ‘custom channels’

Allows alternative transports (like MQ) to be slotted into WCF seamlessly

● IBM has built a prototype custom channel for MQ
Available from IBM alphaWorks: http://www.alphaworks.ibm.com/tech/mqwcf

● Features:
Can call a service using One-Way (Fire and forget), Request-Reply, and Callback MEPS

Uses SOAP/JMS message formats for interoperability with WebSphere Application Server, CICS®
SOAP/JMS services

● Dependencies
XMS .NET and WMQ .NET clients
.NET Framework v3 runtime & SDK

● Download package includes samples for:
Calling Request-Response, and One-way WCF services
Calling a sample Axis service hosted by WebSphere MQ
Calling a sample .NET service hosted by WebSphere MQ

Application Development Considerations© 2008 IBM Corporation 24

TechWorks

Summary of WebSphere MQ Application Development
●Application Development with WebSphere MQ is straightforward

Relatively small number of API verbs in the native API
Only a handful will be used in a typical application

●JMS Developers can use the latest revision of the JMS Specification
Consolidated domain model
Domain-specific verbs are still supported

●Non-java Developers can realize the benefits of JMS outside the Java domain
XMS (“JMS for the non-Java programmer”)
Enables leveraging of JMS skills in other languages (C/C++/C#)
Can share administered objects with JMS programs
Makes it possible for enable applications to be portable between IBM providers

●Additional API options available
.NET Interfaces

XMS, .NET Monitor, WCF custom channel
C++ OO API available
Other APIs available for more esoteric platforms

HP NonStop (previously Tandem)

●All APIs interoperable!

