

Grundlagen des Relationenmodells

Inhalt
Übersicht
Grundkonzepte
Abbildung von ER-Diagrammen
Relationenalgebra
Algebraische Optimierung

N. Ritter, HMS

Übersicht (1)

Datenstruktur

- Relation (Tabelle)
 - einzige Datenstruktur (neben atomaren Werten)
 - alle Informationen ausschließlich durch Werte dargestellt
 - zeitinvariante Typinformation: Relationenschema
 - Integritätsbedingungen auf/zwischen Relationen: relationale Invarianten

Operatoren auf (mehreren) Relationen

- Vereinigung, Differenz
- Kartesisches Produkt
- Projektion
- Selektion
- zusätzlich: Grundoperationen (Einfügen, Löschen, Ändern)

N. Ritter, HMS

Übersicht (2)

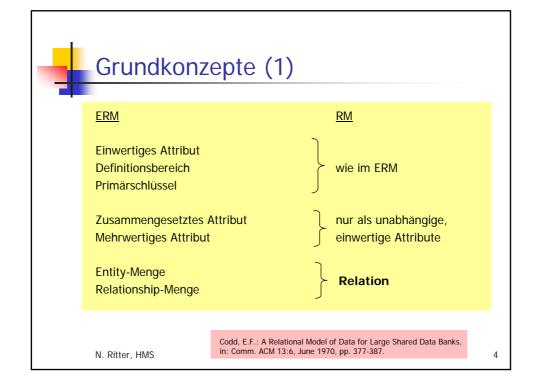
Beziehungen

- sind stets explizit, binär und symmetrisch
- werden durch Werte dargestellt: Rolle von Primär-/Fremdschlüssel (Gewährleistung von referentieller Integrität)
- können in SQL automatisch gewartet werden (referentielle Aktionen)

Entwurfstheorie

- Normalformenlehre (wünschenswerte und zweckmäßige Relationen)
- Synthese von Relationen

N. Ritter, HMS



Grundkonzepte (2)

Mathematische Notation:

 D_1, D_2, \dots, D_n Definitionsbereiche (Domänen)

 $R \subseteq D_1 \times D_2 \times ... \times D_n$ Relation (Beziehung) $t \in R$ Tupel / Record

Notation für Datenbank-Relationen:

 A_1, A_2, \dots, A_n Attribute

 D_1, D_2, \dots, D_n primitive Datentypen

 $\label{eq:Relation} \begin{aligned} \textbf{R} \in \text{Rel } (\textbf{A}_1 : \textbf{D}_1, \, ..., \, \textbf{A}_n : \textbf{D}_n) & \text{Relation } \ddot{\textbf{u}} \text{ber den Attributen } \textbf{A}_1, \, ... \, , \, \textbf{A}_n \\ & \text{mit den Domänen } \textbf{D}_1, \, ... \, , \, \textbf{D}_n \end{aligned}$

- Darstellungsmöglichkeit für R: n-spaltige Tabelle
 - Jede Relation kann als Tabelle dargestellt werden
- Relation ist eine Menge: Garantie der Eindeutigkeit der Zeilen/Tupel
 - Primärschlüssel (und ggf. mehrere Schlüsselkandidaten)

N. Ritter, HMS 5

Grundkonzepte (3)

Grundregeln:

- 1. Jede Zeile (Tupel) ist eindeutig und beschreibt ein Objekt der Miniwelt
- 2. Die Ordnung der Zeilen ist ohne Bedeutung; durch ihre Reihenfolge wird keine für den Benutzer relevante Information ausgedrückt
- 3. Die Ordnung der Spalten ist ohne Bedeutung, da sie einen eindeutigen Namen (Attributnamen) tragen
- 4. Jeder Datenwert innerhalb einer Relation ist ein atomares Datenelement
- Alle für den Benutzer bedeutungsvollen Informationen sind ausschließlich durch Datenwerte ausgedrückt
- 6. Es existieren ein Primärschlüssel und ggf. weitere Schlüsselkandidaten

Grundkonzepte (4)

Wie wird "relationenübergreifende" Information dargestellt?

- Fremdschlüssel
 - Bezug auf den Primärschlüssel einer anderen (oder derselben)
 Relation definiert (gleicher Definitionsbereich)
 - trägt inter- oder intra-relationale Informationen
- Beziehungen werden durch Fremdschlüssel und zugehörigen Primärschlüssel oder Schlüsselkandidaten dargestellt!

N. Ritter, HMS

Grundkonzepte (5)

Definition Fremdschlüssel:

Ein Fremdschlüssel bzgl. einer Relation R1 ist ein Attribut oder eine Attributkombination FS einer Relation R2, für das/die zu jedem Zeitpunkt gilt: zu jedem Wert (ungleich Null) von FS muss ein gleicher Wert des Primärschlüssels PS oder eines Schlüsselkandidaten SK in irgendeinem Tupel von Relation R1 vorhanden sein.

Bemerkungen zu Fremdschlüssel:

- Fremdschlüssel und zugehöriger Primärschlüssel (Schlüsselkandidat) tragen wichtige inter-relationale (manchmal auch intra-relationale) Informationen. Sie sind auf dem gleichen Wertebereich definiert (vergleichbar und vereinigungsverträglich). Sie gestatten die Verknüpfung von Relationen mit Hilfe von Relationenoperationen.
- Fremdschlüssel können Nullwerte aufweisen, wenn sie nicht Teil eines
 Primärschlüssels sind oder wenn nicht explizit NOT NULL spezifiziert ist.

Grundkonzepte (6)

Bemerkungen zu Fremdschlüssel (Forts.)

- Schlüsselkandidaten können Nullwerte aufweisen, wenn nicht explizit NOT NULL spezifiziert ist.
- Ein Fremdschlüssel ist zusammengesetzt, wenn der zugehörige Primärschlüssel (Schlüsselkandidat) zusammengesetzt ist.
- Eine Relation kann mehrere Fremdschlüssel besitzen, welche die gleiche oder verschiedene Relationen referenzieren.
- Referenzierte und referenzierende Relation sind nicht notwendigerweise verschieden ("self-referencing table").
- Zyklen sind möglich (geschlossener referentieller Pfad).

N. Ritter, HMS

Q

Grundkonzepte (7)

Modellinhärente Integritätsbedingungen:

Welche Zusicherungen werden vom Datenmodell garantiert?

- Mengeneigenschaft von Relationen (zur Abbildung von Entities/Relationships)
- Beziehungstypen (1:1, ..., n:m) → mit Einschränkungen als (1:n)
- referentielle Integrität (wertbasiert)
- Kardinalitätsrestriktionen? → wünschenswert
- Semantik der benutzerdefinierten Beziehung? → es ist keine Systemunterstützung vorgesehen

N. Ritter, HMS

Relationenalgebra (1)

- Datenmodell = Datenobjekte + Operatoren
- Unterstützung verschiedener Benutzerklassen
- Im RM wird vereinheitlichte Sprache angestrebt für
 - alle Aufgaben der Datenverwaltung: Datendefinition, Anfragen (Queries),
 Datenmanipulation, Zugriffs-, Integritäts- und Transaktionskontrolle
 - zur Nutzung
 - im 'Stand-Alone'-Modus (Ad-hoc-Anweisungen) und
 - in einer Wirtssprache (eingebettete DB-Anweisungen)
- Vier verschiedene Grundtypen:
 - Relationenalgebra (z. B. ISBL)
 - Relationenkalkül (z. B. Alpha)
 - Abbildungsorientierte Sprachen (z. B. SQL)
 - Graphikorientierte Sprachen (z. B. Query-by-Example)

N. Ritter, HMS

Relationenalgebra (2)

- Algebra: nicht leere Menge von Objekten + Familie von Operationen
- Operationen
 - Klassische Mengenoperationen:
 - · Vereinigung, Differenz, kartesisches Produkt
 - ableitbar: Durchschnitt
 - Relationenoperationen:
 - Projektion, Restriktion (Selektion)
 - ableitbar: Verbund (Join), Division
- Auswahlvermögen entspricht Prädikatenkalkül erster Ordnung ("relational vollständig")

Relationenalgebra (3)

- Selektion (Restriktion): σ_p
 - Auswahl von Zeilen einer Relation über ein Prädikat
 - P = log. Formel (ohne Quantoren!) bestehend aus Attributnamen, Konstanten, Vergleichsoperatoren (< , = , > , ≤ , ≠, ≥) und logischen Verknüpfungen (V , ∧ , ¬)
 - $\sigma_P(R) = \{ t \mid t \in R \land P(t) \}$
 - Beispiel:

ERG := $\sigma_{ANR='K55' \land GEHALT > 50000}$ (PERS)

PERS	S PNR	NAME	ALTER	GEHALT	ANR	MNR
	406	COY	47	50 700	K55	123
	123	MÜLLER	32	43 500	K51	-
	829	SCHMID	36	45 200	K53	777
	574	ABEL	28	36 000	K55	123

N. Ritter, HMS

Relationenalgebra (4)

- Projektion: π
 - Auswahl von Spalten (Attribute) A₁, A₂, ..., A_k aus einer Relation R (Grad n >= k)
 - $\pi_{A_1, A_2, ..., A_k}$ (R) = { p | ∃ t ∈ R : p = < t [A_1] , . . . , t [A_k] >} (Alternative: Benutzung von Spaltennummern)
 - Duplikateliminierung
 - Beispiel:

 $\pi_{ANR, MNR}$ (PERS)

PERS	<u>PNR</u>	NAME	ALTER	GEHALT	ANR	MNR
	406	COY	47	50 700	K55	123
	123	MÜLLER	32	43 500	K51	-
	829	SCHMID	36	45 200	K53	777
	574	ABEL	28	36 000	K55	123

N. Ritter, HMS

Relationenalgebra (5)

- Klassische Mengenoperationen
 - Voraussetzung: Gleicher Grad und Vereinigungsverträglichkeit der beteiligten Relationen
 - Basisoperatoren

Vereinigung: $R \cup S = \{t \mid t \in R \lor t \in S\}$ Differenz: $R - S = \{t \mid t \in R \land t \notin S\}$

Redundante Operatoren

Durchschnitt: $R \cap S = R - (R - S) = \{t \mid t \in R \land t \in S\}$

Symmetrische Differenz: $R \triangleright S = (R \cup S) - (R \cap S)$

N. Ritter, HMS

Relationenalgebra (6)

- Erweitertes Kartesisches Produkt
 - $K = R \times S = \{ k \mid \exists x \in R, y \in S : (k = x \mid y) \}$

 $\text{mit } \mathbf{x} \, | \, \mathbf{y} = <\! \mathbf{x}_1, \, ..., \, \mathbf{x}_r, \, \mathbf{y}_1, \, ..., \, \mathbf{y}_s \! > \! , \\$

nicht <<x₁, ..., x_r>, <y₁, ..., y_s>> wie 'übliches' kartesisches Produkt!

PERS	<u>PNR</u>	ALTER	ANR	
	406	47	K55	
	123	32	K51	
	820	36	K53	

ABT	ANR	ANAME	ORT	ABT x PERS	ANR	ANAME	ORT	PNR	ALTER	ANR'
	K51	PLAN.	KL		K51	PLAN.	KL	406	47	K55
	K53	EINK.	F		K51	PLAN.	KL	123	32	K51
		•			K51	PLAN.	KL	829	36	K53
			K53	EINK.	F	406	47	K55		
				K53	EINK.	F	123	32	K51	
	N. F	Ritter, HMS			K53	EINK.	F	829	36	K53

Relationenalgebra (7)

- Verbund, Join, Θ-Join
 - Seien R und S Relationen, ⊕ ∈ {<, =, >, ≤, ≠, ≥} (arithm. Vergleichsoperator), A Attribut von R und B Attribut von S. ⊕-Verbund zwischen R und S:

$$V = (R \bowtie_{A \Theta B} S) = \sigma_{A \Theta B} (R \times S)$$

Alternative Definition anhand Spaltennummern
 Annahme: R hat Grad r und S hat Grad s, 1 ≤ i ≤ r, 1 ≤ j ≤ s,

$$V = (R \bowtie_{i \Theta j} S) = \sigma_{i \Theta r + j} (R \times S)$$

- Gleichverbund ($\Theta = "="$)
 - Ein Gleichverbund zwischen R und S heißt verlustfrei, wenn alle Tupel von R und S am Verbund teilnehmen (sonst verlustbehaftet). Die inverse Operation Projektion erzeugt dann wieder R und S (lossless join).

N. Ritter, HMS

Relationenalgebra (8)

- Verbund, Join, ⊕-Join (Forts.)
 - Definition ,fortsetzbar' auf mehrere Join-Attribute
 - Natürlicher Verbund R S: Gleichverbund über alle übereinstimmenden Attribute und anschließende Projektion, so dass keine Attribute doppelt
 - Verlustfreier Verbund:

 $\pi_{\text{PNR, ANR, ALTER}}$ (ABT \bowtie PERS) = PERS;

ABI	ANR	ANAME	ORT	
	K51	PLAN	KL	
	K53	EINK.	F	
	K55	VERTR.	F	

ART LAND LANAME LORT

PERS	<u>PNR</u>	ALTER	ANR
	406	47	K55
	123	32	K51
	829	36	K53
	574	28	K55

ABT ⋈ PERS	ANR	ANAME	ORT	PNR	ALTER
	K51	PLAN	KL	123	32
	K53	EINK.	F	829	36
	K55	VERTR.	F	406	47
	K55	VERTR.	F	574	28

Relationenalgebra (9)

- Definition Natürlicher Verbund
 - $\qquad \text{gegeben: } R(A_1,\,A_2,\,\ldots\,,\,A_{r-j+1},\,\ldots\,,\,A_r),\,S(B_1,\,B_2,\,\ldots\,,\,B_j,\,\ldots\,,\,B_s) \\$
 - o.B.d.A. (sonst. Umsortierung): $B_1 = A_{r-j+1}, B_2 = A_{r-j+2}, ..., B_j = A_r$
 - Natürlicher Verbund zwischen R und S:

$$N = R \bowtie S =$$

$$\pi_{A_1, \, \ldots, \, A_r, \, B_{j+1}, \, \ldots, \, B_S}(\sigma_{(R.A_{r-j+1} \, = \, S.B_1)_{\bigwedge} \, \ldots \, \bigwedge(R.A_r \, = \, S.B_j)}(R \times S))$$

N. Ritter, HMS

19

Relationenalgebra (10)

- Natürlicher Verbund Beispiel
 - Finde alle Angestellten (PNR, ALTER, ANAME), die in einer Abteilung in Frankfurt arbeiten und zwischen 30 und 34 Jahre alt sind.

ABT	<u>ANR</u>	ANAME	AORT
	K51 K53 K55	Planung Einkauf Vertrieb	Kaiserslautem Frankfurt Frankfurt

PERS	<u>PNR</u>	NAME	ALTER	GEHALT	ANR	MNR
	406	Coy	47	50 700	K55	123
	123	Müller	32	43 500	K51	-
	829	Schmid	36	45 200	K53	777
	574	Abel	28	36 000	K55	123

N. Ritter, HMS

Relationenalgebra (11)

- Natürlicher Verbund Beispiel (Forts.)
 - Annahmen:

ABT: N/10 TupelPERS: N Tupel

Gleichverteilung der Attributwerte

AORT: 20 Werte ALTER: 50 Werte

- Stochastische Unabhängigkeit der Werte verschiedener Attribute
- Verlustfreie Verbunde von R1 und R2 über Primär-/Fremdschlüssel, mit Card(R1) < Card(R2): Card(R1 ⋈ R2) = Card(R2)

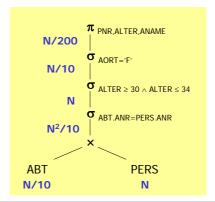
N. Ritter, HMS 21

Relationenalgebra (12)

- Natürlicher Verbund Beispiel (Forts.)
 - Lösung 1:

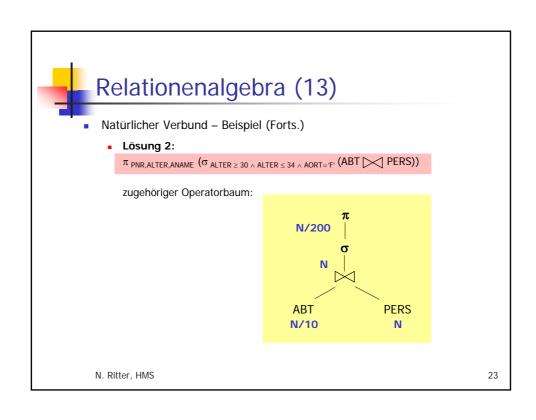
 $\begin{array}{l} \pi_{\text{PNR,ALTER,ANAME}} \\ (\sigma_{\text{AORT='F'}}(\sigma_{\text{ALTER} \,\geq\, 30\,\,\wedge\,\, \text{ALTER} \,\leq\, 34}\,(\sigma_{\text{ABT.ANR=PERS.ANR}}\,(\text{ABT}\,\,\times\,\, \text{PERS))))) \end{array}$

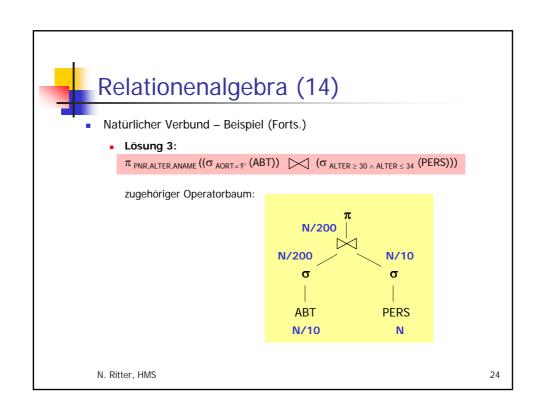
zugehöriger Operatorbaum:

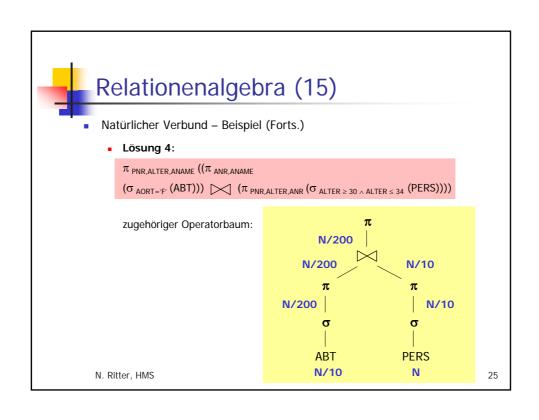


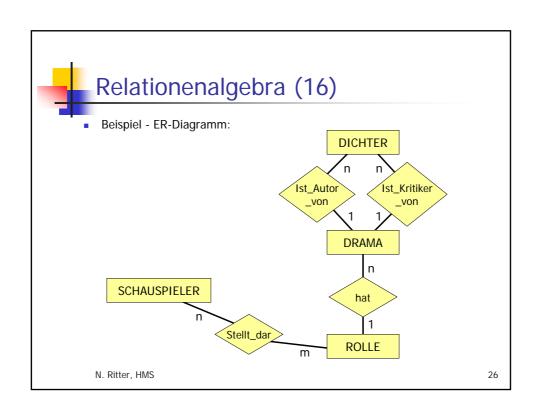
22

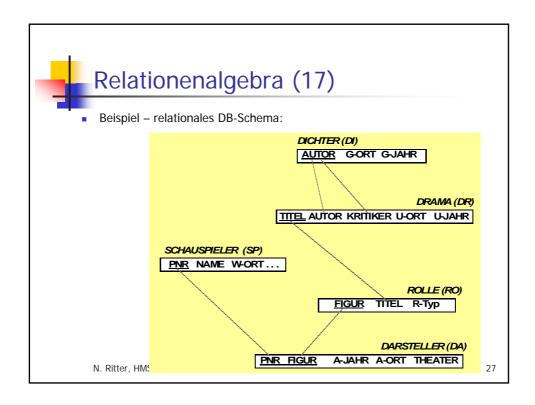
N. Ritter, HMS











Relationenalgebra (18)

- Beispiel Anfragen:
 - Finde alle Schauspieler (NAME), die die Figur "Faust" gespielt haben.

$$\pi_{\text{ NAME}}$$
 ($\sigma_{\text{FIGUR=,FAUST''}}$ (SP $\underset{\text{PNR}}{\bigvee}$ DA))

• Finde alle Schauspieler (NAME), die im Drama "Faust" mitgespielt haben.

$$\pi_{\text{NAME}}$$
 ($\sigma_{\text{TITEL} = \text{"Faust"}}$ (SP \bowtie DA \bowtie RO))

• Finde alle Schauspieler (NAME), die in Dramen von Schiller mitgespielt haben.

$$\pi_{\text{ NAME}} \left(\sigma_{\text{AUTOR} = \text{,"Schiller"}} \left(\text{SP} \bowtie \text{DA} \bowtie \text{RO} \bowtie \text{DR} \right) \right)$$

Relationenalgebra (19)

- Beispiel Anfragen (Forts.):
 - Finde alle Schauspieler (NAME, W-ORT), die bei in Weimar uraufgeführten Dramen an ihrem Wohnort als 'Held' mitgespielt haben.

```
\pi_{\text{NAME, W-ORT}} ( \sigma_{\text{W-ORT= A-ORT}} (SP \bowtie ( PNR
\pi_{PNR,\;A\text{-}ORT} (DA \bowtie (\pi_{FIGUR} ( _{FIGUR}
(\sigma_{R\text{-TYP} \ = \ '\text{HELD'}} \ \text{RO}) \ \bigvee_{\text{TITEL}} (\sigma_{\text{U-ORT} \ = \ '\text{WEIMAR'}} \ \text{DR}) \ ) \ ) \ ) \ ) \ )
```

N. Ritter, HMS

Relationenalgebra (20) $\pi_{\text{NAME,W-ORT}}$ Beispiel - Anfragen (Forts.): σ_{W-Ort=A-ORT} Vorangegangene Anfrage entspricht folgendem Operatorbaum: π _{PNR, A-ORT} $\pi_{\text{ FIGUR}}$ σ_{R-Typ="Held"} σ_{U-Ort="Weimar"} SP DA RO DR N. Ritter, HMS

Relationenalgebra (21)

- Beispiel Anfragen (Forts.):
 - Liste alle Dramen mit ihren Autoren (TITEL, AUTOR, G-JAHR) auf, die nach 1800 uraufgeführt wurden.

```
\pi_{\text{TITEL, AUTOR, G-JAHR}} ( \sigma_{\text{U-JAHR}} _{> 1800 (DI \bowtie DR)) _{AUTOR}
```

 Finde alle Schauspieler (NAME, W-ORT), die in Dramen von Schiller, die von in Weimar geborenen Dichtern kritisiert wurden, mitgespielt haben.

```
\begin{array}{c} \pi_{\text{ NAME, W-ORT}} \text{ (SP } \bowtie \text{DA } \bowtie \text{RO } \bowtie \\ \text{PNR } \text{ FIGUR } \text{ TITEL} \\ \\ (\sigma_{\text{ AUTOR=,Schiller"}} \text{ (DR))} \bowtie (\sigma_{\text{ G-ORT=,Welmar"}} \text{ (DI)))} \\ \text{KRITIKER=AUTOR} \end{array}
```

N. Ritter, HMS 31

Relationenalgebra (22)

- Beispiel Anfragen (Forts.):
 - Finde die Schauspieler, die nie gespielt haben.

$$\pi_{\,PNR}$$
 (SP) - $\pi_{\,PNR}$ (DA))

• Finde die Schauspieler, die **nur** Faust oder Wallenstein gespielt haben.

$$\pi$$
 $_{PNR}$ (DA) - π $_{PNR}$ (σ $_{FIGUR\ne_*FAUST^*\land\ FIGUR\ne_*Wallenstein^*}$ (DA)))

 Anfragen wie "Welcher Dichter ist Schauspieler?" oder "Welcher Dichter hat in einem seiner Stücke gespielt?" können "eigentlich" nicht beantwortet werden, da es keine systemkontrollierte Beziehung zwischen Dichter und Schauspieler gibt.

Relationenalgebra (23)

- ACHTUNG: Connection Trap!
 - Verbund kann im Allg. <u>nicht</u> als Umkehroperation zur Projektion angesehen werden
 - Beispiel: DA1 und DA2 als Projektionen auf DA; DA3 als Verbund von DA1 und DA2

PNR	A-ORT
P1 P1 P2	MA KL MA
	P1

DA2	FIGUR	A-ORT
	Faust	MA
	Mephisto	KL
	Wallenstein	MA

N. Ritter, HMS

DA	PNR	FIGUR	A-ORT	
	P1 P1 P2	Faust Mephisto Wallenstein	MA KL MA	

DA3	PNR	FIGUR	A-ORT	
	P1	Faust	MA	
	P1	Wallenstein	MA	
	P1	Mephisto	KL	
	P2	Faust	MA	
	P2	Wallenstein	MA	

33

34

Algebraische Optimierung (1)

- Relationenalgebraische Formulierungen spezifizieren Ausführungsreihenfolge (prozedurale Elemente), äquivalente Umformungen möglich
- Optimierungsproblem
 - gegeben: Ausdruck der Relationenalgebra (RA)
 - gesucht: äquivalenter, möglichst effizient auszuführender RA-Ausdruck
 - Bestimmung einer möglichst guten Ausführungsreihenfolge (Einsatz von Heuristiken)
- Statistische Kenngrößen werden dem DB-Katalog entnommen
 - N_i = Card(R_i)
 - j_i = Anzahl der verschiedenen Werte eines Attributs A_i

Algebraische Optimierung (2)

Rewrite-Regeln

- Kommutativgesetz f
 ür Produkte und Verbunde
 - R1 × R2 ≡ R2 × R1
 - R1 ⋈ R2 = R2 ⋈ R1
- Assoziativgesetz für Produkte und Verbunde
 - $(R1 \times R2) \times R3 \equiv R1 \times (R2 \times R3)$
 - $(R1 \bowtie R2) \bowtie R3 \equiv R1 \bowtie (R2 \bowtie R3)$
- Zusammenfassung von Folgen von Projektionen
 - $\pi_{A,B,C}$ ($\pi_{A,B,C,...,Z}$ (SP)) = $\pi_{A,B,C}$ (SP)
- Zusammenfassung von Folgen von Selektionen
 - $\sigma_{F1}(\sigma_{F2}(R)) \equiv \sigma_{F1 \wedge F2}(R) \equiv \sigma_{F2 \wedge F1}(R) \equiv \sigma_{F2}(\sigma_{F1}(R))$

Jarke, M., Koch, J.: Query Optimization in Database Systems, in: Computing Surveys 16:2, 1984, pp. 111-152.

N. Ritter, HMS

35

Steht hier für beliebige Θ-Verbunde

Algebraische Optimierung (3)

Rewrite-Regeln (Forts.)

- Vertauschung von Selektionen und Projektionen
 - F enthält nur Attribute aus A, ..., Z:

$$\sigma_F(\pi_{A,...,Z}(R)) \equiv \pi_{A,...,Z}(\sigma_F(R))$$

F enthält Attribute aus A, ..., Z, B1, ..., Bm:

$$\pi_{A, ..., Z} (\sigma_F(R)) \equiv \pi_{A, ..., Z} (\sigma_F(\pi_{A, ..., Z, B1, ..., Bm}(R)))$$

- Vertauschung von Selektion und Kartesischem Produkt
 - F enthält nur Attribute aus R1:

$$\sigma_F(R1 \times R2) \equiv \sigma_F(R1) \times R2$$

allgemeiner: F = F1 ∧ F2 ∧ F3

F1 nur auf R1, F2 nur auf R2, F3 auf beiden

$$\sigma_F(R1 \times R2) \equiv \sigma_{F1}(R1) \bowtie_{F3} \sigma_{F2}(R2)$$

N. Ritter, HMS

Algebraische Optimierung (4)

- Annahmen
 - Gleichverteilung der Attributwerte eines Attributes
 - Stochastische Unabhängigkeit der Werte verschiedener Attribute
- Selektivitätsfaktor (SF)
 - basiert auf statistischen Werten
 - beschreibt hinsichtlich eines Qualifikationsprädikats den erwarteten Anteil an Tupeln, die das Prädikat erfüllen
 - $0 \le SF \le 1$
 - Card $(\sigma_p(R)) = SF(p) \cdot Card(R)$

N. Ritter, HMS

Algebraische Optimierung (5)

SF-Berechnung

j_i:Anzahl der Werte des Attributs A_i

37

Algebraische Optimierung (6)

SF-Berechnung bei Ausdrücken

- SF $(p(A) \wedge p(B)) = SF (p(A)) \cdot SF (p(B))$
- SF $(p(A) \lor p(B)) = SF (p(A)) + SF (p(B)) SF (p(A)) \cdot SF (p(B))$
- SF $(\neg p(A)) = 1 SF(p(A))$

Join-Selektivitätsfaktor (JSF)

- Card (RS) = JSF * Card(R) * Card(S)
- bei (N:1)-Joins (verlustfrei): Card (RS) = Max(Card(R), Card(S))

N. Ritter, HMS

39

40

Algebraische Optimierung (7)

Beispiel

DB-Schema

ABT (ANR, BUDGET, A-ORT)

PERS (PNR, NAME, BERUF, GEHALT, ALTER, ANR)

PM (PNR, JNR, DAUER, ANTEIL)

PROJ (JNR, BEZEICHNUNG, SUMME, P-ORT)

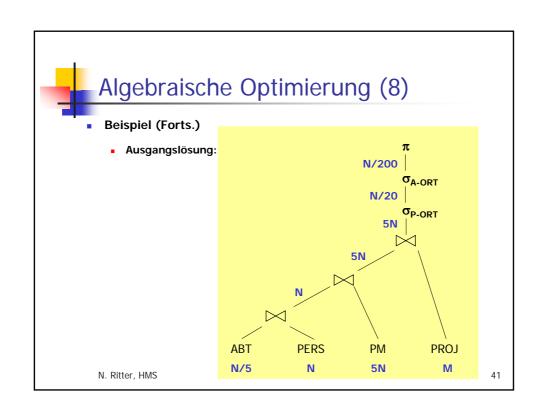
• Anfrage: Finde Name und Beruf von Angestellten, deren Abteilung in KL ist und die in KL Projekte durchführen.

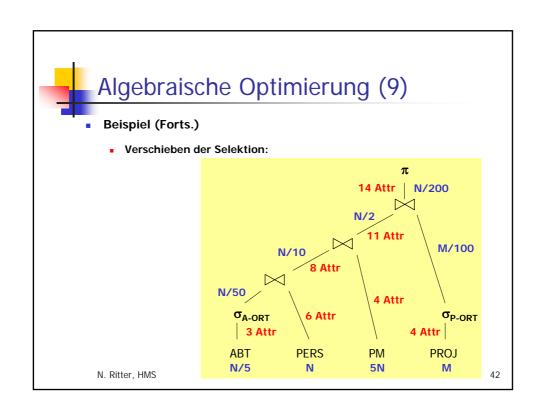
Annahmen:

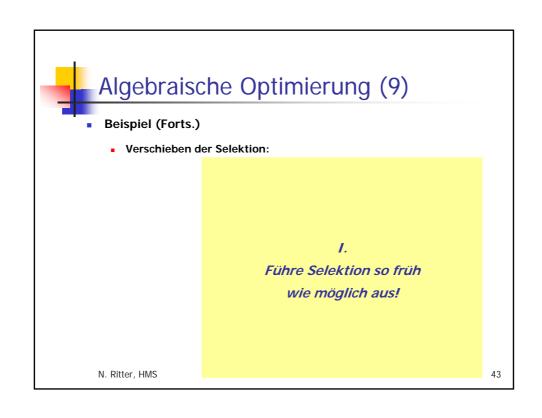
ABT: N/5 TupelPERS: N TupelPM: 5N TupelPROJ: M Tupel

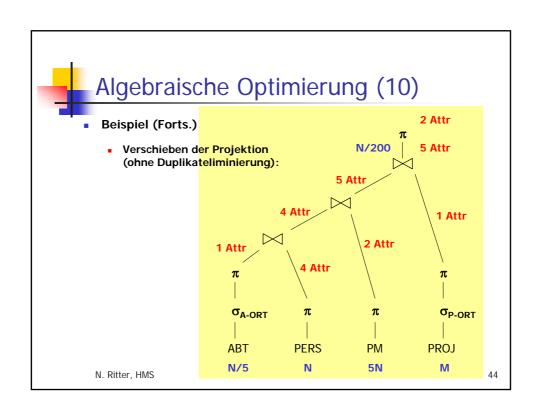
Anzahl der Attributwerte von A-ORT: 10, P-ORT: 100

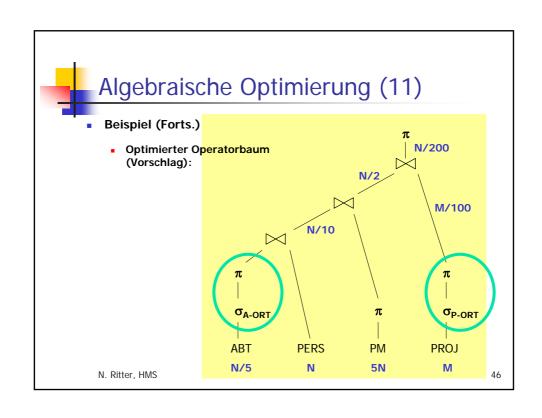
Verlustfreie Verbunde von R1 und R2 über Primär-/Fremdschlüssel

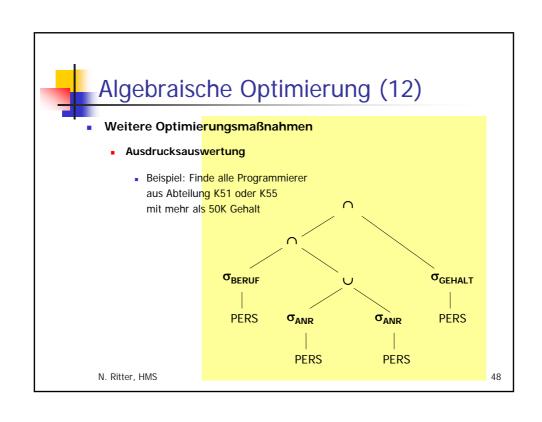


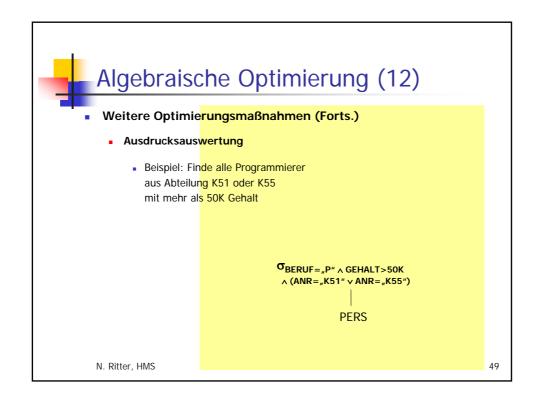


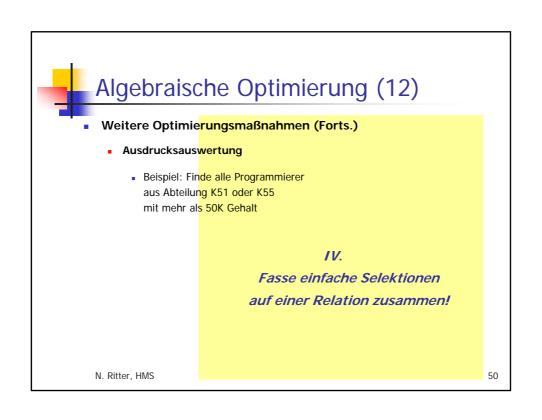












Algebraische Optimierung (13)

Weitere Optimierungsmaßnahmen (Forts.)

V.

Verknüpfe bestimmte Selektionen mit einem vorausgehenden Kartesischen Produkt zu einem Verbund!

VI.

Berechne gemeinsame Teilbäume nur einmal (wenn die Zwischenspeicherung der Ergebnisse nicht zu teuer ist)!

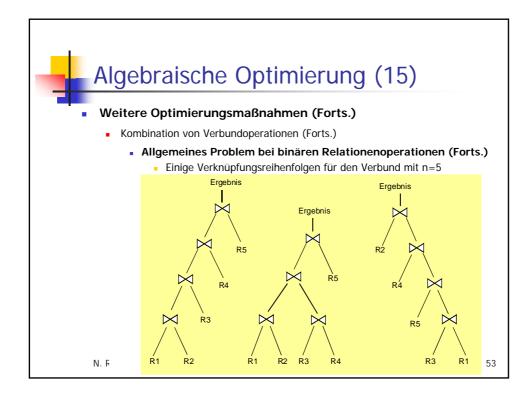
N. Ritter, HMS

51

Algebraische Optimierung (14)

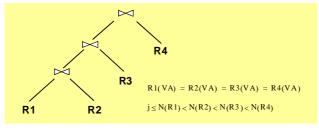
- Weitere Optimierungsmaßnahmen (Forts.)
 - Kombination von Verbundoperationen
 - Assoziativität und Kommutativität von Verbundoperationen (gilt auch für Vereinigung und Durchschnitt)
 - Allgemeines Problem bei binären Relationenoperationen
 - Was ist die beste Verknüpfungsreihenfolge?
 - Im allgemeinen Fall sind n! Reihenfolgen möglich
 - Die genaue Größe einer Zwischenrelation ergibt sich erst nach Ende der erzeugenden Operation
 - Dynamische Entscheidung aufwendiger, aber genauer als Abschätzung
 - Bei jedem Auswertungsschritt werden die momentan kleinsten (Zwischen-)Relationen ausgewählt

N. Ritter, HMS



Algebraische Optimierung (16)

- Weitere Optimierungsmaßnahmen (Forts.)
 - Kombination von Verbundoperationen (Forts.)
 - Abschätzung
 - beim (1:n)-Verbund: N(R1)=j \Rightarrow N(T1)=N(R2)
 - Bestimmung der Verbundreihenfolge (Heuristik):

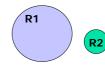


VII. Bestimme die Verbundreihenfolge so, dass die Anzahl und Größe der Zwischenobjekte minimiert wird!

Algebraische Optimierung (17)

Weitere Optimierungsmaßnahmen (Forts.)

- Reihenfolge von Mengenoperationen
- Kardinalität der Vereinigung: max(N(R1), N(R2))
 - \leq N(R1 \cup R2)
 - $\leq N(R1) + N(R2)$
- Kardinalität des Durchschnitts:
 - ∪ ≤ N(R1 ∩ R2)
 - $\leq N(R1 \cap R2)$
 - $\leq \min(N(R1), N(R2))$



VIII. Verknüpfe bei Mengenoperationen immer zuerst die kleinsten Relationen!

R1

i5

Algebraische Optimierung (18)

Heuristische Regeln:

- Führe Selektion so früh wie möglich aus
- Führe Projektion (ohne Duplikateliminierung) frühzeitig aus
- Verknüpfe Folgen von unären Operationen wie Selektion und Projektion
- Fasse einfache Selektionen auf einer Relation zusammen
- Verknüpfe bestimmte Selektionen mit einem vorausgehenden Kartesischen Produkt zu einem Verbund
- Berechne gemeinsame Teilbäume nur einmal
- Bestimme Verbundreihenfolge so, dass die Anzahl und Größe der Zwischenobjekte minimiert wird
- Verknüpfe bei Mengenoperationen immer zuerst die kleinsten Relationen

N. Ritter, HMS

