
Scalable Duplicate Detection

utilizing Apache Spark

Master’s Thesis

University of Hamburg

MIN Faculty

Department of Informatics

presented by: Niklas Wilcke

email: 1wilcke@informatik.uni-hamburg.de

mat. no.: 6402007

1st assessor: Prof. Dr.-Ing. Norbert Ritter

2nd assessor: Dr. Dirk Bade

« 2015

Scalable Duplicate Detection
utilizing Apache Spark

Abstract

English

This thesis deals with the challenge of designing, prototypically implementing and evalu-

ating the scalable duplicate detection framework SddF. Scalable in this case means from

a single desktop machine and small amounts of input data to a cluster of theoretical hun-

dreds of nodes and great amounts of input data. Entity Resolution, Record Linkage or

(Near) Duplicate Detection is the discipline of assigning every tuple of an input set to a

real world entity. In the resulting mapping, more than one tuple can be assigned to the

same real world entity. These groups are duplicate clusters in the notion of a fuzzy human

perception.

There are approaches and projects for either single desktop computers like Febrl [CCH04]

or clusters like Dedoop [Kol14], but the projects are specialized to either platform. Our

approach runs completely in memory and therefore scales from a single machine to a clus-

ter. To achieve this scalability we make use of the Hadoop MapReduce successor Apache

Spark, which claims to be the first interactive cluster computing framework.

The two core contributions are the adaptation of the duplicate detection process of Chris-

ten [Chr12] to a distributed environment and the design of the duplicate detection frame-

work. The Frameworks architecture is based on a pipelining approach, which is also used

by many other related projects. Additional contributions are the linear typesafe pipelining

framework called PipE and a new music input data set extracted from the Musicbrainz

database containing 107 tuples. The data set has a size of approximately 1 GB which is

small compared to data sets typically processed by Hadoop or Spark. For the duplicate

detection domain this amount is large. Only one other publication evaluates its algorithms

implemented on top of MapReduce using such great amounts of input data.

The evaluation focuses on time and space which are the runtime of the whole process

and the amount of entities contained in the intermediate results. The size and shape of

the input data and the number of cluster nodes have been varied during the evaluation to

investigate their impact on runtime and space. The results show that a duplicate detection

workflow can scale from a single machine to a cluster of five nodes with good runtimes on

both setups. The present study aims to bring both fractions of single machine approaches

and distributed ones together and builds a new open foundation for further research on

duplicate detection.

2

Scalable Duplicate Detection
utilizing Apache Spark

Deutsch

Diese Arbeit behandelt das Design, die prototypische Implementierung und Evaluation

des skalierbaren Duplikaterkennungsframeworks SddF. Skalierbarkeit bedeutet in diesem

Fall von einem einzelnen Computer und geringen Datenmengen bis zu Computerclustern

von mehreren hundert Rechnern und großen Datenmengen. Duplikaterkennung, oft auch

als (Near) Duplicate Detection oder Record Linkage bezeichnet, ist die Problemstellung

jedem Tupel einer Eingabemenge eine Realweltentität zuzuordnen. Das gesuchte Mapping

ordnet einer Realweltentität beliebig viele Tupel zu. Diese Mengen von Tupeln sind die

Duplikatcluster, die nach Möglichkeit einer menschlichen unscharfen Auffassung von Du-

plikaten entsprechen sollen.

Es gibt bereits Ansätze und Projekte für Einzelrechner wie Febrl [CCH04] oder für Com-

putercluster wie Dedoop [Kol14]. Allerdings sind diese Projekte auf die jeweilige Hard-

wareplattform Einzelrechner oder Computercluster beschränkt. Der Ansatz dieser Arbeit

ist es beide Plattformen zu unterstützen, von einem Einzelrechner bis zu einem Computer-

cluster von hunderten von Knoten. Um diese Skalierbarkeit zu erreichen wird das verteilte

Cluster-Computing-Framework Apache Spark benutzt, welches Datensätze vollständig im

Hauptspeicher vorhält.

Die zwei hauptsächlichen Beiträge dieser Arbeit sind einerseits die Adaption des Dupli-

katerkennungsprozesses von Christen [Chr12] für eine verteilte Umgebung und das Design

des Duplikaterkennungsframeworks. Die Architektur des besagten Frameworks basiert auf

dem Pipeline-Ansatz, der auch von diversen anderen Projekten in diesem Bereich gewählt

wurde. In diesem Zuge ist das Pipeliningframework PipE entstanden, welches für die Im-

plementierung genutzt wird. Zudem wurde ein Datensatz mit 107 Tupeln für die Du-

plikaterkennung erstellt, welcher aus der freien Musicbrainz Datenbank extrahiert und

anschließend künstlich mit Duplikaten versehen wurde. Der Datensatz hat eine Größe von

ungefähr 1 GB, welche für Spark klein ist, für die Domäne der Duplikaterkennung ist

sie allerdings groß. Nur eine andere Publikation evaluiert ihre auf Hadoop MapReduce

basierende Implementierung mit Datenmengen dieser Größenordnung [VCL10].

Die Evaluation dieser Arbeit konzentriert sich auf Laufzeit und Speicherverbrauch. Wäh-

rend der Experimente wurden die Größe und Beschaffenheit der Eingabedaten und die An-

zahl der Clusterknoten variiert, um deren Auswirkung auf die Laufzeit und den Speicher-

verbrauch zu untersuchen. Die Ergebnisse zeigen, dass der Duplikaterkennungsprozess und

die Implementierung von einem Einzelrechner zu einem Computercluster von fünf Knoten

skaliert. Diese Arbeit vereint bestehende Ansätze der Duplikaterkennung in einem neuen

Framework, welches eine offene Grundlage für weitere Implementierungen und Forschung

im Bereich der Duplikaterkennung bieten soll.

3

Scalable Duplicate Detection
utilizing Apache Spark

Acknowledgement

I want to thank my supervisors Wolfram Wingerath and Steffen Friedrich for being always

ready to help. Also thanks to Fabian Panse who gave advices with his deep theoretical

knowledge about duplicate detection. Special thanks goes to Kai Hildebrandt for an

intensive cooperation during the writing of our master’s theses and exploring the world

of pasta. I want to thank the first assessor Prof. Dr.-Ing. Norbert Ritter and the second

assessor Dr. Dirk Bade for the assessment and the feedback they gave to me to improve my

further work. Many thanks in general goes to my better half Annika Wendt who always

supported me. For his effort to improve my style of writing I want to thank my brother

Timo Wilcke. Last, but not least, I want to thank my parents and family for making this

graduation possible.

4

Scalable Duplicate Detection
utilizing Apache Spark

Contents

Contents

1. Introduction 8

1.1. Motivation . 8

1.1.1. Why Duplicate Detection? . 8

1.1.2. Why Modular and Open Source? . 8

1.1.3. Disclaimer . 9

1.2. Thesis Objective . 9

1.3. Thesis Structure . 10

1.4. Demands on The Reader . 11

1.5. Typographic Conventions . 11

2. Related Work 12

2.1. Duplicate Detection Process by Christen . 13

2.2. Febrl - Freely Extensible Biomedical Record Linkage 14

2.3. Apache Hadoop . 15

2.4. Dedoop - Deduplication utilizing Hadoop MapReduce 16

2.5. Apache Spark . 17

2.5.1. Resilient Distributed Dataset (RDD) 18

2.5.2. Cluster Setup . 20

2.5.3. Code Example and Execution . 20

3. Deduplication Process 23

3.1. Reading and Preprocessing . 23

3.2. Indexing . 24

3.2.1. Standard Blocking . 25

3.2.2. Sorted Neighborhood . 25

3.2.3. Suffix Array Blocking . 26

3.3. Similarity Calculation . 26

3.4. Classification . 27

3.5. Clustering . 27

3.6. Evaluation . 28

4. SddF - Scalable Duplicate Detection Framework 31

4.1. Pipelining . 31

4.1.1. Related Work . 31

5

Scalable Duplicate Detection
utilizing Apache Spark

Contents

4.1.2. PipE - Simple Scala Pipelining Framework 33

4.2. Architecture and Implemented Pipes . 37

4.3. Usage of the Framework . 39

4.3.1. Corpus Pipeline . 39

4.3.2. Gold Standard Pipeline . 41

4.3.3. Duplicate Detection Pipeline . 41

4.3.4. Exploratory / Interactive Usage . 43

5. Evaluation 46

5.1. Data Sets . 46

5.1.1. Base Set . 46

5.1.2. Derived Sets . 47

5.2. Cluster Setup . 49

5.2.1. Cluster Hardware . 49

5.2.2. Cluster Configurations . 49

5.2.3. Cluster Software . 49

5.3. Experiments . 50

5.3.1. General Pipeline Setup . 51

5.3.2. Measurements . 52

5.3.3. Varying Indexing Algorithms . 53

5.3.4. On an input set size of 107 . 57

5.3.5. Without Analyzing the Results . 57

5.3.6. On a Single Node . 59

5.3.7. Comparison with Dedoop . 59

5.3.8. Comparison with PPJoin+ MapReduce Implementation 60

5.3.9. Optimizations Left Out . 61

6. Conclusion 63

6.1. Summary . 63

6.2. Criticism . 64

6.3. Future Prospects . 64

Bibliography 66

Acronyms 71

List of Figures 73

List of Tables 75

List of Listings 76

6

Scalable Duplicate Detection
utilizing Apache Spark

Contents

A. Appendix 77

A.1. Musicbrainz . 77

A.2. Other Related Projects . 78

A.3. Hadoop . 79

A.4. Content of the DVD . 80

A.5. Used Software . 81

7

Scalable Duplicate Detection
utilizing Apache Spark

1. Introduction

1. Introduction

1.1. Motivation

1.1.1. Why Duplicate Detection?

Three main use cases motivate to do duplicate detection. The first one is to increase the

quality of existing databases by merging duplicates. The second one is to merge existing

databases in a clean way. This one is a sub-case of the first one because the databases can

be merged and afterwards “cleaned” by removing the duplicates. We consider this one to

be a separate problem class because the relation between tuples of the one set is restricted

to tuples of the other set. The third case is to do search result aggregation. Search result

aggregation is a special view on a search result with all similar results aggregated into

one single representative result element. In general, the user wants to find unique result

items. Uniqueness in this case means a fuzzy and human interpretation of similarity.

This technique is also important for meta search engines because they have to merge all

result lists of different search engines. Google announced in 2008 that the search index

has reached 1012 unique websites1. One target out of reach at the moment would be the

application of duplicate detection workflows on huge search indexes of such a size. This

thesis focuses on input set sizes of up to 107 tuples, resulting in a naive quadratic search

space of 1014 tuple pairs. As mentioned above, duplicate detection is not only useful for

large search indexes, but it can also be used to increase the data quality in large databases

like Musicbrainz2 or OpenStreetMap3.

1.1.2. Why Modular and Open Source?

The concepts presented in this thesis and their prototypical implementations are meant

to invite and encourage others to contribute new algorithms. Modularity in this case

enables a contributer to share his new algorithm without knowing the whole library. The

library is open source because I think any work done by a public organization, especially

universities, should be with respect to privacy concerns as open as possible. Another

1Source: https://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html
2https://musicbrainz.org/
3https://www.openstreetmap.org

8

https://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html
https://musicbrainz.org/
https://www.openstreetmap.org

Scalable Duplicate Detection
utilizing Apache Spark

1. Introduction

motivation to disclose the source code is to enable others to reproduce measurements

done in the evaluation Chapter 5. The source code of the SddF is released under the

GPL34 on GitHub5.

1.1.3. Disclaimer

This work was done in the strong believe in free software and free knowledge. Like any

technique it can be acquired for inhuman purposes. Especially Big Data became a syn-

onym for eavesdropping and mass surveillance. The author distances himself from such

intentions, but also wants to clarify the usefulness of duplicate detection in a free, open

and peaceful Internet.

1.2. Thesis Objective

Adapting the duplicate detection process to a distributed system.

The duplicate detection process of Christen [Chr12] seems to be suitable for paralleliza-

tion, but some aspects have to be considered when using it in a distributed environment.

Chapter 3 covers the whole process with respect to scalability.

Is Apache Spark suitable to implement a scalable duplicate detection

framework on top of it?

Former systems based on Apache Hadoop MapReduce like Dedoop [Kol14] or a project

of University of California, Irvine [VCL10] are batch systems. A static workflow has to

be configured and executed on a large amount of input data. These batch workflows can

take some minutes to hours depending on the chosen algorithms, the amount and shape

of the input data and hardware. They are not designed to run on a single computer and

make heavy use of the hard disk to store intermediate results, decreasing the performance.

On the other hand, projects for single computers like Febrl are fast since they run in

memory, but they cannot handle large amounts of data because of their limitations to a

single machine. The approach of this thesis is to bring both sides together in one uniform

framework, scalable from one to hundreds of nodes.

4GNU General Public License, Version 3.0
5https://github.com/numbnut/sddf

9

https://github.com/numbnut/sddf

Scalable Duplicate Detection
utilizing Apache Spark

1. Introduction

Design and implementation of the framework

The main task of this thesis is to design and implement the scalable duplicate detection

framework. The two properties modularity and scalability are in the focus during the

framework design.

Modular The framework is supposed to be modular to enable reusability. Modularity is

achieved by adapting the duplicate detection process of Christen and implementing

the “Pipes and Filter” [BMR+96] design pattern. A pipe is a reusable module with

an in- and output type. It processes data of an input type and outputs the result.

Pipes can be concatenated resulting in a pipeline which actually behaves like a pipe.

A pipeline sequentially executes all contained pipes and produces a result of the

specific output type. Pipes can be replaced by other pipes of the same in- and

output types.

Scalable The overall process and the implementation should be done in a way to scale

with the amount of input data and computation nodes. Each step in the process has

to be analyzed with respect to its scalability.

How does the framework scale?

According to Spark’s distributed in memory collection called RDD, the intermediate re-

sults are kept in memory and are therefore ready to be reused directly without persisting

and reloading them. This should speed up the whole duplicate detection process. Three

main factors influence the runtime of the deduplication process. There are the parame-

terized algorithms, the cluster hardware setup and the shape and size of the input data.

Every single factor can lead to a long runtime or even worse to an aborting process. The

evaluation is done on a small cluster of up to 4 worker nodes and one master node. In

the focus are time and space needed by the duplicate detection process, while varying the

input set size and shape as well as the cluster size.

1.3. Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 covers the related work and

outlines former publications about duplicate detection in general and especially parallel

duplicate detection. Moreover, Apache Hadoop, Apache Spark and other related frame-

works or projects are described. Chapter 3 describes the duplicate detection process and

its adaption to a distributed environment. The next Chapter 4 details the architecture and

usage of the implemented scalable duplicate detection framework SddF. Chapter 5 covers

the evaluation and its experiments conducted to analyze and quantify the suitability of

the implementation. Chapter 6 is about deliberation of the results and future prospects.

10

Scalable Duplicate Detection
utilizing Apache Spark

1. Introduction

A List of all images, tables and listings can be found at page 74. A List of all acronyms

can be found at page 71.

1.4. Demands on The Reader

The reader should have an understanding of computer science fundamentals like runtime

complexity and other basic concepts. The reader should be familiar with the duplicate

detection domain since not every detail is introduced in this thesis. Naumann and Herschel

wrote a short book “An Introduction to Duplicate Detection” [NH10] which is a brief

introduction to the duplicate detection domain. Christen’s book “Data Matching” [Chr12]

provides also an overview of this domain, but it is much more comprehensive and covers

much more algorithms and subtopics. Beneficial would be to have basic experiences in

object oriented and functional programming with Scala, since all examples are written in

Scala.

1.5. Typographic Conventions

Any inline code snippet like class names and method names are formated with a typewriter

font like Classname. A plural ending is also formated with typewriter like Classnames

to improve the readability. Methods or functions are suffixed by brackets and left out

parameters are replaced by dots like println(...). The first occurrence of an acronym

is written out.

11

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

2. Related Work

The duplicate detection problem is known by various names. Some of them are Record

Linkage [BMC+03, FS69], Data Linkage [CCH04], (Near) Duplicate Detection [ACG02],

Duplicate Elimination [ACG02], Deduplication [SB02], Merge-Purge [HS95], Identity Un-

certainty [PMM+02], Citation / Reference Matching [PMM+02] and Approximate String

Join [CGGM03]. To get an overview of existing projects and publications, a hierarchical

classification of duplicate detection approaches is introduced, which is shown in Figure

2.1.

Duplicate Detection (DD)

Sequential DD
(e.g. Febrl)

Parallel DD

Distributed DD
(e.g. Dedoop, SddF)

Multi Core DD
(e.g. D-Swoosh)

Figure 2.1.: Hierarchical classification of different duplicate detection approaches.

At first there is Sequential Duplicate Detection which does not take parallelization

into account. Parallel Duplicate Detection covers all parallel approaches. Further

Parallel Duplicate Detection can be divided into Multi Core Duplicate Detection

and Distributed Duplicate Detection. Multi Core Duplicate Detection only deals

with the parallelization on a single computer which is covered by multiple publications

[KL07, BGG+06, BGH11, KL10]. The project D-Swoosh from the Stanford University

is one of them. Distributed Duplicate Detection comprises the parallelization via a dis-

tributed system. Distributed Duplicate Detection is covered by multiple publications. The

oldest project is GOMMA [KKH+10] from the University Leipzig, Germany. It is a dis-

tributed application using Java Remote Method Invocation (RMI). All other approaches

use Hadoop MapReduce as distributed computing engine. In 2010, Vernica et al. [VCL10]

implemented a duplicate detection process based on PPJoin+ [XWLY08] process using

MapReduce. In 2012, the project Dedoop was started at the University of Leipzig, Ger-

many. As its name suggests it combines deduplication and Apache Hadoop. Dedoop is

detailed in Section 2.4.

This chapter starts with Section 2.1 about the duplicate detection process. The Sequential

12

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

Duplicate Detection project Febrl is introduced in Section 2.2 Also a short introduction to

Apache Hadoop in Section 2.3 and to Apache Spark in Section 2.5 is given. An overview

of other related projects can be found in the Appendix A.2 on page 78.

2.1. Duplicate Detection Process by Christen

The duplicate detection process [Chr12, p. 23] presented by Peter Christen is the base for

the duplicate detection process used in this thesis. It is the theoretical foundation of this

thesis and consists of six steps which are shown in Figure 2.2. First one is the data pre-

processing. In this step, different data sources are aligned and formats are adjusted. Also

activities to increase the data quality are applied in the preprocessing step. For instance

the removal of invalid characters could be one preprocessing activity.

Figure 2.2.: Original duplicate detection process of Christen [Chr12, p. 24]

The next step is the indexing phase which is crucial because it determines the amount of

tuple pairs to be analyzed. The amount of tuple pairs to be analyzed is called search space.

The naive search space of n tuples is of the size of n2−n
2 which is infeasible to process in

the case of a large data set. Indexing algorithms are designed to reduce the size of the

search space by multiple orders of magnitude in a subquadratic time complexity. Usually

indexing algorithms are blocking algorithms which select subsets of the input data set,

called blocks. In each block all tuples are compared pairwise. The reduced search space is

the union of all tuple pairs contained in the blocks. Its size is much smaller than the naive

13

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

search space. After building the search space all contained tuple pairs 6 are compared

featurewise by similarity measures. Similarity measures are often defined on strings, but

there are also other possible input types like numeric types. Some similarity measures like

the Edit Distance [Nav01] are metrics, but others, like the Jaccard Index [Chr12, p. 112],

are not. Often they are wrongly named string metrics. Also phonetic encodings or other

preprocessing steps can be included in the similarity calculation. Result of the similarity

calculation of two k dimensional tuples is a similarity vector of size k.

The similarity vector is used in the classification phase to determine the membership of

a tuple pair to one of the three classes match, non-match, potential match. All pairs

classified as match are duplicates, non-matches are considered to be no duplicates. The

class of potential matches are tuple pairs which can not be assigned to one of the two

classes. These pairs are supposed to be classified manually in the clerical review step.

There are two classes of classification algorithms. On the one hand, there are trained

machine learning classification algorithms like Decision Trees [HK06, p. 291], Naive Bayes

Classifier [VME03] or Support Vector Machines (SVMs) [HK06, p. 337] [Vap95, p. 138].

On the other hand, there are untrained algorithms like a threshold based classification.

The classification result is the set of all tuple pairs labeled as a match which can be

interpreted as a match graph. Every tuple represents a node and a match classification

represents an edge between the tuples of the related pair.

The evaluation phase calculates evaluation measures like recall and precision to determine

the performance of the process. To calculate these measures the gold standard for the

input set is needed. The gold standard is the correct solution of the duplicate detection

problem. It contains all true positive tuple pairs.

The result of the classification phase is not necessarily unambiguous [Chr12, p. 149].

Constellations like a is a duplicate of b and b is one of c, but a is not a duplicate of c

are possible. To guaranty the absence of such transitive contradictions it is necessary to

resolve them in a clustering step. A simple way to achieve this is to compute the transitive

closure of all matches. It is possible to incorporate more advanced algorithms especially

to avoid long duplicate chains or other cluster shapes with a large diameter. For more

advanced clustering algorithms read the book “An Introduction to Duplicate Detection”

[NH10]. Christen covers this topic, but does not include it in his duplicate detection

process.

2.2. Febrl - Freely Extensible Biomedical Record Linkage

Febrl7 is an open source duplicate detection software written in python. It is developed

by Christen et al. at the Australian National University. The project started in 2004 and

6Christen uses the word record instead of tuple.
7http://sourceforge.net/projects/febrl/

14

http://sourceforge.net/projects/febrl/

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

the latest version 0.4.2 was released in 2011. Febrl implements the duplicate detection

process of Christen described in 2.1. It is very feature rich and implements multiple

blocking algorithms, similarity measures and classification algorithms. It offers a graphical

user interface and the possibility to analyze the input data. The initial paper [CCH04]

introduced Febrl as a multi threaded application using pypar8. This aspect seems to be

dropped since there are no hints on running Febrl in parallel in the Febrl documentation.

Also in his book “Data matching” [Chr12] he did not reference his software in the section

“Parallel and Distributed Data Matching”. For this reason Febrl is categorized as a

sequential duplicate detection software in this thesis.

2.3. Apache Hadoop

Apache Hadoop is an open source cluster computing framework and the de facto standard

for big data analysis. An overview of Apache Hadoop and many of its extensions can be

found in the literature [Hol15, SG14]. There are multiple projects build around Hadoop

forming a wide ecosystem. Hadoop is written in Java. Since version 2.0 Apache Hadoop

consists of three parts which are Hadoop Distributed File System (HDFS), Yet Another

Resource Negotiator (YARN) and MapReduce. The division of the project into three parts

opens the platform for other implementations of distributed computing frameworks like

Apache Spark which may run on top of YARN replacing MapReduce. All three projects

have a master slave architecture.

HDFS is a distributed, redundant, reliable storage layer. A HDFS cluster consists of a

master called NameNode and a set of DataNodes. The NameNode is only responsible for

managing meta data and request routing to the DataNodes. To minimize the probability

of the master being a bottleneck all read and write queries are direct connections between

client and DataNode. It is possible to configure a High Availability (HA) HDFS cluster

with a NameNode failover. This architecture allows highly scalable cluster setups.

YARN is a resource manager for distributed computing. Since resource management is

not in the scope of this thesis YARN, is not considered. Apache Hadoop MapReduce is a

map reduce implementation as a YARN application.

Map reduce [DG04] is a parallel programming paradigm introduced by Google. It is in-

spired by the common functions map(...) and reduce(...) in functional programming.

In the map phase all input entities are mapped to a key value pair. Afterwards the reduce

step reduces all pairs sharing the same key to a single value. A word count example is

depicted in Figure 2.3. In this case, the keys are the words in the source document and

the values are initialized with a constant 1. The reduce function is an addition, which

sums up the occurrences of every single word. The architecture of an Apache MapReduce

cluster is similar to the HDFS architecture. A master called JobTracker handles the job

8Pypar is a message driven parallelization framework which uses the Message Passing Interface (MPI).

15

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

Lion Goose
Goose Lion

Mouse Goose

(Lion, 1)
(Goose, 1)

(Lion, 2)
(Goose, 3)
(Mouse, 1)

Lion
Goose

Lion
Goose

Mouse
Goose

(Lion, 1)
(Goose, 1)

(Mouse, 1)
(Goose, 1)

(Lion, 1)
(Lion, 1)

(Goose, 1)
(Goose, 1)
(Goose, 1)

(Mouse, 1)

(Lion, 2)

(Goose, 3)

(Mouse, 1)

Partition Map Shuffle Reduce Merge

Disk Disk

 load write

Figure 2.3.: Word count example using the map reduce paradigm.

execution requests of a client. It locates the involved data and a TaskTracker with free

slots near the data. The JobTracker extracts the map and reduce tasks of the job and

sends them to the TaskTrackers. The TaskTrackers are the workers which execute these

tasks. The results are stored in the HDFS.

There are some drawbacks in the Hadoop MapReduce architecture. All results of a map

reduce step are persisted and afterwards read from disk again by the next map reduce step.

Performance degrades especially in the case of iterative algorithms. Another restriction is

the map reduce pattern itself. All algorithms have to be adapted to this pattern which

can be difficult and time consuming. Using the MapReduce Application Interface (API)

results in many lines of code. Even a word count example is about 47 lines long. The

listing can be found in the Appendix A.1 on page 79. Many projects aim to relax these re-

strictions. There are high level languages like Pig Latin which is a procedural language on

top of MapReduce. The Hive Query Language (HQL), which is included in Apache Hive,

a data warehouse framework, is a declarative SQL-like language. The project iMapReduce

[ZGGW11] extends Hadoop MapReduce and tries to optimize it for iterative algorithms.

With iMapReduce it is possible to write an iterative MapReduce job, which don’t have

to persist intermediate results. Apache Mahout9 is a machine learning library for Apache

Hadoop. At the moment, the Mahout project migrates to the Apache Spark platform.

2.4. Dedoop - Deduplication utilizing Hadoop MapReduce

Dedoop is a project of the University of Leipzig. Its goal is to solve big data duplicate

detection problems. Like the name suggests it uses the Hadoop platform as backend. The

project is part of the dissertation [Kol14] of Lars Kolb at the University of Leipzig. This

work focuses on adapting blocking algorithms to the map reduce paradigm. Another topic

is load balancing of the different algorithms. Result of the work are several algorithms

9https://mahout.apache.org/

16

https://mahout.apache.org/

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

which are optimized for the map reduce paradigm. Dedoop offers a web frontend to

configure and execute the process, which is depicted in Figure 2.4.

Figure 2.4.: Screenshot of Dedoop User Interface

Dedoop is restricted to batch processing and all algorithms have to be adapted to the

map reduce paradigm. It is built for clusters only and not usable on a single machine.

Unfortunately Dedoop is closed source and there is no documented API released.

2.5. Apache Spark

Apache Spark is a cluster data processing framework and the official successor of Apache

Hadoop. The first publication about Spark was made in 2009 and the first API stable

version 1.0 was released in 2014. Apache Spark is a top level project of the Apache Software

Foundation since February 2014. It is licensed under the Apache License 2.0. The project

is maintained by UC Berkeley, a spin-off called Databricks and the community. The

framework is introduced on the project website10 as follows. “Apache Spark is a fast and

general engine for large-scale data processing.” Its key features are distributed in-memory

data structures, compatibility to the Apache Hadoop ecosystem, a lean programming

model and its interactive shell. Accessible data sources are HDFS, HBase, Cassandra

and any other Hadoop data source. Apache Spark can be deployed in standalone mode,

10https://spark.apache.org/

17

https://spark.apache.org/

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

on YARN, Mesos or Amazon Elastic Compute Cloud (EC2). The project is written in

Scala11 and there are bindings for Java and Python. Another feature is the Spark Shell,

which allows interactively executing code on the spark cluster. Besides the core API,

Spark offers the four libraries Spark SQL, Spark Streaming, MLlib (machine learning)

and GraphX (graph processing). The information presented in this section is from the

official Spark documentation12 and the book “Learning Spark” [KKWZ15].

2.5.1. Resilient Distributed Dataset (RDD)

The main concept of the Apache Spark core is the Resilient Distributed Dataset (RDD)

[ZCD+12]. An RDD is a fault tolerant, distributed, generic collection. RDDs are im-

mutable. Every method invocation on an RDD creates a new RDD to avoid side effects.

Each RDD consists of m partitions each residing on a cluster node. An RDD may have

more or less partitions than the number of nodes in the cluster. The default partitioner is

a HashPartitioner. On a cluster with n nodes the hash partitioner generates an integer

hash h from 1 to m for each element. The element with hash h is assigned to partition h.

Presuming a balanced hash function the elements are equally distributed through out the

cluster. A RangePartitioner is also available which presumes an ordering on the input

data set. The RangePartitioner splits the input data set into fixed sized ranges accord-

ing to the ordering. This partition strategy is more expensive because it needs to sort the

data. Maybe there is a more efficient approach to achieve a partitioning according to the

ordering than sorting, but in every case it is more expensive than randomly assigning the

elements to a partition by hashing.

The minimal number of partitions depends on the configuration. The default number of

partitions is 2, which is not suitable in most cases. The spark tuning guide13 recommends

2 – 3 tasks per core. One task will be started for each partition. For that reason the

number of partitions is an important parameter to operate at full capacity.

Fault tolerance is achieved by the concept of lineage. The lineage of an RDD is the de-

pendence of the RDD on other parent RDDs which are necessary to derive the new RDD

from. The operations performed on an RDD to create a new RDD produces a Directed

Acyclic Graph (DAG). The lineage of a single RDD is the subgraph including all paths

from data sources to the RDD. If a node crashes the lineage is used to recompute the

relevant RDDs or partitions.

Spark divides the heap into two areas. The first one is the default storage of all RDDs.

The second one is only used if an RDD is explicitly cached. The default size of the cache is

11Scala is a programming language for the Java Virtual Machine (JVM) which combines functional and
object oriented paradigms. Since it compiles to Java bytecode, classes written in Scala can be accessed
from Java and vice versa.

12https://spark.apache.org/docs/1.3.1/
13https://spark.apache.org/docs/1.3.1/tuning.html

18

https://spark.apache.org/docs/1.3.1/
https://spark.apache.org/docs/1.3.1/tuning.html

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

60% of the heap space. The size of this cache is fixed, but it can be configured. This may

lead to a waste of memory. The lineage is also used to handle cache misses. If an accessed

RDD partition is not in memory anymore because it was replaced by a newer one, it is

recomputed by traversing the DAG back to all needed partitions in order to reapply all

operations on them. Figure 2.5 shows an example DAG. RDD E is the result of a join

operation of C and D. C is a subset of A created by filtering and D results from grouping

B by key. Filter is a map operation which maps each partition to a new one without

shuffling data. GroupByKey and join needs to shuffle the data to build new partitions.

The lineage of E is the whole DAG shown in Figure 2.5. For C the lineage is the subgraph

consisting of A and C. For D the lineage is the subgraph consisting of B and D.

A1

A2

A3

A4

A:
C1

C2

C3

C4

filter

B1

B2

E1

E2

E3

E4

C:

B:
D1

D2

D:

groupByKey

join

E:

Figure 2.5.: Example Lineage of an RDD join. A, B, C, D and E are RDDs. A consists of
4 partitions A1 to A4.

One major advantage of Apache Spark compared to Hadoop is to have complete control

over the persistence of data sets. It is possible to choose between different storage levels.

The storage medium disk or memory can be chosen. Also a swapping-like level can be

chosen, which will spill data to disk, if the application runs out of memory. It is possible to

store objects serialized, which is in most cases more space efficient. The level of redundancy

of each partition can be adjusted to minimize the impact of node crashes. The default

storage level is deserialized in memory and the default redundancy is none.

MLlib

MLlib is the machine learning library built atop the Spark core. Amongst others, it

provides clustering, classification and recommendation algorithms. For this thesis the

three classification algorithms Naive Bayes, Decision Tree and Support Vector Machine

19

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

can be used to classify candidate pairs. The provided clustering algorithms like K-Means

are not suitable for the kind of clustering needed in the duplicate detection domain.

GraphX

GraphX is the graph computing library built atop the Spark core. It tries to be data

centric and graph centric. That means a graph can be accessed as a collection of edge

triplets or can be traversed like a graph. The graph model of GraphX is a property graph

which is a generic directed multigraph. Properties are user defined objects which can be

attached to vertices and edges. GraphX is used to build the match graph and resolve

transitive contradictions.

2.5.2. Cluster Setup

A Spark cluster always consists of a cluster manager and n executors, which are all pro-

cesses. In most cases a distributed file system like HDFS or a distributed database like

HBase serves as a storage layer. If that is the case the storage cluster is typically aligned

to the Spark cluster to exploit the locality of the data. It is also possible to access the file

system of the server directly, but in that case the file paths have to be valid on all nodes.

The Spark cluster can also be managed by YARN or Mesos. This is necessary if other

cluster frameworks run in parallel on the same cluster. A basic cluster setup in standalone

mode consists of a master which is the cluster manager and n worker nodes each running

an executor process. Figure 2.6 shows this setup. In the first step the driver requests free

executors from the master. Afterwards the driver process executes the user program, does

the scheduling and submits the tasks to the executors. The scheduler takes the locality

of the data into account. Spark will always try to process the data on the nodes where it

resides. The guideline is “ship code not data”.

2.5.3. Code Example and Execution

Writing a driver program is not difficult. Listing 2.1 shows the “hello world” example of

data processing, a word count. Everything needed to build and execute it is the Apache

Spark core library and a Scala compiler. To interact with a Spark cluster the driver

program has to instantiate a SparkContext. The SparkContext establishes the connection

to the cluster and is used to create RDDs. Afterwards the example input data set is read

from the file “/lorem-ipsum.txt”. The method textFile creates a RDD[String] which

is a collection of all lines in the file. The method flatMap also creates an RDD[String]

which is a collection of all words in the file. To count the words each word is expanded to

a pair of the word itself as key and a counter initialized with one as value. The method

20

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

Executor 1

task

re
su

lt

Spark Driver

Executor 2 Executor 4Executor 3

1. request executors

2. scheduling
 tasks

Spark Master

Figure 2.6.: Basic Spark cluster setup in standalone mode with HDFS.

reduceByKey applies the passed function to all values with the same key. This will sum

up all counters of the same word which will result in a key value pair of the word and the

number of its occurrences in the file.

1 package de.unihamburg.vsis.sddf.examples

2 // imports left out

3 object WordCount extends App {

4 val conf = new SparkConf()

5 .setAppName("WordCount").setMaster("local")

6 val sc = new SparkContext(conf)

7 // hdfs://master:9000/test.txt

8 val file = sc.textFile("/lorem-ipsum.txt")

9 val words = file.flatMap(line => line.split(" "))

10 val wordNumbers = words.map(word => (word, 1))

11 val counts = wordNumbers.reduceByKey(_ + _)

12 counts.foreach(println(_))

13 }

Listing 2.1: Word count example using Apache Spark. Imports are left omitted.

There are different ways to execute a Spark application. The easiest way which is very

helpful during development is the local mode. If the Spark master is set to local, a minimal

Spark cluster with only one executor is started on the local machine. In this case, the

driver and executor run in the same JVM, speeding up the Spark application. The driver

connects to the local executor and submits jobs and receives results. The local mode

enables a fast development workflow because there is no need to deploy and start the

21

Scalable Duplicate Detection
utilizing Apache Spark

2. Related Work

application on a real cluster. Instead it can be executed on the developer’s machine or

even from the Integrated Development Environment (IDE).

For a submission of an application the script spark-submit is the tool. There are several

parameters which influence the execution of the application. The application jar needs to

be passed to spark-submit. The parameter “--master” sets the master URL and “--class”

sets the class containing the main method which is executed. The memory per executor can

be adjusted with the parameter “--executor-memory”. Arbitrary configuration properties

can be set via “--conf <key>=<value>”. The “--deploy-mode” can be set to client or

cluster. If client is chosen the driver application will be executed on the local machine.

In cluster mode the application is shipped to the cluster and executed directly on the

cluster. The cluster mode avoids network latency which can be a relevant factor. The

following lines show an example invocation of the spark-submit script to start the word

count example compiled and packaged into the hello-world.jar.

1 spark-submit --executor-memory 6G\

2 --class de.unihamburg.vsis.sddf.examples.WordCount\

3 --master spark://master:7077 hello-world.jar

Listing 2.2: Example submission of an application to a spark cluster.

22

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

3. Deduplication Process

This chapter covers the adaption of the process of Christen introduced in Section 2.1.

Four changes have been made to the process model of Christen. To simplify the process

only the self join of a single input data set is considered. Christen uses two input sets.

In our process the reading of the gold standard is a separate step. Our process does not

include explicitly potential matches, which require a clerical review. Such a feedback is

covered by the classification step and would be handled internally without affecting other

steps. Christen does not depict the clustering step in his process, but mentions it in a

subsequent chapter. We added it explicitly to our process. An overview of our process

steps and its intermediate result types is shown in Figure 3.1. This chapter focuses on

how much overhead does the parallel execution of each step on the cluster produce or in

other words how does each step scale horizontally?

3.1. Reading and Preprocessing

Reading or parsing is the process of extracting tuples from the input sources. A common

case is to map each line of a file to a single tuple which is identifiable by an unique id.

A tuple is a fixed set of features. The feature names are defined by the tuple schema

which is identical for all tuples in the same duplicate detection process. Because all tuples

share the same schema, features can be empty, which means they contain a null value. An

example schema and tuple instances could look like the following ones.

Schema: (id, forename, lastname, birthdate, place-of-birth)

--

Tuple1: (1, Max, Mustermann, 01.01.1970,)

Tuple2: (2, Silva, Hansen, 31.12.1968, Brüssel)

Assuming a sharded file in a distributed filesystem the parsing can be done in parallel.

Scalability of the parsing step actually depends on the locality of the input data. Further

we will assume a sharded input file which is equally distributed among the cluster nodes.

In this environment the parallel parsing does not produce any overhead.

Preprocessing is the step to increase the data quality. Assuming an isolated preprocessing

23

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

Indexing

Classification

Clustering

Similarity Calculation

Parsing / Preprocessing Parsing Gold Standard

<<File>>
Tuple Source

<<File>>
Goldstandard

Evaluation

Duplicate Cluster

CTP, Similarity Vector

CTP, Similarity Vector

Candidate Tuple Pairs (CTP)

Corpus (Tuples)

evaluation

tra
ining

evaluation

Figure 3.1.: Overview of the deduplication process and its intermediate result types.

which means the preprocessing of a tuple doesn’t depend on other tuples, preprocessing

can be done in parallel without any overhead. Common preprocessing steps like trimming

and regular expression removal are isolated because they do not have any dependencies

to other tuples. Under the mentioned preconditions the parsing and preprocessing is not

a crucial step and scales without any overhead. The set of tuples, resulting from the

preprocessing step, is called corpus.

3.2. Indexing

Indexing is more complex than the first step. Indexing algorithms are used to reduce the

quadratic search space. We focus on blocking algorithms which produces sets of tuples

called blocks. All possible tuple combinations of two tuples in a block are candidate tuple

pairs. The candidate tuple pairs of all blocks combined are the reduced search space. All

pairs not contained in a block are supposed to be non-matches. If there are true duplicate

tuple pairs not contained in a block, the pair is lost for further processing. For that reason

blocking is a trade off between the size of the search space and the maximum recall. The

runtime behavior depends on the algorithm. We want to discuss three blocking algorithms

which will be shortly introduced at first. All of them have the first step in common. Every

24

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

tuple of the corpus C is mapped to a blocking key which is a combination of parts of

features. The performance of the algorithms depends on the choice of the blocking key.

3.2.1. Standard Blocking

Standard Blocking [FS69, p. 64] constructs an inverted index which maps a blocking key

to a set of corresponding tuples all sharing this blocking key. Each set is a result block.

The following listing shows an implementation of Standard Blocking using Scala and the

Spark API.

1 val bkvTuplePairs: RDD[(String, Tuple)] = input.map(

2 t => (bkvBuilder.buildBlockingKey(t), t)

3)

4 val keyBlocks: RDD[(String, Iterable[Tuple])] = bkvTuplePairs.groupByKey

5 val blocks: RDD[Seq[Tuple]] = keyBlocks.map(_._2.toSeq)

The crucial operation is the groupByKey(...) which shuffles the data according to the

blocking key. The best case is to have all tuples sharing a blocking key colocated at the

same node which does not need any shuffling. In the worst case, all tuples share the same

blocking key and the tuples are distributed equally among k nodes. This scenario needs

to shuffle |C| − |C|k which is nearly |C| for large clusters. We can infer the upper bound

of |C| of data to be shuffled. The actual amount of data to be shuffled depends on the

choice of the blocking key and the distribution of the data. A possible optimization would

be to use a partitioner which partitions the data by the blocking key. In this case it is not

necessary to shuffle data. This only works if the data is partitioned by the blocking key

or if the data is fully replicated.

3.2.2. Sorted Neighborhood

Sorted Neighborhood [HS95, HS98] sorts the tuples by their blocking keys. Afterwards

a sliding window of a fixed size s is applied to the tuple list. Every possible position of

the window results in a block of s tuples. Neighboring blocks are overlapping by s − 1.

The crucial operation is the sorting of the data. According to “Minimal MapReduce

Algorithms” [TLX13] time complexity of distributed sorting using TeraSort comes near

the time complexity O(n ·log(n)) on a single machine. Having the data partitioned equally

among the k cluster nodes the fraction of k−1
k of the corpus has to be shuffled. For large

cluster sizes k−1
k ≈ k which implies the upper bound of |C| tuples. To achieve a correct

sliding window on a partitioned collection the partitions need to overlap by s− 1 tuples.

This increases the partition size by s − 1. If s << |C|
k the increase of the partition size

is very small and can be ignored. Thus, like Standard Blocking, Sorted Neighborhood is

also well suited for distributed environments.

25

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

3.2.3. Suffix Array Blocking

Suffix Array Blocking [AO05] is a special case of Standard Blocking as presented in Section

3.2.1. The blocking key of a tuple is extended to a set of blocking keys which is the set of

all suffixes of the blocking key. Every tuple is inserted into each block corresponding to

one of the blocking keys in its blocking key set. Two parameters influence the result of

the algorithm. On the one hand, there is the minimum suffix length minsl which restricts

the blocking keys derived from the original blocking key to a minimum length. On the

other hand, there is the maximum block size maxbs which drops every block whose size

exceeds the maximum block size.

In general the conclusions made at Standard Blocking can be transfered to Suffix Array

Blocking considering the blocking key set. To estimate an upper bound of the shuffled

data we need to know the maximum blocking key length bml. In the worst case every

blocking key in each set needs to be shuffled which implies an upper bound of |C| · bml.

This upper bound is a coarse estimation as it implies minsl = 1 and maxbs =∞ which is

the worst case and an unrealistic configuration. In a realistic application of the algorithm

the amount of data to be shuffled is much smaller.

3.3. Similarity Calculation

The two tuples of each tuple pair are compared featurewise by a similarity measure which

results in a similarity vector. A similarity measure sim(a, b) is a function comparing two

arbitrary strings a and b and returning a similarity value s ∈ [0, 1]. The similarity value 1

stands for absolutely similar and 0 for absolutely dissimilar. There are different similarity

measures available like the Jaccard Index [NH10, p. 24]. A second class of functions, which

can be applied to measure similarity, are distance functions. A distance function dist(a, b)

assigns a distance d ≥ 0 to a pair of strings a and b. Typically, distance functions return

an integer value like the Levenshtein Distance [NH10, p. 30]. Distance functions can be

normalized to the range [0, 1] using the length of the compared strings, if the distance is

limited by the maximum string length max(|a|, |b|). The normalization combined with an

inversion of the range turns a distance function into a similarity measure.

sim(a, b) = 1− dist(a, b)

max(|a|, |b|)
(3.1)

For most measures the similarity calculation can be done completely in parallel, since the

calculation of the similarity vector only depends on the tuple pair.

26

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

3.4. Classification

The classification step can be done completely in parallel. When using an untrained clas-

sification model like a threshold-based approach every tuple can be processed in parallel.

This also holds for a trained model, but the training of this model must be considered.

There are three different ways to train a machine learning model. Assuming the amount

of training data fits into the memory of a single node the model can be trained on a single

node and afterwards it gets distributed to the other nodes. This approach can be applied

to all machine learning algorithms. If the training data is too large for a single machine

or if the process performance needs to be improved it is possible to train the model in a

distributed manner. Two different methods are distinguished. The first one can be applied

to all machine learning algorithms. Each node trains its own model. Afterwards a fixed

odd number n of models is selected and distributed throughout all nodes. Each tuple gets

classified by all of the selected models. A majority voting is done which returns the final

classification result. The runtime of this approach is n times longer since n classifications

have to be done. The second approach only addresses mergeable models. Each node

trains it own model and than they are merged into one final model which is distributed

throughout all nodes. Hall et al. published an approach to combine decision trees learned

in parallel [HCB98].

3.5. Clustering

The classification result, consisting of matching tuple pairs, can be interpreted as an undi-

rected matching graph M = (V,E). The vertices V are all tuples in a match relation

and the edges E are all tuple pairs classified as a match. The sizes of V and E depend

on the size and shape of the data and the configuration of the classifier. For instance, a

low threshold may increase the amount of tuples in the match relation and additionally

increases the amount of edges, which correlates with a bad precision.

The result of the classification step may contain contradictions, like Christen detailed out

in [Chr12, p. 149]. Having two matches (ta, tb) and (ta, tc) and a non-match (ta, tc) is such

a case. Matching subgraphs with a large diameter like long chains (t0, t1) . . . (ti−1, ti) are

a problem, since (t0, ti) may be classified as a non-match very likely.

The clustering is the step to resolve contradictive duplicate relationships in the classifi-

cation result. One way to achieve this is to compute the connected components of the

graph and assigning all tuples in a component to one real world entity. This approach is

often also referred to calculating the transitive closure. There are other approaches like

Center Clustering [HM09], which tries to build compact clusters with a small diameter

and a high similarity. Center Clustering needs to process every subgraph sequentially,

which makes it a sequential algorithm in general, since the worst case is only one single

27

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

subgraph. However, if the classification highly partitions the resulting match graph into

multiple connected components, a parallel execution of Center Clustering is possible.

In general, computing the connected components is a complex operation. Using depth-

first search the worst case runtime to compute the connected components is O(|V |+ |E|)
[Gol80, p. 41]. The runtime complexity seems to be linear, but that is not the case. In a

fully meshed graph the runtime is dominated by |E| = |V |2, which results in a quadratic

runtime complexity O(|V |2). The advantages of the match graph are, that it should be

sparsely connected and the connected components should be small. Having a fully meshed

graph does not fit into the domain of duplicate detection. Also large connected compo-

nents dominating the match graph are supposed to be artifacts which should be avoided

by optimizing the classifier. These two assumptions speed up the calculation in practice.

Nevertheless, the clustering step is the step with the highest theoretical time complexity.

3.6. Evaluation

The two common evaluation measures of a duplicate detection result are recall and pre-

cision [NH10, p. 61] [Chr12, p. 167]. The main question of this section is how these

measures can be computed on a partitioned distributed result R without shuffling tuples

across the network. Figure 3.2 shows how a duplicate detection result R is separated

into its four components. The result itself consists of the true positives TP which are

duplicate matches according to the gold standard G and the false positives FP which are

not element of the gold standard. The false negatives FN are all tuple pairs contained in

the gold standard G, but not in the result R. All other tuple pairs are true negatives TN

because they are correctly identified to be non-matches.

True matches True non−matches

non−matches

Classified

Classified matches

TP FP

TNFN

Figure 3.2.: This graphic shows the relevant sets to evaluate a duplicate detection result.
Goal is to align the set of classified matches with the one of the true matches.
That would minimize the amount of false positives FP and false negatives
FN to zero and maximizes the true positives TP and true negatives TN . 14

The recall depends on the result R and the gold standard G, see Equation 3.2. It states

which fraction of the desired result set (gold standard) is included in the result. The

14Source: P. Christen, Data Matching [Chr12, p. 166]

28

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

precision also depends on the result R and the gold standard G, see Equation 3.3. It

states the fraction of correctly identified tuple pairs in the result.

Recall:

rec =
|G ∩R|
|G|

=
|TP |

|TP ∪ FN |
(3.2)

Precision:

prec =
|G ∩R|
|R|

=
|TP |

|TP ∪ FP |
(3.3)

Given the gold standard G and the result R the following equations 3.4 to 3.6 are valid.

The true negatives TN are not relevant for our calculations.

TP = G ∩R (3.4)

FN = G−R (3.5)

FP = R−G (3.6)

In our case, the result R is partitioned into multiple disjoint result sets which reside on

the cluster nodes. A naive calculation of these measures is expensive because tuple pairs

needs to be shuffled across the network. How can the calculation of these measures be

extended to a distributed result R =
⋃n

i=1Ri with Ra ∩Rb = ∅ ∧ a 6= b?

Both recall and precision can be calculated much more efficiently than using high level set

operations on the partitioned result. At first it is analyzed how the recall can be computed

partially on every node and how these partial results can be aggregated to an overall recall.

The following assumption can be made. The gold standard G is available on all nodes

or at least fast accessible on every node. The result partition Rn which is disjoint to all

other partial results resides on the cluster node n. Equation 3.7 shows how the recall is

adapted to a partitioned result set.

recdistr =
|TP |
|G|

=
|G ∩R|
|G|

=
|G ∩ (

⋃n
i=1Ri)|
|G|

=

|
⋃n

i=1(G ∩Ri)|
|G|

=
Ra∩Rb=∅, a 6=b

∑n
i=1 |G ∩Ri|
|G|

=

n∑
i=1

|G ∩Ri|
|G|

(3.7)

|G∩Ri|
|G| is computed on every node locally. Afterwards the partial results are added up to

calculate the overall recall.

Equation 3.8 shows how the precision is adapted to a partitioned result set.

29

Scalable Duplicate Detection
utilizing Apache Spark

3. Deduplication Process

precdistr =
|TP |

|TP ∪ FP |
=

|G ∩R|
|R|

=
|G ∩ (

⋃n
i=1Ri)|

|
⋃n

j=1Rj |
=

|
⋃n

i=1(G ∩Ri)|
|
⋃n

j=1Rj |
=

Ra∩Rb=∅, a 6=b

∑n
i=1 |G ∩Ri|
|
⋃n

j=1Rj |
=

∑n
i=1 |G ∩Ri|∑n

j=1 |Rj |

(3.8)

To calculate the precision of a partitioned result set R =
⋃n

i=1Ri, |Ri| and |G ∩Ri| have

to be calculated for every partition. Afterwards the results are aggregated to the overall

result.

Distributing the gold standard throughout all cluster nodes can be a limitation. Especially

if the gold standard consumes a large fraction of a cluster nodes memory or if it does not

fit into the nodes memory. If both, the gold standard G and the resulting R partitions,

are aligned the calculation of recall and precision can be done directly on the partitioned

sets without any communication overhead. Aligned means only partitions Ri and Gi on

the same node i have a non empty intersection. All other combinations have an empty

intersection Gi ∩Rj = ∅ ∧ i 6= j. If R and G are aligned, the following equation holds.

G ∩Ri =
Gi∩Rj=∅,i 6=j

Gi ∩Ri (3.9)

The alignment is done by using the same hash partitioner for R and G. If both sets are

partitioned on basis of the tuple id pairs, the same pairs will reside on the same node. This

leads to the new equations for precision Equation 3.10 and recall Equation 3.11, which are

computed with a partitioned, but aligned gold standard.

precdistr =
n∑

i=1

|Gi ∩Ri|
|G|

(3.10)

recdistr =

∑n
i=1 |Gi ∩Ri|∑n

j=1 |Rj |
(3.11)

The F-measure is also a widely used evaluation measure [NH10, p. 62] [Chr12, p. 168].

It is the harmonic mean of precision and recall. The F-measure shown in Equation 3.12

can also be calculated in a distributed manner, since it only depends on the recall and the

precision. The same preconditions and restrictions hold for the F-measure.

fmeas = 2 · prec · rec
prec + rec

(3.12)

30

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

4. SddF - Scalable Duplicate Detection Framework

The two main requirements described in Section 1.2 are modularity and scalability. The

requirement of modularity is driven by two motivations. It should be easy to contribute

new algorithms and it should be possible to recombine the modules in a different way

to enable the user building new data processing workflows. All modules and interfaces

are supposed to be designed scalable. Scalable in this case explicitly means scaling up to

hundreds of nodes and scaling down to a single node.

4.1. Pipelining

To achieve a modular and lean design we make use of the “Pipes and Filter” design pattern

[BMR+96, p. 53]. Our wording differs from the original one chosen by Buschmann et al..

Pipes in our case are only defined by an input and an output type. They do not exist in

form of a class. In this thesis filters are called pipes because we think the semantics of

a filter does not cover all possible pipes. A pipe could also be a transformer and in that

case the name filter could be irritating.

Many other frameworks mentioned in Section 4.1.1 make use of this pattern or similar

concepts. Unfortunately, all listed frameworks do not meet the requirements except for

the Spark Dataflow project. The project was started during the creation time of this

thesis thus it has not been considered. Therefore, it seems to be the best solution to

implement an own lightweight pipelining framework. The foundation of all process steps

of the duplicate detection process is a small pipelining framework called PipE which is

described in Section 4.1.2.

4.1.1. Related Work

In this section different pipelining frameworks or related projects are introduced and dis-

cussed.

31

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

Apache Spark ML Pipelining API

The Spark ML Pipelining API was introduced with the 1.2 release of the MLlib and

is the new standard to which all algorithms are migrated. The ML Pipeline consists

of a List of PipelineStages which can either be Estimators or Transformers. An

Estimator is a machine learning algorithm which derives a Model from the input data.

A Transformer is a simple stage of a Pipeline which transforms an input SchemaRDD to

an output SchemaRDD. A Model is a Transformer. The MLlib Pipeline is restricted to

operate on SchemaRDDs. A SchemaRDD acts like a table in which columns and rows can

be added. A Transformer can modify the table by adding, updating, or deleting rows

or columns. The user has to ensure the right order of the PipelineStages. There is no

kind of typechecking whether a specific column is present during compilation time. A

noteable feature of the ML Pipelining API is the possibility to do automated parameter

optimization. During the implementation of our framework the ML Pipelining API has not

been released yet. Also the restriction to SchemaRDDs lead to the decision to avoid using

the ML Pipelining API. Further information can be obtained in the chapter “Pipeline

API” in the book “Learning Spark” [KKWZ15, p. 236].

Spark Dataflow

Spark Dataflow15 is a prototypical implementation of the Google Cloud Dataflow (GCD)

execution backend connector. Every Pipeline written against the GCD pipelining API can

be executed on a Spark cluster.

GCD emerged from the FlumeJava [CRP+10] project which covers pipelining and pipeline

optimization atop on MapReduce. It is designed for parallel batch processing. The core

concept of FlumeJava is the PCollection which is a parallel collection. A PCollection

provides methods for distributed processing like parallelDo() which is like a map() and

a combineValues() corresponding to reduce(). For key value pairs FlumeJava provides

a special class called PTable. PTable provides special functionality for key value pairs

like groupByKey(). FlumeJava does a deferred evaluation of the pipeline which improves

optimization possibilities. The FlumeJava API looks very similar to the one Apache Spark

offers.

Another Google project is MillWheel [ABB+13] which covers fault-tolerant stream pro-

cessing at Internet scale. Google Cloud Dataflow combines FlumeJava and MillWheel to

enable the user programming unified pipelines for batch and stream processing. Google

Cloud Dataflow consists of two parts:

� A set of Software Development Kits (SDKs) to define data processing pipelines

15https://github.com/cloudera/spark-dataflow

32

https://github.com/cloudera/spark-dataflow

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

� A google cloud platform managed service to execute the pipelines.

However, there is only a Java SDK available. Optimized Scala bindings do not exist. Since

the project started in Juli 2014 and therefore is considered to be in a pre alpha status it

has not been considered.

Tinkerpop Pipes

Tinkerpop16 is a graph computing engine written in Java with multiple modules. Pipes

is one out of six Tinkerpop modules. Pipes is a dataflow framework which uses process

graphs. Unfortunately the framework restricts the type of exchanged objects to Iterators

and Iterables. The Spark RDD does not implement one of them. A Workaround would

be to put all RDDs in a Collection. A minor drawback is that there are no optimized

Scala bindings.

4.1.2. PipE - Simple Scala Pipelining Framework

Since there is no pipelining framework available which suits our requirements, we decided

to write our own lean pipelining framework called PipE. PipE claims to be a simple multi

purpose linear pipelining framework. It is generic and has no dependencies especially not

to Apache Spark. Thus, it is possible to use it in a completely different environment. PipE

mainly consists of three classes and traits17 which are depicted in Figure 4.1.

Building a Pipeline always starts with instantiating a PipeElement and appending or

prepending other PipeElements. The method append(...) always returns the result-

ing Pipeline which can be used for execution or further appending. A Pipeline is just

a minimalistic class to keep track of the input and output PipeElement and the cor-

responding input and output type. The Pipeline does not know anything about the

intermediate PipeElements. There is no central instance which knows the structure of

the Pipeline. Every PipeElement knows its neighbors and the Pipeline keeps track of

start and end of the pipeline to provide the ability to prepend and append. The object

diagram in Figure 4.2 shows an example Pipeline and the references between Pipeline

and PipeElements.

One advantage of PipE pipelines is typesafety. It is not possible to append a PipeElement

with an input type different to the output type of the Pipeline. To execute a Pipeline

or a single PipeElement a method called run(input) is provided by the shared Pipe trait.

It accepts input of the input type and returns output of the output type of the Pipeline.

16https://github.com/tinkerpop
17A trait is a collection of methods which can be used to extend a class. It is similar to an interface with

the extension of method implementations.

33

https://github.com/tinkerpop

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

Figure 4.1.: Class diagram showing the three main classes of the PipE framework and
its inheritance relationship. Every implementation of the PipeElement trait
has to implement the method step(. . .) which contains the functionality of
the PipeElement. The invocation of the method run(. . .) executes the whole
pipeline.

Figure 4.2.: Object diagram of an example Pipeline containing three PipeElements. The
Pipeline is aware of the start and end PipeElement of the Pipeline. All
PipeElements are aware of there neighbors and their input and output types.

34

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

Figure 4.3 show a simple Pipeline consisting of two PipeElements. It shows how the

input and output types are visualized.

PipeParser

PipeBlocker

List[Tuple]

List[Tuple]

List[String]

List[(Tuple, Tuple)]

(a) Every PipeElement has
an input and an output
type which has to corre-
spond to the neighboring
pipe.

PipeParser

PipeBlocker

List[String]

List[(Tuple, Tuple)]

List[Tuple]

(b) For a better readability
the in and output types
are combined and an ar-
row symbolizes the data
flow.

Figure 4.3.: Visualization of PipeElements and their corresponding in- and output types.

There is one central restriction to the creation of pipelines. PipE only allows the creation

of linear pipelines. It is not possible to create branches. This is caused by the requirement

of a good usability. Arbitrary graphs are hard to create and interact via a command line

interface. Restricting pipelines to a linear structure seem to be the appropriate solution.

To soften this limitation a PipeContext is introduced. A PipeContext is a container for

arbitrary intermediate results, which can be reused by subsequent PipeElements. The

PipeContext must be passed to the run(...) method when executing the Pipeline.

During execution the PipeContext is passed implicitly from one PipeElement to its suc-

cessor.

Implementing a PipeElement is simple. Listing 4.1 shows a sample implementation of

a word count pipe. Its input type is an RDD of lines and its output type is an RDD of

key value pairs with a word as a key and its number of occurrences as a value. There

are three things regarding the creation of a simple PipeElement. At first, the new class

has to extend PipeElement[A, B] with the correct input and output types A and B. The

step(input) method has to be implemented afterwards which contains the functionality

of the PipeElement. The third step to implement is a companion object to get a more

convenient constructor syntax. If the apply() method is defined the new key word can be

left out to create an object what is more convenient especially at the command line. This

also unifies the creation of implemented PipeElements and Pipelines. A Pipeline con-

sists of a combination of other PipeElements and only implements the method apply(),

see Section 4.1.2.

35

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

1 class PipeWordcount()

2 extends PipeElement[RDD[String], RDD[(String, Int)]] {

3

4 def step(input: RDD[String])(implicit pipeContext: AbstractPipeContext): RDD

[(String, Int)] = {

5 // flatten the collection of word arrays

6 val words = input.flatMap(line => line.split(" "))

7 // initialize the counter of each word with one

8 val wordsWithCounter = words.map(word => (word, 1))

9 // add up all counters of the same word

10 wordsWithCounter.reduceByKey(_ + _)

11 }

12

13 }

14

15 // companion object for a better usability

16 object PipeWordcount {

17 def apply() = new PipeWordcount()

18 }

Listing 4.1: Word count example Pipeline.

Last thing to know is the construction and execution of a Pipeline. Single PipeElements

can be concatenated using the append(...) method. Every Pipeline or PipeElement

can be executed by invoking the run(...) method. The run(...) method needs an

AbstractPipeContext and the input data to be executed. Listing 4.2 shows a minimalistic

example application using a parser and a blocker.

1 val input = Array("first line", "second line")

2 val pipeline = PipeParser() append PipeBlocker(param1, param2)

3 val pc = new DdupPipeContext()

4 val blockingResult = pipeline.run(input)(pc)

Listing 4.2: Example of Pipeline creation and execution.

Combining Pipes

To achieve a real modular architecture we need to combine pipes to create new types of

pipes. For instance reading the gold standard can be split into creating id pairs from

the specific input format and afterwards joining the tuples to create real tuple pairs. To

achieve this all pipes are objects implementing apply(). This enables implementations of

pipelines by only concatenating pipes and therefore make reuse of pipes possible. Listing

4.3 shows the implementation of two gold standard reader pipes. The first one reads lines

36

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

in pair format and the second one reads lines in cluster format. Both make use of the

PipeReaderGoldstandardIdsToTuple pipe.

1 object PipeReaderGoldstandardPairs {

2 def apply(...): Pipeline[RDD[String], RDD[SymPair[Tuple]]] = {

3 PipeReaderGoldstandardIdsPairs(...)

4 .append(PipeReaderGoldstandardIdToTuple())

5 }

6 }

7

8 object PipeReaderGoldstandardCluster {

9 def apply(...): Pipeline[RDD[String], RDD[SymPair[Tuple]]] = {

10 PipeReaderGoldstandardIdsCluster(...)

11 .append(PipeReaderGoldstandardIdToTuple())

12 }

13 }

Listing 4.3: Two different gold standard reader pipes implemented by combining pipes.

4.2. Architecture and Implemented Pipes

The PipE framework which is introduced in Section 4.1.2 is now applied to the duplicate

detection process introduced in Chapter 3. Every single step of the process has a specific

input and output type and therefore corresponds to a class of Pipes. In addition there

are several other Pipes for purposes like printing statistics or writing results. All classes

of Pipes are briefly described in the following list. To understand the following section

two classes should be briefly introduced. A SymPair is a symmetric pair, which means

SymPair(a, b) equals SymPair(b, a). A StringMetric[Double] is a similarity measure

to compare strings, which returns a Double in the range [0, 1].

Reading Pipes: RDD[String] → RDD[Tuple]

The name of all pipes in the reading class are prefixed with “PipeReaderTuple”. One

implementation is the PipeReaderTupleCsv which parses raw Comma-Separated

Values (CSV) lines and creates Tuple instances.

Gold standard reading Pipes: RDD[String] → RDD[SymPair[Tuple]]

Like the reading pipes there are also pipes to read the gold standard. At the mo-

ment the two different formats cluster and pair are supported. The corresponding

gold standard reading pipes are PipeReaderGoldstandardCluster and PipeRead-

erGoldstandardPair.

Preprocessing Pipes: RDD[Tuple] → RDD[Tuple]

All preprocessing pipes are prefixed by “PipePreprocessor”. They map every tuple

37

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

to a new transformed version. The two main preprocessing pipes are PipePrepro-

cessorTrim and PipePreprocessorReplaceRegex.

Indexing Pipes: RDD[Tuple] → RDD[SymPair[Tuple]]

All indexing pipes are prefixed by PipeIndexer. There are four Indexing pipes avail-

able. PipeIndexerDummy creates the naive search space. PipeIndexerSortedNeigh-

borhood, PipeIndexerStandard and PipeIndexerSuffixArray each correspond to

the equally named indexing algorithm.

Blocking Pipes: RDD[Tuple] → RDD[Seq[Tuple]]

All blocking pipes are prefixed by PipeBlocker. All three indexing algorithms ex-

cept the PipeIndexerDummy are blocking algorithms and therefore also available as

blocking pipe.

Similarity Pipes: RDD[SymPair[Tuple]] → RDD[(SymPair[Tuple], Array[Double])]

There is only one similarity pipe PipeSimilarity available. It takes a parameter

featureMeasures: Array[(Int, StringMetric[Double])] which is a mapping

from the feature index to the corresponding similarity measure.

Classification Pipes: RDD[(SymPair[Tuple], Array[Double])] → RDD[(SymPair[Tuple],

Array[Double])]

All classification pipes are prefixed by PipeClassification. They are split into two

groups trained and untrained classification pipes. The trained ones are three machine

learning algorithms. Available are PipeClassificationNaiveBayes, PipeClas-

sificationDecisionTree and PipeClassificationSvm. The untrained classifier

available is the PipeClassificationThreshold, which is a threshold-based classi-

fier. The PipeClassificationThreshold is detailed in Subsection 4.3.3.

Clustering Pipes: RDD[(SymPair[Tuple], Array[Double])] → RDD[Set[Tuple]]

All clustering pipes are prefixed with PipeClustering. At present, there is only

one clustering pipe PipeClusteringTransitiveClosure to compute the transitive

closure. To implement new clustering algorithms there is a base class Abstract-

PipeClusteringGraph available which uses GraphX to create a graph out of the

classification result.

Passthrough Pipes: A → A

All other pipes are PassthroughPipes[A]. A PassthroughPipe[A] is a generic pipe

which does not modify the input data. All PassthroughPipes have the same input

and output type. There are Analyzing Pipes which analyze the input data. There

are printing Pipes which for instance print out a sample of 10 elements of the input

data. Optimization Pipes are pipes to optimize the performance. They are used to

cache or persist RDDs. Writing pipes are intended to write results to the hard disk

in a special format.

38

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

4.3. Usage of the Framework

The SddF framework is designed for a convenient usage. In general, the execution of a

duplicate detection pipeline comprises three steps. These steps are depicted in Figure

4.4.

1. Define and execute corpus pipeline

2. Define and execute gold standard pipeline

3. Define and execute duplicate detection pipeline

The following three sections address these three steps by means of an example.

3. Duplicate Detection Pipeline

Indexing

Classification

Clustering

RDD[(SymPair[Tuple], Array[Double])]

RDD[SymPair[Tuple]]

RDD[Set[Tuple]]

Similarity Calculation

RDD[(SymPair[Tuple], Array[Double])]

PipeContext

Corpus

Gold
Standard

1. Corpus pipeline

Parsing / Preprocessing

<<File>>
Tuple Source

RDD[Tuple]

corpus

2. Gold Standard Pipeline

<<File>>
Goldstandard

Gold Standard

RDD[SymPair[Tuple]]

corpus

 gold
standard

corpus

 gold
standard

Figure 4.4.: The Implementation of the duplicate detection is separated into three pipelines
which are connected by the PipeContext.

4.3.1. Corpus Pipeline

The result of the corpus pipeline is a set of tuples. The main data structure of the Tuple

class to store the features in is an Array[String]. An Array was preferred over a Map

because it is more space efficient. The drawback of an array is the indexed feature access.

To access the features in a more convenient way every feature needs a corresponding index

name pair.

39

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

val Number = (0, "number")

val Title = (1, "title")

val Length = (2, "length")

val Artist = (3, "artist")

val Album = (4, "album")

val Year = (5, "year")

val Language = (6, "language")

Out of all index name pairs a feature index name mapping is created. This mapping is

used to translate an index to a name and vice versa. For instance it is used to include

names instead of numbers in the debug output.

val featureIdNameMapper = new FeatureIdNameMapping(Map(Number, Title, Length,

Artist, Album, Year, Language))

The next step is the definition of the corpus pipeline. In this case we define the input

pipeline the following way.

val allFields: Seq[Int] = Seq(Number, Title, Length, Artist, Album, Year,

Language)

val allFieldsWithId: Seq[Int] = Ignore +: Id +: Ignore +: allFields

var inputPipeline = PipeReaderOmitHead()

.append(PipeReaderTupleCsv(allFieldsWithId))

.append(PipePreprocessorTrim(allFields: _*))

.append(PipePreprocessorRemoveRegex("[^0-9]", Number, Year, Length))

.append(PipeAnalyseCorpus())

.append(PipeStoreInContextCorpus())

.append(PipeOptimizePersistAndName("corpus"))

PipeReaderOmitHead skips the column name header. The PipeReaderTupleCsv creates a

tuple for each line of the input CSV file. The parameter Sequence[Int] is used to assign

each feature to a column of the CSV file. Columns can also be ignored by the Ignore

keyword and one column must be marked to be the tuple id with the keyword Id. In

our example the first column of the input file is ignored, the second one is the id column,

the third one is ignored and all other columns are continuously assigned to the feature

array. It will be converted to a numeric id instead of being stored as a String like all

other features. After the reading step all features are trimmed and the integer features

are cleaned from all characters except digits. The PipeAnalyseCorpus analyzes the size

of the corpus (i.e. the number of tuples). The next pipe stores the corpus in the pipe

context to make it accessible to all succeeding pipes. The execution of the input pipeline

results in an RDD[Tuple].

val pc = new SddfPipeContext("preRunPipe")

val rawData: RDD[String] = sc.textFile("inputfile.csv")

40

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

val corpus: RDD[Tuple] = inputPipeline.run(rawData)(pc)

4.3.2. Gold Standard Pipeline

The gold standard is needed to evaluate the results of the duplicate detection pipeline

and to train a classifier like a decision tree. If an untrained classifier or previously created

model is loaded and the analyzing is skipped the gold standard is not needed. The gold

standard can be read from pair or cluster format. The pair format is a tuple id pair in

each line. The cluster format assigns a cluster id to each tuple id in a single line. In this

example we use the cluster format.

val goldstandardPipe = PipeReaderOmitHead()

.append(PipeReaderGoldstandardCluster())

.append(PipeStoreInContextGoldstandard())

.append(PipeOptimizePersistAndName("goldstandard"))

The execution of the gold standard pipeline is similar to the input pipe. The same Sddf-

PipeContext object is referenced.

val gsRawData: RDD[String] = sc.textFile("goldstandardfile.csv")

val goldstandard: RDD[SymPair[Tuple]] = goldstandardPipe.run(gsRawData)(pc)

4.3.3. Duplicate Detection Pipeline

After reading and creating the corpus and the gold standard we can start to define our

duplicate detection pipeline. First step is to instantiate an indexing pipeline. For this

example we choose a PipeIndexerStandard which is a standard blocker. The Block-

ingKeyBuilderBasic creates a blocking key for each tuple. It takes a sequence of pairs of

a feature index and a Range indicating the characters which will be added to the blocking

key. The following blocking key builder concatenates the first 10 characters of the Title,

Artist and Album feature. The PipeAnalyseIndexer prints out some statistics about the

blocking result. The PipeOptimizePersistAndName pipe explicitly caches the blocking

result in memory.

val bkvBuilder = new BlockingKeyBuilderBasic(

(Title, 0 to 10), (Artist, 0 to 10), (Album, 0 to 10)

)

val indexPipeline = PipeIndexerStandard(bkvBuilder)

.append(PipeAnalyseIndexer())

.append(PipeOptimizePersistAndName("blocked-pairs"))

41

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

Next step is to create a similarity pipeline, which calculates a similarity vector for each

tuple pair in the search space. To do this, we have to configure a measure for each feature.

In our example we only use two different measures. The JaccardMetric(2) computes the

Jaccard Index of the sets of bigrams of both strings. The MeasureEquality is a binary

measure which results in 1 if both features are equal and otherwise result in 0.

val featureMeasures: Array[(FeatureId, Measure)] = Array(

(Number, MeasureEquality)

, (Title, JaccardMetric(2))

, (Length, MeasureEquality)

, (Artist, JaccardMetric(2))

, (Album, JaccardMetric(2))

, (Year, MeasureEquality)

)

val similarityPipeline = PipeSimilarity(featureMeasures)

The result of the similarity pipeline is an RDD[(SymPair[Tuple], Array[Double])] which

is a pair consisting of a tuple pair and a similarity vector. To decide whether a pair is a

match or a non-match, a classification pipeline is needed. It will filter out all non-matches.

In this case an untrained threshold classifier is used. To configure the PipeClassifica-

tionThreshold a threshold must be assigned to each feature. If a similarity vector exceeds

all thresholds it will be labeled as match.

val thresholds: Array[(FeatureId, Threshold)] = featureMeasures.map(pair => {

(pair._1, 0.8)

})

val classificationPipeline = PipeClassificationThreshold(thresholds)

.append(PipeAnalyseClassification())

.append(PipeOptimizePersistAndName("duplicate-pairs"))

Last step in the pipeline is the clustering step. In this case the transitive closure is

computed and the result gets analyzed.

val clusteringPipeline = PipeClusteringTransitiveClosure()

.append(PipeAnalyseClustering())

}

Putting together all four pipelines results in one duplicate detection pipeline. It is executed

by invoking the run method and passing the corpus and a pipe context.

val erPipeline = indexPipeline

.append(similarityPipeline)

.append(classificationPipeline)

.append(clusteringPipeline)

42

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

val entityClusters: RDD[Set[Tuple]] = erPipeline.run(corpus)(pc)

Executing the duplicate detection pipeline results in an RDD[Set[Tuple]]. All tuples in

a set are supposed to be duplicates and correspond to one entity.

4.3.4. Exploratory / Interactive Usage

When duplicate detection and big data come together, long runtimes can be expected. To

tackle these long runtimes a distributed batch processing can be done, but the duplicate

detection process can be highly parameterized. The optimal choice of these parameters

depends on the size, shape and structure of the data. For that reason, the process needs to

be individually parameterized for every data source. This optimization process is very time

consuming especially in case of a batch system. An automated parameter optimization

like a grid search can be applied, but in general it is not possible to automate the creation

of the whole duplicate detection process. It is still a manual process, which would be

more intuitive to optimize in an exploratory way than repeating the execution of batch

processes. Exploratory means interactively executing parts of the process and analyzing

intermediate results. Exploratory means especially to provide a flexible and open API and

to let the user decide how he wants to use it to explore the data. The term was chosen in

dependence on the concept of Exploratory Data Analysis (EDA) [Tuk93] introduced by

John Tukey in 1977.

We try to combine cluster computing with an exploratory duplicate detection process

parametrization. The motivation for the exploratory approach is to enable developers and

researchers to rapidly prototype their duplicate detection process and to enable them to

flexibly explore insights of the process.

That is where the interactive spark shell comes into play. After starting the spark shell

pipelines can be created, connected, executed, analyzed and compared interactively in the

shell.

A small example outlines the interactive usage. We need to start the spark shell with the

SddF jar loaded. This is done by referencing it with the - -jars option. To avoid typing

always the same boiler plate imports and code it is possible to execute Scala scripts via

the -i parameter during the shell startup. The ShellPrerequesites.scala imports all public

Pipes to make them accessible in the shell. The second script MusicbrainzTemplate.scash

contains the input pipeline which creates the corpus. Starting the spark shell with these

options results in the following prompt. To improve the readability the output has been

shortened.

43

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

niklas@niklas-t420s:~$ ~/opt/spark-1.3.1-bin-hadoop2.6/bin/spark-shell --jars

target/scala-2.10/SddF-assembly-0.1.0.jar -i src/main/scala/de/unihamburg/

vsis/sddf/shell/ShellPrerequesites.scala -i src/main/scala/de/unihamburg/

vsis/sddf/shell/MusicbrainzTemplate.scash

Welcome to

____ __

/ __/__ ___ _____/ /__

_\ \/ _ \/ _ ‘/ __/ ’_/

/___/ .__/_,_/_/ /_/_\ version 1.3.1

/_/

Using Scala version 2.10.4 (OpenJDK 64-Bit Server VM, Java 1.7.0_79)

Type in expressions to have them evaluated.

Type :help for more information.

Spark context available as sc.

scala>

Target of this small example is to compare the block size distribution of Standard Blocking

and Suffix Array Blocking. To do this at first we have to create both blocking results.

scala> val blocksStandard = PipeBlockerStandard(bkvBuilder).run(corpus)

blocksStandard: RDD[Seq[Tuple]]

scala> val blocksSuffixArray = PipeBlockerSuffixArray().run(corpus)

blocksSuffixArray: RDD[Seq[Tuple]]

Since the result type is an RDD the Spark API can be used. To get the distribution each

block is mapped to a key value pair. The key is the size of the block and the value is

a constant 1. Afterwards the reduceByKey(+) sums up all values of the same block

size.

scala> val blockSizeDisitributionStandard = blocksStandard.map(x => (x.size, 1)

).reduceByKey(_ + _)

blockSizeDisitributionStandard: RDD[(Int, Int)]

scala> val blockSizeDisitributionSuffixArray = blocksSuffixArray.map(x => (x.

size, 1)).reduceByKey(_ + _)

blockSizeDisitributionSuffixArray: RDD[(Int, Int)]

To print out the resulting distribution we need to transfer them to the driver by calling

collect(). This creates a Scala collection which can be sorted by calling sorted(). Last

thing to do is to iterate over all elements and print them out.

44

Scalable Duplicate Detection
utilizing Apache Spark

4. SddF - Scalable Duplicate Detection Framework

scala> blockSizeDisitributionStandard.collect().sorted().foreach(println(_))

(2,433)

(3,150)

(4,67)

scala> blockSizeDisitributionSuffixArray.collect().sorted().foreach(println(_))

(2,12916)

(3,4314)

(4,1874)

(5,188)

(6,46)

(7,44)

(8,19)

(9,35)

(10,1)

(11,3)

(12,10)

The result looks as expected. The Standard Blocker produces fewer and smaller blocks

since the blocking keys are more special. This is only a very short introduction to the

spark shell using the SddF framework. To explore intermediate results of the deduplica-

tion process the full Spark and Scala API can be used.

To improve the usage of the command line and the lookup of pipes a naming scheme is

applied to all pipe names. Subclasses of PipeElement which are supposed to be instan-

tiated should follow this naming scheme. The class name should start with the prefix

“Pipe” followed by a number of grouping key words. Each grouping key word starts with

an upper case letter. The order of the grouping key words is from general to special in

order to create a grouping of PipeElements which is usable through the autocompletion

of the spark shell. The following Example should clarify the naming scheme.

Assuming we have two different parser pipes. The first one parses files in CSV format.

The second one parses files in a custom binary format. A sensible naming according to the

naming scheme would be “PipeParserCsv” and “PipeParserBinary”. To search a parser

on the command line the only thing to do is typing “PipeParser” and hit <tab> and all

classes in the classpath sharing this prefix will be listed.

45

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5. Evaluation

In this chapter we evaluate the implementation described in Chapter 4 with respect to

time and space. Section 5.1 explains the creation of the input data sets. Afterwards the

cluster setups are described in Section 5.2. Section 5.3 is about the experiments.

5.1. Data Sets

A problem is to acquire large structured data sets which are suited for duplicate detection

purposes. Our approach is to get one large base set which is supposed to contain no

duplicates. This base set is used to derive input sets which are used in the experiments.

Deriving in this case means selecting a number of tuples from the base set, inserting

duplicates and applying error generators on all tuples.

5.1.1. Base Set

As base set we extracted 1.6 · 107 audio track tuples from the open “Musicbrainz” Post-

greSQL database18. The “Musicbrainz” database aims to build a database with all relevant

information about music releases. A working Virtual Machine (VM) of the Musicbrainz

database server, which has a size of about 11 GB, can be obtained on the Musicbrainz

website19. The schema of the database is complex. It is depicted in Appendix A.1. We

extracted the tuples using a huge join shown in Listing 5.1. The base set evolved from

a cooperation with Kai Hildebrandt, who uses the same data set in his master’s thesis

[Hil15].

set client_encoding=’utf8’;

\copy (

SELECT tr.id, tr.number, tr.name AS title, tr.length, ac.name

AS artist, rl.name AS album, rc.date_year AS year, lg.name AS language

FROM track AS tr

LEFT JOIN artist_credit AS ac ON tr.artist_credit = ac.id

LEFT JOIN medium AS md ON tr.medium = md.id

LEFT JOIN release AS rl ON md.release = rl.id

18https://musicbrainz.org
19https://musicbrainz.org/doc/MusicBrainz_Server/Setup

46

https://musicbrainz.org
https://musicbrainz.org/doc/MusicBrainz_Server/Setup

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

LEFT JOIN release_country AS rc ON rl.id = rc.release

LEFT JOIN language AS lg ON rl.language = lg.id

WHERE ac.name != ’Various Artists’

) To ’/tmp/musicbrainz-raw.csv’ With CSV HEADER;

Listing 5.1: Join operation used to extract the audio track tuples from the Musicbrainz

database.

After the extraction of the data the tuple set contains several duplicates. To remove all

duplicates from the file we used the bash script in Listing 5.2. The output of the script is

the base input set.

#!/bin/sh

sort -k2 -t, -u $1 > $1.unique.sorted

sort --random-sort $1.unique.sorted > $1.unique.random

Listing 5.2: Script to remove duplicate lines from a textfile.

If the amount of input data is not sufficient it can be artificially expanded. Simple du-

plication of the data set would not work since the mean duplicate cluster size expands

linearly which is not wanted. Vernica et al. proposed an algorithm [VCL10, p. 8] which

increases the corpus and linearly increases the gold standard size without increasing the

mean cluster size. For our purpose an input set size of 107 is sufficient, but to enlarge the

input data set this algorithm is promising.

5.1.2. Derived Sets

To insert duplicates and apply errors on the tuples we used a software called “Dapo” which

emerged from the master’s thesis of Kai Hildebrandt [Hil15]. We created twelve different

input sets. The final input set sizes are 104, 105, 106 and 107 tuples. Each set is populated

with either 1%, 10%, or 50% duplicates. The duplicate cluster distribution is fixed. The

fraction of duplicate tuples in the input data set is later on referred to as dirtiness. A

short example shall outline the procedure. We want to create the file “10 000-0.5.csv”,

which means 10, 000 tuples in the result file and 50% duplicate tuples in the result file.

When creating the file, the first 5, 000 tuples are taken from the base set. Afterwards

5, 000 duplicate tuples are inserted according to the duplicate cluster size distribution. All

cluster sizes are distributed in that way to produce the same number of tuple pairs. That

means the tuple pairs produced by each cluster size are equally distributed. In this case,

we use duplicate cluster sizes from 2 – 5. The distribution can be seen in Figure 5.1. The

result is a file with 10, 000 tuples and a dirtiness of 0.5.

After inserting the duplicates a probabilistic error generator is applied to the whole set.

There are two categories of errors, weak errors and hard errors. Weak errors are a typo,

47

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

an Optical Character Recognition (OCR) error, an encoding error, a conversion to Amer-

ican Standard Code for Information Interchange (ASCII), an insertion of random blanks

and a removal of single digits. Hard errors are removing or abbreviating a feature and

transposing two features. The chance that a tuple is selected for the application of a weak

error is 50%. If the tuple is selected, the chance that a feature of this tuple is selected

for the application of a weak error is 30%. After the feature selection every weak error is

applied in a sequence with a probability of 20% to all of the selected features. Therefore,

multiple applications of different weak errors on the same feature are possible.

The probability that a tuple is selected for the application of a hard error is 20%. The

probability that a feature is selected for the application of a hard error is 15%. At first

the weak errors are applied to the data and afterwards the hard errors. Therefore, a hard

error may overwrite a weak error. An overview of the derived data sets is depicted in

Table 5.1.

2 3 4 5
0

 1/9

 1/5

 2/7

 2/5

 1/2

 3/5

 5/7
0,625

0,208

0,104
0,063

Figure 5.1.: Cluster size distribution of the inserted duplicate clusters.

Name Size (MB) # Tuples # Duplicates

10 000-0.01.csv ∼ 1 10 000 100
10 000-0.1.csv ∼ 1 10 000 1000
10 000-0.5.csv ∼ 1 10 000 5000
100 000-0.01.csv ∼ 10 100 000 1000
100 000-0.1.csv ∼ 10 100 000 10 000
100 000-0.5.csv ∼ 10 100 000 50 000
1 000 000-0.01.csv ∼ 100 1 000 000 10 000
1 000 000-0.1.csv ∼ 100 1 000 000 100 000
1 000 000-0.5.csv ∼ 100 1 000 000 500 000
10 000 000-0.01.csv ∼ 1000 10 000 000 100 000
10 000 000-0.1.csv ∼ 1000 10 000 000 1 000 000
10 000 000-0.5.csv ∼ 1000 10 000 000 5 000 000

Table 5.1.: Overview of all derived data sets. The number of duplicates are contained in
the number of tuples.

48

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5.2. Cluster Setup

5.2.1. Cluster Hardware

The hardware used to build the cluster are standard desktop computers. The hardware

specification is shown in Table 5.2.

The network topology is a switched star with full duplex realized by a 1 Gbit/s Switch.

In the different cluster setups all nodes are running on machines of the same hardware

configuration.

Quantity Type CPU RAM Network

5 Dell Optiplex 980 4× 2.67 GHz (i5 750) 8 GB 1 Gbit/s

Table 5.2.: Overview of the cluster node hardware.

5.2.2. Cluster Configurations

All cluster configurations used in the experiments consist of one master node and n worker

nodes. When referring to the size of the cluster, it is always the number of worker nodes.

The different cluster configurations are listed in Table 5.3. The default cluster configura-

tion is 4-worker.

Name # Worker Nodes RAM (GB) Cores Network

1-worker 1 6 4 1 Gbit/s
2-worker 2 12 8 1 Gbit/s
3-worker 3 24 12 1 Gbit/s
4-worker 4 32 16 1 Gbit/s
local 0 8 4 -

Table 5.3.: Overview of the different cluster configurations.

5.2.3. Cluster Software

On the master and all worker nodes an Ubuntu Server 12.04 is installed. No virtualization

layer is used. The Hadoop version is 2.6.0 and Apache Spark version is 1.3.1. Spark is

configured to run in standalone mode. Hadoop YARN or other cluster manager are not

used. Only HDFS is used from the Hadoop Stack to have a convenient distributed file

access. HDFS is configured to store files fully redundant. That means every file is present

on every worker node. The master node is dedicated to run the HDFS NameNode and the

Spark Master. Every worker node runs a HDFS DataNode and a Spark Worker. During

49

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

the experiments the HDFS cluster is always congruent with the Spark cluster. That means

a file in the HDFS should never be accessed via network because they are always accessible

locally.

5.3. Experiments

The experiments focus on the scalability of the duplicate detection workflow with respect

to the amount and shape of input data and the number of worker nodes. The crucial

step is the choice of the indexing algorithm because it determines the size of the result-

ing search space. There are three different indexing algorithms implemented: Standard

Blocking [FS69, p. 64], Sorted Neighborhood [HS95, HS98] and Suffix Array Blocking

[AO05]. In addition to the algorithms, a multi blocker is implemented to coalesce the

result of multiple blocking algorithms. Unfortunately, the Sorted Neighborhood always

crashed with an ArrayIndexOutOfBoundsException while processing one of the largest

input sets. The exception occurs during the clustering phase. It seems to be related to an

internal Spark bug “SPARK-5480”20 of GraphX. The bug could not be isolated. For that

reason, the Sorted Neighborhood Blocking is skipped completely during the experiments.

The performance of the algorithms is highly dependent on several parameters. The launch

of the experiments is mostly automated by Python scripts. The script launches the cluster

with the desired number of worker nodes and executes the configured pipelines. This pro-

cess is repeated automatically with all numbers of worker nodes. Running the experiments

is still very time consuming since the amount of data is quite large for a small number of

worker nodes. The runtime of a single pass of a given input set and a pipeline can take

up to hours depending on the cluster and pipeline configuration. For that reason only a

selected range of parameter combinations is analyzed and plotted.

Visualization of the result is also not trivial since it is a 4 dimensional space which would

yield in a hyper plane. The four dimensions are the three input dimensions number of

worker nodes, dirtiness and input set size as well as the result dimension runtime. To

visualize the result the dimension of worker nodes is reduced by plotting multiple lines.

The resulting three dimensional space is sliced by a fixed dirtiness or fixed input set size

to get a two dimensional visualization.

The resulting runtime always refers to the overall runtime of the whole pipeline. Start

of the pipeline is loading the input data and end of the pipeline is the analytics of the

clustering. The result, neither intermediate nor final, is explicitly written to disk.

20https://issues.apache.org/jira/browse/SPARK-5480

50

https://issues.apache.org/jira/browse/SPARK-5480

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5.3.1. General Pipeline Setup

In general, the following configuration of the duplicate detection pipeline was chosen. The

tuple, initially parsed from the input data, consists of 7 features and an unique id.

Schema: (id, track-number, title, length, artist, album, year, language)

To ensure type and data quality aspects some preprocessing steps where applied after-

wards. A trim operation is applied to all fields and on the integer fields number, year and

length all characters except numbers are removed. The corpus which is the tuple set after

preprocessing is explicitly cached by Spark in memory because it is used in succeeding

steps in the pipeline.

The gold standard is read from the same input file which contains the cluster ids of all

tuples. Also the gold standard is stored as a set of tuple pairs. It is also explicitly cached

by Spark for later evaluation purposes.

The blocking key is a concatenation of the first 2 characters of the fields title, artist and

album resulting in a key with a maximum length of 6.

new BlockingKeyBuilderBasic((Title, 0 to 2), (Artist, 0 to 2), (Album, 0 to 2))

The blocking algorithm chosen is Standard Blocking, since it is a widely known and utilized

algorithm. In the plots the blocker described is named “Standard-Blocker-3x2”, because

the blocking key consists of three parts of a length of two. The notation like “3x2” always

refers to the blocking key. The first number is the number of features incorporated, which

is always three, and the second number is the length of the prefix extracted from a feature.

The result of the blocking is explicitly cached by Spark to avoid expensive recalculation

of the search space. The similarity calculation is done on all fields except the language,

because it turned out that this feature is very sparse. For the numeric features number,

length and year an equality similarity measure was chosen. The equality measure is a

binary similarity measure which returns 1 on equality and 0 else. All other fields are

compared after being converted to lower case with the Jaccard Metric [NH10, p. 24] with

a q-gram size of two.

The classification step is done by a threshold based classifier. If all dimensions of the

similarity vector exceed the threshold of 0.8, the tuples are labeled as duplicates. After-

wards, the transitive closure is computed which is the result of the duplicate detection

process. The last step is the evaluation of the result which includes recall, precision, num-

ber of clusters and average cluster size. Moreover, the intermediate result after each step

is analyzed. This pipeline configuration is referred to as standard pipeline.

51

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5.3.2. Measurements

In the focus of the measurements are time and space. How does the variation of the

number of worker nodes, the input set size and the number of duplicates influence the

runtime and space needed by the application? The runtime of the duplicate detection

pipeline described in Section 5.3.1 is analyzed while varying the input set size, the number

of duplicates and the size of the cluster. Moreover, the intermediate result size of the

pipeline is analyzed. The cluster configuration used is 1-worker, 2-worker, 3-worker and

4-worker.

Figure 5.2 shows the runtime while varying the input set size. The process scales with

respect to the worker nodes and input set sizes. Figure 5.3 shows the slice of Figure 5.2

at 106 varying the dirtiness. Varying the dirtiness does not have the same impact than

varying the input set size. The process scales very well on different dirtiness setups. Only

during the processing of the input set size of 106 on a single node the runtime increases

more than linear. The reason might be that the application runs out of memory and

has to spill data to the disk or has to drop more RDD partitions which later have to be

recomputed. The increase of 3 to 4 worker nodes does hardly result in a lower runtime. It

would be interesting to do the same experiments on 5 and 6 worker nodes to investigate

this tendency. In general, when processing large numbers of input data or input data

with a high dirtiness, the increased runtime can be countered by increasing the number of

cluster nodes.

Figure 5.4 shows the sizes of the intermediate results of the duplicate detection pipeline.

The four intermediate results are the corpus size, the search space size, the classification

result set and the final clustering result. The corpus size is the number of input tuples.

The search space size and the number of matches are the quantity of tuple pairs. The

number of duplicate clusters are not the duplicate pairs, but the quantity of clusters.

The experiment verifies a simple conclusion. Increasing the dirtiness means increasing

all intermediate result sizes. Raising the dirtiness from 0.01 to 0.5 will increase the final

result size of two orders of magnitude resulting in a longer runtime and higher memory

consumption. Another conclusion is the larger the input set size, the less relevant is the

dirtiness for the search space size. On the small input set size of 104 the search space size

varies from 184 (0.01) to 5309 (0.5) what is a ratio of 28.9. On the large input set size of

107 the search space size varies from 1, 682, 734 (0.01) to 2, 187, 763 (0.5) what is a ratio

of 1.3.

Also trivial, but worth mentioning, is the decrease of the efficiency of standard blocking

on larger input sets. All blocking algorithms have this problem since the average block

size increases with larger input set sizes. The number of pairs have a quadratic complexity

depending on the block size. A solution to solve blocking problems on large input set sizes

is multi blocking. Multi blocking incorporates multiple blocking algorithms and combines

the results. To reduce the search space size an intersection of all blocking results would

52

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

be a possible solution. The upper bound for the maximum possible recall is given by the

smallest recall of all blocking algorithms incorporated.

0

50

100

150

200

250

1e+04 1e+05 1e+06

ru
n

tim
e

 (
s)

input set size

1-worker
2-worker

3-worker
4-worker

Figure 5.2.: Runtimes of the duplicate detection pipeline with a fixed dirtiness of the data
of 0.1 and a variable corpus size.

0

50

100

150

200

250

300

350

400

0.01 0.1 0.5

ru
n

tim
e

 (
s)

dirtiness

1-worker
2-worker

3-worker
4-worker

Figure 5.3.: Runtimes of the duplicate detection pipeline with a fixed corpus size of 106

and a variable dirtiness of the data.

5.3.3. Varying Indexing Algorithms

The indexing algorithm is the crucial part of the duplicate detection pipeline, which de-

termines runtime and space needed. Standard Blocking, with an appropriate blocking

53

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

10

100

1000

10000

100000

1e+06

1e+07

corpus size (tuple) search space size (pairs) number of matches (pairs) number of duplicate clusters (cluster)

#
 e

n
tit

ie
s

step in the pipeline

1e+04, 0.01
1e+04, 0.1
1e+04, 0.5

1e+07, 0.01
1e+07, 0.1
1e+07, 0.5

Figure 5.4.: The Figure shows the sizes of the intermediate results of the pipeline for the
smallest and largest corpus. The left most value is the number of tuples in
the corpus. All other values are tuple pairs. Remind the logarithmic y axis.

key, can be space and time efficient, but tends to exclude many duplicate pairs from the

search space, decreasing the recall. For that reason, another established blocking algo-

rithm called Suffix Array Blocking is analyzed in this section. Suffix Array Blocking has

two Parameters, maximum block size and minimum suffix length, as described in Section

3.2.3. Increasing the maximum block size leads to large blocks sharing a common suffix.

Decreasing it leads to small blocks with uncommon suffixes. Increasing the minimum suf-

fix length leads to smaller blocks with uncommon suffixes. Decreasing it leads to larger

blocks with common suffixes. Both parameters are tightly coupled. Increasing the min-

imum suffix length will not necessarily have an impact if the maximum block size is too

small. All enlarged blocks would be discarded by the maximum block size threshold. For

our comparison a Suffix Array Blocker with a minimum suffix length of 8 and a maximum

block size of 18 is incorporated. The blocking key chosen is the concatenation of the pre-

fixes of the three features title, artist and album of a length of 5 characters.

Figure 5.5 compares the runtime of the whole pipeline using a Standard Blocker and a

Suffix Array Blocker. The Suffix Array Blocker scales better with respect to the number

of worker nodes. The difference in space consumption can be seen in Figure 5.6. The

search space of Standard Blocking is larger than the one of Suffix Array Blocking. The

quality of the results is depicted in Figure 5.7 for the Standard Blocker and in Figure 5.8

for the Suffix Array Blocker. The measures are recall and precision of the final result and

rss-recall and rss-precision. Rss stands for reduced search space, which is the result of

54

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

the indexing step. The rss-recall shows the maximum recall that can be achieved by the

whole process. The rss-precision shows the fraction of duplicate pairs in the search space.

All measures are nearly constant except the rss-precision. It decreases with increasing

input set size. Thus, the fraction of non duplicate pairs in the search space increases with

enlarging the input set. An explanation could be that the average block size increases

with enlarging the input set. Since the resulting number of pairs in the search space is a

quadratic function of the block-size, that would explain the decrease of the rss-precision.

0

50

100

150

200

250

300

1 2 3 4

ru
n

tim
e

 (
s)

worker nodes

Standard-Blocker-3x2
Suffix-Array-8-18-3x5

Figure 5.5.: Comparison of the runtime of the two blocking algorithms on an input set size
of 106 and a dirtiness of the data of 0.1.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

corpus size (tuple) search space size (pairs) number of matches (pairs) number of duplicate clusters (cluster)

#
 e

n
tit

ie
s

intermediate result categories

Standard-Blocker-3x2
Suffix-Array-8-18-3x5

Figure 5.6.: Comparison of the space needed by the two blocking algorithms on an input
set size of 106 and a dirtiness of the data of 0.1.

55

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

0

0.2

0.4

0.6

0.8

1

1e+04 1e+05 1e+06

q
u

a
lit

y
m

e
a

su
re

input set size

Precision
RSS-Recall

Recall
RSS-Precision

Figure 5.7.: Quality measures of the run of the Standard Blocker.

0

0.2

0.4

0.6

0.8

1

1e+04 1e+05 1e+06

q
u

a
lit

y
m

e
a

su
re

input set size

Precision
RSS-Recall

Recall
RSS-Precision

Figure 5.8.: Quality measures of the run of the Suffix Array Blocker.

56

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5.3.4. On an input set size of 107

Since the input set of a size of 107 is too large to be processed by the smaller cluster

configurations, it is only processed by 4-worker. Two different Blocker, Suffix Array and

Standard Blocker, are analyzed. The pipelines are configured as in Section 5.3.3 and

analyzing is disabled. Figure 5.9 shows the runtime of both pipelines on all file sizes. On

large file sizes the Suffix Array Blocker is faster than the Standard Blocker. The increase

of the runtime from the input set size of 106 to 107 is remarkable. Figure 5.10 shows the

intermediate result sizes of the Standard Blocker for the two largest input set sizes. It

shows the reason why the runtime increases that much. The search space of the input set

size of 107 has a size of 1.68, which is about 100 times larger than the one of the input

set size of 106. The runtime of the Suffix Array Blocker is 22 min 25 s (1345 s) and the

runtime of the Standard Blocker is 1 h 26 min 48 s (5208 s) on the large input set of 107

tuples.

10

100

1000

10000

1e+04 1e+05 1e+06 1e+07

ru
n

tim
e

 (
s)

input set size

Standard-Blocker-3x2
Suffix-Array-8-18-3x5

Figure 5.9.: Comparison of two different Blockers on the large files of 107 tuples. The
cluster configuration is 4-worker. The dirtiness of the input data is 0.1.

5.3.5. Without Analyzing the Results

Analyzing intermediate results can be very time consuming. To get an impression on how

the analytics part influences the runtime we compare the same pipeline with and without

analytics. Figure 5.11 shows the standard pipeline with and without analytics on the

configurations 1-worker and 4-worker. Due to technical reasons the gold standard is read

in this experiment although it is not used. The results show that the analytics part of the

pipeline accounts for about one half to one third of the overall runtime.

57

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

corpus size (tuple) search space size (pairs) number of matches (pairs) number of duplicate clusters (cluster)

#
 e

n
tit

ie
s

step in the pipeline

1e+06, 0.01
1e+06, 0.1
1e+06, 0.5

1e+07, 0.01
1e+07, 0.1
1e+07, 0.5

Figure 5.10.: Comparison of the intermediate result sizes of the Standard Blocker on the
two different file sizes of 106 and 107. The dirtiness of the input data is 0.1.

0

50

100

150

200

250

1e+04 1e+05 1e+06

ru
n

tim
e

 (
s)

corpus size

4-worker
1-worker

4-worker-without-analyzing
1-worker-without-analyzing

Figure 5.11.: Comparing the standard pipeline runtimes with and without analytics on
the smallest cluster with one worker node and the largest with four worker
nodes. The dirtiness of the data is 0.1.

58

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

5.3.6. On a Single Node

A Spark application can be launched in local mode without a cluster. This mode is mostly

used for development and testing purposes, but it can also be used to transform a cluster

application into a desktop application. To analyze how the process scales on a single

machine, the duplicate detection process is run on the master node in local mode. HDFS

was not used. Instead, the local file system was accessed directly. The driver memory is

increased to 6 GB to equal the memory of the driver in local mode and a worker node in

the small cluster. Figure 5.12 shows the runtimes for different file sizes. The file size of 107

is omitted because it is too large to be processed by a single node. On small amounts of

data the machine in local mode is nearly as fast as the large cluster with four worker nodes.

This is because of the lack of distribution overhead and in local mode the driver, master

and all executors are executed in the same JVM. This is also the reason why the local

mode is slower than the 1-worker configuration on larger input sets. Since in the 1-worker

configuration driver and master are executed on the master node, the whole memory of 6

GB on the worker node can be used by the executors.

0

50

100

150

200

250

300

1e+04 1e+05 1e+06

ru
n

tim
e

 (
s)

corpus size

4-worker
1-worker

local

Figure 5.12.: Comparison of the standard pipeline running on a single node in local mode,
the smallest cluster with one worker node and the largest with four worker
nodes. The dirtiness of the data is 0.1.

5.3.7. Comparison with Dedoop

The comparison with Dedoop is quite difficult and vague. Like detailed out by Weis et

al. [WNB06, p. 67] it is a challenge to benchmark duplicate detection approaches. This

section highlights the problems of a real comparison. It is only done on basis of the

59

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

publication by Lars Kolb [Kol14, p. 85].

At first, we want to distinguish the differences of both setups. The size and shape of input

data are different. Unfortunately, we could not obtain at least one of the two input sets of

the Dedoop evaluation. The hardware differs. Dedoop is evaluated with a cluster of up to

100 virtual machine instances c1.medium of the EC2. A c1.medium instance has two cores

and 1.83 GB memory. A machine of our cluster has four cores and 8 GB memory and no

virtualization is used. The network transfer rate of the c1.medium instances is not listed

on the amazon website. Dedoop uses MapReduce and its algorithms are highly optimized

to the map reduce paradigm by doing load balancing. We do not do any explicit load

balancing. These are the main differences of both setups.

It takes Dedoop about 110 minutes to run a Standard Blocker on the input set DS2 of

1.4 · 106 tuples with 20 nodes [Kol14, p. 85 figure 4.13.b]. The search space has a size of

6.7 · 109. On another input set DS1 of a size of 1.1 · 105 tuples and a search space size of

3 · 108 it takes Dedoop about 7 minutes to do the blocking. The runtimes are assumed

to be blocking only, since there is no information whether other steps are included in the

runtime. SddF requires 52 seconds to run Standard Blocking on the input set size of 107

tuples with a dirtiness of 0.1 on a cluster consisting of 4 worker nodes. The search space

size is 1.6 · 108. The runtime of SddF does not include writing the result to disk. The

results are only indications that SddF is faster than Dedoop. For a detailed comparison

the setups have to be aligned.

5.3.8. Comparison with PPJoin+ MapReduce Implementation

This comparison is also very rough and difficult. It refers to the publication “Efficient

Parallel Set-Similarity Joins Using MapReduce” [VCL10]. The runtime of the implemen-

tation compared to Dedoop is very low. For a self join of an input set size of 1.2 · 107, the

runtime is about 300 s, which is fast compared to Dedoop. But there are several aspects

why a comparison is difficult.

The hardware is highly optimized for the specific setup. There are four hard disks in each

node. That is one per core and executor, which is the optimum. It is not clear which

kind of hard disk was used. Since Hadoop make massive usage of the hard disk it would

be essential to know whether Solid State Disks (SSDs) or magnetic hard disks have been

used. Each node has a dual Gbit/s Network Interface Card (NIC). It is not clear whether

they used both. Each node has 12 GB of RAM. They used a cluster of maximum 10

nodes. The description of the input data set lacks important information. The number of

duplicates in the input sets and the size of the search spaces are both not described. Also

quality measures like precision and recall, which indicate a representative experiment, are

not mentioned. Moreover, there is no clustering step which resolves contradictions.

Our cluster consisting of 4 worker nodes needs 22 min 25 s (1345 s) to apply the whole

60

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

duplicate detection pipeline on an input data set of 107 tuples with a dirtiness of 0.1,

utilizing a Suffix Array Blocker. For the results see Figure 5.9. It is very likely that the

runtime of SddF can be further optimized. Take into consideration that PPJoin+ is a

optimized implementation of a single class of algorithms and not a generic framework like

SddF is. The next sections provides some thoughts about optimizations.

5.3.9. Optimizations Left Out

The framework SddF is a generic framework and therefore not optimized for a single use

case. The following aspects could have been done to reduce the runtime. Some of them

are addressed in Chapter 6.

1. Remove feature language:

The feature language is part of the tuples, but is not part of the similarity calculation.

It could have been omitted in the parsing step.

2. Read input set and gold standard in one single step:

To provide a flexible API, the parsing of the input set and gold standard are done

in two different steps, since they are often provided in different files and formats. In

our case both input set and gold standard are in the same file and could have been

parsed in the same step.

3. Replace tuples by ids when possible:

During the processing of the whole pipeline there are always tuple instances in mem-

ory. After the similarity calculation they could have been replaced by an id place-

holder. That would have reduced the memory consumption. A drawback would be

the loss of accessing tuple features for debug or printing purposes especially in the

interactive mode. This is also valid for the gold standard, which is also a set of tuple

pairs and not only id pairs.

4. Remove similarity vector after classification:

At the moment the similarity vector is not used during the clustering since there

is only a transitive closure clustering available. For other algorithms like center

clustering the vector is passed to the clustering. Even center clustering would not

need the entire vector, but an aggregated value like the mean or median of all

dimensions.

5. Use Kryo serialization:

When data is transfered via network it gets serialized. The default serializer Spark

uses is the standard Java serializer. The performance of the Java serializer is not

that efficient compared to other serializers. The Kryo serializer is in general much

faster and serializes in a more compact format.

61

Scalable Duplicate Detection
utilizing Apache Spark

5. Evaluation

6. Optimized usage of Spark cache:

The Spark cache is a fraction of the memory where RDDs are stored which have been

explicitly cached. The fraction can be configured to optimize the performance. RDDs

can be removed from the cache explicitly, when they are not needed anymore. For

instance, the search space could be removed from cache, if the similarity calculation

have taken place and the result is cached.

7. Load balancing:

Other approaches like Dedoop [Kol14] do load balancing to equally distribute the

load among the cluster nodes. An explicit load balancing is not implemented yet, but

the intermediate result type is always a tuple pair and not a set of tuples. This is an

overhead, since all pairs of a set consume more space than a single set. Nevertheless,

the pair guarantees a fixed size, which is better for load balancing purposes.

62

Scalable Duplicate Detection
utilizing Apache Spark

6. Conclusion

6. Conclusion

6.1. Summary

The thesis objective was to theoretically sum up distributed duplicate detection and on

this basis to design, implement and evaluate the scalable duplicate detection framework

SddF. Scalable explicitly means to scale up and down. With Apache Spark a shared noth-

ing in memory distributed computing framework was chosen, which suits the scalability

requirement. The second requirement was to create a modular framework, which can be

easily extended by new algorithms. This was achieved by a pipelining architecture which

results in a small linear typesafe pipelining framework called PipE. To evaluate the frame-

work a new base data set was extracted from the Musicbrainz database, which was used

to derive several data sets of different sizes and shapes from.

The evaluation focus lied on space and time. The different parameters varied are the input

set size (104 – 107), the dirtiness of the data (0.01 – 0.5), the number of worker nodes (1

– 4) and the indexing algorithm. The evaluation showed that the framework scales with

respect to the number of worker nodes on input sets of up to 106 tuples. Another result

is, SddF bridges the gap between desktop computers and clusters. SddF is executable on

a single desktop computer and on a large cluster without changing the code base. Due

to Sparks in-memory data structure, SddF also runs performant on a single desktop ma-

chine. The evaluation also showed that it is possible to process large input set sizes of

up to 107 tuples with a dirtiness of the data of 0.1 on a small cluster of only 4 worker

nodes in 22.5 minutes. To analyze the scalability on such large input sets our cluster,

consisting of 4 worker nodes, was not large enough. Another benefit is the exploratory

application of SddF. This exploratory mode makes use of the Spark shell, which enables

the user to connect the shell to a running cluster. Therefore, it is possible to interactively

start duplicate detection pipelines and analyze intermediate results or compare different

algorithms on large amounts of data.

Moreover, Scala and Spark offer many improvements compared to Java and Hadoop

MapReduce. Due to the Scala and Spark API it is possible to write concise code. The

Spark RDD API is similar to the one a non distributed collection would offer and it is no

problem to test and execute a Spark or SddF application on a local computer.

Since the implementation was focused on a generic modular implementation and a con-

venient API, the optimization of the runtime was not always in the focus. Many possible

63

Scalable Duplicate Detection
utilizing Apache Spark

6. Conclusion

optimizations have been suggested in Section 5.3.9. In general, the new framework and

Spark as a platform is promising and could be a new basis for parallel duplicate detection.

SddF could also be used as a benchmarking platform for duplicate detection algorithms,

since benchmarking is difficult in the duplicate detection domain. To achieve this, addi-

tional algorithms have to be implemented. Since it is an open source project, everyone is

invited to contribute.

6.2. Criticism

It would have been beneficial to evaluate the framework on a much larger cluster than

4 worker nodes, but there was not the possibility to prepare a larger cluster. Especially

to analyze the runtimes of the large input set size of 107 a larger cluster is required. A

detailed comparison with other related projects would have been great, but comparisons

of distributed duplicate detection frameworks are very difficult since there are so many

degrees of freedom. Also a comparison with a sequential duplicate detection application

like Febrl would have been interesting. It is difficult to align the setups of the different

systems to provide a basis on which a fair comparison can take place. Additionally, it

would have been beneficial to monitor the cluster during the experiments to analyze the

load, memory consumption, disk and network usage.

A promising alternative would have been to implement SddF in Python to make use

of Febrl21 and scikit-learn22. This option has been left out because the best supported

programming language of Spark is Scala, the Spark shell only supports Scala and the

author prefers typesafe languages.

6.3. Future Prospects

There are four main topics for the future of this project. These are optimization, extending

algorithms, usability and automation. The main point to optimize the memory consump-

tion would be the implementation of a lookup facility for tuples. That is the requirement

to optimize the intermediate result sizes without losing the possibility to access and output

single tuple features in an arbitrary pipeline step. After doing this, it would be possible

to only store tuple IDs instead of tuple instances. Instead of tuple pairs the gold standard

could only contain tuple IDs. The same holds for the tuple pairs after the calculation

of the similarity vectors. A promising candidate to implement such a distributed lookup

facility is Hazelcast23, a distributed lightweight key value store implemented in Java. Also

21http://sourceforge.net/projects/febrl/
22Python machine learning library, http://scikit-learn.org
23https://hazelcast.org

64

http://sourceforge.net/projects/febrl/
http://scikit-learn.org
https://hazelcast.org

Scalable Duplicate Detection
utilizing Apache Spark

6. Conclusion

the possibility to unpersist RDDs in a pipeline would be a good feature to keep the Spark

cache clean.

Since there is only one naive clustering algorithm, more algorithms like center clustering

should be adapted to the Spark API. It would also be interesting to implement a cluster-

ing algorithm based on page rank to find cluster centers and afterwards applying a center

clustering. The explicit handling of missing features should be considered since MLlib

does not support them at present.

Very helpful would be the implementation of a graphical user interface, preferably a web

interface with a live plotting facility maybe using “Wisp”24. To improve the practical

benefit it would be useful to implement manual review and labeling pipelines which can

be used to manually generate training data without the need for a gold standard.

Another target would be to implement an automated optimization like grid search with

algorithm and parameter sets. This would decrease the manual work to configure and

execute different pipelines. Long term plan would be to automate the creation of the

deduplication pipeline, like the “MLbase” project [KTD+13] of the AMPlab Berkeley is

going to do for arbitrary machine learning pipelines. That means the automation of an-

alyzing the input data and choosing algorithms and parameters to solve the duplicate

detection problem.

24https://github.com/quantifind/wisp

65

https://github.com/quantifind/wisp

Scalable Duplicate Detection
utilizing Apache Spark

Bibliography

Bibliography

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.

MillWheel: Fault-Tolerant Stream Processing at Internet Scale. In Very Large

Data Bases, pages 734–746, 2013.

[ACG02] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating

Fuzzy Duplicates in Data Warehouses. In VLDB 2002, Proceedings of 28th In-

ternational Conference on Very Large Data Bases, August 20-23, 2002, Hong

Kong, China, pages 586–597. Morgan Kaufmann, 2002.

[AO05] Akiko N. Aizawa and Keizo Oyama. A Fast Linkage Detection Scheme for

Multi-Source Information Integration. In 2005 International Workshop on

Challenges in Web Information Retrieval and Integration (WIRI 2005), 8-9

April 2005, Tokyo, Japan, pages 30–39. IEEE Computer Society, 2005.

[BGG+06] Omar Benjelloun, Hector Garcia-Molina, Heng Gong, Hideki Kawai,

Tait Eliott Larson, David Menestrina, and Sutthipong Thavisomboon. D-

Swoosh: A Family of Algorithms for Generic, Distributed Entity Resolution.

In 27th IEEE International Conference on Distributed Computing Systems

(ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 37. IEEE

Computer Society, 2006.

[BGH11] Guilherme Dal Bianco, Renata de Matos Galante, and Carlos A. Heuser. A

fast approach for parallel deduplication on multicore processors. In William C.

Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung, editors,

Proceedings of the 2011 ACM Symposium on Applied Computing (SAC),

TaiChung, Taiwan, March 21 - 24, 2011, pages 1027–1032. ACM, 2011.

[BMC+03] Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep D. Raviku-

mar, and Stephen E. Fienberg. Adaptive Name Matching in Information In-

tegration. IEEE Intelligent Systems, 18(5):16–23, 2003.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal. Pattern-Oriented Software Architecture. Wiley, 1996.

66

Scalable Duplicate Detection
utilizing Apache Spark

Bibliography

[CCH04] Peter Christen, Tim Churches, and Markus Hegland. Febrl – A Parallel Open

Source Data Linkage System. In Honghua Dai, Ramakrishnan Srikant, and

Chengqi Zhang, editors, Advances in Knowledge Discovery and Data Mining,

volume 3056 of Lecture Notes in Computer Science, pages 638–647. Springer

Berlin Heidelberg, 2004.

[CGGM03] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Ro-

bust and Efficient Fuzzy Match for Online Data Cleaning. In Alon Y. Halevy,

Zachary G. Ives, and AnHai Doan, editors, Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, San Diego, Cal-

ifornia, USA, June 9-12, 2003, pages 313–324. ACM, 2003.

[Chr12] Peter Christen. Data matching. Springer, 2012.

[CRP+10] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.

Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: Easy, Effi-

cient Data-parallel Pipelines. SIGPLAN Not., 45(6):363–375, June 2010.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing

on large clusters. In In OSDI’04: Proceedings of the 6th conference on Sympo-

sium on Opearting Systems Design & Implementation. USENIX Association,

2004.

[FS69] I. P. Fellegi and A. B. Sunter. A Theory for Record Linkage. Journal of the

American Statistical Association, 64:1183–1210, 1969.

[Gol80] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Com-

puter science and applied mathematics. Academic Press, New York, 1980.

[HCB98] Lawrence Hall, Nitesh Chawla, and Kevin W. Bowyer. Combining Decision

Trees Learned in Parallel. In In Working Notes of the KDD-97 Workshop on

Distributed Data Mining, pages 10–15, 1998.

[Hil15] Kai Hildebrandt. Obtaining large scale test data from real world datasets

for duplicate detection using Apache Spark. Master’s thesis, University of

Hamburg, 2015. not available yet.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[HM09] Oktie Hassanzadeh and Renée J. Miller. Creating Probabilistic Databases

from Duplicated Data. The VLDB Journal, 18(5):1141–1166, October 2009.

[Hol15] Alex Holmes. Hadoop in Practice. Manning Publications Co., Greenwich, CT,

USA, second edition, 2015.

67

Scalable Duplicate Detection
utilizing Apache Spark

Bibliography

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem

for Large Databases. In Michael J. Carey and Donovan A. Schneider, editors,

Proceedings of the 1995 ACM SIGMOD International Conference on Manage-

ment of Data, San Jose, California, May 22-25, 1995., pages 127–138. ACM

Press, 1995.

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world Data is Dirty:

Data Cleansing and The Merge/Purge Problem. Data Min. Knowl. Discov.,

2(1):9–37, 1998.

[KKH+10] Toralf Kirsten, Lars Kolb, Michael Hartung, Anika Groß, Hanna Köpcke,

and Erhard Rahm. Data Partitioning for Parallel Entity Matching. CoRR,

abs/1006.5309, 2010.

[KKWZ15] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learn-

ing Spark. O’Reilly, 01 2015.

[KL07] Hung-sik Kim and Dongwon Lee. Parallel linkage. In Mário J. Silva, Al-

berto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness, Bjørn

Olstad, Øystein Haug Olsen, and André O. Falcão, editors, Proceedings of

the Sixteenth ACM Conference on Information and Knowledge Management,

CIKM 2007, Lisbon, Portugal, November 6-10, 2007, pages 283–292. ACM,

2007.

[KL10] Hung-sik Kim and Dongwon Lee. HARRA: Fast Iterative Hashed Record Link-

age for Large-scale Data Collections. In Proceedings of the 13th International

Conference on Extending Database Technology, EDBT ’10, pages 525–536,

New York, NY, USA, 2010. ACM.

[Kol14] Lars Kolb. Effiziente MapReduce-Parallelisierung von Entity Resolution-

Workflows. PhD thesis, University of Leipzig, 2014.

[KTD+13] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J

Franklin, and Michael I Jordan. MLbase: A Distributed Machine-learning

System. In CIDR, 2013.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM Com-

put. Surv., 33(1):31–88, 2001.

[NH10] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection.

Synthesis Lectures on Data Management. Morgan and Claypool, 2010.

68

Scalable Duplicate Detection
utilizing Apache Spark

Bibliography

[PMM+02] Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart J. Russell, and Ilya

Shpitser. Identity Uncertainty and Citation Matching. In Suzanna Becker,

Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Infor-

mation Processing Systems 15 [Neural Information Processing Systems, NIPS

2002, December 9-14, 2002, Vancouver, British Columbia, Canada], pages

1401–1408. MIT Press, 2002.

[SB02] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using

active learning. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Ed-

monton, Alberta, Canada, pages 269–278. ACM, 2002.

[SG14] Sherif Sakr and Mohamed Medhat Gaber. Large Scale and Big Data - Pro-

cessing and Management. CRC Press, 2014.

[TLX13] Yufei Tao, Wenqing Lin, and Xiaokui Xiao. Minimal mapreduce algorithms.

In Proceedings of the 2013 international conference on Management of data,

pages 529–540. ACM, 2013.

[Tuk93] John W. Tukey. Exploratory Data Analysis: Past, Present, and Future. 1993.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity

joins using MapReduce. In Ahmed K. Elmagarmid and Divyakant Agrawal,

editors, Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,

2010, pages 495–506. ACM, 2010.

[VME03] Vassilios S. Verykios, George V. Moustakides, and Mohamed G. Elfeky. A

Bayesian decision model for cost optimal record matching. VLDB J., 12(1):28–

40, 2003.

[WNB06] Melanie Weis, Felix Naumann, and Franziska Brosy. A duplicate detection

benchmark for XML (and relational) data. In SIGMOD 2006 Workshop on In-

formation Quality for Information Systems (IQIS), Chicago, IL, 2006., 2006.

[XWLY08] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity

joins for near duplicate detection. In Jinpeng Huai, Robin Chen, Hsiao-Wuen

Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang,

editors, Proceedings of the 17th International Conference on World Wide Web,

WWW 2008, Beijing, China, April 21-25, 2008, pages 131–140. ACM, 2008.

69

Scalable Duplicate Detection
utilizing Apache Spark

Bibliography

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX conference on Networked Sys-

tems Design and Implementation, pages 2–2. USENIX Association, 2012.

[ZGGW11] Yanfeng Zhang, Qinxin Gao, Lixin Gao, and Cuirong Wang. iMapReduce:

A Distributed Computing Framework for Iterative Computation. In IPDPS

Workshops, pages 1112–1121. IEEE, 2011.

70

Scalable Duplicate Detection
utilizing Apache Spark

Acronyms

Acronyms

API Application Interface

ASCII American Standard Code for Information Interchange

CSV Comma-Separated Values

DAG Directed Acyclic Graph

EC2 Amazon Elastic Compute Cloud

EDA Exploratory Data Analysis

GCD Google Cloud Dataflow

HA High Availability

HDFS Hadoop Distributed File System

HiveQL Hive Query Language

HQL Hive Query Language

IDE Integrated Development Environment

JVM Java Virtual Machine

MPI Message Passing Interface

NIC Network Interface Card

OCR Optical Character Recognition

PDF Portable Document Format

71

Scalable Duplicate Detection
utilizing Apache Spark

Acronyms

RDD Resilient Distributed Dataset

RMI Remote Method Invocation

SDK Software Development Kit

SSD Solid State Disk

SVG Scalable Vector Graphics

SVM Support Vector Machine

TU Technical University

VM Virtual Machine

YARN Yet Another Resource Negotiator

72

Scalable Duplicate Detection
utilizing Apache Spark

List of Figures

List of Figures

2.1. Hierarchical classification of different duplicate detection approaches. 12

2.2. Original duplicate detection process of Christen [Chr12, p. 24] 13

2.3. Word count example using the map reduce paradigm. 16

2.4. Screenshot of Dedoop User Interface . 17

2.5. Example Lineage of an RDD join. A, B, C, D and E are RDDs. A consists

of 4 partitions A1 to A4. 19

2.6. Basic Spark cluster setup in standalone mode with HDFS. 21

3.1. Overview of the deduplication process and its intermediate result types. . . 24

4.1. Class diagram showing the three main classes of the PipE framework and

its inheritance relationship. Every implementation of the PipeElement trait

has to implement the method step(. . .) which contains the functionality of

the PipeElement. The invocation of the method run(. . .) executes the

whole pipeline. 34

4.2. Object diagram of an example Pipeline containing three PipeElements. The

Pipeline is aware of the start and end PipeElement of the Pipeline. All

PipeElements are aware of there neighbors and their input and output types. 34

4.3. Visualization of PipeElements and their corresponding in- and output types. 35

4.4. The Implementation of the duplicate detection is separated into three pipelines

which are connected by the PipeContext. 39

5.1. Cluster size distribution of the inserted duplicate clusters. 48

5.2. Runtimes of the duplicate detection pipeline with a fixed dirtiness of the

data of 0.1 and a variable corpus size. 53

5.3. Runtimes of the duplicate detection pipeline with a fixed corpus size of 106

and a variable dirtiness of the data. 53

5.4. The Figure shows the sizes of the intermediate results of the pipeline for

the smallest and largest corpus. The left most value is the number of tuples

in the corpus. All other values are tuple pairs. Remind the logarithmic y

axis. 54

5.5. Comparison of the runtime of the two blocking algorithms on an input set

size of 106 and a dirtiness of the data of 0.1. 55

73

Scalable Duplicate Detection
utilizing Apache Spark

List of Figures

5.6. Comparison of the space needed by the two blocking algorithms on an input

set size of 106 and a dirtiness of the data of 0.1. 55

5.7. Quality measures of the run of the Standard Blocker. 56

5.8. Quality measures of the run of the Suffix Array Blocker. 56

5.9. Comparison of two different Blockers on the large files of 107 tuples. The

cluster configuration is 4-worker. The dirtiness of the input data is 0.1. . . 57

5.10. Comparison of the intermediate result sizes of the Standard Blocker on the

two different file sizes of 106 and 107. The dirtiness of the input data is 0.1. 58

5.11. Comparing the standard pipeline runtimes with and without analytics on

the smallest cluster with one worker node and the largest with four worker

nodes. The dirtiness of the data is 0.1. 58

5.12. Comparison of the standard pipeline running on a single node in local mode,

the smallest cluster with one worker node and the largest with four worker

nodes. The dirtiness of the data is 0.1. 59

A.1. Schema of the Musicbrainz database. 77

74

Scalable Duplicate Detection
utilizing Apache Spark

List of Tables

List of Tables

5.1. Overview of all derived data sets. The number of duplicates are contained

in the number of tuples. 48

5.2. Overview of the cluster node hardware. 49

5.3. Overview of the different cluster configurations. 49

75

Scalable Duplicate Detection
utilizing Apache Spark

List of Listings

List of Listings

2.1. Word count example using Apache Spark. Imports are left omitted. 21

2.2. Example submission of an application to a spark cluster. 22

4.1. Word count example Pipeline. 35

4.2. Example of Pipeline creation and execution. 36

4.3. Two different gold standard reader pipes implemented by combining pipes. 37

5.1. Join operation used to extract the audio track tuples from the Musicbrainz

database. 46

5.2. Script to remove duplicate lines from a textfile. 47

A.1. Word count example with Apache Hadoop MapReduce.25 79

76

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

A. Appendix

A.1. Musicbrainz

Figure A.1.: Schema of the Musicbrainz database.

77

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

A.2. Other Related Projects

There are multiple other related projects. Especially the Hadoop ecosystem is full of

projects addressing similar problems. The following list is just an excerpt and not intended

to be complete.

Weka is a mature project of the University of Waikato in New Zealand which started

in 1992. With Weka 3 the project switched to Java and an open source license. Core

features are visualization and algorithms for data analysis and a graphical user inter-

face. Weka was originally designed as a single computer application, but there are

attempts to enable Weka to process huge amounts of data. Since October 2013 there is

a package available called “distributedWekaBase” which provides basic functionality for

a map reduce like backend. The Weka developer also provided a first platform specific

implementation atop of Hadoop called “distributedWekaHadoop”.

Apache Storm became an Apache top level project in September 2014. Apache Storm is

a distributed real time data processing framework. Main feature is the strong guarantee

on the processing of data.

Apache Flink , formerly known as Stratosphere, is an Apache Incubator project since

April 2014 which was also the date of the renaming. Stratosphere started in 2009 at the

Technical University (TU) Berlin. Flinks last release version is 0.8.1. Superficially seen

Apache Flink is similar to Apache Spark, but Flink is quite different and introduces some

new concepts. Flink tries to bring in-memory data processing and database optimization

techniques together. It also introduces a new high level API called delta-iterations to

express iterative algorithms, which is far better suited for optimization purposes.

Apache Tez is a Apache top level project since Juli 2014. It is a framework to build

large scale data processing applications on top of Apache YARN. Main feature is the

processing of a complex DAG of tasks.

Apache Zeppelin became an Apache incubator project in December 2014. It is a web

notebook for interactive data analytics. Zeppelin combines an interactive shell like

input terminal with data visualization.

Apache Pig is a high level abstraction layer on top of Hadoop MapReduce. Applications

are written in the procedural language Pig Latin. Pig tries to abstract from the low

level map reduce paradigm with high level functionality.

Apache Hive is a data warehouse API build on top of Hadoop MapReduce. The declar-

ative language Hive Query Language (HiveQL), similar to SQL, is used to formulate

queries.

78

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

Cascading is an abstraction layer atop on Hadoop MapReduce to hide MapReduce specific

complexity. It provides a high level API to make programming of map reduce jobs more

intuitive and efficient.

Scalding is a Scala wrapper for Cascading. It is developed by Twitter.

Summingbird is an open source project developed by Twitter. Summingbirg incorporates

Scalding and Storm to build a stream and batch processing framework. The API is

accessible via Scala and Java.

Apache Crunch is a top level Apache project since February 2013. It is an abstraction

layer atop on Hadoop MapReduce like Pig and Hive are. Crunch does not focus on

data analysts with restricted programming skills. Instead, it targets real developers. It

aims to be a high performance framework which let the developer decide when to use

low level map reduce operations and when to use high level operations. There are Scala

bindings available for Crunch.

Apache Oozie Apache Oozie is a DAG scheduler for Hadoop MapReduce jobs. It is

implemented as a Java web application. All processing is done by the underlying Hadoop

MapReduce. Oozie keeps track of the processing state via callback URLs or via polling.

A.3. Hadoop

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

79

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Listing A.1: Word count example with Apache Hadoop MapReduce.26

A.4. Content of the DVD

� Master’s Thesis

� Apache Spark 1.3.1

� SddF

� Experiments

� Results

� Cluster management scripts

26Source: http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/

hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v2.0

80

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v2.0
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v2.0

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

� Cluster node configuration for master and slaves

� Setup instructions for the cluster nodes and IDE

� Musicbrainz data sets

� Dapo extension to generate the input data sets

A.5. Used Software

Many thanks to all developers of free and open source software. Besides Yed this thesis

was created by only using open source software. Special thanks goes to the whole Linux

community, which is doing such a great work. The main programs that where used to

create this thesis are listed below.

Gnu/Linux Operating system (Debian, Ubuntu, openSUSE)

Git Decentralised Version Control System

Scala Scalable programming language for the JVM

Apache Spark shared nothing distributed in-memory computing framework

Apache Spark MLlib Machine learning library for Spark

Apache Spark GraphX Graph processing library for Spark

Python dynamic typed scripting language

CSSH cluster ssh client

Latex Template of Stefan Macke Latex template for master thesis

Kile Latex editor

KBibtex Bibtex reference management software

Okular Portable Document Format (PDF) viewer

Libre Office Draw Scalable Vector Graphics (SVG) drawing program

Gnuplot feature rich SVG plotting software

yEd SVG graph editor

81

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang

Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel – ins-

besondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind

als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in

einem anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fas-

sung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 7. September 2015

Niklas Wilcke

82

Scalable Duplicate Detection
utilizing Apache Spark

A. Appendix

Erklärung zur Veröffentlichung in der Bibliothek

Ich bin ausdrücklich damit einverstanden, dass die Arbeit in analoger und digitaler Form

in den Bestand der Bibliothek aufgenommen wird. Zudem stimme ich einer online Publi-

zierung zu.

Hamburg, den 7. September 2015

Niklas Wilcke

83

