
Benchmarking with YCSB in the
context of a micro blogging domain

— Bachelor Thesis —

Databases and Information Systems Group
Department of Informatics

Faculty of Mathematics, Informatics and Natural Sciences
University of Hamburg

Author: Mirko Köster

E-Mail-address: 0mkoeste@informatik.uni-hamburg.de

Mat. No.: 5616739

Course of Studies: Bsc. Informatics

1st assessor: Prof. Dr. Norbert Ritter

2nd assessor: Wolfram Wingerath

Hamburg, January 6th, 2015

mailto:0mkoeste@informatik.uni-hamburg.de

Contents

1 Introduction 1
1.1 Motivation and scope of this bachelor thesis 1
1.2 Chapter outline . 2

2 State of research 3
2.1 Yahoo! Cloud Serving Benchmark . 3
2.2 related work . 6

3 Data model of the micro blogging domain 8
3.1 Data modelling in NoSQL . 8
3.2 Entities and actions . 8
3.3 Entity relationship diagram of the micro blogging domain 9
3.4 Document schema . 10

3.4.1 Asynchronous processing of actions 10
3.5 Mapping actions to the two data models 12

3.5.1 Relational algebra . 12
3.5.2 MongoDB queries . 13

4 Extending YCSB in the context of the micro blogging domain 15
4.1 Extending YCSB in general . 15
4.2 Extending YCSB with the micro blogging domain model 16

4.2.1 YCSB - DB for MongoDB and the micro blogging domain 16
4.2.2 YCSB - Workload for micro blogging domain 18
4.2.3 Limitations of this approach . 18

4.3 Running the extended benchmark . 19
4.3.1 Building . 19
4.3.2 Running . 19

5 Conclusion 24
5.1 Outlook . 24

Appendices 25

A original YCSB 26

B YCSB extended 27

ii

Bibliography 30

iii

List of Figures

2.1 Conceptional data model of YCSB’s database 3
2.2 YCSB client architecture . 6
2.3 Conceptional data model of BG’s database 7

3.1 Conceptional data model of the microblogging domain 9

iv

List of Tables

2.1 YCSB: Design decisions of various systems. 4
2.2 YCSB: Workloads in the core package 5

v

List of listings

3.1 MongoDB: schema of collection ’users’ 10
3.2 MongoDB: schema of collection ’tweets’ 11
3.3 MongoDB: schema of collection ’buckets’ 11
3.4 MongoDB query: read user ’x’ . 13
3.5 MongoDB query: read tweet ’x’ . 13
3.6 MongoDB query: read tweets by user ’x’ 13
3.7 MongoDB query: read tweets with mentioned tag ’x’ 14
3.8 MongoDB query: read tweets with mentioned user ’x’ 14
3.9 MongoDB query: read stream from user ’x’ 14

4.1 YCSB: abstract class DB . 17
4.2 YCSB: MicrobloggingDB interface . 17
4.3 YCSB: calling the read method with new semantics 17
4.4 YCSB: abstract class Workload . 18
4.5 MongoDB: creating indices . 20
4.6 YCSB: sample output of the extended benchmark 22

B.1 YCSB: interface for DB with new semantics (Part 1) 27
B.2 YCSB: interface for DB with new semantics (Part 2) 28
B.3 YCSB: interface for DB with new semantics (Part 3) 29

vi

1. Introduction
The foundation of Relational Database Management Systems (RDBMS) has been intro-
duced by Codd in 1970 [Cod70]. Since then, the performance of available systems based
on this relational model has been analyzed and benchmarked (e.g. using the benchmarks
from TPC (Transaction Processing Performance Council)).
In 2009 the term NoSQL (meaning Not only SQL and should not be interpreted as

No SQL) was introduced by Johan Oskarsson [Fow15] to describe the then upcoming
Database Management Systems (DBMS) not based on the relational model. NoSQL
DBMS don’t share one common data model. The way how these systems organize and
store their data varies from simple key-value-stores to document-oriented databases to
wide-column datastores. Key-value-stores simply map one key to one value, where the
value itself can often be of a more complex type. Wide-column datastores work column
oriented (as opposed to RDBMS, which work row oriented). Each table can consist
of millions of (sparse) columns - hence the name wide-column. Document-oriented
databases are able to store complex objects (referred to as documents), where complex
means that documents can be nested (i.e. contain other documents). Additionally most
NoSQL DBMS don’t offer strong ACID (Atomicity, Consistency, Isolation, Durability)
properties like transactions nor join operations like traditional RDBMS do.
As these new datastores are so different from RDBMS and from each other, apple to

apple comparison of their performance characteristics is not trivial. On the other hand
these characteristics are important when one has to choose a DBMS in a given context.
The Yahoo! Cloud Serving Benchmark (YCSB) was introduced in 2010 by Cooper

et.al. in [CST+10] to address this issue. They assume a simplistic data model which
is not suited for most applications and define workloads to specify the proportions of
CRUD-operations (create, read, update and delete) and other properties neccessary to
execute the benchmark. The authors “did not attempt to exactly model a particular
application or set of applications”, but their “goal was to examine a wide range of
workload characteristics” [CST+10, Chapter 4]. Furthermore they state that a “primary
goal of YCSB is extensibility” [CST+10, Chapter 5.2].

1.1. Motivation and scope of this bachelor thesis
Today YCSB is the established benchmarking suite for NoSQL databases. But due to
the rather simplistic data model, the results generated by the benchmark may not be
representative for a more realistic (real world) data model. But writing a new benchmark
is a very time consuming effort. And as the authors claim that YCSB is extensible, it
would be interesting to see if it possible to extend it with arbitrary data models.

1

The goal of this bachelor thesis is to test how feasible it is to extend YCSB with
one new data model, namely in the context of the micro blogging domain. As a proof
of concept a prototype will be developed. To reduce the development effort, besides
[CST+10] this bachelor thesis is based on [WKF14], which describes how one could
implement a Twitter-clone (Twitter1 is an existing micro blogging service) based on
MongoDB2 as its data store. Part of that project was to develop a working prototype.
Although YCSB is about benchmarking, it is not a goal of this bachelor thesis to

perform actual benchmarks and compare several databases exploiting the new data
model, but solely to perform a feasability study of the extensibility of YCSB.

1.2. Chapter outline
The next chapter is about the current state of research. First [CST+10] is presented in
detail. Then related work is discussed.
Chapter 3 introduces the micro blogging domain and its data model, entities and

actions. Chapter 4 explains the practical part of this bachelor thesis. It is about extending
YCSB. Then in chapter 5 conclusions are drawn and possible future works are presented.

1see https://twitter.com/ for details
2see http://www.mongodb.org/ for details

2

https://twitter.com/
http://www.mongodb.org/

2. State of research

2.1. Yahoo! Cloud Serving Benchmark
In 2010 Cooper et.al. presented [CST+10]. They proposed a new benchmark suite called
the Yahoo! Cloud Serving Benchmark (YCSB) to address those new DBMS, which where
published recently at that time and had new/different properties than the established
RDBMS. While it was possible to compare these new DBMS qualitatively with each
other or existing RDBMS, it was hard to do this comparison quantitatively.
The benchmark defined a simplistic data model (see figure 2.1), which represents a

key-value-store. This model uses one entity, which is called User and has ten attributes
per default. Additionally they used workloads to define how the benchmark should be
executed. A workload has properties like the number of fields per record (fieldcount) or
the proportion of read, write and update operations to perform (readproportion, insert-
proportion and updateproportion respectively). For a comprehensive list of properties
including their description see appendix A.
The suite comes with support for several DBMS like Google BigTable [CDG+08],

Apache HBase1, Apache Cassandra2, MongoDb, Redis3 and others [Wik15].

User

field0

field1
field2

field9

...

Figure 2.1.: Conceptional data model of YCSB’s database

Most NoSQL DBMS make tradeoffs like optimizing for reads or optimizing for writes,
latency versus durability or synchronous replication versus asynchronous replication. The
workloads they defined for YCSB were designed to “explore these tradeoffs directly”
[CST+10, Chapter 4]. Table 2.1 shows these tradeoffs for a small selection of DBMS.
BigTable for instance is optimized for fast writes, durability and synchronous replication.
Its data model is column oriented.

1see http://hbase.apache.org/ for details
2see http://cassandra.apache.org/ for details
3see http://redis.io/ for details

3

http://hbase.apache.org/
http://cassandra.apache.org/
http://redis.io/

System Read/Write Latency/durability Sync/async Row/column

optimized replication

PNUTS Read Durability Async Row

BigTable Write Durability Sync Column

HBase Write Latency Async Column

Cassandra Write Tunable Tunable Column

Sharded MySQL Read Tunable Async Row

Table 2.1.: YCSB: Design decisions of various systems (recreated from [CST+10, Table 1])

YCSB has five predefined workloads (A to E). Table 2.2 shows these workloads and
their most important settings. Workload A for instance performs 50% read and 50%
update operations. The key chosen to identify a record comes from a zipfian distribution,
meaning that some keys are very likely to occur while others are not (YCSB supports
the following distributions: uniform, zipfian, latest, multinomial [CST+10, Chapter 4.1]).
An application example that matches this workload could be a session store recording
recent actions in a user session.

4

Workload Operations Record selection Application example

A—Update heavy Read: 50% Zipfian Session store recording recent

Update: 50% actions in a user session

B—Read heavy Read: 95% Zipfian Photo tagging; add a tag is an

Update: 5% update, but most operations

are to read tags

C—Read only Read: 100% Zipfian User profile cache, where

profiles are constructed

elsewhere (e.g., Hadoop)

D—Read latest Read: 95% Latest User status updates; people want

Update: 5% to read the latest statuses

E—Short ranges Read: 95% Zipfian / Threaded conversations, where

Update: 5% Uniform each scan is for the posts in a

given thread (assumed to be

clustered by thread id)

Table 2.2.: YCSB: Workloads in the core package (recreated from [CST+10, Table 2])

Running the benchmark with a given workload against several DBMS, one can compare
their performance or how well those systems scale.
YCSB is released as open source and is considered extensible. Fig 2.2 shows its

architecture.
The so called client can be run multithreaded. During a run performance criteria are

recorded and presented afterwards by the Stats module. The Workload Executor as well
as the DB Interface Layer are the components that can easily be extended by third
parties.

5

Figure 2.2.: YCSB client architecture [CST+10, Chapter 5, Figure 2]

YCSB is the foundation or inspiration of several other works in this area.

2.2. related work
Before YCSB was released Pavlo et.al published [PPR+09] in 2009. In that paper they
describe and compare parallel SQL and the MapReduce (MR) paradigm.
YCSB++ [PPR+11] released by Patil et al. in 2011 is an extension of YCSB. They

focus on two HDFS4-based, Google BigTable [CDG+08] like table stores (Apache HBase
and ACCUMULO5). In addition to what YCSB has to offer YCSB++ is looking at the
aspects parallel testing, weak consistency, table pre-splitting for fast ingest, bulk loading
using hadoop, server-side filtering and access control.

BG [BG13] is a benchmark suite inspired by the beforementioned two papers. Barah-
mand and Ghandeharizadeh use a more realistic data schema (see figure 2.3), modelling a
social network comparable to a simplified Facebook6. Furthermore they assume a service
level agreement (SLA7), measure different ratings called social action rating (SoAR) and
socialities (concurrent users) and cover stale data.

4see http://en.wikipedia.org/wiki/Apache_Hadoop#HDFS for details
5see https://accumulo.apache.org/ for details
6see https://www.facebook.com/ for details
7see http://en.wikipedia.org/wiki/Service-level_agreement for details

6

http://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://accumulo.apache.org/
https://www.facebook.com/
http://en.wikipedia.org/wiki/Service-level_agreement

Members
Friend

Own

Resources

Manipulation

Figure 2.3.: Conceptional data model of BG’s database (recreated from [BG13, Chapter 1,
Figure 1.a])

A broader overview of recent and ongoing research in this area was published by
Friedrich et.al in 2014 [FWGR14]. This overview is organized by what is benchmarked.
Topics are latency and throughput, availability, consistency, staleness, ordering guarantees,
transactions and consistency in the face of partitions. Additionally they present their
approach inspired by YCSB++ as well as open challenges.

7

3. Data model of the micro blogging
domain

This chapter introduces the data model of a micro blogging domain. This model will be
presented in two ways. First based on the traditional relational model and then using a
document-oriented store. The data model and possible user actions described in this
chapter are presented in more detail in [WKF14, Chapter 4].

3.1. Data modelling in NoSQL
Most NoSQL DBMS don’t offer join operations and/or ACID1 transactions like traditional
RDBMS do. If one needs the special capabilities such a NoSQL data store has to offer
(e.g. scaling out), modelling the domain is usually significantly different from how it
used to be done in the relational world. Instead of normalizing2 the schema, data is
often stored redundantly. That is due to the lack of join operations and/or to optimize
for (read) performance. Another aspect is that some systems don’t guarantee strong
consistency as in ACID, but one has to deal with eventual consistency.
As the data model has to be highly optimized for performance when a project needs

the scaling capabilities of NoSQL data stores, the process of data modelling is to identify
the most common and/or expensive queries in the given domain and then create the
data model accordingly.

3.2. Entities and actions
This section describes the entities and user actions introduced in [WKF14] for the micro
blogging domain. There are three entities in the domain. Users of the service, tweets are
the microblogs and tags which are used to annotate tweets.

Furthermore there is the concept of a user’s stream of tweets. This stream contains all
tweets of users she follows.
The possible actions users can perform are:

• a user can write a tweet.
– a user can add one or more tags to a tweet.
– a user can mention one or more other users in a tweet.

1see http://en.wikipedia.org/wiki/ACID for details
2see http://en.wikipedia.org/wiki/Database_normalization for details

8

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Database_normalization

• a user A can follow another user B.
this means, that B’s tweets are visible in A’s stream of tweets

• a user A can unfollow another user B if A was already following B.
this removes B’s tweets from A’s stream of tweets

• a user can read a user’s details.

• a user can read one or more tweets.

• a user can read his stream of tweets.

3.3. Entity relationship diagram of the micro blogging
domain

Figure 3.1 shows an ER diagram of the domain as described in this chapter.

User

follows

Tweet Tag

mentions

writes

tag

id

contains

id created_at

text

user_id

description

name

email password

**

*

**

1

* *

Figure 3.1.: Conceptional data model of the microblogging domain

Explanation of the relations from figure 3.1:

• writes: a tweet is written by exactly one user, a user can write many tweets.

• contains: a tweet can contain many tags, a tag can appear in many tweets.

• mentions: a user can mention many users, a user can be mentioned in many tweets.

• follow: a user can follow many users, a user can be followed by many users.

9

3.4. Document schema
This section describes how the domain model is represented in the document-oriented
data store MongoDB. Listings 3.1 and 3.2 show that users and tweets are stored as
simple documents in the corresponding collections.
The user’s streams of tweets are stored in the collection buckets (see listing 3.3). A

bucket bolongs to exactly one user A and stores up to 100 copies of tweets from the users
who A is following. Users who follow a lot of other users usually have several buckets to
store all those tweet copies. The buckets of one user are organized as a (virtual) double
linked list for fast access using the fields previousBucket and nextBucket as pointers.
This list is sorted by the timestamps of the containing tweets. For further details see
[WKF14, Chapter 4.2].

This concept is neccessary for fast access, as MongoDB does not offer join operations.
That would lead to multiple queries to get that data. This is avoided by storing the
tweet copies redundantly. In the relational model, this information is implicitly available
via join operations.

1 "user": {
2 "_id": "string, unique",
3 "name": "string, optional",
4 "description": "string, optional",
5 "password": "string",
6 "email": "string",
7 "countTweet": "number",
8 "countFollowing": "number",
9 "countFollowers": "number"

10 }

Listing 3.1: MongoDB: schema of collection ’users’

3.4.1. Asynchronous processing of actions
Most of the actions are performed asynchronously, e.g. if user A follows user B, A is
marked as follower of B. The user can continue using the service immediatly, he does not
have to wait for the action to be completed. In the background B’s tweets are copied to
A’s stream of tweets by the queue processing component (see [WKF14, Chapter 6]).

10

1 "tweet": {
2 "_id": "ObjectId, unique",
3 "author": "string, references a user",
4 "authorName": "string, optional",
5 "timestamp": "ISODate",
6 "text": "string",
7 "tags": [
8 "string"
9],

10 "users": [
11 "string, references a user"
12]
13 }

Listing 3.2: MongoDB: schema of collection ’tweets’

1 "bucket": {
2 "_id": "ObjectId, unique",
3 "userId": "string, references a user",
4 "upperBound": "ObjectId, references a tweet",
5 "lowerBound": "ObjectId, references a tweet",
6 "nextBucket": "ObjectId, references a bucket",
7 "previousBucket": "ObjectId, references a bucket",
8 "tweetCount": "number",
9 "tweets": [

10 {
11 "masterTweet": "ObjectId, references a tweet",
12 "timestamp": "ISODate",
13 "author": "string, references a user",
14 "authorName": "string, optional",
15 "text": "string"
16 }
17]
18 }

Listing 3.3: MongoDB: schema of collection ’buckets’

11

3.5. Mapping actions to the two data models
This section compares queries in the relational model (assuming ER diagram 3.1) and
queries using the document schema from section 3.4 qualitatively.
For this purpose six of the actions from section 3.2 are presented and analyzed for

each model. You can assume that indices are used in both models where appropriate.
Furthermore we assume that there are millions of users and billions of tweets to be stored.
This is important because not all data could fit into main memory of one server. Thus
many queries would require random I/O to disk, increasing response times significantly.

3.5.1. Relational algebra
The queries for the relational model are presented using relational algebra3. The queries
for the first three actions (3.1) to (3.3) are not expensive. But note that query (3.1)
delivers just basic information about the user. Including statistics like number of tweets,
number of followers and number of followees would require a different, more sophisticated
query using several joins, which would make the query more expensive.
The queries for the next three actions (3.4) to (3.6) require joins, which would make

the queries more expensive considering the assumptions from before.

• read user ’x’:

πuser_id,description,name(σuser_id=x(User)) (3.1)

• read tweet ’x’:

πid,created_at,author,text(σid=x(Tweet)) (3.2)

• read tweets by user ’x’:

πid,created_at,author,text(σuser_id=x(Tweet)) (3.3)

• read tweets with mentioned tag ’x’:

πid,created_at,author,text(Tweet ./id=tweet_id Contains ./tag_id=id (σtag=x(Tag))) (3.4)

• read tweets with mentioned user ’x’:

πid,created_at,author,text(Tweet ./id=tweet_id (σuser_id=x(Mentions))) (3.5)

• read stream from user ’x’:

πid,created_at,author,text(σuser_a=x(Follows) ./user_b=author Tweet) (3.6)

3see http://en.wikipedia.org/wiki/Relational_algebra for details

12

http://en.wikipedia.org/wiki/Relational_algebra

3.5.2. MongoDB queries
Please note that covering the query language4 of MongoDB is beyond the scope of this
bachelor thesis. The queries presented in this section should nevertheless be easy to
comprehend. find and findOne both expect two parameters. The first one corresponds
to a selection (σ), the second one to a projection (π).
As you can see in listings 3.4 to 3.9, all six queries are simple lookups5. Additionally

the MongoDB query 3.4 includes the statistics that where missing in query (3.1) from
last section.

1 db.users.findOne(
2 {_id: "x"},
3 {_id: 1, name: 1, description: 1, countTweet: 1,
4 countFollowing: 1, countFollowers: 1 }
5)

Listing 3.4: MongoDB query: read user ’x’

1 db.tweets.findOne(
2 {_id: "x"},
3 {_id: 1, timestamp: 1, author: 1, text: 1}
4)

Listing 3.5: MongoDB query: read tweet ’x’

1 db.tweets.find(
2 {author: "x"},
3 {_id: 1, timestamp: 1, author: 1, text: 1}
4)

Listing 3.6: MongoDB query: read tweets by user ’x’

4see http://docs.mongodb.org/manual/tutorial/query-documents/ for details
5Using MongoDB’s transparent sharding functionality (which does not require distributed locking

mechanisms) and several machines, data could be kept in main memory completely, thus further
improving response times.

13

http://docs.mongodb.org/manual/tutorial/query-documents/

1 db.tweets.find(
2 {tags: "x"},
3 {_id: 1, timestamp: 1, author: 1, text: 1}
4)

Listing 3.7: MongoDB query: read tweets with mentioned tag ’x’

1 db.tweets.find(
2 {users: "x"},
3 {_id: 1, timestamp: 1, author: 1, text: 1}
4)

Listing 3.8: MongoDB query: read tweets with mentioned user ’x’

1 db.buckets.find(
2 {userId: "x"},
3 {tweets: 1}
4)

Listing 3.9: MongoDB query: read stream from user ’x’

14

4. Extending YCSB in the context of
the micro blogging domain

This chapter explains how one can extend YCSB and shows how this was done for the
prototype in the micro blogging domain. Afterwards you find detailed information how
to run the prototype.

4.1. Extending YCSB in general
“A key design goal of [the] tool is extensibility” [CST+10, Chapter 5]. The YCSB
benchmarking suite is written in Java and available under the open source license
Apache License, Version 2.0 1. Figure 2.2 shows the YCSB client architecture. The two
components, which are highlighted in gray, are meant to be easily extended.

The so called “DB Interface Layer” is responsible for translating operations into actual
queries for a given DBMS. YCSB comes with implementations for some common DBMS
like cassandra, mongodb, redis, hbase, as well as for the generalized RDBMS interface
jdbc2 (which serves as a generic DB Interface for relational DBMS). Listing 4.1 shows a
(shortened) interface of the abstract class “com.yahoo.ycsb.DB”. Lines 7 to 16 show the
simple crud operations used by the benchmark. When implementing a new DB class for
a DMBS these operations have to be mapped to the semantics of this given DBMS (see
[CST+10, Chapter 5.2.1]). In their JavaDoc, they say “Rather than dictate the exact
semantics of these methods, we recommend you either implement them to match the
database’s default semantics, or the semantics of your target application”3. Due to the
simple data model seen in figure 2.1, the first two parameters of those methods are a
table name (by default “usertable”) and a key to identify a record. As we will see this is
a big limitation when it comes to extend YCSB with a more sophisticated data model
like the micro blogging domain.
The second part from figure 2.2 that is easy to extend, is the “Workload Executor”.

One basically has two options how to extend this layer (for details see [CST+10, Chapter
5.2]). The first is to define new values for the parameters of the existing workloads
(see Appendix A). The second is to write a new implementation of the abstract class
“com.yahoo.ycsb.Workload”. Listing 4.4 shows a (shortened) interface of this abstract
class.

1see http://www.apache.org/licenses/LICENSE-2.0 for details
2see http://de.wikipedia.org/wiki/Java_Database_Connectivity for details
3see https://github.com/brianfrankcooper/YCSB/blob/5659fc582c8280e1431ebcfa0891979f806c70ed/

core/src/main/java/com/yahoo/ycsb/DB.java#L38-L41 for details

15

http://www.apache.org/licenses/LICENSE-2.0
http://de.wikipedia.org/wiki/Java_Database_Connectivity
https://github.com/brianfrankcooper/YCSB/blob/5659fc582c8280e1431ebcfa0891979f806c70ed/core/src/main/java/com/yahoo/ycsb/DB.java#L38-L41
https://github.com/brianfrankcooper/YCSB/blob/5659fc582c8280e1431ebcfa0891979f806c70ed/core/src/main/java/com/yahoo/ycsb/DB.java#L38-L41

4.2. Extending YCSB with the micro blogging domain
model

Due to the simple data model of YCSB and the rather simple CRUD operations of the
benchmark suite, there is no ’natural’ way to extend YCSB to use the model discussed
in section 3.
The best solution would be to not use the existing classes DB and Workload, but

write something completely new that is better suited to be adjusted to a more complex
application setting. But that would mean that the other components of YCSB like the
stats module can not be reused either. So this approach would lead to a complete rewrite
of the benchmark suite. But this is outside the scope of this bachelor thesis.
As the implementation should just be a proof of concept, another approach is to use

the existing classes DB and Workload with different semantics:
The signature of the methods are unchanged. But as the parameter names are not part

of the signature in java (“Two of the components of a method declaration comprise the
method signature – the method’s name and the parameter types.” [Ora15]), they could
be renamed. This is not considered good practice, but serves the purpose of a proof of
concept.
The details are explained in the next two sections.

4.2.1. YCSB - DB for MongoDB and the micro blogging domain
The DB class corresponds to the DB Interface Layer seen in section 4.1. Instances of
this class are threadlocal, meaning each thread has its own instance.

The idea is to first leave the existing code as it is, so no breaking changes with existing
implementations for the various DBMS are introduced. And second to introduce a new
Java Interface, which offers the same methods as the DB class and reuses the first two
parameters of the CRUD operations with different semantics by renaming them and
adjusting the JavaDoc comments accordingly. Listing 4.1 shows the original methods
from YCSB and listing 4.2 shows the CRUD operations with the new semantics (see
Appendix B for a full version including JavaDoc comments). This concept is discussed
for the read method but applies to the other four methods (scan, update, insert and
delete) analogously.

Redefining semantics for the read operation

The first parameter String table is renamed to String readAction. Possible values an
implementation should be able to handle are user and tweet for reading a user’s details or
a (random) tweet of a user. The second parameter String key is renamed to String user
and should contain the user’s ID for whom the read operation should be done. Listing
4.3 shows an example call of the read method with the new semantics. This would read
the details of user u123.

16

1 package com.yahoo.ycsb;
2 public abstract class DB {
3 public void setProperties(Properties p);
4 public Properties getProperties();
5 public void init() throws DBException;
6 public void cleanup() throws DBException;
7 public abstract int read(String table, String key,
8 Set<String> fields, HashMap<String,ByteIterator> result);
9 public abstract int scan(String table, String startkey,

10 int recordcount, Set<String> fields,
11 Vector<HashMap<String,ByteIterator>> result);
12 public abstract int update(String table, String key,
13 HashMap<String,ByteIterator> values);
14 public abstract int insert(String table, String key,
15 HashMap<String,ByteIterator> values);
16 public abstract int delete(String table, String key);
17 }

Listing 4.1: YCSB: abstract class DB (shortened), Licensed under the Apache License
2.0

1 package de.mirkokoester.ycsb;
2 public interface MicrobloggingDB {
3 public int read(String readAction, String user, Set<String> fields,
4 HashMap<String, ByteIterator> result);
5 public int scan(String scanAction, String user, int recordcount,
6 Set<String> fields, Vector<HashMap<String, ByteIterator>> result);
7 public int update(String updateAction, String user,
8 HashMap<String, ByteIterator> values);
9 public int insert(String insertAction, String user,

10 HashMap<String, ByteIterator> values);
11 public int delete(String deleteAction, String user);
12 }

Listing 4.2: YCSB: MicrobloggingDB interface

1 db.read("user", "u123", fields, result);

Listing 4.3: YCSB: calling the read method with new semantics

17

4.2.2. YCSB - Workload for micro blogging domain
The Workload class corresponds to the Workload Executor seen in section 4.1. The single
instance of this class is shared among all threads.
The new implementation of the Workload class takes the new semantics of the Mi-

crobloggingDB interface into account. Workload defines two methods that operate on
instances of DB:

doInsert load data store prior to benchmarking; create defined state

doTransaction run benchmark, choose CRUD operation according to properties of
workload

1 package com.yahoo.ycsb;
2 public abstract class Workload {
3 public void init(Properties p) throws WorkloadException;
4 public Object initThread(Properties p, int mythreadid,
5 int threadcount) throws WorkloadException;
6 public void cleanup() throws WorkloadException;
7 public boolean doInsert(DB db, Object threadstate);
8 public boolean doTransaction(DB db, Object threadstate);
9 public void requestStop();

10 public boolean isStopRequested();
11 }

Listing 4.4: YCSB: abstract class Workload (shortened), Licensed under the Apache
License 2.0

4.2.3. Limitations of this approach
This approach has other issues besides its discussed design:

• DB implementations with the new semantics are not compatible with existing Work-
loads. And Workload implementations with the new semantics are not compatible
with existing DBs.

• Unfortunately it is not possible to check the correct usage at compile time. Which
classes should be used are determined from parameters at run time. The Instances
are then created via reflection4.

• The actual instances of the specified DB class are wrapped in a class called
com.yahoo.ycsb.DBWrapper. This means that one can not even at run time check
whether DB implements the new interface from listing 4.2.

4see http://en.wikipedia.org/wiki/Reflection_(computer_programming) for details

18

http://en.wikipedia.org/wiki/Reflection_(computer_programming)

Although the prototype, which uses this approach, is fully functional, it is not recom-
mended to extend YCSB using this approach.

4.3. Running the extended benchmark
This section shows how to run the prototype. If you don’t want to build the project
yourself, you can skip the next section and continue with section 4.3.2.

4.3.1. Building
YCSB uses Apache Maven5 v3.x as its build tool. You can invoke the build process on
the command line with the following command:

1 mvn clean package

4.3.2. Running
MongoDB

You need a running instance of MongoDB 2.4.x or 2.6.x (either a single node, or a ReplSet
or sharded). The easiest way to get started is with a single node. You can install it for
your operating system6 or use Docker7 to run it in a container8.

MongoDB via Docker Once Docker is up and running, you can start a MongoDB
instance as follows:

1 sudo docker run -d -p 27017:27017 -p 28017:28017 --name mongodb \
2 dockerfile/mongodb mongod --rest --httpinterface

This will create a new container called ’mongodb’ using the official MongoDB image
and make its ports 27017 and 28017 (webinterface) available on your system. If you need
to connect to the database using the MongoDB shell9 (or command line interface (CLI)),
you can do this also with Docker: This command creates a temporary container (–rm)
which is linked to your first container ’mongodb’ and runs the interactive MongoDB shell
and connects to the database using the db ’ycsb’.

5see http://maven.apache.org/ for details
6see http://www.mongodb.org/downloads for details
7see https://www.docker.com/ for details
8see http://en.wikipedia.org/wiki/Software_container for details
9see http://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell/ for

details

19

http://maven.apache.org/
http://www.mongodb.org/downloads
https://www.docker.com/
http://en.wikipedia.org/wiki/Software_container
http://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell/

1 sudo docker run -it --rm --link mongodb:mongodb dockerfile/mongodb \
2 bash -c ’mongo mongodb/ycsb’

Tuning MongoDB (indices) Before running the benchmark, you should create the
indices for each collection. The following commands have to be executed within the
MongoDB shell:

1 use ycsb
2 db.users.drop()
3 db.users.ensureIndex({ _id: 1 })

4 db.tweets.drop()
5 db.tweets.ensureIndex({ _id: 1 })
6 db.tweets.ensureIndex({ author: 1, _id: 1 })

7 db.usersFollowing.drop()
8 db.usersFollowing.ensureIndex({ _id: 1, following: 1 })

9 db.usersFollower.drop()
10 db.usersFollower.ensureIndex({ _id: 1, followed: 1 })

11 db.events.drop()
12 db.createCollection("events", {capped: true, size: 200000, max: 10000})
13 db.events.insert({userId: "u0"})

14 db.queues.drop()
15 db.queues.ensureIndex({ _id: 1 })
16 db.queues.insert({ _id : "u0", queue : [] })

17 db.buckets.drop()
18 db.buckets.ensureIndex({ userId: 1, lowerBound: 1 })

Listing 4.5: MongoDB: creating indices

extended YCSB

This section describes how to run the actual extended benchmark in the context of a
micro blogging domain.

First, you have to make sure that the queue processing component (see 3.4.1) is running
on the same server as MongoDB and can access the primary on localhost and port 27017 :

20

1 bin/mongoqueueakka

Load phase Next, you can start loading the database:

1 bin/ycsb load mongodb_microblogging -s \
2 -P workloads/workloada_microblogging \
3 -p mongodb.database=ycsb -p mongodb.writeConcern=normal \
4 -p mongodb.maxconnections=100 -p mongodb.url=mongodb://localhost:27017

This may take some while. But even if the suite finished, it may take the queue
processing component a while longer to process the actions asynchronously. One can
watch the CPU consumption of that process to tell when it is done.

Run phase Now, the benchmarking can be started with:

1 bin/ycsb run mongodb_microblogging -s \
2 -P workloads/workloada_microblogging \
3 -p mongodb.database=ycsb -p mongodb.writeConcern=normal \
4 -p mongodb.maxconnections=100 -p mongodb.url=mongodb://localhost:27017

When it is done, you get the same statistics as in the original YCSB benchmark suite.
The output looks like listing 4.6.

21

34 ...
35 scan: action posts, user u751, recordcount 21, fields: null
36 scan: action posts, user u111, recordcount 22, fields: null
37 2015-01-05 15:52:37:594 1 sec: 1350 operations; 972.62 current ops/sec;
38 [READ AverageLatency(us)=488.21]
39 [DELETE AverageLatency(us)=695.34]
40 [CLEANUP AverageLatency(us)=1207]
41 [INSERT AverageLatency(us)=973]
42 [UPDATE AverageLatency(us)=1423.31]
43 [SCAN AverageLatency(us)=1602.96]
44 [OVERALL], RunTime(ms), 1421.0
45 [OVERALL], Throughput(ops/sec), 950.0351864883885
46 [READ], Operations, 393
47 [READ], AverageLatency(us), 488.2086513994911
48 [READ], MinLatency(us), 102
49 [READ], MaxLatency(us), 37251
50 [READ], 95thPercentileLatency(ms), 0
51 [READ], 99thPercentileLatency(ms), 3
52 ...

Listing 4.6: YCSB: sample output of the extended benchmark

optional: running the website from [WKF14] The website from [WKF14] can be
run on the same machine as MongoDB with the following command:

1 bin/website

Now one can access the website in the browser at http://<server>:9000 ; e.g. http:
//localhost:9000

properties Similar to the original YCSB benchmarking suite (see appendix A), you
can tune the extended version with some properties:

• general
passive_equals_active should there be 2 groups10 of users with different be-

haviour? if true, the next 4 properties are being ignored (defaults to false)
activePassiveRatioFollowing proportion of active and passive users performing

action follow (defaults to 0.4)

10active users tend to write new content, passive users consume more content than they produce

22

http://localhost:9000
http://localhost:9000

activePassiveRatioFollowed proportion of active and passive users being followed
(defaults to 0.75)

activePassiveRatioTweeting proportion of active and passive users performing
action tweet (defaults to 0.8)

activePassiveRatioBeingMentioned proportion of active and passive users being
mentioned (defaults to 0.8)

workload the Java Workload class to be used (defaults to de.mirkokoester.ycsb.
microblogging.workloads.CoreWorkload

• load phase
usercount_generate how many new user accounts should be created?
tweetcount_generate how many new tweets should be created?
followcount_generate how many follow actions should be performed?

• run phase
usercount_insert how many new user accounts should be created?
tweetcount_insert how many new tweets should be created?
usercount_read how many read user actions should be performed?
tweetcount_read how many read tweet actions should be performed?
tweetcount_delete how many delete tweet actions should be performed?
followcount_update how many follow actions should be performed?
unfollowcount_update how many unfollow actions should be performed?
usercount_scan how many read tweets actions should be performed?
tweetcount_scan how many read tweet stream actions should be performed?

23

5. Conclusion
The whole codebase of YCSB focusses on the simple data model of a key-value-store and
simple CRUD operations.

It is relatively easy to extend YCSB with new Interfaces to new databases using this
data model. It is even easier to adjust the existing workloads to one’s needs. And one
can create eevn complete new workloads writing Java code. But again, just when using
the simple data model.
If the context of your application you want to benchmark several DBMS for also

matches those assumptions, you can even adopt YCSB to that context. If that is not
the case, the restrictions discussed in the last chapter keep you from extending YCSB to
your context. Additionally changing the existing classes so that the benchmark suite
matches your context is not a good idea either as this would introduce breaking changes
with the existing implementations of the class DB.

Although the implementation discussed in the last chapter works and uses a data
model of a micro blogging domain, it should be seen as aproof of concept with a design
that is not recommended for production use.
This leads to the conclusion, that YCSB is not easily extendable with other data

models, as it focusses to strongly on the data model of a key-value-store.

5.1. Outlook
It would be interesting to design a new benchmarking suite inspired by YCSB, but takes
the conclusions from this work into account and aims for extensibility even with different
data models. The best case would be to be able to use arbitrary data models. If that is
not suitable, at least a big enough subset of data models of most existing DBMS should
be supported.

24

Appendices

25

A. original YCSB
The creators of the YCSB benchmark suite have created a wiki1 where one can find most
information needed to run2 the benchmark.
The core workload package, that comes with YCSB, can be configured with some

properties3:

fieldcount the number of fields in a record (default: 10)

fieldlength the size of each field (default: 100)

readallfields should reads read all fields (true) or just one (false) (default: true)

readproportion what proportion of operations should be reads (default: 0.95)

updateproportion what proportion of operations should be updates (default: 0.05)

insertproportion what proportion of operations should be inserts (default: 0)

scanproportion what proportion of operations should be scans (default: 0)

readmodifywriteproportion what proportion of operations should be read a record,
modify it, write it back (default: 0)

requestdistribution what distribution should be used to select the records to operate
on – uniform, zipfian or latest (default: uniform)

maxscanlength for scans, what is the maximum number of records to scan (default:
1000)

scanlengthdistribution for scans, what distribution should be used to choose the number
of records to scan, for each scan, between 1 and maxscanlength (default: uniform)

insertorder should records be inserted in order by key (“ordered”), or in hashed order
(“hashed”) (default: hashed)

operationcount Number of operations to perform.

maxexecutiontime Maximum execution time in seconds. The benchmark runs until
either the operation count has exhausted or the maximum specified time has
elapsed, whichever is earlier.

table The name of the table (default: usertable)

1see https://github.com/brianfrankcooper/YCSB/wiki for details
2see https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload for details
3see https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties for details

26

https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties

B. YCSB extended

1 package de.mirkokoester.ycsb;
2

3 import java.util.HashMap;
4 import java.util.Set;
5 import java.util.Vector;
6 import com.yahoo.ycsb.ByteIterator;
7

8 /**
9 * The MicrobloggingDB interface has no additional methods or fields

10 * and serves only to identify the semantics of being
11 * a DB [com.yahoo.ycsb.DB] in the context of the
12 * micro blogging domain.
13 *
14 * @note mix in with com.yahoo.ycsb.DB
15 */
16 public interface MicrobloggingDB {
17

18 /**
19 * Read from the database. Each field/value pair from the result(s)
20 * will be stored in a HashMap.
21 * [com.yahoo.ycsb.DB#read(java.lang.String, java.lang.String,
22 * java.util.Set, java.util.HashMap)]
23 * @param readAction The read action to perform.
24 * can be one of "user", "tweet"
25 * @param user The user for which the operation should be executed.
26 * @param fields The list of fields to read,
27 * or null for all of them
28 * @param result A HashMap of field/value pairs for the result
29 * @return Zero on success, a non-zero error code on error
30 * or "not found".
31 */
32 public int read(String readAction, String user, Set<String> fields,
33 HashMap<String, ByteIterator> result);

Listing B.1: YCSB: interface for DB with new semantics (Part 1)

27

34 /**
35 * Scan the Database.
36 * [com.yahoo.ycsb.DB#scan(java.lang.String, java.lang.String, int,
37 * java.util.Set, java.util.Vector)]
38 *
39 * @param scanAction The scan action to perform.
40 * can be one of "posts", "stream"
41 * @param user The user for which the operation should be executed.
42 * @param fields The list of fields to read, or null for all of them
43 */
44 public int scan(String scanAction, String user, int recordcount,
45 Set<String> fields, Vector<HashMap<String, ByteIterator>> result);
46

47 /**
48 * Update an entry in the DB.
49 * [com.yahoo.ycsb.DB#update(java.lang.String,
50 * java.lang.String, java.util.HashMap)]
51 *
52 * @param updateAction The update action to perform.
53 * can be one of "follow", "unfollow"
54 * @param user The user for which the operation should be executed.
55 */
56 public int update(String updateAction, String user,
57 HashMap<String, ByteIterator> values);
58

59 /**
60 * creates a new user or inserts a new tweet for the given user.
61 * [com.yahoo.ycsb.DB#insert(java.lang.String,
62 * java.lang.String, java.util.HashMap)]
63 *
64 * @param insertAction The insert action to perform.
65 * can be one of "user", "tweet"
66 * @param user The user for which the operation should be executed.
67 * @param values keys if insertAction is
68 * ’user’ - name, description, password, email
69 * ’tweet’ - text
70 */
71 public int insert(String insertAction, String user,
72 HashMap<String, ByteIterator> values);

Listing B.2: YCSB: interface for DB with new semantics (Part 2)

28

73 /**
74 * deletes a tweet of the given user.
75 * [com.yahoo.ycsb.DB#delete(java.lang.String, java.lang.String)]
76 *
77 * @param deleteAction is ignored,
78 * since only tweets are being deleted
79 * @param user The user for which the operation should be executed.
80 */
81 public int delete(String deleteAction, String user);
82 }

Listing B.3: YCSB: interface for DB with new semantics (Part 3)

29

Bibliography
[BG13] Barahmand, Sumita ; Ghandeharizadeh, Shahram: BG: A Bench-

mark to Evaluate Interactive Social Networking Actions. In: CIDR,
www.cidrdb.org, 2013

[CDG+08] Chang, Fay ; Dean, Jeffrey ; Ghemawat, Sanjay ; Hsieh, Wilson C. ;
Wallach, Deborah A. ; Burrows, Mike ; Chandra, Tushar ; Fikes,
Andrew ; Gruber, Robert E.: Bigtable: A Distributed Storage System
for Structured Data. In: ACM Trans. Comput. Syst. 26 (2008), Juni,
Nr. 2, 4:1–4:26. http://dx.doi.org/10.1145/1365815.1365816. – DOI
10.1145/1365815.1365816. – ISSN 0734–2071

[Cod70] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. In:
Commun. ACM 13 (1970), Juni, Nr. 6, 377–387. http://dx.doi.org/10.
1145/362384.362685. – DOI 10.1145/362384.362685. – ISSN 0001–0782

[CST+10] Cooper, Brian F. ; Silberstein, Adam ; Tam, Erwin ; Ramakrishnan,
Raghu ; Sears, Russell: Benchmarking Cloud Serving Systems with YCSB.
In: Proceedings of the 1st ACM Symposium on Cloud Computing. New York,
NY, USA : ACM, 2010 (SoCC ’10). – ISBN 978–1–4503–0036–0, 143–154

[Fow15] Fowler, Martin: NosqlDefinition. http://martinfowler.com/bliki/
NosqlDefinition.html. Version: Januar 2015

[FWGR14] Friedrich, Steffen ; Wingerath, Wolfram ; Gessert, Felix ; Ritter,
Norbert: NoSQL OLTP Benchmarking: A Survey. (2014)

[GL02] Gilbert, Seth ; Lynch, Nancy: Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. In: SIGACT News 33
(2002), Juni, Nr. 2, 51–59. http://dx.doi.org/10.1145/564585.564601. –
DOI 10.1145/564585.564601. – ISSN 0163–5700

[Ora15] Oracle: The Java™ Tutorials - method signatures. http://docs.oracle.
com/javase/tutorial/java/javaOO/methods.html. Version: Januar 2015

[PPR+09] Pavlo, Andrew ; Paulson, Erik ; Rasin, Alexander ; Abadi, Daniel J.
; DeWitt, David J. ; Madden, Samuel ; Stonebraker, Michael: A
comparison of approaches to large-scale data analysis. In: SIGMOD ’09:
Proceedings of the 35th SIGMOD international conference on Management
of data. New York, NY, USA : ACM, 2009. – ISBN 978–1–60558–551–2,
165–178

30

http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685
http://martinfowler.com/bliki/NosqlDefinition.html
http://martinfowler.com/bliki/NosqlDefinition.html
http://dx.doi.org/10.1145/564585.564601
http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

[PPR+11] Patil, Swapnil ; Polte, Milo ; Ren, Kai ; Tantisiriroj, Wittawat ; Xiao,
Lin ; López, Julio ; Gibson, Garth ; Fuchs, Adam ; Rinaldi, Billie:
YCSB++: Benchmarking and Performance Debugging Advanced Features
in Scalable Table Stores. In: Proceedings of the 2Nd ACM Symposium on
Cloud Computing. New York, NY, USA : ACM, 2011 (SOCC ’11). – ISBN
978–1–4503–0976–9, 9:1–9:14

[Wik15] Wiki, YCSB G.: YCSB DBMS Overview. https://github.com/
brianfrankcooper/YCSB/wiki#overview. Version: Januar 2015

[WKF14] Witt, Erik ; Köster, Mirko ; Finnern, Malte: Erstellung eines Twitter-
Clones mit MongoDB und Elasticsearch / Fachbereich Informatik, Fakultät
für Mathematik, Informatik und Naturwissenschaften, Universität Ham-
burg. Hamburg, Germany, September 2014. – Projektbericht ’Masterprojekt
NoSQL’. – 47 S.

31

https://github.com/brianfrankcooper/YCSB/wiki#overview
https://github.com/brianfrankcooper/YCSB/wiki#overview

Erklärung
Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen, als die
angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten In-
ternetquellen – benutzt habe, die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.
Ich bin mit der Einstellung der Bachelor-Arbeit in den Bestand der Bibliothek des

Fachbereichs Informatik einverstanden.

Hamburg, den 06.01.2015
Mirko Köster

32

	Introduction
	Motivation and scope of this bachelor thesis
	Chapter outline

	State of research
	Yahoo! Cloud Serving Benchmark
	related work

	Data model of the micro blogging domain
	Data modelling in NoSQL
	Entities and actions
	Entity relationship diagram of the micro blogging domain
	Document schema
	Asynchronous processing of actions

	Mapping actions to the two data models
	Relational algebra
	MongoDB queries

	Extending YCSB in the context of the micro blogging domain
	Extending YCSB in general
	Extending YCSB with the micro blogging domain model
	YCSB - DB for MongoDB and the micro blogging domain
	YCSB - Workload for micro blogging domain
	Limitations of this approach

	Running the extended benchmark
	Building
	Running

	Conclusion
	Outlook

	Appendices
	original YCSB
	YCSB extended
	Bibliography

