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Abstract

English

Certain data tuple matching, i.e. comparison and decision model in the process of duplicate
detection, is object of current research. However, while search space reduction as a part
of duplicate detection in probabilistic data has already been investigated, tuple matching
in probabilistic data as the subsequent step has not. This thesis has two main objectives:
first, the development and evaluation of an approach to adapt existing certain data tuple
matching techniques to probabilistic x-tuples and, second, the generation of large labelled
probabilistic data sets for evaluation experiments.

The probabilistic ULDB data model is described where every x-tuple consists of one or
more mutually exclusive alternatives that represent one and the same real-world entity.
ProbGee, an Eclipse-based framework for the generation of labelled probabilistic data sets
from existing certain data, is presented and used to generate the labelled data that is
needed for evaluation.

The proposed tuple matching approach uses a certain data decision model to match alter-
native pairs corresponding to an x-tuple pair and derives the x-tuple pair matching decision
from the alternative pair labels. Three reduction strategies to avoid unreasonable tuple
pair decisions are discussed: reducing alternatives, reducing alternative pairs and reduc-
ing comparison vectors. A special alternative pair reduction strategy is the Best Partner
Reduction which does not require any configuration to function. Furthermore, four vari-
ants of deriving the x-tuple pair matching status are proposed, namely Expected Similar-
ity, Expected Similarity with Uniformly Distributed Confidences, Best Partner Similarity,
Maximal a-Prob. Similarity and Cry with the Wolves.

The experimental results indicate that reducing alternatives or alternative pairs increases
recall and F-measure of the result strongly on error-prone data, while it has little effect
on rather clean data. None of the tuple pair decision variants clearly outperforms the
others. In a real application, applying a combination of reducing alternative pairs with
the Best Partner Reduction and deriving tuple pair decisions according to the Expected
Similarity with Uniformly Distributed Confidences seems to be reasonable, because it does

not require the user to define any parameters.



2 Abstract

German

Tuplematching, d.h. Vergleich und Entscheidungsmodell bei der Duplikatenerkennung,
ist Gegenstand aktueller Forschung. Doch wihrend die Suchraumreduzierung als Teil der
Duplikatenerkennung in probabilistischen Daten bereits untersucht wurde, wurde Tupel-
matching in probabilistischen Daten als nachfolgender Schritt noch nicht untersucht. Diese
Arbeit hat zwei Ziele: erstens die Entwicklung und Bewertung eines Ansatzes zur Anpas-
sung bestehender Tupelmatching-Methoden an probabilistische x-Tupel und zweitens die
Generierung einer grofsen Anzahl an gelabelten probabilistischen Datensétzen fiir Evalua-
tionsexperimente.

Das probabilistische ULDB-Datenmodell wird beschrieben, in dem jedes x-Tupel aus einer
oder mehreren sich gegenseitig ausschlieffenden Alternativen besteht, die ein und dieselbe
Realweltentitét représentieren.

ProbGee, ein Eclipse-basiertes Framework zur Generierung gelabelter probabilistischer
Daten aus existierenden sicheren Daten (von engl. certain data), wird vorgestellt und
zur Generierung der gelabelten Daten genutzt, die zur Evaluation benétigt werden.

Bei dem vorgeschlagenen Ansatz zum Tupelmatching wird ein Entscheidungsmodell ver-
wendet, das auf sicheren Daten arbeitet, um den Matchingstatus von Alternativpaaren
zu bestimmen, d.h. um zu entscheiden, ob die entsprechenden Alternativen dieselbe Re-
alweltentitét darstellen oder nicht. Anhand der Matchingstati der einem x-Tupel-Paar
entsprechenden Alternativpaare wird nachfolgend der Matchingstatus des x-Tupel-Paares
ermittelt. Drei Reduktionsstrategien zur Vermeidung unsinniger Tupelpaarentscheidungen
werden diskutiert: die Reduktion von Alternativen, die Reduktion von Alternativpaaren
und die Reduktion von Vergleichsvektoren. Eine besondere Alternativpaarreduktion ist
die Best Partner Reduction, die keiner Konfiguration bedarf. Dariiber hinaus werden vier
Varianten vorgeschlagen, den Matchingstatus eines x-Tupel-Paares abzuleiten: Expected
Similarity, Expected Similarity with Uniformly Distributed Confidences, Best Partner Sim-
ilarity, Maximal a-Prob. Similarity und Cry with the Wolves.

Die Experimentergebnisse deuten darauf hin, dass die Reduktion von Alternativen und Al-
ternativpaaren den Recall und das F-Measure des Ergebnisses auf fehlerbehafteten Daten
stark verbessern, wiahrend sie kaum einen Effekt bei wenig fehlerbehafteten Daten zeigen.
Keine der Varianten zur Ableitung der Tupelpaarentscheidung zeigt sich den anderen
deutlich tiberlegen. In einer tatséchlichen Anwendung scheint der Einsatz einer Kom-
bination aus der Alternativpaarreduktion Best Partner Reduction und dem Ansatz Ex-
pected Similarity with Uniformly Distributed Confidences zur Berechnung des x-Tupel-

Paar-Matchingstatus sinnvoll, da sie keinerlei Konfiguration durch den Nutzer erfordert.
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1. Introduction

In this thesis, we investigate how existing tuple matching{ﬂ techniques known from duplicate
detection in certain data can be applied to uncertain probabilistic data. Furthermore, we
implement our approaches and evaluate them on synthetic data generated solely for this

purpose.

1.1. Motivation

More and more applications impose requirements on solutions for storing and processing
uncertain data that cannot be met by traditional database systems. Uncertain data can
for example originate from inaccurate readings in sensor networks such as RFID networks
IKBS08, HMMS12|, imperfect OCR in automatic number plate recognition [MR10] or from
personal information in social networks or crowd-sourced databases like the Last. me] music
database which typically contain massive amounts of error-prone and contradictory user-
generated data.

Modelling uncertainty in a probabilistic database instead of resolving it has already been
recognised as a means to reduce the costs of the data integration process [vKdK09]. In some
applications, it is even necessary to manage and reason with multiple possible interpreta-
tions of measured data, so that some kind of probabilistic database system is practically
called for. For example, technological breakthroughs in the field of astrophysics place great
demands on probabilistic data storage and processing solutions [SCH09| as astrophysical
surveys deliver much more data nowadays than they did a few years ago: the integra-
tion of today’s survey results with each other (and also with data from older surveys and

simulations) simply cannot be done with the technology currently available.

1.2. State of Research

The integration of certain data and duplicate detection in particular are actively researched
topics and have been for many years [Chrl2|. A very good overview over the process of
duplicate detection, especially over string metrics commonly used for tuple comparisons

and over popular decision models, is given in [EIV07].

!By tuple matching, we mean the in-depth tuple comparison and the decision model of the duplicate
detection process.
2Last.fm: http://www.lastfm.de/.
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Since probabilistic databases are still in their infancy, the integration of and duplicate de-
tection in probabilistic data have received little attention so far. However, some approaches
to adapt existing certain data search space reduction (SSR) techniques to probabilistic data
have been proposed in [PvKdKR09] and an experimental evaluation of adapted probabilis-

tic search space reduction techniques can be found in [FW10].

In the field of certain data duplicate detection, appropriately large labelled data sets needed
for the evaluation of tuple matching techniques are hard to come by, e.g. due to confiden-
tiality. It should be noted, though, that there are a few data generators, so that conducting
evaluation experiments for certain data techniques is still possible, even when no real-world
data sets are available. To our knowledge, there are virtually no probabilistic sets of test
data we could use for the evaluation experiments, but in [FW10] a prototypical generator

for probabilistic data sets is presented.

1.3. Goals

In our master’s thesis, we address two problems: first, how to make existing tuple matching
techniques for certain data applicable to probabilistic (relational) data and, second, the
generation of large labelled probabilistic data sets for evaluation experiments.

We give an overview over existing techniques for tuple matching on certain data and
examine how they can be applied to probabilistic dataﬂ The basic idea here is to use the
existing certain data techniques on probabilistic x-tuple alternatives and then derive the
matching status of two x-tuples.

We implement an approach as baseline that compares all alternative pairs corresponding
to a tuple pair and computes the tuple pair matching status from the matching status of all
alternative pairs. Besides, we implement variants of this naive approach using particular
selection strategies for the alternative comparisons as well as for the derivation of the
matching status. Finally, we evaluate the different approaches experimentally with respect

to recall, precision and the traditional F-measure.

Most importantly, though, we describe and implement a framework for the generation
of probabilistic relational data with labelled duplicates. As we do not have access to
appropriately large probabilistic data sets for those experiments, we have to generate them
ourselves. To make the final experiments as meaningful as possible, we improve the data

generator described in [EW10] by the following features:

e more control over data quality: control over the degree of similarity between duplicate

x-tuples and between alternatives of an x-tuple.
e more realistic error patterns: realistic typos and confusion set errors.

e improved usability: a more generic and simpler user interface.

3For our implementation, we use the ULDB data model [BSHWO6), Wid08g].
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1.4. Chapter Outline

Chapter [2| contains related work. We introduce the probabilistic ULDB data model and
give an overview over tuple matching approaches commonly used in certain data. We also
describe a search space reduction technique adapted to probabilistic data and examine
literature on the generation of synthetic data.

In Chapter [3| we present our data generation framework ProbGee. After a description
of the workflow in ProbGee, we go into detail about the error generation architecture we
developed to achieve realistic error patterns. In the final section, we briefly characterise
some special features like the graphical user interface.

The concept of our approach to the adaption of existing tuple matching methods to prob-
abilistic data is presented in Chapter

The description and analysis of our evaluation experiments are given in Chapter [f

We conclude our work in Chapter [6] with a short summary and future prospects.
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2. Related Work

This chapter provides the theoretical foundations of our work. In the first section, we
describe the probabilistic ULDB data model. Section 2 comprises an overview over existing
tuple matching techniques on certain data. In the third section, we describe an adaption
of the certain data search space reduction technique Sorted Neighbourhood Method to
probabilistic data. The final section is devoted to the available literature on the generation

of test data needed to evaluate tuple matching techniques.

2.1. The Probabilistic Data Model

There are several probabilistic database prototypes, e.g. MayBMS [Koc08|, MYSTIQ
IBDM™ 05| and Trio [Wid08§], but there are no commercial products available on the market,
yet. The data model used in this thesis is the Uncertainty Lineage Database (ULDB)
data model used in Trio according to [BSHWO0G, [Wid08] which extends the traditional
relational model by possibilities to represent uncertainty regarding a tuple’s attributes
as well as its very existence. In a ULDB, an entity is not represented by one single
combination of attribute values as it is in a certain database, but by a (discrete) probability
distribution over mutually exclusive attribute value combinations. Hence, there is not one
representation of the modelled part of the world, but a probability distribution over possible

representations, called possible worlds.

( title year | studio conf )
tia; | Catwoman | 1969 | Twentieth Century Fox ; 0.6
toaq Batman 1966 Twentieth Century Fox i 0.8
toas L 1967 : Republic Pictures 0.2 )

Table 2.1.: A probabilistic relation with two x-tuples incorporating uncertainty on tuple
level (¢1) and attribute level (¢2).

A tuple in a ULDB is called an z-tuple and consists of one or more mutually exclusive en-
tity representations. Each of those representations is called an alternative and is attached
with a confidence value that represents the probability of this alternative being the correct
entity representation. Table illustrates how uncertainty on tuple and alternative level
is represented.

The confidence of the Catwoman tuple is only 0.6 = 60%, meaning that the correct rep-
resentation of the domain does not contain this entity with a probability of 40%. A tuple
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whose existence is not certain is called a maybe-tuple. The existence of the Batman tuple is
certain, since the sum of all its alternatives’ confidences equals 1. The characteristics of the
correct representation, however, are not certain: with a probability of 80%, the film was
produced by Twentieth Century Fox in 1966 and with a probability of 20% by Republic
Pictures in 1967.

2.2. Tuple Matching in Certain Data

Duplicate detection, i.e. the process of identifying pairs of tuples that represent the same
real-world entity, is a crucial part of the information integration process. In an error-free
relational system with absolutely clean data, duplicate detection could be performed with a
simple equality check, since all duplicates were perfect and thus identical. Unfortunately,
real-world data are dirty and duplicate detection is far more difficult: duplicates may
differ due to different formatting, abbreviations, spelling errors, typos and semantic or

other errors.

The first formal mathematical model for duplicate detection was developed by Fellegi und
Sunter in the 1960s [F'S69] and has been improved by Winkler [Win99, Win00] and others
[CHI0, [Jar95l [Gil01l, VMEOQ3]. Typical duplicate detection systems implement a process
similar to the one depicted in Figure 2:1], although the techniques used in the individual
steps may vary from system to system [EIVOT7]. As indicated, our focus lies on the tuple

matching by which we subsume the comparison and the decision model.
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Figure 2.1.: A schematic view on the duplicate detection process.

The first step in duplicate detection is the standardisation of the data where minor in-
consistencies between data from different sources are removed, for example by converting

string values to lowercase, transforming values to another format or removing special char-
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acters. As a thorough comparison of every tuple in one data source with every tuple in
every other data source is infeasible, obvious non-duplicate tuple pairs are filtered out with
simple means in the following step called search space reduction. All tuple pairs in the re-
maining search space then undergo an attribute value comparison: the result of such a
tuple pair comparison is a comparison vector whose entries represent the similarity of the
corresponding tuples in each attribute value. Usually, the attribute value comparisons are
performed with character-based similarity metrics like the Levenshtein metric, token-based
similarity metrics like the Jaccard metric or hybrid metrics like Soft TFIDF E| On the basis
of the comparison vectors, each tuple pair is then either declared a match or an unmatch by
the decision model. Finally, an evaluation of the duplicate detection result can be carried

out.

The process of duplicate detection as we describe it does not lead to conflict-free tuple
pair decisions: for example, if two tuple pairs (t1,t2) and (t2,t3) are declared matches and
(t1,t3) is declared an unmatch, a conflict lies in the fact that the two matching labels imply
that tuples t; and t3 are matches as well, while the matching label assigned by the decision
model indicates otherwise.

One possibility to resolve such conflicts is to compute the transitive closure of the matching
relation, so that in the above example, tuple pair (¢1,t3) would simply be declared a
match. More sophisticated strategies to resolve such conflicts are described in Section 6.9
in [Chr12].

In the following subsection, we briefly describe the formal notation of the duplicate detec-
tion problem. The remainder of this section deals with different decision model approaches
according to [EIV0T].

2.2.1. Problem Notation

Given two data sources A and B, the set of all tuple pairs
AxB={(ab)|ac Abe B}

is the union of the disjunct sets M and U where a = b for all tuple pairs in M and a # b
for all tuple pairs in U. So

M ={(ab) |]a=0b,a € Abe B}
is the set of matches and
U={(ab)|a#bacAbe B}

is the set of unmatches.

When the decision model assigns a tuple pair to either M or U, two kinds of errors can

! An overview of different string comparison metrics is given in Chapter 5 of [Chr12].
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occur: false positives and false negatives. A false positive is an actual unmatch that
is declared a match, whereas a false negative means an actual match that is declared
an unmatch. To minimise the number of errors, the set P of possible matches can be
introduced for tuple pairs whose matching status is too doubtful and should be determined
by a domain expert. Since humans are very inefficient and expensive in comparison to an

automated decision model, though, as few tuple pairs as possible are assigned to P.

Assuming that n common attributes aq,ao, ..., a, of the tuples in sources A and B are
chosen for the attribute value comparison, the comparison of a tuple pair (¢;,¢;) results in
a comparison vector
_[.1 2 n
Cij = [€i:Cijr i)
of size n where a vector component ci-“ ; 1s the comparison result of the tuples in attribute aj,

with a comparison function Cj. The space of all comparison vectors is called comparison

space T'.
movies
(title . year | studio N
t; | Batman - 1966 | Twentieth Century Fox
to | Batman 4 - 1967 | Republic Pictures
t3 | Batmen & Robin | 1966 | Republic Pictures
t4 | Catwoman 4 . 2004 | Warner Bros. Picture
compute
comparison (Simtitle SiInyeau" SiMgtudio label A
vectors (t1, t2) 1.0 0.8 0.0 P
(t1, t3) 0.9 1.0 0.0 P
(t1, ta) 0.2 0.0 0.0 U
(t2, t3) 0.9 0.8 1.0 M
(ta, t4) 0.2 0.0 0.3 U
(t3, t4) | 0.2 0.0 0.3 U |

Figure 2.2.: Four tuples with all corresponding comparison vectors and labels.

An example of a very simple discrete attribute comparison function is

1 if vy =09
Ci(v1,v2) = ;

0 else

where the similarity of the compared attribute values is either 1, if the attribute values are
equal, or 0, if they differ somehow. Comparison functions can also be much more complex
and deliver categorical or continuous values. The comparison functions used in this thesis
produce a numerical matching weight that is normalised, so that attribute value similarities
range from 0 (completely different) to 1 (perfect match).

Figure 2.2 shows four movie tuples with the attributes title, year and studio together
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with comparison vectors corresponding to all tuple pairs. The decision model determines
the matching status of a tuple pair (t;,¢;) on the basis of the corresponding comparison
vector ¢; ; and under the assumption that tuples with similar or identical attribute values
correspond to the same real-world entity with a high probability, whereas actual unmatches
are rather dissimilar. Accordingly, a tuple pair is assigned to M, if its comparison vector
holds values near or equal to 1, and is assigned to U in case of low similarity values. In
this example, some tuple pairs like (t2,t3) and (¢1,t4) are easily recognisable as match
or unmatch respectively, while the decision for other tuple pairs like (¢1,¢3) is not as

obvious.

2.2.2. The Probabilistic Decision Model by Fellegi and Sunter

One of the fundamental works on duplicate detection is a paper by Ivan Fellegi and Alan
Sunter from the year 1969 [F'S69] that is based on a work from the 1950s [NKAJ59|. Fellegi
and Sunter present a decision model that minimises the probability for false positives and
false negatives and thus is error-optimal.

They define

m(cm-) = P(Ci7j‘(ti,tj) S M)

as the probability that comparison vector ¢; j corresponds to a tuple pair (t;,¢;), given that

the tuple pair is an actual match. Correspondingly,
u(cig) = P(eig|(tity) € U)

is defined as probability for ¢; ; resulting from the comparison of ¢; and t;, given that the

tuples actually do not match. The authors then compute the matching weight ZL(%”)) and
7

determine the matching status by thresholding.

The key difficulty in this model is the computation of the matching probabilities and thus
determining the matching weights. A very naive approach is labelling a subset of all tuple
pairs by hand and approximating the weights on the basis of the resulting labels.

In [Win88], William Winkler proposes a more efficient approach that uses the expectation-
mazimisation algorithm for matching weight estimations. However, this procedure does
not seem practicable, since, according to [Win02], it only works under certain limitations
which don’t seem realistic in general; for example, a proportion of duplicate tuples of 5%
or more is required, M and U have to be relatively well-separated and typos should not

be too frequent in the data.

Although the model of Fellegi and Sunter is error-optimal, it does not lead to cost-optimal
decisions, when false positives and false negatives are not equally expensive. In [VMEOQ3],
Verykios et al. present an approach to minimise the expected costs of a decision. For this
purpose, a cost matriz is defined whose entries represent the costs of every possible decision

(match, unmatch, possible match) given every possible actual matching status (match,
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unmatch). The expected costs of every possible decision are computed and the decision
with the lowest expected costs is taken. The authors claim that probability distributions

over possible costs can also be used instead of fixed values.

In principle, the mentioned probabilistic approaches make a mostly automated duplicate
detection possible. However, the computation of matching weights — although in favourable
scenarios efficiently possible with the expectation-maximisation algorithm — remains a
major obstacle in the general case. A great number of possible similarity values leads to
a great number of possible comparison vectors and thus to a great number of matching
weights to be computed. So, ideally, binary comparison functions should be used. More

complex comparison functions can also be used, but have to be discretised.

2.2.3. Distance-Based Decision Models

A group of decision models that work without training data are based on distance metrics
for tuples. A very simple way to compute the distance between two tuples is concatenating
the attribute values of each tuple like string values and then computing a similarity value
from the two tuple representations as proposed by Monge und Elkan in [ME96]. The basic
Levenshtein distance is not appropriate for the comparison of such string representations,
because the alignment between the two strings is not modelled well, so that two strings
like “Bruce Wayne” and “Wayne, Bruce” may not be recognised as highly similar. Monge
and Elkan use the Smith-Waterman edit distance in their paper, as it accounts for such
gaps. Other metrics can also be used; in [Coh00] for example, Cohen proposes combining
the TFIDF weighting scheme and cosine similarity. However, these naive approaches do

not perform well in comparison to other distance-based approaches.

In [DSD98|, the distance between two tuples is computed as the weighted sum of the dis-
tances between the attribute values. The decision as to whether the two tuples are matches
or unmatches is made according to a similarity threshold.

Another approach is to compute a comparison vector holding the attribute similarities
and to declare a match or unmatch depending on its Euclidian or Manhattan distance to
the perfect match vector ([1,1,...,1]) or the perfect unmatch vector ([0,0,...,0]) respec-
tively.

A more sophisticated distance-based decision model based on ranked list merging is intro-
duced by Guha et al. in [GKMS04]. The main idea is illustrated in Figure : there is
one movies relation with tuples ¢1, to and t3 and a single tuple t4 from the films relation
which may be a duplicate of one of the other tuples.

First, the tuples from movies are ranked according to their similarity to t4 in every at-
tribute. Since the resulting rankings can be contradicting, a merging function is used to
create an unambiguous ranking; in our example, the tuples are sorted by the sum of all
attribute similarities, so that tuple t3 appears to be the most likely duplicate candidate.
Although the weighted sum works well in this example, Guha et al. claim that it does not

perform well in general. They propose a more complex merging function that minimises
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movies
( title year | studio A
t; | Batman 1977 i Twentieth Century Fox
ts | Catwoman 2004 : Warner Bros. Picture
t3 | Batmen & Robin : 1966 i Republic Pictures )

films

(title year | studio ] 1. ranking
ty LBatman 1967 | Republic PicturesJ

2. merging

’/_\ scored rankings
i N\

—_— (Simtitle i Simyear SiMgtudio

(ta, t3) 2,81 (ta, t1) 1.00 = (ta, t3) 0.88 | (ta, t3) 1.00
(ta, t1) 2,22 (ts, t3) 0.93 " (4, £1) 0737 (ts, t2) 0.66
(ts, t2) 1,48 | (4, 12) 0.82 (4, 12) 0.00 | (4, t1) 0.49 |

Figure 2.3.: The ranked list merging technique.

the footrule distance. The footrule distance over two rankings o and 7 on a relation R with

n tuples t1,t9,...,t, is defined as

Flor)=) |o(t)—r(t)|
i=1

and can be interpreted as the absolute difference of the ¢ and 7 ranking positions of tuples

in relation R.

The distance-based models discussed here treat attribute values as strings and rely on string
similarities, but there are also approaches to exploit foreign keys for duplicate detection,
see for example [ACG02].

All distance-based models have in common that a similarity threshold has to be defined to
distinguish matches and unmatches. While distance-based decision models do not perform
well in comparison with other models, they can be used even when there is no training data
available which can be a great advantage. Defining similarity thresholds without training

data, though, usually is very hard.

2.2.4. Rule-Based Decision Models

In the first work on rule-based duplicate detection we are aware of [WM89|, Wang and
Madnick examine how a domain expert can define rules that generate an identifying at-
tribute set for a single entity, when there is no global identifier available. But obviously,

this approach is not feasible for large data sets, since rules are specified on entity level.
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In the late 1990s, Hernandez and Stolfo came up with a more promising rule-based approach
to duplicate detection in [HS98]|: the search space reduction is executed with the Sorted
Neighbourhood Method, while the in-depth comparison works according to an equational
theory that can be used to specify rules by which the matching status of two tuples can
be determined. A simplified example rule for the movie domain known from the previous
examples is illustrated in Listing 2.2} the rule states that two tuples represent the same
movie, if they have a similar title and were produced by the same studio. Naturally, in
an actual rule, the “similar to” would have to be replaced, for example by a similarity

threshold and a comparison function.

for (a,b) in movies do
if a.title is similar to b.title and a.studio = b.studio
then
a matches b
end if
end for

Listing 2.1: A simplified example rule that determines the matching status of movie tuples,

according to the rule-based equational theory by Hernandez and Stolfo [HS9S].

A more sophisticated duplicate detection framework was published by Low, Lee and Ling
in 2001 |[LLLOI]. In their framework, duplicate identification rules can be defined that
do not simply assign a label to a tuple pair, but can also assign a matching label with a
certainty factor. Apart from rules for duplicate identification, Low, Lee and Ling define
three further rule categories for how to merge duplicates, how to update data in particular

situations and when to alert the user.

The literature indicates that rule-based decision models can perform exceptionally well
with respect to recall and precision. Negative aspects, however, are high costs and domain-
dependency: rules typically have to be designed by domain experts for a given domain with

the utmost care.

2.2.5. Machine Learning Decision Models

In this section, we describe machine learning decision models. First, we go into detail on
supervised machine learning decision models which deliver good results, but cannot work
without labelled training data. Then, we describe unsupervised machine learning decision
models based on clustering algorithms that can work independently from training data.
Finally, we describe hybrid machine learning models that combine the benefits of both

machine learning paradigms.

Supervised Machine Learning Decision Models

Supervised learners take a set of pre-labelled training instances as input to train a model

that can assign any other instance to one of the classes known from the training set. A
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training instance (¢, f(c)) comprises a pattern ¢ and the correct classification f(c) of this
pattern. In the context of duplicate detection, ¢ is a comparison vector and f(c) € {M,U}
or f(c) € {M,U, P} respectively is the matching status. The process of duplicate detection
with a supervised learning decision model is illustrated in Figure [2.4

First, a set of training instances is created from the set of all comparison vectors and is
used to train a decision model. After that, every comparison vector is assigned with a

matching status.

2. learn

( supervised learner ) \

1. training set

decision
model

all __/
comparison &, matching

vectors 3. remaining set 4. classify status

Figure 2.4.: A supervised learning decision model.

A rather prominent supervised classification method is the concept of decision trees. Ap-
proaches to the automated construction of decision trees were first published by Morgan
and Sonquist [SM64] and hence their CHAID algorithm is the first decision tree algorithm.
Another notable decision tree algorithm is the CART algorithm that was published in
1984 by Breiman et al. [Bre84]. The most commonly used decision tree algorithms today,
however, probably are ID3 |Qui83| and its successor C4.5 |[Qui93|.

For the application of decision trees as decision models in duplicate detection, Cochinwala
et al. [CKLS01] propose a hybridE| decision model using a rule-based approach: their basic
idea is to select a set of potential matches with a simple rule-based matching technique,
first, and then have some of those tuple pairs labelled with M, U and P by a domain
expert. In the final step, the comparison vectors of the labelled tuple pairs are used to
train a decision tree that can predict the matching status of any unclassified tuple pair,
basically by following a set of if-then rules. In their work, the authors propose the CART

algorithm with a pruning strategy to minimise the tree complexity.

Based on the comparison vectors of the previous movie examples, the comparison vectors
in Figure have been labelled and thus have been transformed into training instances.
The corresponding CART tree is also depicted. The basic decision tree algorithm grows the
tree by splitting the training set again and again in such a way that a particular splitting
criterion is optimised. Typically, CART trees are only split binary.

Starting with the root node which contains the entire training set, it is tested for every
reasonable combination of attribute and similarity threshold whether the splitting crite-

rion is optimised. For example, there are only three distinct similarity values for the title

2Hybrid machine learning decision models are covered in more detail in Section m
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Figure 2.5.: A CART decision tree trained with labelled data from Figure

attribute (0.2, 0.9 and 1) and hence reasonable thresholds can only be drawn between 0.2
and 0.9 or between 0.9 and 1, because otherwise the data would not be separated. In the
example, the title similarity with a threshold of 0.55 (the mean value between 0.2 and 0.9)
is chosen as splitter, so that all training instances with a title similarity below 0.55 are
assigned to the left child node and all other instances to the right child node. Since all
training instances in the left child node have the same label U, no further split is executed
here and the node is called a terminal node. The splitting is repeated, until there are no
data to separate or no attributes left.

When fully trained, the decision tree from the example assigns the matching status ac-
cording to the rule in Listing

if simiir1e = 0.55 and simgiygio = 0.5
then

match
end if

Listing 2.2: An example rule that is generated by the CART algorithm.

The information gain is used as splitting criterion which is either based on the Gini coef-
ficient or the entropyE] For a binary split into the two classes 1 and 0, the Gini coefficient
of a node K is defined as

3The formulas for the computation of information gain, Gini coefficient and entropy are taken from
[Ste09].
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where p(K) is the relative frequency of class 1 instances in the node K. The information
gain resulting from the split of parent node E into left child node L and right child node
R is defined as

The CART authors prefer the Gini coefficient for computational reasons and because it

yields more balanced splits.

In the following, the information gain for the root node split of the example tree is
computed. Matching status U corresponds to class 1 and, accordingly, matching sta-
tus U = M V P corresponds to class 0. Since matching label U occurs three times, the

Gini coeflicient of the root node is computed by

3 3
G(MPU) =1 — (6)2 —(1- 6)2 =05
The three comparison vectors from Figure having simr;e; = 0.2 are the very com-
parison vectors that correspond to non-duplicates (matching label U) and are assigned to
the left child node, while all the other comparison vectors end up in the right child node.

Hence, the resulting Gini coefficient of the left child node is

3

GU)=1-(5)P2-(1-5)2=0
0)=1-()P-01-3)
and the Gini coefficient of the right child node is
0 0
GMP)=1-(5)*-(1-5)*=0
3 3
Thus, the information gain of the example split is
3 3
I(MPU) :0.5—6-0—6-020.5

As can be easily checked, a year attribute split with a similarity threshold between 0.0 and
0.8 also results in an information gain of 0.5. With M corresponding to class 1, though,
and matching status M = U V P corresponding to class 0, a studio attribute split between

0.3 and 1 only yields an information gain of about 0.28.

Support vector machines (SVMs) are another group of supervised machine learners. One of
the first works on support vector machines in duplicate detection was published by Bilenko
et al. in the early 2000’s [BMO03], although the idea of support vector machines goes back to
a work by Vapnik and Chervonenkis from the 1970s [VC74]. A more modern introduction
to the topic can be found in the book [SS02].

A simple support vector machine is a binary classifier. In the training process, it takes a set
of pre-labelled vectors as input and separates them by a hyperplane in the corresponding
vector space according to their labels. Unknown vectors are then assigned to one of the

classes, depending on which side of the hyperplane they are. For obvious reasons, this
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hyperplane is also called decision boundary.
Since a decision model classifies comparison vectors in vector space I', deploying an SVM

decision model with comparison vectors labelled as matches and unmatches is very straight-

forward.

Figure illustrates a decision boundary separating matching and unmatching compar-
ison vectors. For better illustration, the vector space is only two-dimensional and hence
the decision boundary is even only one-dimensional. The fundamental concepts, however,
are the same for higher dimensions.

The decision boundary is chosen to maximise the distance to the closest vectors of each
class. Those vectors are called support vectors and determine the alignment of the decision

boundary. The region between the support vectors and the decision boundary is known as

margin.

+
matches
%

support vectors +
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0.3 |
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0.1
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Figure 2.6.: Classification with a support vector machine.

Basically, a support vector machine can only perform a linear separation of the vector space
into two classes, but there are some improvements that compensate for those shortcomings:
as mentioned in [BMO03], a more complex decision boundary can be achieved by mapping
the training vectors into a higher dimension, computing a decision boundary for the high-
dimensional vector representations and then transforming it back into the lower dimension
of the original vector space. The decision boundary is linear in the higher dimension and

hence even more complex in the lower dimension. As the functions that map the vectors
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into the higher dimension are often referred to as kernels, this approach is called the kernel
trick.

movies
( title year | studio N
t; | Batman | 1966 | Twentieth Century Fox 1. compute similarity
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metrics
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Figure 2.7.: A decision model incorporating a support vector machine according to Bilenko
et al. [BMO3].

A detailed survey of possibilities to separate more than two classes with support vector
machines is given in Section 7.6 of [SS02]. The possibility of ternary separation can be
helpful when implementing a decision model for comparison vectors labelled as M, U and
also P, but is not mandatory. Figure [2.7]illustrates an SVM decision model by Bilenko et
al. as described in [BMO03| that can assign M, U and P labels, although it basically is just
a binary classifier.

There are two movie tuples with title, year and studio attribute. The decision model has
to assign a matching status to tuple pair (¢1,t2). One peculiarity of this approach is the
computation of a comparison vector; every attribute value pair is compared by several com-
parison functionsﬁ In this example, there are three attributes and two similarity functions,
so that the comparison vector corresponding to a tuple pair comprises six components. The
second noteworthy new aspect of this decision model is that it does not only make a binary
decision as to whether a tuple pair is a match or an unmatch, but also can declare a tuple
pair to be a possible match in doubtful cases. The authors interpret the distance between
an unknown comparison vector and the decision boundary as an indication of the decisive-
ness of the corresponding decision. Accordingly, a tuple pair is only declared a match or an

unmatch, if the decisiveness of the respective matching status decision exceeds a particular

4The authors also propose an SVM-based comparison metric that can learn string similarities and thus
adapt to specific domains very well.
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threshold; if the decisiveness is too low, the tuple pair is declared a possible match.
In their work, Bilenko et al. show this approach to outperform decision trees in terms of

precision and recall, especially with only little training data.

Unsupervised Machine Learning Decision Models

A great disadvantage of supervised learning techniques is that they require training data
to function. As opposed to supervised machine learning techniques, unsupervised machine
learning works without labelled training data.

One of the most important unsupervised machine learning techniques in duplicate detection
is clustering. Basically, a clustering algorithm divides a given set of objects into clusters,
i.e. groups, in such a way that objects in one cluster are rather similar to one another.
Based on the assumption that comparison vectors with identical matching status have
similar characteristics (and hence are near in comparison space I'), clustering algorithms
can be used to cluster matches and unmatches. However, a clustering algorithm does not

provide labels for the clusters.

A very well-known clustering algorithm is the k-means algorithm [HW79] which divides a
set of vectors into k clusters.

The k-means clustering algorithm works in the following fashion:
1. The algorithm is initialised with k cluster centroids.

2. Every comparison vector in the vector space is assigned to the cluster corresponding

to the nearest centroid.
3. A new centroid is calculated for every cluster.

4. Step [2] and [3] are repeated, until the matching decisions are stable, i.e. do not change
anymore, or until another termination criterion is fulfilled, e.g. until a number of

maximal iterations has been performed.

In duplicate detection, the perfect matching and unmatching vectors may be chosen as

initial Centroidsﬂ but the centroids may also be chosen completely at random.

The k-means clustering algorithm is very efficient for small values of k as they are used in
the duplicate detection domain where k = 2 (M, U) or k = 3 (M, P, U). According to
[GBO06], though, the possible matches often do not form a distinct cluster and hence the
3-means algorithm leads to large possible match clusters in many real-world applications.
Based on this observation, the authors of [GB06| propose binary clustering to separate
matches and unmatches first, and then defining a fuzzy region somewhere between the
centroids of the two clusters to classify possible matches.

First, the k-means algorithm is used to divide the comparison space into two clusters which

5In this case, duplicate detection could be performed fully automated, since the cluster labels are implicitly
given by the choice of the initial vector (M for perfect matching vector and U for perfect unmatching
vector).
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are then labelled M and U by a domain expert. To find a reasonable fuzzy region, the

authors use the relative distance

‘ dc,M - dc,U |
(dc,M + dc,U) : %

Ad, =

of a comparison vector ¢ to the two cluster centroids where d. s is the distance to the
centroid of the matching cluster and d. ;s is the distance to the centroid of the unmatching
cluster. Hence, a small Ad; indicates that a final decision can only be made with a small
certainty. Whether a comparison vector c is labelled with P or not, depends on whether
Ad, exceeds a threshold T,;. By defining this threshold, a trade-off between high accuracy
and a small fuzzy region is made.

In an experimental evaluation, the authors show their approach to perform as well as a
decision model purely based on 3-means clustering in terms of precision and recall, but also
to achieve a smaller set of possible matches which can be crucial for real-world applications,

since human decision-making is very expensive.

2.2.6. Hybrid Machine Learning Decision Models

As the results of purely clustering-based decision models are too imprecise in many cases,
Verykios et al. propose a way to automatise supervised learners using clustering techniques
[VEHOOQ]. This is illustrated in Figure

First, a small subset of all comparison vectors is divided into clusters and labelled by
a domain expert. The tuple comparison vectors thus can be used to train a supervised
learner which then, finally, can be used to classify all comparison vectors. The authors use
a decision tree as supervised learning technique.

In their later work [EVEQ2], the authors implement this hybrid procedure in the duplicate
detection tool box TAILOR. The evaluation of their experiments indicates that the hybrid

approach is superior to an approach that is based on clustering alone.

In his work [ChrO8al], Christen evaluates different hybrid learning models incorporating
combinations of unsupervised and supervised learning methods. Some hybrid models
that use clustering or distance-based methods to produce training data and then train
a support vector machine are implemented in Christen’s duplicate detection framework
Febrl [Chr08b].

Christen’s Iterative Approach

In |[Chr08al, Christen describes a hybrid machine learning decision model that iteratively
classifies comparison vectors with a support vector machine and thus further minimises
human effort. The basic idea is to train the SVM with a small initial training set, first,
have it classify the remaining comparison vectors, and then extend the training set by the
most obvious matches and unmatches again and again, until a certain termination criterion

is fulfilled.
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Figure 2.8.: A hybrid decision model combining unsupervised (clustering) and supervised
machine learning techniques according to [VEHO00].

Figure [2.9] illustrates Christen’s iterative hybrid decision model.

First, the initial training set is determined with a distance-based method: the comparison
vectors are sorted by their Manhattan distance to the perfect matching vector [1,1,...,1]
(1.) and a predefined number of vectors from the top of the list (matches) and the bottom
of the list (unmatches) are labelled and form the initial training set (2.). Christen calls this
selection strategy nearest-based selection. The difficulty here is to choose the right number
of vectors: choosing too few vectors results in an undertrained decision model, but if too
many vectors are chosen, the probability of adding false positives and false negatives to the
initial training set increases. The initial training set is used to train an SVM decision model
(3.) which then classifies the remaining comparison vectors that have not been classified so
far (4., 5.). As before, some of the classified vectors are labelled and added to the training
set, but now the decisiveness of the SVM’s decision (see Figure is used to determine
the best candidates. For example, all matches and unmatches with a decisiveness of 0.9 or
more could be added (6.). The entire process comes to an end, if a termination criterion
is fulfilled, i.e. for example if no comparison vector can be classified with a decisiveness of

0.9 or more.

2.2.7. Summary

All decision models discussed here have their particular benefits and drawbacks.

The probabilistic model by Fellegi and Sunter can, in theory, be used to automatise dupli-
cate detection, but the computation of the required matching weights is often very hard
and even infeasible, if the comparison space is too large.

Like the probabilistic model, the distance-based models can be used even when there is no

training data available which can be a great advantage, but they require certain thresholds
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Figure 2.9.: Christen’s iterative hybrid decision model according to [Chr08al.

to be defined first. Besides, distance-based decision models usually don’t perform very well
in terms of precision and recall.

Rule-based systems can deliver the best results, but are usually very complex and thus
expensive, since the necessary rules have to be designed by human domain experts.
Supervised machine learning decision models can deliver very good results as well at moder-
ate costs. Using decision trees offers the great advantage that the resulting model comprises
a set of intelligible rules, while the model of a support vector machine, although more ro-
bust and usually more precise, cannot be comprehended by humans.

Purely clustering-based algorithms deliver not as good results, but, as the distance-based
methods, do not require as much human effort.

In the current work on decision models, there appears to be a trend towards hybrid decision
models which create an initial training set with clustering or distance-based algorithms to

train a supervised learner.

2.3. Search Space Reduction in Probabilistic Data

Search space reduction in general means removing obvious unmatches from the set of all
tuple pairs with cheap methods, so that the expensive in-depth tuple comparison in the
process of duplicate detection is only executed on a feasible number of tuple pairs. In

our bachelor’s thesis [FW10|, we examine possibilities to adapt the commonly used certain
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data search space reduction techniques Blocking |[EIVOT]| and the Sorted Neighbourhood
Method (SNM) [HS95, [HS98] to probabilistic data.

The investigated search space reduction techniques compute a key value for each tuple
which is then used to decide whether or not a tuple pair remains in the search space. The
basic idea is that duplicate tuples agree on their key values, while non-duplicate tuples
do not. A key can for example be a particular attribute or a combination of (parts of)
attributes.

The standard Blocking technique partitions all tuples in mutually exclusive blocks in such
a way that only tuples with identical key values are assigned to one block. The reduced
search space is then generated by pairing every tuple with every other tuple in the same
block. Tuple pairs with tuples from different blocks are not permitted.

The basic Sorted Neighbourhood Method reduces the search space in three steps: first,
a key value is computed for every tuple, then, the tuples are sorted by their key values
and, finally, all tuples within a certain range in the sorted list are paired with each other
(merged). The last step is also called windowing, because it is often visualised with a
window of a fixed size w that is moved sequentially over the sorted list of tuples where
all tuples framed by the window at the same time are paired with each other. When the
window is moved down, the topmost tuple slides out of the window and a new tuple slides
into the window, so that the set of all tuples is practically divided into overlapping subsets.
The window size w can be increased to improve the recall slightly, but this also tends to

reduce the precision dramatically [HS9S].

For both search space reduction techniques, a good key design is crucial to achieve
usable results.

A key with too much discriminating power results in a good precision, but also reduces
the recall drastically: especially for Blocking, this is a problem, since duplicate tuples may
be assigned to individual blocks and thus may not be paired, if their key values are not
exactly identical. On the other hand, a key value that is not only identical for duplicates,
but for many non-duplicates as well leads to a poor precision. In general, preprocessing the
keys, for example by using a phonetic encoding such as the Soundex code instead of the
actual attribute value, can make search space reduction more robust against small errors

and thus improve recall without having a negative effect on the precision.

Depending on the data, there can be more than one usable key design. The authors of
[HS9§| claim that a multi-pass approach, i.e. running SSR techniques in several indepen-
dent runs with different keys and combining the results, can increase the recall without

decreasing the precision much, if this is the case.

In [FW10|, several adapted variants of Blocking and the Sorted Neighbourhood Method
are compared with respect to their performance in recall and precision on generated proba-
bilistic data. Even though SNM is more expensive than Blocking due to the sorting step, it
usually outperforms Blocking in terms of recall while maintaining an acceptable precision.
Figure illustrates one of the adapted Sorted Neighbourhood Method variants with
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Figure 2.10.: This variant of the Sorted Neighbourhood Method is adapted to probabilistic
data. A key value is created for every x-tuple alternative. The window size is
increased dynamically, so that always the same number of tuples are paired.

window size w = 2 which delivers a comparatively good recall at an acceptable precision
according to the experiment results.

In the example, a key value comprises the first three characters of the movie title and the
entire year attribute. Obviously, the key attributes are not certain for all tuples, so that
more than one key can be computed for some of the tuples. According to our experiments,
computing keys for all alternatives as illustrated in the figure leads to the best recall, but
there are also other approaches, for example generating only one single key per tuple from
the most probable alternative.

In the sorted list, all neighbouring keys within a certain distance in the list are paired
with each other where the corresponding tuple pairs form the reduced search space. To
guarantee that the same number of tuple pairs is generated after every time the window is
moved, the window size is dynamically increased: the first two alternatives in the sorted
list correspond to the same tuple, so not even one tuple pair can be generated, unless the
window is increased by one. By increasing the window, an alternative representing another

tuple slides into the window and a tuple pair can be generated.

2.4. Generating Certain Data

A great challenge in the research of duplicate detection is the lack of publicly available real-
world data sets to evaluate decision modelsﬁ This lack is partly based on the fact that

for most real-world data sets the actual duplicates are not known, but privacy and legal

S Although this section is about generating certain data, this statement also, and even more so, applies
to duplicate detection in probabilistic data.
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issues also prevent data sets such as customer or patient databases from being published
in many countries. Although such data sets can be used by the companies administrating
them, they cannot be used by others and thus never lead to comparable results.

A small collection of data sets can be found in the RIDDLE repositoryﬂ but it appears

rather poor in comparison to what is available in the machine learning Communityﬁ

Under these premises, the generation of test data sets for evaluation seems attractive, since
some parameters such as size and quality of the data are configurable and the resulting
data sets can be published. However, generating synthetic data with realistic error patterns
that meet particular requirements such as given frequency distributions for some attributes

or dependencies between attributes is an extremely hard task.

In this section, we survey the state of research on data generation. First, we describe two
different approaches to building a generator, namely generating completely synthetic data
and generating data on the basis of real-world data sets. After that, we go into detail

about literature on realistic error patterns and present existing data generators.

2.4.1. Two Types of Data Generators

In the following, we describe the basic two types of data generators according to [Chr05,
CP09] and Section 7.5, 7.6 and 7.7 from the book [Chr12].

Completely Synthetic Data

Since data sets containing personal information usually cannot be published due to privacy
issues, such data sets are often generated. For example, a fictitious customer database can
be created from lists of forenames, surnames and addresses, so that the data do not refer
to real people and the database can be published. Some attributes can also be synthesised
without such attribute lists, for example telephone numbers can be generated according
to rules. Apart from not giving rise to any legal issues, the great advantage of completely
synthetic data is that the user has more control over certain characteristics of the data.
Depending on the complexity of the generator, parameters like the desired number of
records, attribute lists and sets of rules to use can be provided by the user, so that the
data are generated according to the user’s will.

A major obstacle in terms of realism, though, is modelling dependencies or correlations
between attribute values: certain forenames, for example, cannot be used for males and
females, and since the surname of a person often has something to do with the person’s
cultural background, it may be correlated with his or her address. The complexity of the
generator and the number of parameters to set grows with the number and complexity
of the modeled dependencies. If the configuration of the generator is too complex, some

parameters may not be configured correctly or not be configured at all, because their effect

"RIDDLE data set repository: http://www.cs.utexas.edu/users/ml/riddle/data.htmll
8UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/|
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on the generated data is not clear to the user.

Another difficulty in generating test data for duplicate detection is modelling realistic
error patterns. For example, duplicates in a real customer database may come to existence
because of simple typos during the input process, so realistic typos have to be applied to
the artificial data in order to generate realistic duplicates. It is crucial that the generated
data and the real-world data which the duplicate detection system is created for have
similar characteristics, for example similar attributes with similar frequency distributions
and similar error patterns. If this is not the case, the result of the evaluation on the
synthetic data cannot be used to make predictions on how well the duplicate detection will

work in a real application.

Using Real-World Data Sets

Another approach to obtain test data is to use an existing — preferably error-free — data
set and to modify it, e.g. by adding duplicates. As with generating completely synthetic
data, implementing realistic error patterns is crucial here as well.

A great advantage of this approach is that attribute dependencies and correlations don’t
have to be taken care of explicitly, since they are part of the original data. Accordingly,

though, privacy is still an issue, since the original data are real-world data.

2.4.2. Error Modelling

In this section, we describe the introduction of realistic error patterns into the data ac-
cording to [CP09|. As illustrated in Figure data in a database can originate from
different sources and be entered using different channels. Each source and input channel
is prone to errors with particular characteristics, and there are characteristic errors for
certain combinations as well.

For example, the confusion of synonyms or other words that are in some way related to one
another can, for example, result from imprecise memories, while phonetic errors like the
input value “bad man” instead of “Batman” are more likely when information is dictated,
for example to a typist or to a speech recognition software. When the data are retrieved
from printed or handwritten documents with optical character recognition (OCR) software,
there most certainly are some words where characters have been confused with similar look-
ing ones, e.g. “1” and “I". Typographical errors like the confusion of neighbouring characters
on the keyboard or the transposition of subsequent characters in a word are typical for

typed data.

Since the 1960s, text corpora have been analysed in the field of automated error detec-
tion and spelling correction to yield typographical error characteristics such as frequency

distributions of particular errors.

The most typographical errors encompass simple omissions, substitutions and insertions

of single or transposition of two neighbouring characters. In an early study [Dam64],
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Figure 2.11.: Different data sources and input channels according to [CPQ9].

Damerau reports that 80% of all errors are such simple errors. Pollock and Zamora report
an even higher share of 90% to 95% [PZ84]. The exact percentages of the particular simple
errors, though, seem to differ from text to text. Table illustrates the percentage of the
mentioned simple error types reported in different works.

Apart from the frequency distribution, it can also be regarded that most of the errors occur

in the middle part [PZ84] [BST2] or near the end of a word |[CCM™10).

Typographical errors can be implemented using confusion matrices. In [CG91], for exam-
ple, Church and Gale provide confusion matrices for all four error types. For substitution
errors, their confusion matrix represents the probabilityﬂ of one particular character a be-
ing substituted by another particular character b for every character combination. The
transposition of two characters is represented similarly. Omission and insertion errors are
somewhat differently represented: the probability associated with the combination of two
characters a and b represents the probability of character b being omitted or inserted,

respectively, after the occurrence of character a.

error type | [BS12] | [CCM™T10] | [Dam64] [Pet6]
omissions 45% 29% 16% 31.6% | 34.4%
substitutions 15% 21% 59% 40.0% | 26.9%
insertions 10% 1% 10% 18.7% | 20.3%
| transpositions | 30% 25% 2% 2.6% | 13.1% |

Table 2.2.: Different reported percentages of the simple error types and the respective
reference.

9In many cases, scores are used instead of probabilities.
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The remaining 5% to 20% of errors are more complex errors, e.g. multiple typographical,
phonetic or semantic errors. Such errors can be modelled with lists of confusion sets. An
entry in such a list consists of one word, the so-called head, that can be confused with all
of the subsequent words, the actual confusion setE Optionally, the probability? for every
single word to be confused with the head can be defined. By default, those probabilities
are assumed to be uniformly distributed.

Some lists of general language confusion sets are publicly available, for example Pedler and
Mitton published a list of almost 6,000 English confusion setﬂ whose creation is described
in [CCM™10]. Another list of a few hundred homophoneﬁ has been published under the
GNU General Public License as a part of the language checker After the Deadline (ATD).

Confusion sets for phonetic errors can also be generated rather easily for a given set of
strings by grouping them according to their phonetic encoding. To compute phonetic
encodings, algorithms like Soundez |[Rusl8| Rus22] or NYSIIS|Taf70] can be used.

In [CPQ9] a list of phonetic rules is used to generate phonetic errors. Such a rule can for
example state that the suffix “le” can be replaced by “ile”, if the preceding character is
a consonant. So the word “rumble” can be replaced by “rumbile” according to this rule.
A great advantage of using phonetic rules is that they can be applied to any domain

without preprocessing.

2.4.3. Existing Generators

The UIS Database Genemtoﬂ [HS95] developed by Hernandez and Stolfo in 1995 is the
first software to generate data for duplicate detection in certain data. This generator
creates a completely artificial address database consisting of the attributes social security
number, first name, initial, last name, address, apartment, city, state and ZIP Code where
some basic parameters like the number of tuples in the database and the number of dupli-
cates can be controlled by the user.

Duplicates and the corresponding original tuples can differ by just small typographical
errors, but they can also have completely different name or address values and even miss-
ing values. While the frequencies of the different error types are modelled according to
statistics gathered from spelling correction studies, the attribute frequency distributions
are not modelled realistically: for example, the names are chosen randomly from a list of

real names and thus are equally distributed.

In 2003, Bertolazzi et al. presented an improved generator that gives the user more control

over the generated errors [BSS03].

A generator that incorporates many improvements in comparison is part of the duplicate
detection framework Febrl [ChrO8b, [Chr05]. There are two versions of the Febrl gener-

10Tn some works, there is no head element in a confusion set, because every word in the confusion set can
be confused with every other word.

" Confusion sets by Pedler and Mitton: http://www.dcs.bbk.ac.uk/~jenny/resources.html.

2Homophone list from ATD: http://static.afterthedeadline.com/download/homophonedb.txt.

13UIS Database Generator: http://www.cs.utexas.edu/users/ml/riddle/data.html.
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ator which are both enclosed in the Febrl system: Christen’s original and an enhanced
version [CP09]. In both versions, the adjustable parameters are documented comprehen-
sively to give the user more control over the generation process. Attribute values are gen-
erated using external look-up tables that can even contain the frequencies of the attribute
values. For every attribute, parameters like the probability for phonetic, typographical
or OCR errors are configurable. While the model for typographical errors is hardcoded,
phonetic and OCR errors are realised using external input files. For example, one line in
the OCR error input file is “All, 2, Z” and thus specifies that the character “2” can be
substituted by the character “Z” in all words.

All in all, the generator offers great control over the predefined error types and allows
the user to integrate his or her own look-up tables and even to extend error generation
rule sets and lists of confusion sets. Apart from the mentioned error types, there are also
other error types like omission or permutation of attribute values. The new version of
the data generator can also model dependencies between attributes, for example between
gender and forename, and it supports the generation of groups of tuples that correspond

to families.

In 2009, Talburt et al. presented a generator for duplicate detection test data that pro-
duces realistic name and address histories [TZS09]. Using real data such as publicly known
addresses, the generator produces sequences of personal address data with attached times-
tamps that reflect a person’s or a couple’s change of residence or surname after marriage
over time.

The authors plan to add more functionality to the generator, for example control over data

quality or the possibility to output different file formats.
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3. ProbGee: A Generator for Probabilistic
Data Sets

In this chapter, we describe the data generator we developed to provide data for our
evaluation experiments. We start with a high-level description of our generator and the
generation process and then go into detail about the architecture, describing the most
important parameters and their influence on the generated data. Finally, we briefly present

some special features of the generator.

3.1. Basic Functionality

For the execution and evaluation of our adapted decision models, probabilistic data in-
corporating duplicates is mandatory. Since no such data exist to our knowledge, the
first step in preparing the experiments is generating appropriate data. For this purpose,
we propose ProbGee, an easy-to-use generator for probabilistic data sets with graphical

user interface.

Currently, ProbGee does not generate completely synthetic data, but uses an existing data
source with ideally no errors to generate probabilistic tuples with duplicates. However,
we plan to implement the generation of completely synthetic data from attribute lists and
production rules in the near future.

We deliberately use a few basic functionalities from the data generator for probabilistic
data sets we implemented for our bachelor’s thesis [FW10] such as loading or storing data,
so that the output format is the same as in earlier experiments. This is an important
feature, because it makes it possible to run the search space reduction techniques from our
bachelor’s thesis on the data produced with ProbGeeE] Like its predecessor, ProbGee uses
the very fast and easy-to-use relational database system HS QLDBE] to store all certain and

probabilistic databases.

As illustrated in Figure the basic workflow in ProbGee is divided into three steps: the
extraction of data from an external database into CSV files (1.), the import of CSV files
into an internal database system (2.) and the actual generation process (3.).

The first step is to extract data from an external database and store them to CSV files. To

connect to an external database, the user has to provide the corresponding JDBC driver.

! As described in Chapter [5] we use our own search space reduction techniques to obtain more realistic
tuple matching results.
?HyperSQL DataBase: |http://hsqldb.org.
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The result set of any SQL statement given by the user can be stored to a CSV file. The
extraction step is optional, since the raw data can also be provided in form of CSV files
that were not generated using the graphical user interface.

The CSV files are then imported into the internal database system of the generator to gain
more control over the data and to make it accessible via SQL. The user has to provide a list
of SQL statements to create the relations the data are imported to; thus, it is possible to
import not only single relations, but also more complex data structures, especially relations
with foreign keys.

In the final step, the probabilistic database is generated from the imported raw data. First,
the imported raw data are copied into a new database. Subsequently, new attributes for
the tuple ID and alternative ID are introduced to every relation as new primary keys. To
preserve the foreign key relationships from the original data, new foreign key attributes
are added to all relations with foreign keys. Finally, x-tuple alternatives and duplicate

tuples are generated according to the parameters specified by the user via the graphical

2.1 t
JMDB —»1’ extract _— HHport certain
MySQL HSQL

internal CSV data

user interface.

external database internal database

prob.
HSQL

generated database

Figure 3.1.: The basic data generation workflow with ProbGee.

We decided for CSV files as input format during the import step, because they can be
generated easily and because data such as attribute lists often are available on the internet
in this format.

Besides, compatibility issues between our generator and an unknown (user-provided)
database system can be avoided, because there is no necessity for our generator to commu-
nicate with any database system due to the possibility of importing simple CSV files. Many
database systems are capable of exporting relations or query result sets into CSV files, so

that importing data indirectly from a database via CSV files is usually no problem.

For our experiments, we use movie data from the Internet Movie Database (]MDbﬂ The
data are extracted from a MySQL database holding information on millions of movies, for

example title, producer, director and production year. How an identical database can be

3Internet Movie Database: http://www.imdb.com/.
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created from freely available text files is described on the official homepage of the project
JMDBA

3.2. The Architecture

As indicated in Figure the program modules responsible for the generation of prob-
abilistic data are structured in a hierarchy of generators. Every generator implements a
particular interface to make the exchange of single generators possible.

In this section, we describe our implementations of the single generators in detail.

4 )
database generator
~
(/ ™
4 )
table generator
4 )
tuple generator
4 N /7 N\
duplicate generator alternative generator

attribute value attribute value

generator generator

Figure 3.2.: The generator hierarchy in ProbGee.

3.2.1. The Database Generator

The database generator initialises the entire generation process. Since the generation of
duplicates and other errors is highly domain-dependent, the database generator assigns

every relation in the database an appropriate table generator.

Besides, the database generator controls in which order the relations are processed. This
is an important issue when generating duplicates: if for example relation R; references
relation Ry and errors are introduced into R1, before the referenced relation Ry is processed,
no duplicate in Ry can be referenced by any tuple in R;.

Since our movie database consists of one single relation without any foreign keys, this
feature is not used, yet. However, a simplistic error generator that produces foreign key
errors has been implemented by us already (see Subsection .

*Java Movie Database: http://www.jmdb.de.
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3.2.2. The Table Generator

Before a probabilistic database can be generated, some parameters have to be specified,

most importantly:

o distribution of the duplicate cluster size: this is not a number, but a complex

parameter that defines how many probabilistic tuples are generated from a certain
data tuple and thus represent the same real-world entity. Tuples representing the
same real-world entity form a duplicate cluster.
For example, it can be specified that 1,000 entities shall be represented by one tu-
ple each, 500 entities shall be represented by two tuples each and 100 entities shall
be represented by three tuples each. By specifying the distribution of the dupli-
cate cluster size, the number of probabilistic tuples in the destination database
is automatically given; a database with the just mentioned distribution will have
1,000 - 1 4500 - 2 4 100 - 3 = 2,300 tuples.

o distribution of tuple size: similarly to the duplicate cluster size distribution, this
parameter determines how many alternatives form one tuple.
A user can, for example, determine that 800 tuples shall have only one alternative,
600 tuples shall have two alternatives and 400 tuples shall have three alternatives.
The implied number of probabilistic tuples for these values is 800+ 6004400 = 1,800.

e number of maybe-tuples: the number of tuples with a confidence smaller than 1.

The two exemplary distribution parameter settings just mentioned are contradictory: ac-
cording to the cluster size distribution, the destination database will contain 2,300 tuples,
while the tuple size distribution indicates 1,800 tuples. To make the generation process
more robust against those kinds of contradictions, all surplus tuples receive a single alter-

native by default.

The table generator does not only resolve contradictory settings, but it also initiates the
generation of every single duplicate cluster by the tuple generator, making sure in the
process that all the above parameters are put into practice ezxactly. In principle, the
duplicate cluster size and the size of a tuple are selected with a probability that corresponds
to the respective user-defined distribution, but are also constrained by it. In the example
setting, the first duplicate cluster that is generated is formed of one, two or three tuples,
1,000ig88+100 = i:gggv 15,)880 and 1}880' If the cluster

size is chosen to be three, the probabilities for the cluster sizes of one, two and three in

1,000 ~ 1,000 500 99
the next turn are 1,000+500+99 — 1599 1,599 and 1,599

each with a respective probability of

respectively, and so on.

When the generation process has finished, the table generator iterates over all tuples,
reordering the confidence values in such a way that the alternatives with the greatest

cleanness value receive the greatest confidence.

Finally, the table generator creates a IXTEX file and compiles it to a PDF file illustrating

the most important parameters described in this chapter with some tables and plots.
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3.2.3. The Tuple Generator

The most complex of our generators is the tuple generator that creates a duplicate cluster
from a certain data tuple. As described in the introduction already, one requirement for
our new generator is to give the user control over the similarity between duplicate tuples
and the similarity of alternatives of the same x-tuple.

To make the similarity between two x-tuple alternatives easily configurable, it is measured
as the weighted sum of all attribute similarities, i.e. a real number in the range of [0,1].
Obviously, for every attribute, a weight and a similarity metric have to be defined first,
though; in our implementation, every attribute value pair is compared with the Jaro-
Winkler metric by default[]

Error Provenance Trees

One problem with generating probabilistic data is the complexity of the process and of
the resulting data. To make the generation process more comprehensible and to help the
user understand whether it led to the desired result or not, we generate duplicate clusters
from certain data alternatives using a data structure called error provenance tree. Figure
[3-3] shows a schematic view of an error provenance tree and illustrates its most important
defining properties. Every node in the tree corresponds to an x-tuple alternative and every
child node is, basically, just a copy of its respective father node that has some additional
errors. In simple words, the tree nodes (alternatives) grow dirtier from the root to the leaf
nodes.

The root of the tree holds the uncorrupted certain data and thus is the correct version
of every alternative in the entire duplicate cluster. The child nodes of the root node are
prototypes for every x-tuple in the cluster. These prototypes are used for the generation
of x-tuple alternatives, but are not part of the actual tuples themselves. In the database,
they are stored with the alternative ID 0 and hence are called zero—alternativesﬁ Nodes in
the tree are either zero-alternatives, alternatives of an x-tuple (opaque nodes) or neither
(transparent nodes). Nodes that have no descendant that is part of a tuple and that are
not part of a tuple themselves are of no importance whatsoever for the generation process
and hence can be removed.

The point of organising generated alternatives in a tree structure is that alternatives of
the same tuple have similar errors because they all — directly or indirectly — inherit errors
from the same (zero-)alternatives. Apart from that, the correct representation and the
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