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Abstract

English

Certain data tuple matching, i.e. comparison and decision model in the process of duplicate
detection, is object of current research. However, while search space reduction as a part
of duplicate detection in probabilistic data has already been investigated, tuple matching
in probabilistic data as the subsequent step has not. This thesis has two main objectives:
first, the development and evaluation of an approach to adapt existing certain data tuple
matching techniques to probabilistic x-tuples and, second, the generation of large labelled
probabilistic data sets for evaluation experiments.

The probabilistic ULDB data model is described where every x-tuple consists of one or
more mutually exclusive alternatives that represent one and the same real-world entity.
ProbGee, an Eclipse-based framework for the generation of labelled probabilistic data sets
from existing certain data, is presented and used to generate the labelled data that is
needed for evaluation.

The proposed tuple matching approach uses a certain data decision model to match alter-
native pairs corresponding to an x-tuple pair and derives the x-tuple pair matching decision
from the alternative pair labels. Three reduction strategies to avoid unreasonable tuple
pair decisions are discussed: reducing alternatives, reducing alternative pairs and reduc-
ing comparison vectors. A special alternative pair reduction strategy is the Best Partner
Reduction which does not require any configuration to function. Furthermore, four vari-
ants of deriving the x-tuple pair matching status are proposed, namely Expected Similar-
ity, Expected Similarity with Uniformly Distributed Confidences, Best Partner Similarity,
Maximal a-Prob. Similarity and Cry with the Wolves.

The experimental results indicate that reducing alternatives or alternative pairs increases
recall and F-measure of the result strongly on error-prone data, while it has little effect
on rather clean data. None of the tuple pair decision variants clearly outperforms the
others. In a real application, applying a combination of reducing alternative pairs with
the Best Partner Reduction and deriving tuple pair decisions according to the Expected
Similarity with Uniformly Distributed Confidences seems to be reasonable, because it does

not require the user to define any parameters.



2 Abstract

German

Tuplematching, d.h. Vergleich und Entscheidungsmodell bei der Duplikatenerkennung,
ist Gegenstand aktueller Forschung. Doch wihrend die Suchraumreduzierung als Teil der
Duplikatenerkennung in probabilistischen Daten bereits untersucht wurde, wurde Tupel-
matching in probabilistischen Daten als nachfolgender Schritt noch nicht untersucht. Diese
Arbeit hat zwei Ziele: erstens die Entwicklung und Bewertung eines Ansatzes zur Anpas-
sung bestehender Tupelmatching-Methoden an probabilistische x-Tupel und zweitens die
Generierung einer grofsen Anzahl an gelabelten probabilistischen Datensétzen fiir Evalua-
tionsexperimente.

Das probabilistische ULDB-Datenmodell wird beschrieben, in dem jedes x-Tupel aus einer
oder mehreren sich gegenseitig ausschlieffenden Alternativen besteht, die ein und dieselbe
Realweltentitét représentieren.

ProbGee, ein Eclipse-basiertes Framework zur Generierung gelabelter probabilistischer
Daten aus existierenden sicheren Daten (von engl. certain data), wird vorgestellt und
zur Generierung der gelabelten Daten genutzt, die zur Evaluation benétigt werden.

Bei dem vorgeschlagenen Ansatz zum Tupelmatching wird ein Entscheidungsmodell ver-
wendet, das auf sicheren Daten arbeitet, um den Matchingstatus von Alternativpaaren
zu bestimmen, d.h. um zu entscheiden, ob die entsprechenden Alternativen dieselbe Re-
alweltentitét darstellen oder nicht. Anhand der Matchingstati der einem x-Tupel-Paar
entsprechenden Alternativpaare wird nachfolgend der Matchingstatus des x-Tupel-Paares
ermittelt. Drei Reduktionsstrategien zur Vermeidung unsinniger Tupelpaarentscheidungen
werden diskutiert: die Reduktion von Alternativen, die Reduktion von Alternativpaaren
und die Reduktion von Vergleichsvektoren. Eine besondere Alternativpaarreduktion ist
die Best Partner Reduction, die keiner Konfiguration bedarf. Dariiber hinaus werden vier
Varianten vorgeschlagen, den Matchingstatus eines x-Tupel-Paares abzuleiten: Expected
Similarity, Expected Similarity with Uniformly Distributed Confidences, Best Partner Sim-
ilarity, Maximal a-Prob. Similarity und Cry with the Wolves.

Die Experimentergebnisse deuten darauf hin, dass die Reduktion von Alternativen und Al-
ternativpaaren den Recall und das F-Measure des Ergebnisses auf fehlerbehafteten Daten
stark verbessern, wiahrend sie kaum einen Effekt bei wenig fehlerbehafteten Daten zeigen.
Keine der Varianten zur Ableitung der Tupelpaarentscheidung zeigt sich den anderen
deutlich tiberlegen. In einer tatséchlichen Anwendung scheint der Einsatz einer Kom-
bination aus der Alternativpaarreduktion Best Partner Reduction und dem Ansatz Ex-
pected Similarity with Uniformly Distributed Confidences zur Berechnung des x-Tupel-

Paar-Matchingstatus sinnvoll, da sie keinerlei Konfiguration durch den Nutzer erfordert.
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1. Introduction

In this thesis, we investigate how existing tuple matching{ﬂ techniques known from duplicate
detection in certain data can be applied to uncertain probabilistic data. Furthermore, we
implement our approaches and evaluate them on synthetic data generated solely for this

purpose.

1.1. Motivation

More and more applications impose requirements on solutions for storing and processing
uncertain data that cannot be met by traditional database systems. Uncertain data can
for example originate from inaccurate readings in sensor networks such as RFID networks
IKBS08, HMMS12|, imperfect OCR in automatic number plate recognition [MR10] or from
personal information in social networks or crowd-sourced databases like the Last. me] music
database which typically contain massive amounts of error-prone and contradictory user-
generated data.

Modelling uncertainty in a probabilistic database instead of resolving it has already been
recognised as a means to reduce the costs of the data integration process [vKdK09]. In some
applications, it is even necessary to manage and reason with multiple possible interpreta-
tions of measured data, so that some kind of probabilistic database system is practically
called for. For example, technological breakthroughs in the field of astrophysics place great
demands on probabilistic data storage and processing solutions [SCH09| as astrophysical
surveys deliver much more data nowadays than they did a few years ago: the integra-
tion of today’s survey results with each other (and also with data from older surveys and

simulations) simply cannot be done with the technology currently available.

1.2. State of Research

The integration of certain data and duplicate detection in particular are actively researched
topics and have been for many years [Chrl2|. A very good overview over the process of
duplicate detection, especially over string metrics commonly used for tuple comparisons

and over popular decision models, is given in [EIV07].

!By tuple matching, we mean the in-depth tuple comparison and the decision model of the duplicate
detection process.
2Last.fm: http://www.lastfm.de/.
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Since probabilistic databases are still in their infancy, the integration of and duplicate de-
tection in probabilistic data have received little attention so far. However, some approaches
to adapt existing certain data search space reduction (SSR) techniques to probabilistic data
have been proposed in [PvKdKR09] and an experimental evaluation of adapted probabilis-

tic search space reduction techniques can be found in [FW10].

In the field of certain data duplicate detection, appropriately large labelled data sets needed
for the evaluation of tuple matching techniques are hard to come by, e.g. due to confiden-
tiality. It should be noted, though, that there are a few data generators, so that conducting
evaluation experiments for certain data techniques is still possible, even when no real-world
data sets are available. To our knowledge, there are virtually no probabilistic sets of test
data we could use for the evaluation experiments, but in [FW10] a prototypical generator

for probabilistic data sets is presented.

1.3. Goals

In our master’s thesis, we address two problems: first, how to make existing tuple matching
techniques for certain data applicable to probabilistic (relational) data and, second, the
generation of large labelled probabilistic data sets for evaluation experiments.

We give an overview over existing techniques for tuple matching on certain data and
examine how they can be applied to probabilistic dataﬂ The basic idea here is to use the
existing certain data techniques on probabilistic x-tuple alternatives and then derive the
matching status of two x-tuples.

We implement an approach as baseline that compares all alternative pairs corresponding
to a tuple pair and computes the tuple pair matching status from the matching status of all
alternative pairs. Besides, we implement variants of this naive approach using particular
selection strategies for the alternative comparisons as well as for the derivation of the
matching status. Finally, we evaluate the different approaches experimentally with respect

to recall, precision and the traditional F-measure.

Most importantly, though, we describe and implement a framework for the generation
of probabilistic relational data with labelled duplicates. As we do not have access to
appropriately large probabilistic data sets for those experiments, we have to generate them
ourselves. To make the final experiments as meaningful as possible, we improve the data

generator described in [EW10] by the following features:

e more control over data quality: control over the degree of similarity between duplicate

x-tuples and between alternatives of an x-tuple.
e more realistic error patterns: realistic typos and confusion set errors.

e improved usability: a more generic and simpler user interface.

3For our implementation, we use the ULDB data model [BSHWO6), Wid08g].
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1.4. Chapter Outline

Chapter [2| contains related work. We introduce the probabilistic ULDB data model and
give an overview over tuple matching approaches commonly used in certain data. We also
describe a search space reduction technique adapted to probabilistic data and examine
literature on the generation of synthetic data.

In Chapter [3| we present our data generation framework ProbGee. After a description
of the workflow in ProbGee, we go into detail about the error generation architecture we
developed to achieve realistic error patterns. In the final section, we briefly characterise
some special features like the graphical user interface.

The concept of our approach to the adaption of existing tuple matching methods to prob-
abilistic data is presented in Chapter

The description and analysis of our evaluation experiments are given in Chapter [f

We conclude our work in Chapter [6] with a short summary and future prospects.
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2. Related Work

This chapter provides the theoretical foundations of our work. In the first section, we
describe the probabilistic ULDB data model. Section 2 comprises an overview over existing
tuple matching techniques on certain data. In the third section, we describe an adaption
of the certain data search space reduction technique Sorted Neighbourhood Method to
probabilistic data. The final section is devoted to the available literature on the generation

of test data needed to evaluate tuple matching techniques.

2.1. The Probabilistic Data Model

There are several probabilistic database prototypes, e.g. MayBMS [Koc08|, MYSTIQ
IBDM™ 05| and Trio [Wid08§], but there are no commercial products available on the market,
yet. The data model used in this thesis is the Uncertainty Lineage Database (ULDB)
data model used in Trio according to [BSHWO0G, [Wid08] which extends the traditional
relational model by possibilities to represent uncertainty regarding a tuple’s attributes
as well as its very existence. In a ULDB, an entity is not represented by one single
combination of attribute values as it is in a certain database, but by a (discrete) probability
distribution over mutually exclusive attribute value combinations. Hence, there is not one
representation of the modelled part of the world, but a probability distribution over possible

representations, called possible worlds.

( title year | studio conf )
tia; | Catwoman | 1969 | Twentieth Century Fox ; 0.6
toaq Batman 1966 Twentieth Century Fox i 0.8
toas L 1967 : Republic Pictures 0.2 )

Table 2.1.: A probabilistic relation with two x-tuples incorporating uncertainty on tuple
level (¢1) and attribute level (¢2).

A tuple in a ULDB is called an z-tuple and consists of one or more mutually exclusive en-
tity representations. Each of those representations is called an alternative and is attached
with a confidence value that represents the probability of this alternative being the correct
entity representation. Table illustrates how uncertainty on tuple and alternative level
is represented.

The confidence of the Catwoman tuple is only 0.6 = 60%, meaning that the correct rep-
resentation of the domain does not contain this entity with a probability of 40%. A tuple
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whose existence is not certain is called a maybe-tuple. The existence of the Batman tuple is
certain, since the sum of all its alternatives’ confidences equals 1. The characteristics of the
correct representation, however, are not certain: with a probability of 80%, the film was
produced by Twentieth Century Fox in 1966 and with a probability of 20% by Republic
Pictures in 1967.

2.2. Tuple Matching in Certain Data

Duplicate detection, i.e. the process of identifying pairs of tuples that represent the same
real-world entity, is a crucial part of the information integration process. In an error-free
relational system with absolutely clean data, duplicate detection could be performed with a
simple equality check, since all duplicates were perfect and thus identical. Unfortunately,
real-world data are dirty and duplicate detection is far more difficult: duplicates may
differ due to different formatting, abbreviations, spelling errors, typos and semantic or

other errors.

The first formal mathematical model for duplicate detection was developed by Fellegi und
Sunter in the 1960s [F'S69] and has been improved by Winkler [Win99, Win00] and others
[CHI0, [Jar95l [Gil01l, VMEOQ3]. Typical duplicate detection systems implement a process
similar to the one depicted in Figure 2:1], although the techniques used in the individual
steps may vary from system to system [EIVOT7]. As indicated, our focus lies on the tuple

matching by which we subsume the comparison and the decision model.
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Figure 2.1.: A schematic view on the duplicate detection process.

The first step in duplicate detection is the standardisation of the data where minor in-
consistencies between data from different sources are removed, for example by converting

string values to lowercase, transforming values to another format or removing special char-
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acters. As a thorough comparison of every tuple in one data source with every tuple in
every other data source is infeasible, obvious non-duplicate tuple pairs are filtered out with
simple means in the following step called search space reduction. All tuple pairs in the re-
maining search space then undergo an attribute value comparison: the result of such a
tuple pair comparison is a comparison vector whose entries represent the similarity of the
corresponding tuples in each attribute value. Usually, the attribute value comparisons are
performed with character-based similarity metrics like the Levenshtein metric, token-based
similarity metrics like the Jaccard metric or hybrid metrics like Soft TFIDF E| On the basis
of the comparison vectors, each tuple pair is then either declared a match or an unmatch by
the decision model. Finally, an evaluation of the duplicate detection result can be carried

out.

The process of duplicate detection as we describe it does not lead to conflict-free tuple
pair decisions: for example, if two tuple pairs (t1,t2) and (t2,t3) are declared matches and
(t1,t3) is declared an unmatch, a conflict lies in the fact that the two matching labels imply
that tuples t; and t3 are matches as well, while the matching label assigned by the decision
model indicates otherwise.

One possibility to resolve such conflicts is to compute the transitive closure of the matching
relation, so that in the above example, tuple pair (¢1,t3) would simply be declared a
match. More sophisticated strategies to resolve such conflicts are described in Section 6.9
in [Chr12].

In the following subsection, we briefly describe the formal notation of the duplicate detec-
tion problem. The remainder of this section deals with different decision model approaches
according to [EIV0T].

2.2.1. Problem Notation

Given two data sources A and B, the set of all tuple pairs
AxB={(ab)|ac Abe B}

is the union of the disjunct sets M and U where a = b for all tuple pairs in M and a # b
for all tuple pairs in U. So

M ={(ab) |]a=0b,a € Abe B}
is the set of matches and
U={(ab)|a#bacAbe B}

is the set of unmatches.

When the decision model assigns a tuple pair to either M or U, two kinds of errors can

! An overview of different string comparison metrics is given in Chapter 5 of [Chr12].



14 2. Related Work

occur: false positives and false negatives. A false positive is an actual unmatch that
is declared a match, whereas a false negative means an actual match that is declared
an unmatch. To minimise the number of errors, the set P of possible matches can be
introduced for tuple pairs whose matching status is too doubtful and should be determined
by a domain expert. Since humans are very inefficient and expensive in comparison to an

automated decision model, though, as few tuple pairs as possible are assigned to P.

Assuming that n common attributes aq,ao, ..., a, of the tuples in sources A and B are
chosen for the attribute value comparison, the comparison of a tuple pair (¢;,¢;) results in
a comparison vector
_[.1 2 n
Cij = [€i:Cijr i)
of size n where a vector component ci-“ ; 1s the comparison result of the tuples in attribute aj,

with a comparison function Cj. The space of all comparison vectors is called comparison

space T'.
movies
(title . year | studio N
t; | Batman - 1966 | Twentieth Century Fox
to | Batman 4 - 1967 | Republic Pictures
t3 | Batmen & Robin | 1966 | Republic Pictures
t4 | Catwoman 4 . 2004 | Warner Bros. Picture
compute
comparison (Simtitle SiInyeau" SiMgtudio label A
vectors (t1, t2) 1.0 0.8 0.0 P
(t1, t3) 0.9 1.0 0.0 P
(t1, ta) 0.2 0.0 0.0 U
(t2, t3) 0.9 0.8 1.0 M
(ta, t4) 0.2 0.0 0.3 U
(t3, t4) | 0.2 0.0 0.3 U |

Figure 2.2.: Four tuples with all corresponding comparison vectors and labels.

An example of a very simple discrete attribute comparison function is

1 if vy =09
Ci(v1,v2) = ;

0 else

where the similarity of the compared attribute values is either 1, if the attribute values are
equal, or 0, if they differ somehow. Comparison functions can also be much more complex
and deliver categorical or continuous values. The comparison functions used in this thesis
produce a numerical matching weight that is normalised, so that attribute value similarities
range from 0 (completely different) to 1 (perfect match).

Figure 2.2 shows four movie tuples with the attributes title, year and studio together
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with comparison vectors corresponding to all tuple pairs. The decision model determines
the matching status of a tuple pair (t;,¢;) on the basis of the corresponding comparison
vector ¢; ; and under the assumption that tuples with similar or identical attribute values
correspond to the same real-world entity with a high probability, whereas actual unmatches
are rather dissimilar. Accordingly, a tuple pair is assigned to M, if its comparison vector
holds values near or equal to 1, and is assigned to U in case of low similarity values. In
this example, some tuple pairs like (t2,t3) and (¢1,t4) are easily recognisable as match
or unmatch respectively, while the decision for other tuple pairs like (¢1,¢3) is not as

obvious.

2.2.2. The Probabilistic Decision Model by Fellegi and Sunter

One of the fundamental works on duplicate detection is a paper by Ivan Fellegi and Alan
Sunter from the year 1969 [F'S69] that is based on a work from the 1950s [NKAJ59|. Fellegi
and Sunter present a decision model that minimises the probability for false positives and
false negatives and thus is error-optimal.

They define

m(cm-) = P(Ci7j‘(ti,tj) S M)

as the probability that comparison vector ¢; j corresponds to a tuple pair (t;,¢;), given that

the tuple pair is an actual match. Correspondingly,
u(cig) = P(eig|(tity) € U)

is defined as probability for ¢; ; resulting from the comparison of ¢; and t;, given that the

tuples actually do not match. The authors then compute the matching weight ZL(%”)) and
7

determine the matching status by thresholding.

The key difficulty in this model is the computation of the matching probabilities and thus
determining the matching weights. A very naive approach is labelling a subset of all tuple
pairs by hand and approximating the weights on the basis of the resulting labels.

In [Win88], William Winkler proposes a more efficient approach that uses the expectation-
mazimisation algorithm for matching weight estimations. However, this procedure does
not seem practicable, since, according to [Win02], it only works under certain limitations
which don’t seem realistic in general; for example, a proportion of duplicate tuples of 5%
or more is required, M and U have to be relatively well-separated and typos should not

be too frequent in the data.

Although the model of Fellegi and Sunter is error-optimal, it does not lead to cost-optimal
decisions, when false positives and false negatives are not equally expensive. In [VMEOQ3],
Verykios et al. present an approach to minimise the expected costs of a decision. For this
purpose, a cost matriz is defined whose entries represent the costs of every possible decision

(match, unmatch, possible match) given every possible actual matching status (match,
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unmatch). The expected costs of every possible decision are computed and the decision
with the lowest expected costs is taken. The authors claim that probability distributions

over possible costs can also be used instead of fixed values.

In principle, the mentioned probabilistic approaches make a mostly automated duplicate
detection possible. However, the computation of matching weights — although in favourable
scenarios efficiently possible with the expectation-maximisation algorithm — remains a
major obstacle in the general case. A great number of possible similarity values leads to
a great number of possible comparison vectors and thus to a great number of matching
weights to be computed. So, ideally, binary comparison functions should be used. More

complex comparison functions can also be used, but have to be discretised.

2.2.3. Distance-Based Decision Models

A group of decision models that work without training data are based on distance metrics
for tuples. A very simple way to compute the distance between two tuples is concatenating
the attribute values of each tuple like string values and then computing a similarity value
from the two tuple representations as proposed by Monge und Elkan in [ME96]. The basic
Levenshtein distance is not appropriate for the comparison of such string representations,
because the alignment between the two strings is not modelled well, so that two strings
like “Bruce Wayne” and “Wayne, Bruce” may not be recognised as highly similar. Monge
and Elkan use the Smith-Waterman edit distance in their paper, as it accounts for such
gaps. Other metrics can also be used; in [Coh00] for example, Cohen proposes combining
the TFIDF weighting scheme and cosine similarity. However, these naive approaches do

not perform well in comparison to other distance-based approaches.

In [DSD98|, the distance between two tuples is computed as the weighted sum of the dis-
tances between the attribute values. The decision as to whether the two tuples are matches
or unmatches is made according to a similarity threshold.

Another approach is to compute a comparison vector holding the attribute similarities
and to declare a match or unmatch depending on its Euclidian or Manhattan distance to
the perfect match vector ([1,1,...,1]) or the perfect unmatch vector ([0,0,...,0]) respec-
tively.

A more sophisticated distance-based decision model based on ranked list merging is intro-
duced by Guha et al. in [GKMS04]. The main idea is illustrated in Figure : there is
one movies relation with tuples ¢1, to and t3 and a single tuple t4 from the films relation
which may be a duplicate of one of the other tuples.

First, the tuples from movies are ranked according to their similarity to t4 in every at-
tribute. Since the resulting rankings can be contradicting, a merging function is used to
create an unambiguous ranking; in our example, the tuples are sorted by the sum of all
attribute similarities, so that tuple t3 appears to be the most likely duplicate candidate.
Although the weighted sum works well in this example, Guha et al. claim that it does not

perform well in general. They propose a more complex merging function that minimises
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movies
( title year | studio A
t; | Batman 1977 i Twentieth Century Fox
ts | Catwoman 2004 : Warner Bros. Picture
t3 | Batmen & Robin : 1966 i Republic Pictures )

films

(title year | studio ] 1. ranking
ty LBatman 1967 | Republic PicturesJ

2. merging

’/_\ scored rankings
i N\

—_— (Simtitle i Simyear SiMgtudio

(ta, t3) 2,81 (ta, t1) 1.00 = (ta, t3) 0.88 | (ta, t3) 1.00
(ta, t1) 2,22 (ts, t3) 0.93 " (4, £1) 0737 (ts, t2) 0.66
(ts, t2) 1,48 | (4, 12) 0.82 (4, 12) 0.00 | (4, t1) 0.49 |

Figure 2.3.: The ranked list merging technique.

the footrule distance. The footrule distance over two rankings o and 7 on a relation R with

n tuples t1,t9,...,t, is defined as

Flor)=) |o(t)—r(t)|
i=1

and can be interpreted as the absolute difference of the ¢ and 7 ranking positions of tuples

in relation R.

The distance-based models discussed here treat attribute values as strings and rely on string
similarities, but there are also approaches to exploit foreign keys for duplicate detection,
see for example [ACG02].

All distance-based models have in common that a similarity threshold has to be defined to
distinguish matches and unmatches. While distance-based decision models do not perform
well in comparison with other models, they can be used even when there is no training data
available which can be a great advantage. Defining similarity thresholds without training

data, though, usually is very hard.

2.2.4. Rule-Based Decision Models

In the first work on rule-based duplicate detection we are aware of [WM89|, Wang and
Madnick examine how a domain expert can define rules that generate an identifying at-
tribute set for a single entity, when there is no global identifier available. But obviously,

this approach is not feasible for large data sets, since rules are specified on entity level.
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In the late 1990s, Hernandez and Stolfo came up with a more promising rule-based approach
to duplicate detection in [HS98]|: the search space reduction is executed with the Sorted
Neighbourhood Method, while the in-depth comparison works according to an equational
theory that can be used to specify rules by which the matching status of two tuples can
be determined. A simplified example rule for the movie domain known from the previous
examples is illustrated in Listing 2.2} the rule states that two tuples represent the same
movie, if they have a similar title and were produced by the same studio. Naturally, in
an actual rule, the “similar to” would have to be replaced, for example by a similarity

threshold and a comparison function.

for (a,b) in movies do
if a.title is similar to b.title and a.studio = b.studio
then
a matches b
end if
end for

Listing 2.1: A simplified example rule that determines the matching status of movie tuples,

according to the rule-based equational theory by Hernandez and Stolfo [HS9S].

A more sophisticated duplicate detection framework was published by Low, Lee and Ling
in 2001 |[LLLOI]. In their framework, duplicate identification rules can be defined that
do not simply assign a label to a tuple pair, but can also assign a matching label with a
certainty factor. Apart from rules for duplicate identification, Low, Lee and Ling define
three further rule categories for how to merge duplicates, how to update data in particular

situations and when to alert the user.

The literature indicates that rule-based decision models can perform exceptionally well
with respect to recall and precision. Negative aspects, however, are high costs and domain-
dependency: rules typically have to be designed by domain experts for a given domain with

the utmost care.

2.2.5. Machine Learning Decision Models

In this section, we describe machine learning decision models. First, we go into detail on
supervised machine learning decision models which deliver good results, but cannot work
without labelled training data. Then, we describe unsupervised machine learning decision
models based on clustering algorithms that can work independently from training data.
Finally, we describe hybrid machine learning models that combine the benefits of both

machine learning paradigms.

Supervised Machine Learning Decision Models

Supervised learners take a set of pre-labelled training instances as input to train a model

that can assign any other instance to one of the classes known from the training set. A
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training instance (¢, f(c)) comprises a pattern ¢ and the correct classification f(c) of this
pattern. In the context of duplicate detection, ¢ is a comparison vector and f(c) € {M,U}
or f(c) € {M,U, P} respectively is the matching status. The process of duplicate detection
with a supervised learning decision model is illustrated in Figure [2.4

First, a set of training instances is created from the set of all comparison vectors and is
used to train a decision model. After that, every comparison vector is assigned with a

matching status.

2. learn

( supervised learner ) \

1. training set

decision
model

all __/
comparison &, matching

vectors 3. remaining set 4. classify status

Figure 2.4.: A supervised learning decision model.

A rather prominent supervised classification method is the concept of decision trees. Ap-
proaches to the automated construction of decision trees were first published by Morgan
and Sonquist [SM64] and hence their CHAID algorithm is the first decision tree algorithm.
Another notable decision tree algorithm is the CART algorithm that was published in
1984 by Breiman et al. [Bre84]. The most commonly used decision tree algorithms today,
however, probably are ID3 |Qui83| and its successor C4.5 |[Qui93|.

For the application of decision trees as decision models in duplicate detection, Cochinwala
et al. [CKLS01] propose a hybridE| decision model using a rule-based approach: their basic
idea is to select a set of potential matches with a simple rule-based matching technique,
first, and then have some of those tuple pairs labelled with M, U and P by a domain
expert. In the final step, the comparison vectors of the labelled tuple pairs are used to
train a decision tree that can predict the matching status of any unclassified tuple pair,
basically by following a set of if-then rules. In their work, the authors propose the CART

algorithm with a pruning strategy to minimise the tree complexity.

Based on the comparison vectors of the previous movie examples, the comparison vectors
in Figure have been labelled and thus have been transformed into training instances.
The corresponding CART tree is also depicted. The basic decision tree algorithm grows the
tree by splitting the training set again and again in such a way that a particular splitting
criterion is optimised. Typically, CART trees are only split binary.

Starting with the root node which contains the entire training set, it is tested for every
reasonable combination of attribute and similarity threshold whether the splitting crite-

rion is optimised. For example, there are only three distinct similarity values for the title

2Hybrid machine learning decision models are covered in more detail in Section m



20 2. Related Work

¢ SiMyitle | SiMyear | SiMgtudio label | MPU
(ti, t2) | 1.0 0.8 0.0 P
Etl, tg% 8.229 3-8 8-8 E simgjgre < 0.55 simgje > 0.55
t1, 14 . . .
(tay t3) | 0.0 08 Lo M (0] Q)
(to, ta) | 0.2 0.0 0.3 )
(t?” t4) \ 0.2 0.0 0.3 v s SiMstudio < 0.5 SiMggudio = 0.5

LP ][]

Figure 2.5.: A CART decision tree trained with labelled data from Figure

attribute (0.2, 0.9 and 1) and hence reasonable thresholds can only be drawn between 0.2
and 0.9 or between 0.9 and 1, because otherwise the data would not be separated. In the
example, the title similarity with a threshold of 0.55 (the mean value between 0.2 and 0.9)
is chosen as splitter, so that all training instances with a title similarity below 0.55 are
assigned to the left child node and all other instances to the right child node. Since all
training instances in the left child node have the same label U, no further split is executed
here and the node is called a terminal node. The splitting is repeated, until there are no
data to separate or no attributes left.

When fully trained, the decision tree from the example assigns the matching status ac-
cording to the rule in Listing

if simiir1e = 0.55 and simgiygio = 0.5
then

match
end if

Listing 2.2: An example rule that is generated by the CART algorithm.

The information gain is used as splitting criterion which is either based on the Gini coef-
ficient or the entropyE] For a binary split into the two classes 1 and 0, the Gini coefficient
of a node K is defined as

3The formulas for the computation of information gain, Gini coefficient and entropy are taken from
[Ste09].
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where p(K) is the relative frequency of class 1 instances in the node K. The information
gain resulting from the split of parent node E into left child node L and right child node
R is defined as

The CART authors prefer the Gini coefficient for computational reasons and because it

yields more balanced splits.

In the following, the information gain for the root node split of the example tree is
computed. Matching status U corresponds to class 1 and, accordingly, matching sta-
tus U = M V P corresponds to class 0. Since matching label U occurs three times, the

Gini coeflicient of the root node is computed by

3 3
G(MPU) =1 — (6)2 —(1- 6)2 =05
The three comparison vectors from Figure having simr;e; = 0.2 are the very com-
parison vectors that correspond to non-duplicates (matching label U) and are assigned to
the left child node, while all the other comparison vectors end up in the right child node.

Hence, the resulting Gini coefficient of the left child node is

3

GU)=1-(5)P2-(1-5)2=0
0)=1-()P-01-3)
and the Gini coefficient of the right child node is
0 0
GMP)=1-(5)*-(1-5)*=0
3 3
Thus, the information gain of the example split is
3 3
I(MPU) :0.5—6-0—6-020.5

As can be easily checked, a year attribute split with a similarity threshold between 0.0 and
0.8 also results in an information gain of 0.5. With M corresponding to class 1, though,
and matching status M = U V P corresponding to class 0, a studio attribute split between

0.3 and 1 only yields an information gain of about 0.28.

Support vector machines (SVMs) are another group of supervised machine learners. One of
the first works on support vector machines in duplicate detection was published by Bilenko
et al. in the early 2000’s [BMO03], although the idea of support vector machines goes back to
a work by Vapnik and Chervonenkis from the 1970s [VC74]. A more modern introduction
to the topic can be found in the book [SS02].

A simple support vector machine is a binary classifier. In the training process, it takes a set
of pre-labelled vectors as input and separates them by a hyperplane in the corresponding
vector space according to their labels. Unknown vectors are then assigned to one of the

classes, depending on which side of the hyperplane they are. For obvious reasons, this
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hyperplane is also called decision boundary.
Since a decision model classifies comparison vectors in vector space I', deploying an SVM

decision model with comparison vectors labelled as matches and unmatches is very straight-

forward.

Figure illustrates a decision boundary separating matching and unmatching compar-
ison vectors. For better illustration, the vector space is only two-dimensional and hence
the decision boundary is even only one-dimensional. The fundamental concepts, however,
are the same for higher dimensions.

The decision boundary is chosen to maximise the distance to the closest vectors of each
class. Those vectors are called support vectors and determine the alignment of the decision

boundary. The region between the support vectors and the decision boundary is known as

margin.

+
matches
%

support vectors +
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0.3 |
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0.0 01 0.2 0.3 0.4 0.5 ~ 0.6 0.7 0.8 0.9 1

simyigle

Figure 2.6.: Classification with a support vector machine.

Basically, a support vector machine can only perform a linear separation of the vector space
into two classes, but there are some improvements that compensate for those shortcomings:
as mentioned in [BMO03], a more complex decision boundary can be achieved by mapping
the training vectors into a higher dimension, computing a decision boundary for the high-
dimensional vector representations and then transforming it back into the lower dimension
of the original vector space. The decision boundary is linear in the higher dimension and

hence even more complex in the lower dimension. As the functions that map the vectors
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into the higher dimension are often referred to as kernels, this approach is called the kernel
trick.

movies
( title year | studio N
t; | Batman | 1966 | Twentieth Century Fox 1. compute similarity
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metrics
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Figure 2.7.: A decision model incorporating a support vector machine according to Bilenko
et al. [BMO3].

A detailed survey of possibilities to separate more than two classes with support vector
machines is given in Section 7.6 of [SS02]. The possibility of ternary separation can be
helpful when implementing a decision model for comparison vectors labelled as M, U and
also P, but is not mandatory. Figure [2.7]illustrates an SVM decision model by Bilenko et
al. as described in [BMO03| that can assign M, U and P labels, although it basically is just
a binary classifier.

There are two movie tuples with title, year and studio attribute. The decision model has
to assign a matching status to tuple pair (¢1,t2). One peculiarity of this approach is the
computation of a comparison vector; every attribute value pair is compared by several com-
parison functionsﬁ In this example, there are three attributes and two similarity functions,
so that the comparison vector corresponding to a tuple pair comprises six components. The
second noteworthy new aspect of this decision model is that it does not only make a binary
decision as to whether a tuple pair is a match or an unmatch, but also can declare a tuple
pair to be a possible match in doubtful cases. The authors interpret the distance between
an unknown comparison vector and the decision boundary as an indication of the decisive-
ness of the corresponding decision. Accordingly, a tuple pair is only declared a match or an

unmatch, if the decisiveness of the respective matching status decision exceeds a particular

4The authors also propose an SVM-based comparison metric that can learn string similarities and thus
adapt to specific domains very well.
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threshold; if the decisiveness is too low, the tuple pair is declared a possible match.
In their work, Bilenko et al. show this approach to outperform decision trees in terms of

precision and recall, especially with only little training data.

Unsupervised Machine Learning Decision Models

A great disadvantage of supervised learning techniques is that they require training data
to function. As opposed to supervised machine learning techniques, unsupervised machine
learning works without labelled training data.

One of the most important unsupervised machine learning techniques in duplicate detection
is clustering. Basically, a clustering algorithm divides a given set of objects into clusters,
i.e. groups, in such a way that objects in one cluster are rather similar to one another.
Based on the assumption that comparison vectors with identical matching status have
similar characteristics (and hence are near in comparison space I'), clustering algorithms
can be used to cluster matches and unmatches. However, a clustering algorithm does not

provide labels for the clusters.

A very well-known clustering algorithm is the k-means algorithm [HW79] which divides a
set of vectors into k clusters.

The k-means clustering algorithm works in the following fashion:
1. The algorithm is initialised with k cluster centroids.

2. Every comparison vector in the vector space is assigned to the cluster corresponding

to the nearest centroid.
3. A new centroid is calculated for every cluster.

4. Step [2] and [3] are repeated, until the matching decisions are stable, i.e. do not change
anymore, or until another termination criterion is fulfilled, e.g. until a number of

maximal iterations has been performed.

In duplicate detection, the perfect matching and unmatching vectors may be chosen as

initial Centroidsﬂ but the centroids may also be chosen completely at random.

The k-means clustering algorithm is very efficient for small values of k as they are used in
the duplicate detection domain where k = 2 (M, U) or k = 3 (M, P, U). According to
[GBO06], though, the possible matches often do not form a distinct cluster and hence the
3-means algorithm leads to large possible match clusters in many real-world applications.
Based on this observation, the authors of [GB06| propose binary clustering to separate
matches and unmatches first, and then defining a fuzzy region somewhere between the
centroids of the two clusters to classify possible matches.

First, the k-means algorithm is used to divide the comparison space into two clusters which

5In this case, duplicate detection could be performed fully automated, since the cluster labels are implicitly
given by the choice of the initial vector (M for perfect matching vector and U for perfect unmatching
vector).
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are then labelled M and U by a domain expert. To find a reasonable fuzzy region, the

authors use the relative distance

‘ dc,M - dc,U |
(dc,M + dc,U) : %

Ad, =

of a comparison vector ¢ to the two cluster centroids where d. s is the distance to the
centroid of the matching cluster and d. ;s is the distance to the centroid of the unmatching
cluster. Hence, a small Ad; indicates that a final decision can only be made with a small
certainty. Whether a comparison vector c is labelled with P or not, depends on whether
Ad, exceeds a threshold T,;. By defining this threshold, a trade-off between high accuracy
and a small fuzzy region is made.

In an experimental evaluation, the authors show their approach to perform as well as a
decision model purely based on 3-means clustering in terms of precision and recall, but also
to achieve a smaller set of possible matches which can be crucial for real-world applications,

since human decision-making is very expensive.

2.2.6. Hybrid Machine Learning Decision Models

As the results of purely clustering-based decision models are too imprecise in many cases,
Verykios et al. propose a way to automatise supervised learners using clustering techniques
[VEHOOQ]. This is illustrated in Figure

First, a small subset of all comparison vectors is divided into clusters and labelled by
a domain expert. The tuple comparison vectors thus can be used to train a supervised
learner which then, finally, can be used to classify all comparison vectors. The authors use
a decision tree as supervised learning technique.

In their later work [EVEQ2], the authors implement this hybrid procedure in the duplicate
detection tool box TAILOR. The evaluation of their experiments indicates that the hybrid

approach is superior to an approach that is based on clustering alone.

In his work [ChrO8al], Christen evaluates different hybrid learning models incorporating
combinations of unsupervised and supervised learning methods. Some hybrid models
that use clustering or distance-based methods to produce training data and then train
a support vector machine are implemented in Christen’s duplicate detection framework
Febrl [Chr08b].

Christen’s Iterative Approach

In |[Chr08al, Christen describes a hybrid machine learning decision model that iteratively
classifies comparison vectors with a support vector machine and thus further minimises
human effort. The basic idea is to train the SVM with a small initial training set, first,
have it classify the remaining comparison vectors, and then extend the training set by the
most obvious matches and unmatches again and again, until a certain termination criterion

is fulfilled.
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Figure 2.8.: A hybrid decision model combining unsupervised (clustering) and supervised
machine learning techniques according to [VEHO00].

Figure [2.9] illustrates Christen’s iterative hybrid decision model.

First, the initial training set is determined with a distance-based method: the comparison
vectors are sorted by their Manhattan distance to the perfect matching vector [1,1,...,1]
(1.) and a predefined number of vectors from the top of the list (matches) and the bottom
of the list (unmatches) are labelled and form the initial training set (2.). Christen calls this
selection strategy nearest-based selection. The difficulty here is to choose the right number
of vectors: choosing too few vectors results in an undertrained decision model, but if too
many vectors are chosen, the probability of adding false positives and false negatives to the
initial training set increases. The initial training set is used to train an SVM decision model
(3.) which then classifies the remaining comparison vectors that have not been classified so
far (4., 5.). As before, some of the classified vectors are labelled and added to the training
set, but now the decisiveness of the SVM’s decision (see Figure is used to determine
the best candidates. For example, all matches and unmatches with a decisiveness of 0.9 or
more could be added (6.). The entire process comes to an end, if a termination criterion
is fulfilled, i.e. for example if no comparison vector can be classified with a decisiveness of

0.9 or more.

2.2.7. Summary

All decision models discussed here have their particular benefits and drawbacks.

The probabilistic model by Fellegi and Sunter can, in theory, be used to automatise dupli-
cate detection, but the computation of the required matching weights is often very hard
and even infeasible, if the comparison space is too large.

Like the probabilistic model, the distance-based models can be used even when there is no

training data available which can be a great advantage, but they require certain thresholds
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Figure 2.9.: Christen’s iterative hybrid decision model according to [Chr08al.

to be defined first. Besides, distance-based decision models usually don’t perform very well
in terms of precision and recall.

Rule-based systems can deliver the best results, but are usually very complex and thus
expensive, since the necessary rules have to be designed by human domain experts.
Supervised machine learning decision models can deliver very good results as well at moder-
ate costs. Using decision trees offers the great advantage that the resulting model comprises
a set of intelligible rules, while the model of a support vector machine, although more ro-
bust and usually more precise, cannot be comprehended by humans.

Purely clustering-based algorithms deliver not as good results, but, as the distance-based
methods, do not require as much human effort.

In the current work on decision models, there appears to be a trend towards hybrid decision
models which create an initial training set with clustering or distance-based algorithms to

train a supervised learner.

2.3. Search Space Reduction in Probabilistic Data

Search space reduction in general means removing obvious unmatches from the set of all
tuple pairs with cheap methods, so that the expensive in-depth tuple comparison in the
process of duplicate detection is only executed on a feasible number of tuple pairs. In

our bachelor’s thesis [FW10|, we examine possibilities to adapt the commonly used certain
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data search space reduction techniques Blocking |[EIVOT]| and the Sorted Neighbourhood
Method (SNM) [HS95, [HS98] to probabilistic data.

The investigated search space reduction techniques compute a key value for each tuple
which is then used to decide whether or not a tuple pair remains in the search space. The
basic idea is that duplicate tuples agree on their key values, while non-duplicate tuples
do not. A key can for example be a particular attribute or a combination of (parts of)
attributes.

The standard Blocking technique partitions all tuples in mutually exclusive blocks in such
a way that only tuples with identical key values are assigned to one block. The reduced
search space is then generated by pairing every tuple with every other tuple in the same
block. Tuple pairs with tuples from different blocks are not permitted.

The basic Sorted Neighbourhood Method reduces the search space in three steps: first,
a key value is computed for every tuple, then, the tuples are sorted by their key values
and, finally, all tuples within a certain range in the sorted list are paired with each other
(merged). The last step is also called windowing, because it is often visualised with a
window of a fixed size w that is moved sequentially over the sorted list of tuples where
all tuples framed by the window at the same time are paired with each other. When the
window is moved down, the topmost tuple slides out of the window and a new tuple slides
into the window, so that the set of all tuples is practically divided into overlapping subsets.
The window size w can be increased to improve the recall slightly, but this also tends to

reduce the precision dramatically [HS9S].

For both search space reduction techniques, a good key design is crucial to achieve
usable results.

A key with too much discriminating power results in a good precision, but also reduces
the recall drastically: especially for Blocking, this is a problem, since duplicate tuples may
be assigned to individual blocks and thus may not be paired, if their key values are not
exactly identical. On the other hand, a key value that is not only identical for duplicates,
but for many non-duplicates as well leads to a poor precision. In general, preprocessing the
keys, for example by using a phonetic encoding such as the Soundex code instead of the
actual attribute value, can make search space reduction more robust against small errors

and thus improve recall without having a negative effect on the precision.

Depending on the data, there can be more than one usable key design. The authors of
[HS9§| claim that a multi-pass approach, i.e. running SSR techniques in several indepen-
dent runs with different keys and combining the results, can increase the recall without

decreasing the precision much, if this is the case.

In [FW10|, several adapted variants of Blocking and the Sorted Neighbourhood Method
are compared with respect to their performance in recall and precision on generated proba-
bilistic data. Even though SNM is more expensive than Blocking due to the sorting step, it
usually outperforms Blocking in terms of recall while maintaining an acceptable precision.
Figure illustrates one of the adapted Sorted Neighbourhood Method variants with
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Figure 2.10.: This variant of the Sorted Neighbourhood Method is adapted to probabilistic
data. A key value is created for every x-tuple alternative. The window size is
increased dynamically, so that always the same number of tuples are paired.

window size w = 2 which delivers a comparatively good recall at an acceptable precision
according to the experiment results.

In the example, a key value comprises the first three characters of the movie title and the
entire year attribute. Obviously, the key attributes are not certain for all tuples, so that
more than one key can be computed for some of the tuples. According to our experiments,
computing keys for all alternatives as illustrated in the figure leads to the best recall, but
there are also other approaches, for example generating only one single key per tuple from
the most probable alternative.

In the sorted list, all neighbouring keys within a certain distance in the list are paired
with each other where the corresponding tuple pairs form the reduced search space. To
guarantee that the same number of tuple pairs is generated after every time the window is
moved, the window size is dynamically increased: the first two alternatives in the sorted
list correspond to the same tuple, so not even one tuple pair can be generated, unless the
window is increased by one. By increasing the window, an alternative representing another

tuple slides into the window and a tuple pair can be generated.

2.4. Generating Certain Data

A great challenge in the research of duplicate detection is the lack of publicly available real-
world data sets to evaluate decision modelsﬁ This lack is partly based on the fact that

for most real-world data sets the actual duplicates are not known, but privacy and legal

S Although this section is about generating certain data, this statement also, and even more so, applies
to duplicate detection in probabilistic data.
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issues also prevent data sets such as customer or patient databases from being published
in many countries. Although such data sets can be used by the companies administrating
them, they cannot be used by others and thus never lead to comparable results.

A small collection of data sets can be found in the RIDDLE repositoryﬂ but it appears

rather poor in comparison to what is available in the machine learning Communityﬁ

Under these premises, the generation of test data sets for evaluation seems attractive, since
some parameters such as size and quality of the data are configurable and the resulting
data sets can be published. However, generating synthetic data with realistic error patterns
that meet particular requirements such as given frequency distributions for some attributes

or dependencies between attributes is an extremely hard task.

In this section, we survey the state of research on data generation. First, we describe two
different approaches to building a generator, namely generating completely synthetic data
and generating data on the basis of real-world data sets. After that, we go into detail

about literature on realistic error patterns and present existing data generators.

2.4.1. Two Types of Data Generators

In the following, we describe the basic two types of data generators according to [Chr05,
CP09] and Section 7.5, 7.6 and 7.7 from the book [Chr12].

Completely Synthetic Data

Since data sets containing personal information usually cannot be published due to privacy
issues, such data sets are often generated. For example, a fictitious customer database can
be created from lists of forenames, surnames and addresses, so that the data do not refer
to real people and the database can be published. Some attributes can also be synthesised
without such attribute lists, for example telephone numbers can be generated according
to rules. Apart from not giving rise to any legal issues, the great advantage of completely
synthetic data is that the user has more control over certain characteristics of the data.
Depending on the complexity of the generator, parameters like the desired number of
records, attribute lists and sets of rules to use can be provided by the user, so that the
data are generated according to the user’s will.

A major obstacle in terms of realism, though, is modelling dependencies or correlations
between attribute values: certain forenames, for example, cannot be used for males and
females, and since the surname of a person often has something to do with the person’s
cultural background, it may be correlated with his or her address. The complexity of the
generator and the number of parameters to set grows with the number and complexity
of the modeled dependencies. If the configuration of the generator is too complex, some

parameters may not be configured correctly or not be configured at all, because their effect

"RIDDLE data set repository: http://www.cs.utexas.edu/users/ml/riddle/data.htmll
8UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/|
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on the generated data is not clear to the user.

Another difficulty in generating test data for duplicate detection is modelling realistic
error patterns. For example, duplicates in a real customer database may come to existence
because of simple typos during the input process, so realistic typos have to be applied to
the artificial data in order to generate realistic duplicates. It is crucial that the generated
data and the real-world data which the duplicate detection system is created for have
similar characteristics, for example similar attributes with similar frequency distributions
and similar error patterns. If this is not the case, the result of the evaluation on the
synthetic data cannot be used to make predictions on how well the duplicate detection will

work in a real application.

Using Real-World Data Sets

Another approach to obtain test data is to use an existing — preferably error-free — data
set and to modify it, e.g. by adding duplicates. As with generating completely synthetic
data, implementing realistic error patterns is crucial here as well.

A great advantage of this approach is that attribute dependencies and correlations don’t
have to be taken care of explicitly, since they are part of the original data. Accordingly,

though, privacy is still an issue, since the original data are real-world data.

2.4.2. Error Modelling

In this section, we describe the introduction of realistic error patterns into the data ac-
cording to [CP09|. As illustrated in Figure data in a database can originate from
different sources and be entered using different channels. Each source and input channel
is prone to errors with particular characteristics, and there are characteristic errors for
certain combinations as well.

For example, the confusion of synonyms or other words that are in some way related to one
another can, for example, result from imprecise memories, while phonetic errors like the
input value “bad man” instead of “Batman” are more likely when information is dictated,
for example to a typist or to a speech recognition software. When the data are retrieved
from printed or handwritten documents with optical character recognition (OCR) software,
there most certainly are some words where characters have been confused with similar look-
ing ones, e.g. “1” and “I". Typographical errors like the confusion of neighbouring characters
on the keyboard or the transposition of subsequent characters in a word are typical for

typed data.

Since the 1960s, text corpora have been analysed in the field of automated error detec-
tion and spelling correction to yield typographical error characteristics such as frequency

distributions of particular errors.

The most typographical errors encompass simple omissions, substitutions and insertions

of single or transposition of two neighbouring characters. In an early study [Dam64],
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Figure 2.11.: Different data sources and input channels according to [CPQ9].

Damerau reports that 80% of all errors are such simple errors. Pollock and Zamora report
an even higher share of 90% to 95% [PZ84]. The exact percentages of the particular simple
errors, though, seem to differ from text to text. Table illustrates the percentage of the
mentioned simple error types reported in different works.

Apart from the frequency distribution, it can also be regarded that most of the errors occur

in the middle part [PZ84] [BST2] or near the end of a word |[CCM™10).

Typographical errors can be implemented using confusion matrices. In [CG91], for exam-
ple, Church and Gale provide confusion matrices for all four error types. For substitution
errors, their confusion matrix represents the probabilityﬂ of one particular character a be-
ing substituted by another particular character b for every character combination. The
transposition of two characters is represented similarly. Omission and insertion errors are
somewhat differently represented: the probability associated with the combination of two
characters a and b represents the probability of character b being omitted or inserted,

respectively, after the occurrence of character a.

error type | [BS12] | [CCM™T10] | [Dam64] [Pet6]
omissions 45% 29% 16% 31.6% | 34.4%
substitutions 15% 21% 59% 40.0% | 26.9%
insertions 10% 1% 10% 18.7% | 20.3%
| transpositions | 30% 25% 2% 2.6% | 13.1% |

Table 2.2.: Different reported percentages of the simple error types and the respective
reference.

9In many cases, scores are used instead of probabilities.
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The remaining 5% to 20% of errors are more complex errors, e.g. multiple typographical,
phonetic or semantic errors. Such errors can be modelled with lists of confusion sets. An
entry in such a list consists of one word, the so-called head, that can be confused with all
of the subsequent words, the actual confusion setE Optionally, the probability? for every
single word to be confused with the head can be defined. By default, those probabilities
are assumed to be uniformly distributed.

Some lists of general language confusion sets are publicly available, for example Pedler and
Mitton published a list of almost 6,000 English confusion setﬂ whose creation is described
in [CCM™10]. Another list of a few hundred homophoneﬁ has been published under the
GNU General Public License as a part of the language checker After the Deadline (ATD).

Confusion sets for phonetic errors can also be generated rather easily for a given set of
strings by grouping them according to their phonetic encoding. To compute phonetic
encodings, algorithms like Soundez |[Rusl8| Rus22] or NYSIIS|Taf70] can be used.

In [CPQ9] a list of phonetic rules is used to generate phonetic errors. Such a rule can for
example state that the suffix “le” can be replaced by “ile”, if the preceding character is
a consonant. So the word “rumble” can be replaced by “rumbile” according to this rule.
A great advantage of using phonetic rules is that they can be applied to any domain

without preprocessing.

2.4.3. Existing Generators

The UIS Database Genemtoﬂ [HS95] developed by Hernandez and Stolfo in 1995 is the
first software to generate data for duplicate detection in certain data. This generator
creates a completely artificial address database consisting of the attributes social security
number, first name, initial, last name, address, apartment, city, state and ZIP Code where
some basic parameters like the number of tuples in the database and the number of dupli-
cates can be controlled by the user.

Duplicates and the corresponding original tuples can differ by just small typographical
errors, but they can also have completely different name or address values and even miss-
ing values. While the frequencies of the different error types are modelled according to
statistics gathered from spelling correction studies, the attribute frequency distributions
are not modelled realistically: for example, the names are chosen randomly from a list of

real names and thus are equally distributed.

In 2003, Bertolazzi et al. presented an improved generator that gives the user more control

over the generated errors [BSS03].

A generator that incorporates many improvements in comparison is part of the duplicate
detection framework Febrl [ChrO8b, [Chr05]. There are two versions of the Febrl gener-

10Tn some works, there is no head element in a confusion set, because every word in the confusion set can
be confused with every other word.

" Confusion sets by Pedler and Mitton: http://www.dcs.bbk.ac.uk/~jenny/resources.html.

2Homophone list from ATD: http://static.afterthedeadline.com/download/homophonedb.txt.

13UIS Database Generator: http://www.cs.utexas.edu/users/ml/riddle/data.html.
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ator which are both enclosed in the Febrl system: Christen’s original and an enhanced
version [CP09]. In both versions, the adjustable parameters are documented comprehen-
sively to give the user more control over the generation process. Attribute values are gen-
erated using external look-up tables that can even contain the frequencies of the attribute
values. For every attribute, parameters like the probability for phonetic, typographical
or OCR errors are configurable. While the model for typographical errors is hardcoded,
phonetic and OCR errors are realised using external input files. For example, one line in
the OCR error input file is “All, 2, Z” and thus specifies that the character “2” can be
substituted by the character “Z” in all words.

All in all, the generator offers great control over the predefined error types and allows
the user to integrate his or her own look-up tables and even to extend error generation
rule sets and lists of confusion sets. Apart from the mentioned error types, there are also
other error types like omission or permutation of attribute values. The new version of
the data generator can also model dependencies between attributes, for example between
gender and forename, and it supports the generation of groups of tuples that correspond

to families.

In 2009, Talburt et al. presented a generator for duplicate detection test data that pro-
duces realistic name and address histories [TZS09]. Using real data such as publicly known
addresses, the generator produces sequences of personal address data with attached times-
tamps that reflect a person’s or a couple’s change of residence or surname after marriage
over time.

The authors plan to add more functionality to the generator, for example control over data

quality or the possibility to output different file formats.
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3. ProbGee: A Generator for Probabilistic
Data Sets

In this chapter, we describe the data generator we developed to provide data for our
evaluation experiments. We start with a high-level description of our generator and the
generation process and then go into detail about the architecture, describing the most
important parameters and their influence on the generated data. Finally, we briefly present

some special features of the generator.

3.1. Basic Functionality

For the execution and evaluation of our adapted decision models, probabilistic data in-
corporating duplicates is mandatory. Since no such data exist to our knowledge, the
first step in preparing the experiments is generating appropriate data. For this purpose,
we propose ProbGee, an easy-to-use generator for probabilistic data sets with graphical

user interface.

Currently, ProbGee does not generate completely synthetic data, but uses an existing data
source with ideally no errors to generate probabilistic tuples with duplicates. However,
we plan to implement the generation of completely synthetic data from attribute lists and
production rules in the near future.

We deliberately use a few basic functionalities from the data generator for probabilistic
data sets we implemented for our bachelor’s thesis [FW10] such as loading or storing data,
so that the output format is the same as in earlier experiments. This is an important
feature, because it makes it possible to run the search space reduction techniques from our
bachelor’s thesis on the data produced with ProbGeeE] Like its predecessor, ProbGee uses
the very fast and easy-to-use relational database system HS QLDBE] to store all certain and

probabilistic databases.

As illustrated in Figure the basic workflow in ProbGee is divided into three steps: the
extraction of data from an external database into CSV files (1.), the import of CSV files
into an internal database system (2.) and the actual generation process (3.).

The first step is to extract data from an external database and store them to CSV files. To

connect to an external database, the user has to provide the corresponding JDBC driver.

! As described in Chapter [5] we use our own search space reduction techniques to obtain more realistic
tuple matching results.
?HyperSQL DataBase: |http://hsqldb.org.
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The result set of any SQL statement given by the user can be stored to a CSV file. The
extraction step is optional, since the raw data can also be provided in form of CSV files
that were not generated using the graphical user interface.

The CSV files are then imported into the internal database system of the generator to gain
more control over the data and to make it accessible via SQL. The user has to provide a list
of SQL statements to create the relations the data are imported to; thus, it is possible to
import not only single relations, but also more complex data structures, especially relations
with foreign keys.

In the final step, the probabilistic database is generated from the imported raw data. First,
the imported raw data are copied into a new database. Subsequently, new attributes for
the tuple ID and alternative ID are introduced to every relation as new primary keys. To
preserve the foreign key relationships from the original data, new foreign key attributes
are added to all relations with foreign keys. Finally, x-tuple alternatives and duplicate

tuples are generated according to the parameters specified by the user via the graphical

2.1 t
JMDB —»1’ extract _— HHport certain
MySQL HSQL

internal CSV data

user interface.

external database internal database

prob.
HSQL

generated database

Figure 3.1.: The basic data generation workflow with ProbGee.

We decided for CSV files as input format during the import step, because they can be
generated easily and because data such as attribute lists often are available on the internet
in this format.

Besides, compatibility issues between our generator and an unknown (user-provided)
database system can be avoided, because there is no necessity for our generator to commu-
nicate with any database system due to the possibility of importing simple CSV files. Many
database systems are capable of exporting relations or query result sets into CSV files, so

that importing data indirectly from a database via CSV files is usually no problem.

For our experiments, we use movie data from the Internet Movie Database (]MDbﬂ The
data are extracted from a MySQL database holding information on millions of movies, for

example title, producer, director and production year. How an identical database can be

3Internet Movie Database: http://www.imdb.com/.
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created from freely available text files is described on the official homepage of the project
JMDBA

3.2. The Architecture

As indicated in Figure the program modules responsible for the generation of prob-
abilistic data are structured in a hierarchy of generators. Every generator implements a
particular interface to make the exchange of single generators possible.

In this section, we describe our implementations of the single generators in detail.

4 )
database generator
~
(/ ™
4 )
table generator
4 )
tuple generator
4 N /7 N\
duplicate generator alternative generator

attribute value attribute value

generator generator

Figure 3.2.: The generator hierarchy in ProbGee.

3.2.1. The Database Generator

The database generator initialises the entire generation process. Since the generation of
duplicates and other errors is highly domain-dependent, the database generator assigns

every relation in the database an appropriate table generator.

Besides, the database generator controls in which order the relations are processed. This
is an important issue when generating duplicates: if for example relation R; references
relation Ry and errors are introduced into R1, before the referenced relation Ry is processed,
no duplicate in Ry can be referenced by any tuple in R;.

Since our movie database consists of one single relation without any foreign keys, this
feature is not used, yet. However, a simplistic error generator that produces foreign key
errors has been implemented by us already (see Subsection .

*Java Movie Database: http://www.jmdb.de.
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3.2.2. The Table Generator

Before a probabilistic database can be generated, some parameters have to be specified,

most importantly:

o distribution of the duplicate cluster size: this is not a number, but a complex

parameter that defines how many probabilistic tuples are generated from a certain
data tuple and thus represent the same real-world entity. Tuples representing the
same real-world entity form a duplicate cluster.
For example, it can be specified that 1,000 entities shall be represented by one tu-
ple each, 500 entities shall be represented by two tuples each and 100 entities shall
be represented by three tuples each. By specifying the distribution of the dupli-
cate cluster size, the number of probabilistic tuples in the destination database
is automatically given; a database with the just mentioned distribution will have
1,000 - 1 4500 - 2 4 100 - 3 = 2,300 tuples.

o distribution of tuple size: similarly to the duplicate cluster size distribution, this
parameter determines how many alternatives form one tuple.
A user can, for example, determine that 800 tuples shall have only one alternative,
600 tuples shall have two alternatives and 400 tuples shall have three alternatives.
The implied number of probabilistic tuples for these values is 800+ 6004400 = 1,800.

e number of maybe-tuples: the number of tuples with a confidence smaller than 1.

The two exemplary distribution parameter settings just mentioned are contradictory: ac-
cording to the cluster size distribution, the destination database will contain 2,300 tuples,
while the tuple size distribution indicates 1,800 tuples. To make the generation process
more robust against those kinds of contradictions, all surplus tuples receive a single alter-

native by default.

The table generator does not only resolve contradictory settings, but it also initiates the
generation of every single duplicate cluster by the tuple generator, making sure in the
process that all the above parameters are put into practice ezxactly. In principle, the
duplicate cluster size and the size of a tuple are selected with a probability that corresponds
to the respective user-defined distribution, but are also constrained by it. In the example
setting, the first duplicate cluster that is generated is formed of one, two or three tuples,
1,000ig88+100 = i:gggv 15,)880 and 1}880' If the cluster

size is chosen to be three, the probabilities for the cluster sizes of one, two and three in

1,000 ~ 1,000 500 99
the next turn are 1,000+500+99 — 1599 1,599 and 1,599

each with a respective probability of

respectively, and so on.

When the generation process has finished, the table generator iterates over all tuples,
reordering the confidence values in such a way that the alternatives with the greatest

cleanness value receive the greatest confidence.

Finally, the table generator creates a IXTEX file and compiles it to a PDF file illustrating

the most important parameters described in this chapter with some tables and plots.
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3.2.3. The Tuple Generator

The most complex of our generators is the tuple generator that creates a duplicate cluster
from a certain data tuple. As described in the introduction already, one requirement for
our new generator is to give the user control over the similarity between duplicate tuples
and the similarity of alternatives of the same x-tuple.

To make the similarity between two x-tuple alternatives easily configurable, it is measured
as the weighted sum of all attribute similarities, i.e. a real number in the range of [0,1].
Obviously, for every attribute, a weight and a similarity metric have to be defined first,
though; in our implementation, every attribute value pair is compared with the Jaro-
Winkler metric by default[]

Error Provenance Trees

One problem with generating probabilistic data is the complexity of the process and of
the resulting data. To make the generation process more comprehensible and to help the
user understand whether it led to the desired result or not, we generate duplicate clusters
from certain data alternatives using a data structure called error provenance tree. Figure
[3-3] shows a schematic view of an error provenance tree and illustrates its most important
defining properties. Every node in the tree corresponds to an x-tuple alternative and every
child node is, basically, just a copy of its respective father node that has some additional
errors. In simple words, the tree nodes (alternatives) grow dirtier from the root to the leaf
nodes.

The root of the tree holds the uncorrupted certain data and thus is the correct version
of every alternative in the entire duplicate cluster. The child nodes of the root node are
prototypes for every x-tuple in the cluster. These prototypes are used for the generation
of x-tuple alternatives, but are not part of the actual tuples themselves. In the database,
they are stored with the alternative ID 0 and hence are called zero—alternativesﬁ Nodes in
the tree are either zero-alternatives, alternatives of an x-tuple (opaque nodes) or neither
(transparent nodes). Nodes that have no descendant that is part of a tuple and that are
not part of a tuple themselves are of no importance whatsoever for the generation process
and hence can be removed.

The point of organising generated alternatives in a tree structure is that alternatives of
the same tuple have similar errors because they all — directly or indirectly — inherit errors
from the same (zero-)alternatives. Apart from that, the correct representation and the

development of every alternative are easily perceptible.

The characteristics of an error provenance tree as illustrated in Figure [3.3] are also key
parameters for the generation process. The following parameters for the generation of an
error provenance tree are specified by an expectancy value and a standard deviation and

hence are normally distributed:

®The Jaro-Winkler metric is not the only available metric.
5In our notion, the alternative IDs of an x-tuple range from 1 to the number of alternatives in the tuple.
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certain data alternative

zero-alternative

similarity zero-alternatives

of duplicates

x-tuple
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Figure 3.3.: A schematic view of an error provenance tree.

e zero-alternative similarity: the average similarity of one zero-alternative to all other

zero-alternatives. The similarity between duplicate tuples can be configured indi-
rectly with this parameter.

Actually, the duplicate similarity, i.e. the average similarity between the alternatives
of different duplicates, would be a better parameter, but in a duplicate cluster, there
are practically always much more alternative pairs between duplicate tuples than
zero-alternative pairs, so that the computation of the duplicate similarity is much
more expensive than the computation of the zero-alternative similarity. Furthermore,
the zero-alternative similarity and the duplicate similarity are usually very similarly
distributed anyway (see Figure in Section , so that this trade-off between

computation time and correctness seems reasonable.

intra-tuple similarity: the average similarity of one x-tuple alternative to all other
x-tuple alternatives of the same tuple. Alternatives that are not part of the tuple are

not taken into account.

cleanness: the cleanness of an x-tuple alternative is its similarity to its corresponding
zero-alternative. Correspondingly, the cleanness of a zero-alternative is its similarity

to the root node and the tuple cleanness is the expected cleanness of its alternatives.

overlapping: a number in the range of [0,1] representing the share of alternatives in a
tuple that are identical to alternatives of another tuple in the same duplicate cluster.
The actual duplicate similarity can be influenced by this parameter, since a high
share of identical alternatives among duplicate tuples raises the duplicate similarity
without affecting the zero-alternative similarity.

Overlapping alternatives are copied into the destination subtree as direct descendant
of the corresponding zero-alternative to indicate to which duplicate they belong. To

illustrate their origin, they are also marked with a dashed arrow from the original to
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the copy.

For example, this is how a duplicate cluster consisting of three tuples with ten alter-
natives each is created from an error provenance tree with an overlapping value of
0.3: since there is no other tuple to copy alternatives from, yet, the alternatives of
the first tuple are entirely selected from the tree, regardless of the overlapping value.
For the second tuple, aboutﬂ three alternatives are copied from the first tuple and
about seven alternatives are chosen from the error provenance tree. For the third
tuple, also about three alternatives are copied from one of its duplicates, before the

remaining alternatives are chosen from the tree.

Generating a Duplicate Cluster

The basic course of action when generating a duplicate cluster is to grow an error prove-
nance tree first, and then select alternatives greedily from the tree to build x-tuples in
such a way that the user-specified parameters are realised as precisely as possible. In the
following, this procedure is explained in more detail. After that, some more parameters
are described by which the user can interact with the tuple generator.

Initially, a list of zero-alternatives is generated with the duplicate generator (see Subsec-
tion , so that there is one zero-alternative as prototype for each tuple in the duplicate
cluster. After that, alternative nodes are generated for every tuple where rather clean alter-
natives are chosen to grow a new child node with a higher probability. Since the alternatives
near the root node are cleaner, the resulting tree is rather wide and does not grow deep
very quickly. The tree growth is terminated after the generation of the first alternative
whose cleanness drops below a certain threshold that lies way below the user-defined aver-
age cleanness, so that there are many alternatives available for varying degrees of dirtiness,
ranging from clean to very dirty. This dynamic termination criterion makes sure that there
are always alternatives in the tree that are much cleaner and alternatives that are much
dirtier than the desired average, while at the same time the tree is never unnecessarily
largeﬂ To ensure the termination of the tree growth, it is also stopped, when the ab-
solute number of alternative growth spurts exceeds a very large multifold of the desired
tuple size.

The selection of alternatives that become part of the final tuple is executed with a greedy
algorithm: first, some alternatives are copied from other tuples in the duplicate cluster,
depending on the respective overlapping value and, of course, depending on whether there
are other tuples in the cluster or not. The remaining alternatives of a tuple are chosen from
the set of descendants of the corresponding zero-alternative in such a way that the tuple’s
intra-tuple similarity is as close as possible to the desired value. If the first alternative is

not copied from another tuple, the alternative is chosen whose cleanness is closest to the

"The exact overlapping value varies from tuple to tuple, depending on the standard deviation specified
by the user.

8A high cleanness value given by the user leads to a rather early termination, because only few dirty
alternatives have to be generated. When the user specifies a low average cleanness, the tree generation
takes longer, because more dirty alternatives are needed and thus a deeper tree has to be grown.
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specified value. Since the other alternatives are chosen to be similar to the first alternative,
their cleanness is usually similar as well.

The generated tree is cleaned, i.e. all branches are removed, if they do not contain any
alternatives that are part of one of the tuples. Finally, a IXTEX file is generated from every
cleaned error provenance tree and then compiled into a PDF file, so that the user has an
overview over every duplicate cluster. Figure shows an error provenance tree exactly as
it was generated during the generation process. By default, the generated error provenance
trees grow from left to right, but they can also be configured to grow vertically as depicted.
In addition to the cleaned trees, the uncleaned trees can also be compiled. However, to

save memory, the entire INTEX feature can be turned off as well.

avg. dupl. sim.:

TID: 140 TID: 18

AID 0 AID: 0

cleanness: 0,94 cleanness: 1

intra-tup. sim 0,932 intra-tup. sim.: 0,99

conf.: 1 conf.: 1

TITLE: Batman: Gotham Knight TITLE: Batman: Gotham Knight,
YEAR: 2011 YEAR: 2008

DIRECTOR: Aoki, Yashuhiro (I) DIRECTOR: Y

PRODUCER: F Norfumi PRODUCER: Fujita, Norifumi

STUDIO Bee Trai [ip] STUDIO: Bee Train [jp]
TID: 140 TID: 140 TID: 48
AID: 2 AID: 1 AID: 1
cleanness: 0,932 cleanness: 1 cleanness: 1
conf.: 0,48 conf.: 0,52 conf.: 0.818
TITLE: Batman: Gotham night TITLE: Batman: Gotham Knight TITLE: Batman: Gotham Knight
YEAR: 2008 YEAR: 2011 YEAR: 2008
DIRECTOR: Aoki, Yaushiro (1) DIRECTOR: Aoki, Yashuhiro (1) DIRECTOR: Aoki, Yasuhiro (1)
PRODUCER: Fujita, Norifumi PRODUCER: jida, PRODUCER: Fu orifumi
STUDIO: Bee Triain [jp] STUDIO: Bee Trai [jp] STUDIO STUDIO: Be n [ip]

TID: 48

AID: 2

cleanness: 0,99

conf.: 0,182

TITLE: Batman: Gotham night
YEAR: 2008

DIRECTOR: Aoki, Yaushiro (I)
PRODUCER: Fujita, Norifumi
STUDIO: Bee Triain [jp]

Figure 3.4.: An error provenance tree as it is displayed in the ProbGee user interface after
the generation process.
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There are many more parameters by which the generation process can be influenced, most

importantly:

e poolsize factor: the minimum number of alternatives to generate for a tuple subtree
in an error provenance tree, depending on the desired tuple size. For example, if the
poolsize factor is 5 and the tuple in question will be formed of four alternatives, the
respective zero-alternative in the error provenance tree will have at least 4 - 5 = 20

descendants.

e depth factor: whether the tree grows more into the width or into the depth can be
influenced by this parameter. A positive value increases the probability of a node on
the lower levels to be chosen for tree growth, while a negative value further increases
the probability of nodes in the proximity of the root node to be chosen and thus

favours growth into the width.

e probability to choose the best alternative: this parameter represents the probability by
which the greedy selection algorithm described above chooses the best candidate, i.e.
the alternative that leads to the intra-tuple similarity closest to the specified value,
when forming a tuple. Values in the range from 0 (always random) to 1 (always
best) define the selection strategy. For example, a value of 0.8 means that the best
alternative is chosen with a probability of 80% and a random alternative is chosen
with a probability of 20%.

3.2.4. The Alternative Generator

The alternative generator creates a copy of a given x-tuple alternative and introduces an
error to one of its attributes by applying an attribute value generator (see Subsection
3.2.0)).

After a copy of the given x-tuple alternative has been created, one of its attributes is
chosen to be corrupted. If there are attributes that are uncorrupted in comparison to the
corresponding zero-alternative, only those attributes can be chosen. The probability for one
of those attributes to be chosen is anti-proportional to the user-defined matching weights
described in Subsection For example, if the attributes title (weight: 50), studio
(weight: 10) and producer (weight: 30) are error-free, the probability for the producer
attribute to be chosen is m = g. If there is no uncorrupted attribute, all attributes

can be chosen.

Having determined an attribute, an error type is chosen. A simple typographical error is
applied with a probability of 80% and a complex error is applied with a probability of 20%.
Figure [Mlustrates that the exact error type is determined according to scores.

When a simple typo is in order, one of four different types of typographical errors can
be applied: omission of a single character, substitution of a single character by another
single character, insertion of a character or transposition of two subsequent characters.

The default values for the probabilities for the different error types are also depicted and
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Figure 3.5.: The alternative generator chooses an attribute, first, and then introduces either
a simple or a complex error.

are chosen according to the references given in Section

While simple typos can be applied in most cases, some complex errors can only be applied
to particular values: so, for example, when a title confusion set error is chosen, it is well
possible that it cannot be applied, because the available list of confusion sets does not
contain any substitutions for the given title. In this case, another generator is chosen
the same way as before, but, of course, without the possibility of choosing the generator
that just failed. For this reason, a very high score for a particular generator does not
necessarily mean that this generator is applied very often. Apart from the title confusion
set list, ProbGee provides other lists of confusion sets, for example confusion set lists for
names or general words like “the” and “a”. Multiple typographical errors receive a rather
low score in our default setting, because they can be used almost always and hence are
used as a fallback strategy anyway, so that they are applied more often than it is implied
by the low score. Replacing an attribute value by null is practically the worst error that
can be applied, so it has the minimal score and is only tried, if nothing else works.
Depending on the tuple generator parameters, the influence of the scores defined for the
alternative generator on the final data can be minimal. For example, if the tuple generator
is configured to select alternatives with a very high cleanness, confusion set errors are

unlikely to appear in the final data.
The configuration of all generators is stored to an XML file that can be edited using

ProbGee’s graphical user interface or a common text editor. All scores are freely con-
figurable and single generators can be added or removed. More details on the possible

attribute value generator configurations are given in Section [3.2.6]
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3.2.5. The Duplicate Generator

In principle, the duplicate generator works like the tuple generator and hence can be con-
figured with almost identical parameters: it first generates a set of candidate alternatives
from a certain data alternative using an alternative generator and then selects a predefined
number of candidates, the first according to the user-defined zero-alternative cleanness and
the rest in such a way that the specified zero-alternative similarity is approached as closely
as possible.

The main difference to the tuple generator is that the used alternative generator is by
default configured in a completely different way: the probability of simple and complex
errors for zero-alternatives are inverse to the corresponding probabilities in the tuple gen-
erator’s alternative generator, i.e. simple errors occur with a probability of only 20%,
while complex errors occur in 80% of the corrupted attributes. The idea behind this is
that duplicates should have more fundamental differences than alternatives of the same
x-tuple. Two tuples can have a certain similarity because of small errors like single typos
in several attributes or because of a single complex error in one of the attributes. Since
zero-alternatives are the prototypes of the duplicates in a duplicate cluster, it makes more
sense for them to differ in more fundamental aspects, for example to have semantically

different movie titles, than merely differ in the exact spelling of some attributes.

3.2.6. The Attribute Value Generator

An attribute value generator takes an attribute value of a particular type as input and
generates a corrupted version of this value. Since all attribute values in our movie database
are string values, all our implementations are applicable to strings only; the attribute value

generator interface, though, is defined for arbitrary values.

Simple typos are modelled with confusion matm’ceﬂ that contain probability scores for
particular errors in certain character combinations. In the default configuration, the con-
fusion matrices from [CG91| are used, although arbitrary matrices can be incorporated by
simply manipulating the XML configuration file. Since the matrices we use are based on
empirically determined relative frequencies, all confusion matrices are smoothed by default,
i.e. all scores are first multiplied with 1,000 and then all scores smaller than 1 are raised
to 1. This ensures that every character combination is at least remotely possible, even if
it has not been observed in the study that yielded the respective matrix. The smoothing
option can also be turned off.

When a typographical error is to be applied, it is determined which of all the character
combinations modelled in the matrix occur in given attribute value. Whether or not this is
done case-sensitively is determined by a parameter. Every occurrence of such a character
combination represents a possibility to introduce an error. One of those occurrences is

chosen with a probability proportional to its score.

9Details on confusion sets and confusion matrices can be found in Subsection m
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As mentioned above, four kinds of typographical errors are modelled explicitly: the omis-
sion or insertion of a character after the occurrence of a particular other character, the
substitution of one character by another character or the reversal of two neighbouring

characters.

Semantic errors are modelled as lists of confusion setdd holding synonyms or different
spellings of a word or phrase. A list of confusion sets can be used to confuse the entire
attribute value or only single words in the attribute value, the latter being especially
reasonable for commonly used words like articles or adjectives. A list of confusion sets can
be applied to an attribute value, if the value equals the head of one confusion set contained
in the list. Just like with the confusion matrices, the user can determine whether or not
the character case is taken into consideration for this containment check.

Apart from the lists of confusion sets mentioned in Subsection 2.4.2] our generator uses
confusion sets for movie titles and names that we generated from synonym tables in the
JMDB database (see Section . The lists of confusion sets are stored as text files. Which

list of confusion sets is used by a generator is specified in the XML configuration file.

A generator group can be understood as a kind of meta generator, since it only picks one
generator from a set of generators to use and does not generate errors itself. It contains
several attribute value generators where each one has an associated weight that corresponds
to the probability by which it is chosen.

Generator groups are used to group several generators into simple and complex errors in the
alternative generator (see Subsection . By using generator groups, a set of generators
can be used as if it was a single generator, making the two-level choice between simple
and complex errors (level one) and the actual error generators (level two) as illustrated in
Figure [3.5] possible in the first place.

The year attribute in the database holds string values in various formats, for example
“1976”, “1974-19817, “1999-2002,2005-77777, “1971-1982,1998-2007" or “2008 — (working
title)”. To build more natural errors, we implemented a highly domain-dependent year
attribute generator that introduces small numerical errors or shifts time intervals, while at
the same time making sure that the errors don’t get too absurd; for example, the first year
in an interval can never be greater than the last year, so that values like “2001-1987" can

never occur.

In the real world, some attributes can be confused with one another, for example the
producer and the director of a movie. For such cases, we implemented an attribute confu-
ston generator that simply swaps the values of two different attributes. This is the only
generator that does not comply with the general interface, since it needs more than just
one single attribute value as input. In the default setting, only the producer and director
attributes can be swapped, but the user is free to make any other combination of attributes
confusable via XML.

The null value generator is the simplest of our generators; it just returns a null value, no

matter what the input is.
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3.3. Special Features

In this section, we describe some features that we consider unique characteristics of our data
generator. We present our graphical user interface and then explain how configuration files
are persisted. Finally, we briefly describe our example implementation for the generation

of probabilistic databases with foreign keys.

3.3.1. The RCP GUI

The user interface of ProbGee is built on top of the Rich Client Platform (RCP), so that
it does not just resemble the Eclipse GUI, but even uses some of the Eclipse modules, for
example the XML editor. Being able to use already existing program modules is a great
advantage of using an RCP GUI: to begin with, this saves a lot of work that otherwise
would have to be spent on the development of modules, but apart from that, it makes the
use of our program more intuitive, since parts of the program are already known to the

common Eclipse user.
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Figure 3.6.: ProbGee’s graphical user interface.

Figure [3.6] shows a screenshot of our graphical user interface. There are several views that
behave like Eclipse views; they can be positioned, scaled, closed and reopened.

On the left of the picture, the Data Explorer can be seen that lists external databases,
certain data databases, probabilistic databases and CSV files. A double-click on a relation
or a CSV file opens the Database Viewer on the right which shows the first 100 rows or lines
of the respective relation or CSV file. Depending on what has been double-clicked, the user
can initiate different processes: a double-click on an external database initiates the export

of data into a CSV file, double-clicking a CSV file initiates the data import process and
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double-clicking a relation in an internal certain data database triggers the generation of a
probabilistic database. The necessary configuration for each process is done in a view that
opens up on double-click in the centre of the application window. Every process is started
by clicking on the run button known from Eclipse in the upper right of the configuration
view; all parameters are automatically saved to an XML file, so that the process can be
repeated later. All console printouts are displayed at the bottom, just like in Eclipse.
The Script Explorer is hidden behind the Data Explorer and only visible through the tab
label in the given screenshot. It works similarly to the Data Explorer, but is used to
administer script files. One way of repeating a process that already has been executed
is to double-click on the corresponding script file in the Script Explorer: the appropriate
editor opens in the centre of the application, so that changes can be made, and then the
execution can be started by clicking on the run button in the top right corner of the view.
Beneath the Data Explorer, the user can enter an SQL query that can be executed in
the currently opened relational database. The result set produced by the query is then
displayed in the Database Viewer.

Double-clicking a tuple in a probabilistic database that has been generated with ProbGee
opens the Provenance Tree Viewer that displays the Completﬂ error provenance tree
corresponding to the clicked alternative. Clicking the information button at the top of
the Database Viewer opens the Meta Data Viewer displaying statistics on the generated

database.

All parameters for the generation of a probabilistic database can be specified with the
generic XML editor known from Eclipse which is integrated into our GUI. Many parameters
have reasonable presets and don’t have to be touched by the user, though, while some
parameters have to be defined by the user. Those parameters can also be configured with
a specialised, more intuitive interface.

The configuration view for the generation of a probabilistic database comprises four tabs.
The first tab covers general parameters like the number of tuples, the duplicate cluster
size distribution and the distribution of the number of alternatives per tuple. The second
tab offers an intuitive interface for the most important data quality settings, especially
for similarity values and probabilities. The third and the fourth tab contain the tree view
and the source view of the eclipse XML editor for the configuration of each and every
single parameter in the configuration file. Since a generic XML editor is used, arbitrary
parameters can be configured with the graphical user interface, so that it does not have to

be adapted, when new parameters are added to the program logic.

3.3.2. XML Binding

In ProbGee, not only all parameters for the generation of a probabilistic database including

the parameters for all generators are persisted, but also the import and export parameters.

Note that not only all tuple alternatives, but also all alternatives from the entire duplicate cluster are
illustrated in the tree.
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The Java Architecture for XML Binding (JAXB) is used to create a binding between Java
objects and XML documents.

The generation of an XML document from a Java object is called marshalling and, cor-
respondingly, the creation of an object from an XML document is called unmarshalling.
Implementing these two procedures requires some work at the beginning and the compli-
ance to some conventions such as providing an empty constructor as well as getter and
setter methods for the persisted attributes, but it is relatively easy. The JAXB imple-
mentation MOXy from EclipseLink ProjectE] allows to create the data binding by simple
annotations in the Java source code. Listing[3.1]shows the declaration of a double attribute
including the corresponding annotation that defines the XML Path of this attribute in the

configuration file structure.

@XmlPath ("quality/tuples/intra tuple_similarity/text ()")
private double intraTupleSimilarity;

Listing 3.1: Creating an XML binding with annotations in the source code.

The relevant part of the corresponding configuration file is shown in Listing

<?xml version="1.0" encoding="UTF-8"7?>
<ProbGee_Generator_Configuration>

%quality>
%tuples>
%int ra_tuple_similarity>0.95</intra_tuple_similarity>
</tL.1ples>
</q1:1ality>

</ProbGee_Generator_Configuration>

/

Listing 3.2: A simplified representation of an XML configuration file used by our generator.

3.3.3. The Easy-to-Understand Dummy Implementation

Besides the generation architecture discussed in this chapter, we also implemented a sim-
plistic dummy generator for every interface to make the basic workflow of every generator
better comprehensible. As a matter of fact, the complex generator implementations pre-
sented above originate from the dummy implementations. Other developers can implement

their own generators in our framework by copying the dummy package and changing or

HEclipseLink Project: http://www.eclipse.org/eclipselink/.
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extending the existing implementations, just as we did.

Since a single probabilistic table without foreign keys suffices for the evaluation of our tu-
ple matching experiments, there is no complex version of the foreign key generator dummy
we also implemented. It introduces errors to foreign key attribute pairs (tuple ID and

alternative ID) and thus makes the generation of more complex databases possible.



o1

4. Adapting Certain Data Tuple Matching
Techniques to Probabilistic Data

In this chapter, we examine how existing tuple matchingE] methods for certain data can
be applied to probabilistic data. First, we give a high-level description of our approach to
tuple matching on probabilistic x-tuples and then go into detail about different variants of

this approach.

The fundamental idea is to generate alternative pairs from each probabilistic tuple pair
(ti,t;) and to process them with methods known from certain data duplicate detection: a
comparison vector is computed for each alternative pair first, which is then used to classify
the alternative pair as a match or an unmatch. Since an alternative pair does not differ
much from a certain data tuple pair, the computation of a comparison vector from an
alternative pair can be done with traditional methods.

The obvious difficulty in this approach is that the decision model is trained with alternative
pairs and produces labels for alternative pairs, while the goal of the entire process is to

label tuple pairs.

! As described in Section the process of duplicate detection can be divided into the five steps standard-
isation, search space reduction, in-depth comparison, decision model and evaluation where we subsume
the in-depth comparison and the decision model under the term tuple matching.
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Figure 4.1.: The different steps of our probabilistic tuple matching approach. The steps
highlighted in red are discussed at length in this chapter.

Figure illustrates our approach to tuple matching on probabilistic data. The variants
of our approach differ in the steps highlighted in red which are detailed in the following

sections. The individual steps of our approach are:

0. A subset of all tuple pairs that remain after the search space reduction is selected to
train the decision model (a). The rest of the tuple pairs is processed with the trained
model (b).

1. Optional: before generating alternative pairs, the number of alternatives in the single

tuples can be reduced with different strategies.

2. Alternative pairs are generated from the (remaining) alternatives of the two tuples

of each tuple pair.
3. Optional: the number of the resulting alternative pairs is reduced.

4. A comparison vector is computed for each alternative pair with conventional certain

data techniques.

5. Optional: the number of comparison vectors is reduced.
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6. The model is trained: we use the iterative hybrid machine learning technique by
Christen (see Figure [2.9).

7. The decision model delivers a matching status for every alternative pair.

8. A matching status for every tuple pair is derived from the matching status of the

corresponding alternative pairs.

Given a set of possibly matching tuple pairs resulting from the search space reduction, a
subset of tuple pairs to train a decision model is chosen in Step [0] In our implementation,
we use the iterative hybrid machine learning decision model by Christen which augments
the training set, until it contains the entire set of alternative pairs to classify. Splitting
off a subset of all tuple pairs for training is the right thing to do, though, when another
decision model is used or the entire tuple set results in a huge number of alternative pairs,
so that training the iterative model with all available data is too expensive. Steps [I] to [f]
of course, have to be performed for the tuple pairs that are not used for training in the

same fashion as they are performed for the training tuple pairs.

4.1. Step [I; Reducing the Alternatives

When pre-labelled x-tuples are used for training, the tuple pair labels cannot be learned
directly, but the corresponding alternative pairs have to be labelled first, so that they can
be used for training. As illustrated in Figure [.2] though, simply applying the tuple pair
label to all alternative pairs may lead to unreasonable labels for some or even most of the
alternative pairs.

The upper table shows a probabilistic x-tuple pair (¢1,t2) that has been labelled as a
match, the lower table shows the corresponding alternative pair comparison vectors and
their respective confidence values. The by far most probable alternative pair (t1aq,t2a1)
gives a comparison vector that intuitively seems a legit match, whereas the other alternative
pairs don’t look like matches at all. In this example, three out of four matching vectors
practically seem mislabelled. It is well possible that using those alternative pairs for
training leads to an absurd decision model, since the comparison vectors of many matching

alternative pairs strongly resemble the matching vectors of typical unmatches.

Two duplicate tuples represent the same real-world entity and since the most probable
tuple alternatives usually are good entity representations, the alternatives of two actually
matching tuples that form the most probable alternative pair are often very similar. A
good representation may not be very similar to a bad representation and two bad repre-
sentations may not have much in common, at all. To prevent bad entity representations
from being used, some x-tuple alternatives may be discarded, before the alternative pairs
are built. Assuming that the confidence indicates how well an alternative represents the
corresponding entity, one idea is to further process only a predefined number of alternatives
of the tuple, for example the n most probable alternatives. Another idea is to ignore all

alternatives with too low confidence values; if no alternative exceeds a particular threshold,
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matching tuple pair (t1,t2)

( title year | conf |
t1a1 | Batman & Robin 1997 ¢ 0.9
tias | Batman: Mask of the Phantasm 2011 i 0.1
toa; | Batman and Robin 1997 ¢ 0.9
toas \Batman 2000 ¢ 0.1 )

compute all compari-
son vectors

G simyjtle | SiMyear | conf N
tlal, tg(ll) 0.8 1.0 0.81
tlal, tgag) 0.42 0.07 0.09
tlag, tgal) 0.40 0.15 0.09
tlag, t2a2) 0.45 0.68 0.01

N N N

Figure 4.2.: A tuple pair with the corresponding alternative pair comparison vectors. The
alternatives with low confidence values are bad representations of their corre-
sponding real-world entities and, correspondingly, alternative pairs with low
similarity values don’t necessarily correspond well to their actual matching
status.

at least one alternative per tuple has to be chosen, though, e.g. the alternative with the
highest confidence value. If the confidence value of an alternative cannot be used to decide
whether it is a good or a bad representation of the corresponding entity, it is hard to tell

which alternatives should be discarded and which should not.

The iterative hybrid decision model used by us is trained without a pre-labelled initial
training set, so no alternative pairs are labelled unreasonably, since there are no tuple pair
labels to derive unreasonable alternative pair labels from. But even though discarding bad

entity representations does not seem necessary, it still might improve the model.

4.1.1. Using a Single Alternative per Tuple

A special case of the approach to reduce the number of alternatives per tuple is choosing
the most probable alternative, so that only one alternative pair is generated from a tuple
pair and, hopefully, no alternative pairs with unreasonable labels are generated. In this
case, determining the matching status of a tuple pair (Step [§]) becomes trivial, since there

is only one alternative pair to derive the matching status from.

Instead of selecting one of the existing alternatives, the computation of a representativeﬂ
as illustrated in Figure is another option. The probabilistic x-tuple in the left table
comprises four alternatives with three different titles and four different years. A represen-
tative is computed by selecting the most probable value of every attribute. In Subsection

3.1.2 of our bachelor’s thesis [FW10], some possibilities to compute a tuple representative

2Naturally, several representatives can be used as well, but we don’t cover this case.
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(title year | conf] compute repre-
Batman: 4 1986 | 0.30 s:entgti\l/é ’ rtitle year]
Batman 1997 1 0.30 " ((Batman & Robin | 1997
Batman & Robin 1991 0.25
1992 0.15

Figure 4.3.: A representative is computed for the given x-tuple: the most probable values
of each attribute are chosen.

using conflict resolution strategies known from data fusion are described.

Using the Cry with the Wolves (CWTW) strategy means to use the most frequent value,
but since confidence values are available, the choice of the most probable value as in the ex-
ample may be preferable. Although the alternatives with the title “Batman & and Robin”
have the lowest confidences, the confidence of their title value is 0.25 4+ 0.15 = 0.40 and
thus greater than the confidence of any other title value. Since there are two most prob-
able years, the choice between those two years can be made with Roll the Dice (RTD),
i.e. at random. Another reasonable fallback strategy here would be Meet in the Middle
(MITM) according to which some value in the middle is chosen, for example the average
or the median. So, instead of either 1986 or 1997, %1997 ~ 1992 could be picked.

MITM could also be chosen as primary strategy for the year, so that the example rep-
1986-+1997+1991+1992
1

resentative would receive the average ~ 1992 or the expected year
1986 - 0.30 4+ 1997 - 0.30 4+ 1991 - 0.25 + 1992 - 0.15 ~ 1991.

Although not illustrated in the example, null values can also occur with a high confidence.
The selection strategy Take the Information (TTI) dictates that any value is preferred to

the null value.

4.2. Step [3; Reducing Alternative Pairs

Based on the remaining alternatives of every tuple, alternative pairs are generated from
the tuple pairs in Step [2] In Step [} alternative pairs that should better not be used for
training are filtered out.

Using the confidence values as a decision criterion is, again, an obvious approach. For ex-
ample, alternative pairs that do not exceed a certain confidence threshold can be discarded
or only the n most probable alternative pairs can be kept. The main difference between
reducing the number of alternatives and reducing the number of alternative pairs is that
an alternative that has been discarded in Step [I| cannot be used to build an alternative
pair; so discarding an alternative corresponds to discarding all alternative pairs containing
this alternative. In contrast, when sorting out low confidence pairs, an alternative with
low confidence can still be used for training if paired with a high confidence alternative.
As described in the following, the similarity between alternatives can also be used to decide

whether or not they should be used.
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4.2.1. Best Partner Reduction

Figure [£.4] shows two identical actually matching tuples in the upper left table and the
corresponding attribute similarity values of all alternative pairs in the upper right table.
Although the tuples have the exact same values, two out of four alternative pairs with
an overall confidence of 0.24 + 0.24 = 0.48 appear like clear unmatches. In the exam-
ple, the mean value of the attribute similarities is used compute a similarity value for
each alternative pair. Thus, the expected alternative pair similarity can be computed as
1-0.36 +0.235-0.24 + 0.235-0.24 + 1 - 0.16 =~ 0.63. Obviously, removing the alternative
pair with the lowest confidence value is not the optimal strategy here; if alternative pair
(t1az2,t2a9) is discarded, two out of three alternative pairs used for training are misla-
belled and the expected similarity computed from the remaining alternative pairs drops to
1-0.36 +0.235-0.24 + 0.235 - 0.24 =~ 0.47.

compute comparison vectors

N

(title . year conf ) (simtitle L Siea: conf )
tia; | Batman & Robin = 1997 ; 0.6 (t1a1, toaq) 1.0 . 1.0 0.36
tias | Batman 4 2001 i 0.4 (t1a1, toaz) | 0.397 - 0.073 :0.24
toa; | Batman & Robin | 1997 i 0.6 (trag, taar) | 0.397 © 0.073 | 0.24
taaz | Batman 4 12001 | 04 | (trag, t2az) 1.0 1.0 10.16 |
keep only best
partners
sim | conf
( simyge L Simyear i conf A 1.0  0.36 compute
(t1a1, toaq) 1.0 ¢ 1.0 :0.36 0.235 : 0.24 similarities
(tlag, tgag) L 1.0 1.0 0.16) 0.235 0.24
1.07770.16

Figure 4.4.: An example of the Best Partner Reduction where every tuple alternative is
paired with its best match in the other tuple.

One approach that avoids this kind of problem is the Best Partner Reduction. As indicated
in the example, the alternative pairs are chosen in such a way that every alternative a; in
tuple t; is paired with the most similar alternative a; from tuple ¢ and vice versa. To
determine the similarity of two alternatives, the weighted sum of all attribute similarities
can be used as described in Subsection [3.2.3

In simple words, when computing the tuple pair similarity, every alternative is only com-
pared to its best match, so that the alternative pairs are well-selected in case of matching
tuple pairs. Based on the assumption that unmatching tuple pairs usually do not have
highly similar or identical alternatives, this approach does not lead to an unreasonable

selection for unmatching alternative pairs, either.
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4.3. Step B Reducing Comparison Vectors

After the comparison vectors of the alternative pairs have been computed in Step [ they
can also be reduced in Step [l Since every comparison vector corresponds to exactly one
alternative pair, they can be reduced with the same confidence-based strategies (see Step
in Section yielding exactly the same results.

In our opinion, a reasonable way to reduce the number of comparison vectors might be
to compute a representative comparison vector for all other comparison vectors of a tuple
pair, for example one holding the expected or the best similarity values for the respective
attributes. The computation of more than one representative is also possible; for instance,
one representative holding the expected and one representative holding the best similarity

value could be created and could both be used further.

4.4. Step [8: Computing the Tuple Pair Decision

Steps [I] to [F] are followed by either Step [6 i.e. another iteration to train the decision
model, or by Step [7] where the fully trained decision model assigns a matching status
to every alternative pair. In Step [§ finally, a matching decision for each tuple pair is

computed from the corresponding alternative pairs’ matching labels.

( simyite SiMyear | conf | P(m) @ P(u) label
( ) 1.0 1.0 1 0.36 1.0 @ 0.0
(tlal, tQCLg) 0.397 0.073 0.24 0.2 0.8
(tlag, tgal) 0.397 0.073 0.24 0.2 0.8
( )| 1.0 1.0 7016 1.0 0.0

Ziciazg

t1az, taas )

Table 4.1.: The comparison vectors from Figure and the learned matching labels with
the corresponding decisiveness values.

When all alternative pairs have the same matching status or when there is only one alter-
native pair (or comparison vector) corresponding to a tuple pair, the tuple pair’s matching
status can simply be adopted. Otherwise, i.e. when the alternative pairs have ambiguous
matching labels, a more complex decision-making strategy has to be used, for example the
conflict resolution strategies described in Subsection .11}

Apart from confidence value and matching label, the decisiveness that some decision mod-
els output in addition to the actual matching label can be used. Table shows the
comparison vectors of tuple pair (¢1,t3) from Figure , their matching labels and the
corresponding matching and unmatching probabilities as they are output by the SVM de-
cision model we use: the decision model delivers P(M) and P(U) = 1 — P(M) which
can be interpreted as the likeliness of the alternative pair being a match or an unmatch,

respectively. For an alternative pair (ag,q;) with a € t; and q; € t;, P(M) is a real value
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between 0 (certain unmatch) and 1 (certain match) and thus can also be interpreted as

the similarity sim(ay,a;) between ay and q;.

In this section, we describe techniques to compute a matching decision for a given tuple
pair (¢;,t;) in two steps: first, a similarity value for the given tuple pair is computed and
then the matching status is determined with a threshold. An experimental evaluation of

those techniques can be found in Section

4.4.1. Expected Similarity

When P(M) and the confidence value conf,; = conf(ay) - conf(a;) are given for all alter-

native pairs (ag,q;), the function
> sim(ag, ap) - confy

(ax,a1)
> Confk,l

(akzal)

S’im(ti,tj) =

offers an intuitive approach to computing the expected tuple pair similarity: all alternative
pair similarity values are summed up weighted by their confidence values and then nor-
malised to the confidence value. For the sake of simplicity, we only cover tuple pairs with
an overall confidence of 1 in our examples, so that the denominator in the above formula
is 1. When the sum of all alternative pair confidence values is smaller than 1, though,
the similarity has to be normalised or otherwise it highly depends on the confidence: for
example, the unnormalised expected similarity of two identical tuples with a confidence of
0.5 and only one alternative each cannot exceed 1-0.5-0.5 = 0.25, whereas it equals 1, if
both tuples have a confidence of 1.

The expected tuple pair similarity can be used to assign a matching status to tuple pair
(ti,t;); for a binary classification (match and unmatch), only one threshold ¢y is needed.
For example, (¢;,t;) can be declared a match, if sim(t;,t;) > t)s and an unmatch else. An-
other possibility is to declare an unmatch, only if sim(t;,t;) < tar, and a possible match,
if sim(t;,t;) =ty A ternary classification with a larger margin for possible matches can
be realised with two thresholds t;; and ¢j; where (¢;,t;) is classified as match, only if the
similarity value exceeds %37, as unmatch, only if the similarity value is below ¢y, and as

possible match, if the similarity value is between tyy and ¢,;.

Computing the expected similarity of the tuple pair depicted in Figure yields

sim(ti,t2) =1-0.36+0.2-0.24 +0.2-0.24 +1-0.16 = 0.616
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4.4.2. Expected Similarity with Uniformly Distributed Confidences

When no confidence values are given, uniformly distributed confidence values can be as-
sumed. The matching label confidences in our example actually are almost uniformly
distributed (0.36 + 0.16 = 0.52 for M and 0.24 + 0.24 = 0.48 for U), so that the result is

almost the same as well:

140240241

0.6
4

sim(tl ,tg) =

The problem here is basically the same as the problem discussed in Section [£.2.1} even
highly similar tuple pairs have dissimilar alternative pairs and hence their expected similar-
ity is sometimes rather low. It can even get worse, when there are more tuple alternatives

and the confidence of the similar alternative pairs decreases.

4.4.3. Best Partner Similarity

To diminish this problem, the approach proposed in Section can be applied, so that
the expected similarity among the best partner matches is computed. For every alternative,
the single alternative pair is chosen that has the greatest P(M) value. The obvious best
partner pairs in the example are (tja1,t2a1) and (tiag,t2a2), so that the Best Partner

Similarity is
1-0.36+1-0.16
0.36 +0.16

Sim(tl,tg) =

4.4.4. Maximal a-Prob. Similarity

Another approach to computing a tuple pair similarity value that is high for matches and
low for unmatches is to take only the most similar alternative pairs. For example, the
best-matching 60% of the alternative pairs could be used (a = 0.6), so that 40% (1 — «)
of the alternative pairs are disregarded.

First, the alternative pair with the greatest P(M) is chosen. If the confidence of this
alternative is not equal to or greater than «, the alternative pair with the greatest P(M)
among the remaining alternative pairs is chosen. This process is repeated, until the confi-
dence value sum of all chosen alternative pairs is at least a. Then, the expected similarity
of this subset of all alternative pairs and the tuple pair matching status are computed as
described in The result is the mazimal tuple pair similarity that can be achieved with
an « share of all alternative pairs.

It is important to note that the expected similarity has to be normalised, i.e. divided by
the sum of all the chosen alternative pairs’ confidence values, so that a reasonable tuple

pair matching decision can be made by thresholding.
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With o = 0.6 and a threshold of 0.5, the two alternative pairs with perfect similarity and

one of the other alternative pairs are chosen, so that the tuple pair similarity is

1-0.36+1-0.16+0.2-0.24
ity o) = ~ 0.75
sim(ty,t2) 0.36 + 0.16 + 0.24

With a = 0.5 and a threshold of 0.5 as before, only the two alternative pairs with perfect

similarity are chosen and the similarity results in

1-0.36+1-0.06 _
0.36+0.16

sim(tl ,tg) =

Obviously, a lower « value tends to result in a higher similarity, since only a few alternative
pairs with maximal similarity are chosen. A lower a value might lead to an increased
number of true and false positives, which in turn might increase the recall and decrease
the precision. In some cases, even a very low « value may be reasonable and deliver good

results, for example if tuples with very many alternatives are compared.

4.4.5. Cry with the Wolves

If P(M) is not available, the tuple pair decision has to be made based on matching labels
and confidence values alone. A very simple way to cope with ambiguous matching labels
is to assign the most probable matching label and declare a possible match in case of equal
confidence values.

The confidence values of all matching alternative pairs can be interpreted as the matching
probability and thus as the tuple pair similarity. In the example, the tuple pair similarity
can be computed as

sim(t1,t2) = 0.36 4+ 0.16 = 0.52

As mentioned before, the confidence values can be assumed to be uniformly distributed, if
no confidence values are given. Since half of the alternative pairs are labelled as matches,

the tuple pair similarity in our example is then exactly
) 2
sim(t1,ta) = 1= 05 ,

so that it is completely unclear whether the tuple pair should be declared a match, an

unmatch or a possible match.
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5. Experimental Evaluation

In this chapter, we compare the tuple matching variants discussed in Chapter [l with respect
to recall, precision and the traditional F-measure on the basis of experimental results. In
the first section, we describe our implementations of the different tuple matching variants.
The subsequent section covers the experimental setup in general and provides detailed
information on the probabilistic data sets the experiments are executed on, the applied
search space reduction technique and the configuration of our baseline experiment. The
third section covers the experimental evaluation of different strategies to reduce alterna-
tives, alternative pairs and comparison vectors in combination with the different tuple pair

decision variants.

5.1. Implementation of the Tuple Matching Approach

We measure the similarity between two attribute values using Soft TFIDF combined with
the Jaro-Winkler metric, because this particular matching scheme performs best in an
experimental comparison of several string distance metrics for the task of entity name
matching conducted by Cohen et al. |[CRF03|. In our implementation, we use Second-
Stm'ngE], a Java-based library of string matching techniques that is also being developed by
Cohen and others.

Steps[I] to [5] of our tuple matching approach, namely all reduction strategies and the com-
putation of the tuple comparison vectors, are implemented in Java, so that SecondString

can easily be used.

The subsequent steps, i.e. the iterative hybrid decision model described in Subsection [2.2.6]
(see Figure and the computation of the tuple pair decision (Step , are implemented
with the Konstanz Information Miner (KN[MEE KNIME is a freely available Eclipse-
based software for interactive data visualisation, processing and analysis. KNIME provides
a great number of modules to execute machine learning tasks and enables the user to
implement workflows completely via the graphical user interface.

The high degree of usability and interactivity comes at the price of performance: KNIME
implementations are well comprehensible and allow the user to inspect the workflows at
run time very easily, but are not necessarily efficient. For this reason, we do not compare

running times in this work.

!SecondString: http://secondstring.sourceforge.net/\
?Konstanz Information Miner: http://www.knime.org/.
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5.2. Experimental Setup

Prior to the actual tuple matching experiments, the search space has to be reduced, since
in a real application, the tuple matching is performed on the reduced search space as well.
Apart from that, the entire set of tuple pairs is prohibitively large, so that applying our
tuple matching approach without reducing the search space is impossible anyway.

Our tuple matching approach can be varied in several steps. Since comparing all pos-
sible combinations goes beyond the scale of this thesis, we define a baseline experiment
and evaluate the outcome of the tuple matching process after varying individual steps.
We conduct all experiments on two databases, one being rather clean and one being
rather dirty, using a computer with an Intel i7-2700K at 3.50Ghz with 16GB RAM under
Windows 7 x64.

In the first subsection, we present the probabilistic databases generated with ProbGee on
which the experiments are conducted. The following subsection provides detailed infor-
mation on the applied search space reduction technique. Finally, the configuration of our

baseline experiment is described in detail.

5.2.1. Generating the Databases

For our experiments, we consider several probabilistic movie databases that might, for
example, be the result of the integration of several certain movie databases. In each of
the databases, there is only the movies relation where title, director, producer, studio and

release year of the movies are stored.

As mentioned in Section ProbGee uses IMDb movie data extracted from a JMDB
database to generate probabilistic x-tuples. Unfortunately, the JMDB movie table does
not only contain movies, but also video games, series and series episodes and the individual
title attribute values do not only contain the respective movie, game or episode titles, but
also meta data.

For many series, there are dozens or hundreds of episodes listed in the movies table: for
example, the title value “"Batman Beyond" (1999) {Babel (#2.12)}” represents the 12th
episode of the second season of the series “Batman Beyond” entitled “Babel” from the year
1999. Likewise, some movie titles like “Batman Beyond: Return of the Joker (2000) (V)”
or video game titles like “Batman: Arkham Asylum (2009) (VG)” contain the release year
and the media type.

The movie table is cleaned, before the probabilistic database is generated with ProbGee.
Since only series episode tuples contain sharp signs (“#”), they can be removed via SQLH
Video games, marked by a “(VG)” in the title, are also removed, because they are not

part of the movie domain in our opinion. The title values of the remaining tuples are

3Note that, although the series episodes are removed, there is still one tuple for every series: for instance,
the tuple with title “"Batman Beyond" (1999)” remains in the database and is cleaned from meta data
later.
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cropped in such a way that they only consist of the actual title and contain no additional

information.

‘ database information
tuples 54,386
maybe-tuples 5,439
alternatives 100,000
cluster size | frequency
entities L 31,078
i 2 7,769
% 3 2,590
o0 tuple size frequency
1 28,070
alternatives 2 14,035
3 7,018
4 3,509
5 1,754
attribute metric score
- title - JaroWinkler { 50
% comparison year JaroWinkler : 30
=2 director  JaroWinkler | 30
producer | JaroWinkler i 30
L studio  JaroWinkler | 30 )

Table 5.1.: Some general parameters used for the generation of all databases.

Table shows some basic parameters that are the same for all generated databases.
Every database holds 100,000 alternatives distributed among 54,386 tuples including 10%
maybe-tuples. A database of this size can still be handled by all components of our tuple
matching workflow in an acceptable period of time with an acceptable amount of mem-
ory; increasing the number of alternatives significantly raises some problems, for example
training the iterative hybrid decision model with 200,000 alternatives or more takes incon-
veniently much time.

There are 31,078 + 7,769 4+ 2,590 = 41,437 entities represented in every database: 31,078
entities have no duplicates, 7,769 entities are presented twice and 2,590 entities are rep-
resented three times. With one actual match per duplicate cluster of size two and three
actual matches in every duplicate cluster of size three, there are 7,769 + 3 - 2,590 = 15,539
actual matches. Every tuple consists of at least one and at most five alternatives where
larger tuples are less frequent.

As described in Subsection the similarity between two tuples is computed as the
weighted sum of the attribute similarities. As is clear from the table, all attribute similari-
ties are computed using the Jaro-Winkler metric. When computing the similarity between

two tuples, the title has the most influence on the tuple similarity.
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Figure 5.1.: The intra-tuple and duplicate similarity of all candidate databases in a direct

comparison.

In order to find out in what way the degree of dirtiness influences the performance of the
tuple matching variants, we execute our experiments on two different databases. All our
candidate databases are generated without any overlapping (see Subsection . The
intra-tuple and duplicate similarity of six candidate databases are compared in Figure
The database names reflect their respective data quality: DBCleanest holds x-tuples
with only minor typos and very similar duplicates, while there is hardly any alternative in
DBDirtiest without several complex errors.

The databases can be partitioned into clean databases (DBCleanest, DBCleaner, DBClean)
and dirty databases (DBDirty, DBDirtier, DBDirtiest). In the clean databases, the intra-
tuple similarity of almost all tuples is above 0.99, whereas there are also tuples with a
much lower intra-tuple similarity in the dirty databases. Practically all duplicates in the
clean databases have a similarity value of 0.97 or above, whereas the duplicate similarity
in the dirty databases varies from about 0.90 to 1.

It is noteworthy that a great variety of data quality is covered by the similarity values
above 0.90, because we use a similarity metric that is very robust, especially against word
permutations or gaps. If another metric is used, the range of the similarity values might

be completely different.

To cover a great variety of databases, we choose one clean and one dirty database for
further experiments. DBCleanest and DBDirtiest are rather uninteresting, because they
are too extreme in their respective error frequencies. In order to make the tuple match-
ing not too easy, we choose the dirtiest database from each group, namely DBClean and
DBDirtier.

Detailed information on the distribution of the intra-tuple similarity, the duplicate sim-

ilarity, the tuple cleanness and the confidence values among the maybe-tuples of every
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candidate database are given in Appendix [A] Furthermore, there are two exemplary er-
ror provenance trees illustrating typical duplicate clusters in our final test databases: the

tree extracted from DBClean is on page [86] and the tree extracted from DBDirtier is on

page [89

5.2.2. Search Space Reduction

Since the input to the in-depth comparison is the already reduced search space, some
kind of search space reduction has to be performed on the experimental data, before the
actual tuple matching experiments can be executed. Problematic, though, is that the
performance of the SSR techniques has a great influence on the performance of the tuple
matching methods and thus distorts the results: either the combined performance of SSR
and tuple matching are evaluated or the performance of the tuple matching is evaluated
relatively to the preceding SSR performance. If the SSR delivers a poor recall, the relative
performance of the tuple matching may seem great, although it actually is not. Besides,
tuple matching results on different data sets might become practically incomparable, when

recall and precision of the applied search space reduction techniques differ greatly.

To generate meaningful, comparable results, an SSR technique that always yields a perfect
recall and a constant precision seems optimal.

Since we run our experiments on labelled data, such an optimal search space reduction
can be simulated by selecting a subset of all tuple pairs which contains all actual matches
(perfect recall) and a fixed number of actual unmatches (constant precision). The great ad-
vantage of this approach is that it offers perfect control over recall and precision. However,
a selection strategy for the unmatches has to be used that leads to realistic unmatches: se-
lecting unmatches randomly might lead to an unrealistic result, since a real SSR technique
chooses duplicate candidates according to some criterion, e.g. only tuple pairs with equal
key values.

Another option to generate a reduced search space is to perform an actual SSR technique.
While the unmatches here certainly are realistic, neither the recall nor the precision are

constant or perfect.

For our experiments, we use a combination of simulated and real search space reduction: to
guarantee realistic unmatches, we use a variant of the Sorted Neighbourhood Method that
is adapted to the use in probabilistic data (see Section and augment the generated
set of tuple pairs by the missing actual matches, so that both a perfect recall and a
realistic, although not constant, precision are achieved. The used window size is w = 3
and the sorting key consists of the Soundex codes of the attributes title, producer, studio,
director concatenated with the year. Preliminary experiments show that this key leads to a

good recall.
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Figure 5.2.: A comparison of our SNM approach on DBClean and DBDirtier with varying

window sizes.

Figure shows recall, precision and F-measure yielded by our SNM approach on the
database DBClean with window size w = 3 to w = 7. The leftmost bar in each of the
diagrams represents the performance of our artificially improved approach with w = 3 that
is actually applied.

Using a window size of w = 3 already leads to a recall of over 0.9 and a precision of about
0.12. As one would expect, the recall can be improved by increasing the window size, but
this also strongly reduces the precision. The best F-measure is achieved with window size
w = 3. Improving the result by raising the recall to 1 slightly improves the precision to
0.13 and the F-measure to 0.23.
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5.2.3. The Baseline Experiment

The tuple matching approach described in Chapter [4] can be varied in Step (1| (reducing
alternatives), Step |3| (reducing alternative pairs), Step [5| (reducing comparison vectors)
and Step 8| (tuple pair decision). All reduction strategies are optional, while a tuple pair
decision always has to be made.

In the following, we present several candidate baseline configurations and describe the

single configuration that is used for all further experiments.

Vs

configuration | Configl | Config2 | Configd | Configd : Configh
database DBClean
reducing alternatives -
reducing alternative pairs -
reducing comparison vectors -

similarity metric Soft TFIDF — JaroWinkler
trainings vector selection nearest-based
initial match vectors 100 500 1000 100 100
initial unmatch vectors 780 3898 7795 780 780
L SVM kernel linear radial basis | polynomial

Table 5.2.: An overview over the different candidates for our baseline configuration.

Table[5.2)shows some possible configurations for the baseline experiment. All configurations
are tested on the database DBClean without any of the optional reduction strategies, but
with all tuple pair decision variants. The performance of the individual tuple pair decision
variants are illustrated in Figure [5.3] For all attribute value comparisons, Soft TFIDF
combined with the Jaro-Winkler metric is used.

Configuration 1 to 3 use a linear support vector machine kernel and only differ in the
number of initial vectors that are used for training: they use 100, 500 and 1,000 initial
match vectors, respectively. The number of unmatch vectors is estimated on the basis of
the given number of match vectors and the number of alternatives and comparison vectors
as described in [Chr0O8a)]. The remaining two configurations use 100 initial matcher vectors,

but non-linear kernels: Configd uses a radial basis and Configh a polynomial kernel.

All tuple pair decision variants require a threshold to be defined according to which the
tuple pair decision is made. In addition to this threshold, an « value has to be chosen for
the Maximal a-Prob. Similarity. We use a value of 0.5 for both thresholds, because it is

our intuitive first choice and does not seem an unreasonable value.
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Figure 5.3.: The performance of all tuple pair decision variants in all candidate baseline

configurations with respect to recall, precision and F-measure in comparison.

Figure [5.3] shows the performance of the tuple pair decision variants Expected Similarity
(ExpSim), Maximal a-Prob. Similarity (MaxAProbSim), Best Partner Similarity (Best-
PartnerSim), Expected Similarity with Uniformly Distributed Confidences (ExpSimUDC)
and Cry with the Wolves (CWTW) in all candidate baseline configurations in terms of
recall, precision and F-measure.

None of the tuple pair decision variants performs exceptionally well or badly under the
individual configurations, but MaxAProbSim always delivers a slightly better recall than
the other variants at a slightly worse precision, while it is the other way around with
ExpSimUDC.

With Configl, an already almost perfect recall of over 0.999 and precision around 0.88 are
achieved. Increasing the number of match vectors from 100 (Configl) to 500 (Config2)
causes a hardly noticeable increase in recall, but a drop in precision from 0.88 to 0.855.
Increasing the number of match vectors further to 1,000 (Config3) brings no change. Using
one of the non-linear kernels with 100 matching vectors decreases the recall slightly, but
also increases the precision. Since the F-measure is best with the polynomial kernel, we
declare Configh our baseline experiment configuration.

An additional experiment reveals that decreasing the number of match vectors to 20 (Con-
fig0 in Appendix delivers an extremely bad result with a recall of 0.0005 at best (8
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out of 15,539 matches) and a precision of 0.5 or less. More information on the performance
of the tuple pair decision variants in the different experiment configurations on DBClean

and in the baseline configuration on DBDirtier are given in Appendix
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Figure 5.4.: Different thresholds for the Expected Similarity tuple pair decision.

The diagrams in Figure illustrate the performance of the Expected Similarity tu-
ple pair decision variant in the baseline experiment with varying threshold values be-
tween 0.4 and 0.6 on DBClean and DBDirtier. The exact measurements can be found in
Appendix

As one would expect, using the lowest similarity threshold leads to the best recall and the
worst precision. Increasing the similarity threshold decreases the recall and increases the
precision in both databases, since more tuple pairs are declared matches. However, the
different thresholds make hardly any difference to the absolute recall in the cleaner of the
two databases, because it is almost perfect even in the worst case, so that the F-measure
is (slightly) better with a greater threshold, just like the precision: the precision here is
between 0.895 (t = 0.4) and 0.9 (¢ = 0.6). In contrast to that, the deterioration of the
recall more than outweighs the decline of the precision in the dirty database, so that the
F-measure is in favour of the smaller threshold here: the recall in DBDirtier varies from
about 0.835 (¢t = 0.6) to almost 0.879 (¢ = 0.4), while the precision is in the range of 0.911
to almost 0.915.



70 5. Experimental Evaluation

[l 0 MaxAProbSim: a = 0.01
(]0 MaxAProbSim: a = 0.1
[0 MaxAProbSim: a = 0.2
[0 MaxAProbSim: a = 0.5
[0 MaxAProbSim: a = 0.8

— 0.8970 [ i 1
o 0.9984 - B 0.9445 - .
g 0.8960 - .
-~
U 0.9982 - N 0.9440 - 5
m 0.8950 | 2
A 0.9980 + g ﬂ 0.9435 y
- 0.8040 | 1] | ol
recall precision F-measure
0.9000 [ — ] — 0.9050
B 0.9120 - .
5 0.8900 |- . 0.9000 + =
= 0.9110 |- 8
a 0.8800 1 09100l | 0.8950 .
A 0.8700 | 2 i 1 0.8900 - :
= 0.9090 min ﬂ -
recall precision F-measure

Figure 5.5.: Different a values for the Maximal a-Prob. Similarity tuple pair decision.

In a similar fashion as above, Figure [5.5 shows a comparison of recall, precision and F-
measure of tuple matching with the Maximal a-Prob. Similarity strategy. The baseline
experiment is executed on DBClean and DBDirtier with « values between 0.01 and 0.8.
In both databases, smaller o values lead to a higher recall and also to a worse precision.
But as above, the recall in DBClean is almost perfect in any case, so that the F-measure
corresponds to the precision and slightly grows with the value of . Ranging from above
0.894 to below 0.897, the precision can practically be called constant. While the precision
in the dirtier database is affected as little by the value of « as the precision in the cleaner
database, the recall ranges from roughly 0.866 to 0.9.

For the exact recall, precision and F-measure values, see Appendix

A similarity threshold and an « value of 0.5 seem usable, although lower values result
in better recall in both databases and a better F-measure in the dirty database. The
performance on the cleaner database is hardly affected by varying the thresholds: the recall
is practically perfect for all covered values and the variations in precision and F-measure

are minimal.
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To demonstrate that our generation process is stable, i.e. that the same parameters
yield highly similar results, and to show how the overlapping parameters influences the
data quality, we generate a database DBDirtierOverlapping that is identical to
DBDirtier in all parameters except the overlapping which has an expected value of 0.2 with

a standard deviation of 0.1. More details on DBDirtierOverlapping can also be found in
Appendix [A]

—— duplicate similarity DBDirtier avg.
intra-tuple similarity DBDirtier avg. duplicate similarity DBDirtierOverlapping avg.
intra-tuple similarity DBDirtierOverlapping avg. zero-alternative similarity DBDirtier e
- - - zero-alternative similarity DBDirtierOverlapping avg.
-10*
N ¢ 3,000
=
4
=
2 S
=" r [
g3 £ 2,000 |
5
- £
=
: =
5} 2 <
.-E oy
g S 1,000 |
.
= [}
1 et
=
g
= s
g -
0 t t t t t t t = — t t t t
0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 0.9 0.92 0.94 0.96 0.98 1
similarity value similarity value

Figure 5.6.: Intra-tuple similarity, duplicate similarity and zero-alternative similarity on
DBDirtier and DBDirtierOverlapping.

Figure [5.6]illustrates the effect of overlapping on intra-tuple, zero-alternative and duplicate
similarity by the example of the two databases DBDirtier and DBDirtierOverlapping.

As is clear from the left diagram, overlapping barely affects the distribution of the intra-
tuple similarity and slightly lowers the average value. The right diagram shows that the
zero-alternative similarity is not affected by overlapping at all, whereas the duplicate simi-
larity is increased significantly: the entire duplicate similarity distribution and the average

value are shifted to the right.
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Figure 5.7.: Recall, precision and F-measure of the baseline experiment on DBDirtier and

DBDirtierOverlapping.

Figure provides a performance comparison of the baseline experiment on the databases
DBDirtier and DBDirtierOverlapping.

The best tuple pair decision variant on DBClean (ExpSimUDC) delivers the by far worst
recall of 0.82, while all other variants perform above 0.86; BestPartnerSim and CWTW
even achieve 0.88 and thus yield the best results. Precision values only vary from about
0.91 to 0.916, so that the F-measure follows the recall.

The performance on DBDirtierOverlapping highly resembles the performance on DBClean:
the recall is almost perfect and the precision is almost constant, ranging from 0.873
to 0.876.

When an alternative is generated via overlapping, it is copied from another tuple in the
duplicate cluster. As expected, the zero-alternative similarity is completely unaffected
by overlapping, as it is only computed from zero-alternatives. However, since the copied
alternative can have arbitrary errors, it obviously tends to decrease the intra-tuple similar-
ity and, furthermore, increases the average similarity between the two overlapping tuples.
Most importantly, though, the actual recall is raised to almost 1 in our experiment. And
while this makes sense, because the overlapping increases the number of identical alterna-
tives between duplicate tuples, it also shows that our similarity measures do not account

for overlapping.
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5.3. Reduction Strategy Experiments

In this section, we evaluate different variants of the reduction strategies discussed in Chap-
ter @l For this reason, we examine whether the tuple matching results of our baseline
experiment configuration can be improved by adding the individual strategies. All exper-
iments are executed on the two databases DBClean and DBDirtier. We do not perform
an additional post-processing step to resolve conflicting tuple pair decisions after the tuple
matching, although it might improve the evaluation results, because it might also distort
the comparison results.

In the first three subsections, we evaluate strategies to reduce alternatives, alternative pairs

and comparison vectors. In the final subsection, we give an overview over the results.

5.3.1. Step [1} Reducing the Alternatives

In this subsection, we investigate how the reduction of tuple alternatives can improve the

performance of our baseline configuration.
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Figure 5.8.: Reducing alternatives with different threshold values on DBClean.

The three diagrams in Figure[5.8] show the influence of different confidence thresholds used

to reduce the number of alternatives in comparison to the respective baseline performances
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(dashed lines) in DBClean. More detailed information is available in Appendix

In comparison to the baseline experiments, applying a confidence threshold improves the
recall, if only marginally, since the recall is already almost 1. All tuple pair decision
variants achieve a baseline precision of about 0.9 which is decreased by roughly 0.05, when
a threshold t = 0.1 is applied, and which further decreases when this threshold is raised.
With a threshold of ¢ = 0.5, all tuple pair decision variants have practically the same
precision of 0.885. Similar to the F-measure in the baseline experiment, the F-measure
here evolves exactly like the precision: the best F-measure is between 0.943 and 0.945
(baseline) and the worst F measure is about 0.938 (¢ = 0.5) for all tuple pair decision

variants.
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Figure 5.9.: Reducing alternatives with different threshold values on DBDirtier.

Figure [5.9] illustrates the same experiment on DBDirtier which is also detailed in
Appendix

In contrast to DBClean, the DBDirtier recall baselines are far from perfect and range from
just above 0.86 (ExpSimUDC) to just below 0.9 (BestPartnerSim). With a threshold of
t = 0.1, the recall values are boosted to values between 0.934 (ExpSimUDC) and 0.956
(BestPartnerSim). A threshold of ¢ = 0.4 improves the recall to over 0.99 with any of
the tuple pair decision variants. The baseline precision values of over 0.91 are diminished
by something between 0.01 (¢ = 0.1) and roughly 0.03 (¢ = 0.4). Further increasing the
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threshold to t = 0.5 does not change recall or precision much. Due to the great improve-
ment of the recall, the F-measure is also clearly better when a threshold is used: while
all baselines are clearly below 0.9, the F-measure values are raised to roughly 0.92 with a
threshold of ¢ = 0.1 and climax at more than 0.93 with a threshold of t = 0.4.
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Figure 5.10.: Using only the n most probable alternatives on DBClean and DBDirtier.

The results of our experiments on reducing alternatives by only the n most probable
ones on DBClean and DBDirtier are similar to the result of the the experiments on the
threshold-based alternative reduction. For this reason, we only compare the F-measures
of the different tuple pair decision variants in Figure [5.10] The exact measurements of the
individual experiments can be found in Appendix[C.2] There are also diagrams illustrating
the recall and precision on page (DBClean) and on page (DBDirtier).

As above, the recall of the cleaner database is almost constantly 1, while the precision,
depending on the tuple pair decision variant, drops from somewhere between 0.895 and
0.9 to 0.882 and thus also reduces the F-measure slightly from about 0.945 to 0.938. In
DBDirtier, it is the other way around: the recall is improved dramatically from under 0.9
(baseline) to almost 1, while the precision drops by 0.03 from around 0.91 to 0.88, so that

the F-measure is increased from under 0.9 to over 0.93.

5.3.2. Step [3} Reducing Alternative Pairs

As the results of the alternative pair reduction experiments are very similar to the re-
sults produced by the corresponding alternative reduction experiments, we do not go into
detail here.

Extensive information on the individual experiments can be found in Appendix [C.5]
For the precision and recall diagrams of the confidence-based approach, see pages
(DBClean) and (DBDirtier). The corresponding diagrams of only using the n most
probable alternative pairs can be found on pages (DBClean) and (DBDirtier).
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Figure 5.11.: Reducing alternative pairs with a confidence threshold.

The two diagrams in Figure shown the F-measure of our alternative pair reduction

experiments with varying thresholds on DBClean and DBDirtier. Figure [5.12] covers the

corresponding experiments using only the n most probable alternative pairs.

The recall in the clean database is extremely high, no matter whether alternative pairs are

reduced or not, so that the F-measure is again dominated by the precision. Like in the

experiments on the reduction of alternatives, the F-measure only drops to about 0.938 in

both experiments here.

On DBDirtier, recall, precision and hence the F-measure eventually reach almost the same

values as in the experiments before. It is interesting, though, that a threshold of ¢ = 0.1

directly leads to a recall of about 0.98 and an F-measure of almost 0.94 which are then

only slightly improved by increasing the threshold.
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Figure 5.12.: Using only the n most probable alternative pairs.
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5.3.3. Step [5 Reducing Comparison Vectors

It turns out that computing the tuple pair decision on the basis of a representative com-
parison vector does not work well. While a precision of over 0.97 in DBClean and 0.9 in
DBDirtier can be achieved, the recall is devastating, as it is only 0.43 in the clean and even
less than 0.05 in the dirty database. For obvious reasons, we do not go into detail here,
either. For detailed results, see Appendix [C.7]

5.3.4. Final Evaluation

For the final evaluation, we compare the reduction strategies on DBClean and DBDirtier
that deliver the best F-measure. We only show diagrams on the F-measure here, but the

corresponding diagrams illustrating recall and precision are given in Appendix on
pages (DBClean) and (DBDirtier).
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Figure 5.13.: An F-measure comparison of the best reduction strategies on DBClean.

An overview over the reduction strategies with the best F-measure on DBClean is given in
Figure |5.13

The most obvious observation is that none of the reduction strategies can improve the
baseline performance: applying a reduction strategy basically improves the recall slightly,
but also diminishes the precision a little bit stronger, so that the F-measure is decreased.
The by far worst reduction strategy is Cry with the Wolves with an F-measure of 0.938.
Apart from that, all reduction strategies achieve an F-measure between 0.942 and 0.946
where using only the 4 most probable alternatives and the 8 most probable alternative
pairs delivers the best F-measure. ExpSimUDC always performs better than all the other
tuple pair decision variants.

Combining reduction strategies does not increase the F-measure: the combined reduction

strategies perform even worse than the individual strategies.
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Figure 5.14.: An F-measure comparison of the best reduction strategies on DBDirtier.

The best reduction strategies and two combinations are compared in Figure by their
respective F-measure on DBDirtier.

On DBDirtier, all reduction strategies improve the F-measure strongly: although the preci-
sion is 0.01 to 0.03 below the baseline of 0.91, the recall is also improved from significantly
below 0.9 to 0.96 and above. There is no single best-performing tuple pair decision variant,
but ExpSim and especially ExpSimUDC perform noticeably worse than all other tuple pair
decision variants, when only the 2 most probable alternatives are used or the Best Partner
Reduction is applied. The Best Partner Reduction in combination with the reduction of
alternatives with a threshold of ¢ = 0.2 or in combination with using only the 2 most prob-
able alternatives performs better than the individual reduction strategies. However, the

best F-measure is achieved, when only the 2 most probable alternative pairs are used.

The results of all tuple pair decision variants are highly similar, but some differences can
be observed: ExpSimUDC works without confidence values and dominates the F-measure
in DBClean, while it performs slightly worse than the other tuple pair decision variants in
DBDirtier. Applying an alternative or alternative pair reduction strategy does not affect
our tuple matching approach on the clean database much, but substantially improves the
recall and hence the F-measure on the dirtier database, so that applying some kind of
reduction seems reasonable. The aim of all reduction strategies is to reduce the number of
low-quality alternative pairs. However, the best-performing strategies do this according to
confidence values and require the user to configure some parameters: a confidence threshold
or the number of alternatives or alternative pairs to use.

In a real application, though, it may be unknown in what way the confidence values
correspond to the quality of the alternatives. Considering this, the combination of the

Best Partner Reduction and ExpSimUDC seems to be the most reasonable choice in the
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general case, since no confidence values are required and no parameters have to be defined

by the user.
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6. Summary and Future Prospects

The objectives of this work are to investigate how existing tuple matching techniques known
from duplicate detection in certain data can be applied to uncertain probabilistic data, to
evaluate the developed approaches experimentally and to generate appropriate synthetic
test data to make the evaluation possible in the first place.

To this end, we present ProbGee, an Eclipse-based generator for labelled probabilistic
data sets from existing certain data. We introduce error provenance trees to illustrate
the generation process and parameters such as the duplicate cluster size, intra-tuple or
zero-alternative similarity, cleanness and overlapping. Typographical errors are modelled
with confusion matrices, but other errors such as phonetic or semantic errors can be in-
troduced with confusion sets. Due to ProbGee’s highly modular architecture, the existing
implementation can easily be extended or adapted.

The basic idea behind our tuple matching approach is to match alternative pairs corre-
sponding to a tuple pair with an iterative hybrid decision model known from certain data
duplicate detection and to derive the tuple pair matching decision from the corresponding
alternative pair labels. We describe how using all alternative pairs can impair the perfor-
mance of the decision model and propose three counter-strategies: reducing alternatives,
reducing alternative pairs and reducing comparison vectors. Apart from strategies using
confidence values for the reduction of alternatives and alternative pairs, the Best Partner
Reduction is discussed which reduces alternative pairs on the basis of similarity compu-
tations alone. We also propose four variants of deriving the tuple pair decision, namely
Expected Similarity, Expected Similarity with Uniformly Distributed Confidences, Best
Partner Similarity, Maximal a-Prob. Similarity and Cry with the Wolves.

Our tuple matching approach is evaluated on two probabilistic movie databases generated
with ProbGee. The experimental results indicate that reducing alternatives or alterna-
tive pairs increases recall and F-measure of the result strongly on the dirtier of the two
databases, while it has little effect on the result on the cleaner database. The different tu-
ple pair decision variants perform similarly on both databases. In a real application, using
a combination of reducing alternative pairs with the Best Partner Reduction and deriving
tuple pair decisions according to the Expected Similarity with Uniformly Distributed Con-
fidences seems to be reasonable, because it functions without confidence values and does

not require the user to define any parameters.

The best-performing reduction strategies work under the assumption that the confidence
value of an alternative is a good indicator for how well it represents the corresponding entity.

Future research could investigate how well those strategies perform in databases where this
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assumption is invalid and whether the combination of the Best Partner Reduction and the
Expected Similarity with Uniformly Distributed Confidences performs better in this case.
A comparison of the different reduction techniques with respect to run time can also be
conducted in the future.

Furthermore, it remains an open issue whether the resolution of conflicting tuple pair

decisions can improve the tuple matching result.

Concerning ProbGee, the list of open issues is long. Although the generator offers a generic
approach towards error generation by using lists of confusion sets, it can only be used in
the movie domain at the moment, because there are hardly any other lists of confusion sets
available. We are not aware of any approaches towards the generation of large synonym
confusion sets for the English language, but we think that WordNetﬂ could be used for the
task. The generation of phonetic errors according to rules is another goal for future work.
Most importantly, though, we are planning to extend ProbGee by the feature of generating
certain data in the near future, so that it can also be used in the field of certain data

duplicate detection.

"WordNet: http://wordnet.princeton.edu/.
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A. Generated Databases

DBCleanest

4 . N\
database quality
avg. intra-tuple sim. 0.998
avg. duplicate sim. 0.99
avg. zero-alternative sim. 0.993
avg. tuple cleanness 0.999
overlappin expected | 0.0
V . . :
L PPUE | tandard deviation - 0.0
intra-tuple similarity ——— duplicate similarity
.104 avg. intra-tuple similarity .104 avg. duplicate similarity
zero-alternative similarity
54 %; 1 avg. zero-alternative similarity
%
=
o4 < 0.8
= et
]
e [
S 31 3 0.6
.
@ <
221 5 0.4
g 5
14 2 02
=
0 } } ; ; ; 0 ; ; ; /
0.9 0.92 0.94 0.96 0.98 1 0.9 0.92 0.94 0.96 0.98
similarity value similarity value
tuple cleaness maybe-tuple confidence value
_104 avg. tuple cleaness avg. maybe-tuple confidence value
600
5
8
g4 2
& £ 400 |
s 3
5 3 =
g 3
= 2+ —
E £ 200
: z
1 g
0 t 0 t - - + —
0.9 0.92 0.94 0.96 0.98 1 0.5 0.6 0.7 0.8 0.9 1
similarity value confidence



84 Appendix

DBCleaner

G database quality N
avg. intra-tuple sim. 0.998
avg. duplicate sim. 0.978
avg. zero-alternative sim. 0.98
avg. tuple cleanness 0.999

lanni expected | 0.0
L OVErlAPPIE | i andard deviation | 0.0 )
intra-tuple similarity duplicate similarity
404 |7 ave. intra-tuple similarity avg. duplicate similarity

zero-alternative similarity

5t o avg. zero-alternative similarity
<
it
4l Z 6,000 |
3 &
o [}
Z 3 E
b £ 4,000 |
o E)
4 =]
2 24
g b
E 5 2,000 |
1+ Nel
£
-
g i
0 : : : ‘ : 0 : : ‘ =
0.9 0.92 0.94 0.96 0.98 1 0.9 0.92 0.94 0.96 0.98
similarity value similarity value
—— tuple cleaness maybe-tuple confidence value
104 | avg. tuple cleaness avg. maybe-tuple confidence value
600 3
54
6
g* E 400
w3 =
c B
2 5]
g 2 g 200 |
:
Ly g
0 - - - - - 0 : \ } \
0.9 0.92 0.94 0.96 0.98 1 0.5 0.6 0.7 0.8 0.9

similarity value confidence



A. Generated Databases

DBClean

( . N\
database quality
avg. intra-tuple sim. 0.992
avg. duplicate sim. 0.971
avg. zero-alternative sim. 0.979
avg. tuple cleanness 0.996
1 . expected | 0.0
overlappin . . :
L PPIE | tandard deviation Ay
intra-tuple similarity —— duplicate similarity
104 s avg. intra-tuple similarity avg. duplicate similarity
54 zero-alternative similarity
T avg. zero-alternative similarity
3
% 6,000 |
41 g
s G
o8 )
N £
5 = 4,000
o )
@ el
2 2+
g ES
E 5 2,000 |
1+ <2
)
=
o
0 : : : : : 0 : ‘ ——
0.9 0.92 0.94 0.96 0.98 1 0.9 0.92 0.94 0.96 0.98
similarity value similarity value
tuple cleaness maybe-tuple confidence value
104 | avg. tuple cleaness avg. maybe-tuple confidence value
600 5
51
8
g4 2
g £ 400 |
= =
w3 g
°© |
g 21 =
= & 200 ¢
2 E
. :
0 - - - - - 0 : \ i \
0.9 0.92 0.94 0.96 0.98 1 0.5 0.6 0.7 0.8 0.9

similarity value confidence



86

Appendix

Example Error Provenance Tree (DBClean)

‘ avg. dupl. sim.: 0,979 ‘

TID: 40740 TID: 53949

AID: 0 AID: 0

cleanness: 1 cleanness: 0,979

intra-tup. sim.: 1 intra-tup. sim.: 0,988

conf.: 1 conf.: 1

TITLE: Bats TITLE: Bats

YEAR: 1999 YEAR: 1996

DIRECTOR: Morneau, Louis DIRECTOR: Morneau, Louis

PRODUCER: Baum, Brent PRODUCER: Baum, Brent

STUDIO: Destination Films [us] - STUDIO: Destination Films [us] -

(presents) (presents)

TID: 40740 TID: 53949

AID: 1 AID: 2

cleanness: 1 cleanness: 1

conf.: 1 conf.: 0,574

TITLE: Bats TITLE: Bats

YEAR: 1999 YEAR: 1996

DIRECTOR: Morneau, Louis DIRECTOR: Morneau, Louis

PRODUCER: Baum, Brent PRODUCER: Baum, Brent PRODUCER

STUDIO: Destination Films [us] - STUDIO: Destination Films [us] -

(presents) (presents)

TID: 53949 TID: 53949
AID: 3 AID: 1
cleanness: 0,986 cleanness: 0,996
conf.: 0,078 conf.: 0,348
TITLE: Bats TITLE: Bats
YEAR: 1996 YEAR: 1996
DIRECTOR: Morneau, Louis DIRECTOR: Morneau, Louis
PRODUCER: Beum, Brents PRODUCER: Baum, Bret
STUDIO: Destination Films [us] - STUDIO: Destinatino Films [us] -

(presents)

(presents)
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DBDirtier
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Example Error Provenance Tree (DBDirtier)

‘ avg. dupl. sim.:

0,889 |

/\

47390

1

0,988

0,136

stair Trek Visual Effects
Magic: A Rounndtable
Discussion

2003

Wolctt, Steve

Duignan, Rose

Kumg Mecia Services [us]

TID: 31525 TID: 47390
AID: 0 AID: 0
cleanness: 1 cleanness: 0,889
intra-tup. sim.: 1 intra-tup. sim.: 0,989
conf.: 0,79 conf.: 1
TITLE: Star Trek Visual Effects TITLE: stair Trek Visual Effects
Magic: A Roundtable Dis- Magic: A Roundtable Dis-
cussion cussion
YEAR: 2007 YEAR: 2003
DIRECTOR: Wolcott, Stephen R. DIRECTOR: Wolcott, Steve
PRODUCER: Duignan, Patricia Rose PRODUCER: Duignan, Rose
STUDIO: King Media Services [us] STUDIO: Kumg Mecia Services [us]
TID: 31525 TID: 47390
AID: 1 AID: 3
cleanness: 1 cleanness: 1
conf.: 0,79 conf.: 0,442
TITLE: Star Trek Visual Effects TITLE: stair Trek Visual Effects T'ITLE
Magic: A Roundtable Dis- Magic: A Roundtable Dis-
cussion cussion
YEAR: 2007 YEAR: 2003
DIRECTOR: ‘Wolcott, Stephen R. DIRECTOR: Wolcott, Steve
PRODUCER: Duignan, Patricia Rose PRODUCER: Duignan, Rose
STUDIO: King Media Services [us] STUDIO: Kumg Mecia Services [us]
TID:
AID:
cleanness:
conf.:
TITLE:
YEAR:
DIRECTOR:
PRODUCER:
STUDIO STUDIO:
TID: 47390
AID: 2
cleanness: 0,996
conf.: 0,422
TITLE: stair Trek Visual Effects
Magic: A Roundtable Dis-
cussion
YEAR: 2003
DIRECTOR: Wolcott, Steve
PRODUCER: Duignan, Roses
STUDIO: Kumg Meica Services [us]
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DBDirtierOverlapping

e - N
database quality
avg. intra-tuple sim. 0.984
avg. duplicate sim. 0.952
avg. zero-alternative sim. 0.958
avg. tuple cleanness 0.992
overlapni expected : 0.2
Ver 111 . .
L PPIE | standard deviation | 0.1 )
intra-tuple similarity ——— duplicate similarity
104 avg. intra-tuple similarity avg. duplicate similarity
zero-alternative similarity
4 + g 37000 | avg. zero-alternative similarity
g
n —_—
o
% 37 )
£ E 2,000 |
o) =
5 2t %
= ~ 1,000 {
S| 11 5}
<
=]
g
0 - - - - - 0 - - - -
0.9 0.92 0.94 0.96 0.98 1 0.9 0.92 0.94 0.96 0.98
similarity value similarity value
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database quality
avg. intra-tuple sim. 0.977
avg. duplicate sim. 0.926
avg. zero-alternative sim. 0.941
avg. tuple cleanness 0.988
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B. Baseline Configuration Experiments

B.1. Nearest-Based Initial Match Vector Selection

20 Initial Match Vectors (Config0)

( s
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors | 20
initial unmatch vectors ;| 156
L SVM kernel ; linear )
p
3
g § g
© S g IS
5 g ] s i g S
) (o2} N R i o &~
& g g & 8 S
<~ A <~ Q A O
TruePositives 5 7 8 3 5
FalsePositives 6 8 8 5 6
TrueNegatives | 103266 103264 103264 © 103267 103266
FalseNegatives 15534 15532 | 15531 | 15536 15534
Recall { 0.000322 i 0.00045 @ 0.000515 | 0.000193 { 0.000322
Precision i 0.454545 | 0.466667 0.5 0.375 0.454545
F-measure | 0.000643 { 0.0009 = 0.001029 : 0.000386 0.000643)

100 Initial Match Vectors (Configl)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 780
SVM kernel i linear




B. Baseline Configuration Experiments

( § )
o | £ LS ) A
F & g < s &
s 8 5 & g A
< A <~ Q g e
TruePositives 15528 15529 15526 15525 15528
FalsePositives = 2148 2196 2178 2114 2177
TrueNegatives | 101124 101076 101094 101158 101095
FalseNegatives | 11 10 13 4 11
Recall 1 0.999292 : 0.999356 ; 0.999163 : 0.999099 @ 0.999292
Precision | 0.878479 | 0.876107 i 0.876977 | 0.880152 | 0.87704
F-measure | 0.934999 | 0.933682 | 0.934091 | 0.935861 = 0.934184 |

500 Initial Match Vectors (Config2)

( 5
configuration

database | DBClean
reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler

trainings vector selection | nearest-based

initial match vectors i 500
initial unmatch vectors | 3898
SVM kernel | linear

|\ S
g g
& 2 O
N o <)
S g & g § IS
& |
g ) < &c’v & &
s & 5 2 g IS
= & = Q & e
TruePositives 15533 15535 15534 15533 15533
FalsePositives = 2632 2663 2654 2601 2647
TrueNegatives | 100640 100609 100618 100671 © 100625
FalseNegatives 6 4 5 6 6

Recall 0.999614 { 0.999743 | 0.999678 | 0.999614 0.999614
Precision | 0.855106 | 0.853665 i 0.85408 | 0.856568 | 0.8544
F-measure | 0.92173 | 0.920947 | 0.921161 | 0.922579 | 0.92132 )
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1,000 Initial Match Vectors (Config3)

( n
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 1000
initial unmatch vectors : 7795
L SVM kernel i linear )
3 =
& 2 O
~3 o S
- S 5 )
5 g 4 & g =
& 2 5 e 2 &
S & & & & =
=~ IS = Q) & O
TruePositives 15533 15535 | 15534 = 15533 15533
FalsePositives 2639 2668 | 2661 2606 2653
TrueNegatives | 100633 100604 100611 | 100666 100619
FalseNegatives 6 4 5 6 6
Recall | 0.999614 | 0.999743 = 0.999678 = 0.999614 | 0.999614
Precision i 0.854777 : 0.853431 : 0.853751 0.856332 i 0.854119
F-measure | 0.921539 | 0.920811 @ 0.92097 = 0.922442 0.921156)

B.2. Different SVM Kernels

Radial Basis SVM Kernel (Config04)

( 5
configuration

database | DBClean

reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors
similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

780

SVM kernel

radial basis function

J/




B. Baseline Configuration Experiments

( § )
o | £ LS ) A
F & g < s &
s 8 5 & g A
< A <~ Q g e
TrucPositives 15528 | 15530 | 15527 | 15527 15529
FalsePositives = 2042 2074 2060 2024 2059
TrueNegatives | 101230 101198 101212 101248 © 101213
FalseNegatives | 11 9 12 12§ 10
Recall 1 0.999292 ; 0.999421 ; 0.999228 : 0.999228 @ 0.999356
Precision | 0.883779 | 0.882186 i 0.882868 | 0.884679 | 0.882932
F-measure | 0.937993 | 0.937151 | 0.937451 | 0.938471 = 0.937543 |

Baseline (Configh, DBClean)

( 5
configuration

database | DBClean
reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors : 780
SVM kernel | polynomial

g g
& 2 O
N o Q
S8 & g § A
& |
g ) < &c’v & &
F i & g 12 g S
= & = Q & e
TruePositives 15507 15514 15512 15500 15513
FalsePositives | 1774 1816 1812 1734+ 1792
TrueNegatives | 101498 101456 101460 101538 101480
FalseNegatives | 32 25 27 39 i 26

Recall 0.997941 | 0.998391 | 0.998262 i 0.99749 0.998327
Precision | 0.897344 | 0.895211 i 0.895405 | 0.899385 | 0.896446
F-measure @ 0.944973 i 0.94399 | 0.94404 | 0.945901 0.944647 |
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Baseline (Configh, DBDirtier)

( =
configuration

database | DBDirtier

reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors
similarity metric

trainings vector selection

Soft TFIDF — JaroWinkler
nearest-based

initial match vectors i 100
initial unmatch vectors : 791
L SVM kernel i polynomial )
p
3
FRI -
& g & %5 5 A
;i 5 5 5 ¢ &
() AT T g ;S’ &
<~ Q < Q & @)
TruePositives 13386 13728 13749 12813 13529
FalsePositives 1276 1352 1362 1178 1297
TrueNegatives | 102767 102691 102681 102865 102746
FalseNegatives 2153 1811+ 1790 2726 2010
Recall | 0.861445 | 0.883455 | 0.884806 @ 0.82457 | 0.870648
Precision | 0.912972 : 0.910345 @ 0.909867 | 0.915803 | 0.912519
F-measure | 0.886461 | 0.896698 @ 0.897162 0.867795 | 0.891092 |
B.3. Expected Similarity Threshold
DBClean
(confi guration N
database | DBClean

reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors
similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

780

SVM kernel

polynomial




B. Baseline Configuration Experiments

N

Ny g 9 S S
S S S S S
< A & & & &
TruePositives | 15514 15513 15507 15504 15499
FalsePositives | 1811 1793 1774 1756 1738
TrueNegatives = 101461 101479 101498 101516 101534
FalseNegatives | 25 26 32 35 40
Recall © 0.998391 | 0.998327 | 0.997941 i 0.997748 | 0.997426
Precision | 0.895469 : 0.896394 i 0.897344 : 0.898262 : 0.89917
. F-measure | 0.944133 | 0.944619 | 0.944973 | 0.945395 | 0.945753)
DBDirtier
a configuration b
database | DBDirtier
reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection : nearest-based
initial match vectors i 100
initial unmatch vectors i 791
L SVM kernel : polynomial )
f > 7 B 3 o |
S S S S S
S A &) &) & &
TruePositives 13659 13561 13386 13157 12967
FalsePositives | 1330 1307 1276 1234 1194
TrueNegatives | 102713 102736 102767 102809 102849
FalseNegatives | 1880 1978 2153 2382 2572
Recall @ 0.879014 | 0.872707 | 0.861445 i 0.846708 | 0.834481
Precision | 0.911268 | 0.912093 i 0.912972 | 0.914252 | 0.915684
L F-measure | 0.894851 | 0.891966 | 0.886461 i 0.879185 0.873199)
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B.4. Maximal a-Prob. Similarity Threshold

DBClean
( confi guration N
database | DBClean
reducing alternatives i -
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection : nearest-based
initial match vectors i 100
initial unmatch vectors i 780
L SVM kernel | polynomial )
( ~
S i~ N © o)
S S S S S
ol £ g g @ 2 g
§ 3 S 5§ 5 5
§ & 3 3 &l g
CRE s § § 5
TruePositives 15515 15515 15515 = 15514 15507
FalsePositives 1838 1837 1833 | 1816 1783
TrueNegatives | 101434 101435 | 101439 | 101456 101489
FalseNegatives 24 24 24 25 32
Recall | 0.998455 | 0.998455 | 0.998455 | 0.998391 : 0.997941
Precision | 0.894082 i 0.894133 @ 0.894339 = 0.895211 | 0.896877
L F-measure | 0.94339 | 0.943419 1 0.943534 = 0.94399 0.944714 |
DBDirtier

( 5
configuration

database | DBDirtier
reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors i -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors | 791
SVM kernel ;| polynomial




C. Reduction Experiments

99

S ~ o 0 %

S S S S S
o £ g g g g
T O . .

s 8 $ 3 $ $
TruePositives | 13961 13921 13882 13727 13463
FalsePositives 1400 1395 1386 1352 1293
TrueNegatives | 102643 102648 102657 102691 102750
FalseNegatives | 1578 1618 1657 1812+ 2076

Recall | 0.898449 | 0.895875 i 0.893365 | 0.88339 | 0.866401
Precision @ 0.90886 i 0.908919 | 0.909222 | 0.910339 | 0.912375
L F-measure | 0.903625 { 0.90235 { 0.901224 | 0.896662 0.888794

C. Reduction Experiments

C.1. Reducing Alternatives with a Confidence Threshold

Confidence Threshold 0.1 (DBClean)

( z
configuration

database

DBClean

reducing alternatives

confidence threshold 0.1

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 652
L SVM kernel : polynomial )
g =
& 2 O
N o <)
S & g § A
& |
g & N <& & &
& g 3 » g S
= 9 = Q & O
TruePositives 15510 15515 15513 15509 15515
FalsePositives = 1812 1842 1836 1775 1821
TrueNegatives 101460 101430 101436 101497 : 101451
FalseNegatives | 29 24 26 30 24
Recall © 0.998134 | 0.998455 | 0.998327 i 0.998069 | 0.998455
Precision | 0.895393 i 0.893876 : 0.894173 : 0.897304 0.894958
F-measure | 0.943976 | 0.943276 | 0.943384 i 0.945008 0.943878)
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Confidence Threshold 0.2 (DBClean)

( ®
configuration

database | DBClean
reducing alternatives | confidence threshold 0.2
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection : nearest-based
initial match vectors i 100
initial unmatch vectors { 488
SVM kernel | polynomial

QO
§ 8

= &

g
S
| ©

TruePositives | 15514 : 15520 15516 | 15514 | 15519

FalsePositives 1856 1878 ¢ 1870 1846 1868
TrueNegatives | 101416 101394 | 101402 | 101426 101404
FalseNegatives 25 19 5 23 25 20

Recall | 0.998391 0.9987775 0.99852 " 0.998391 ' 0.998713

Precision | 0.893149 1 0.892057 1 0.892442 " 0.893664 | 0.892563

F-measure | 0.942842 | 0.942405 | 0.942506 0.943129 ; 0.942659 |

Confidence Threshold 0.3 (DBClean)

( 5
configuration

database | DBClean
reducing alternatives i confidence threshold 0.3
reducing alternative pairs | -
reducing comparison vectors i -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors { 320
SVM kernel ;| polynomial
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g 5
& 2 O
3 o <)
| g & £ § A
~
g & N < & &
& g 3 ? g S
= 9 =~ Q &) O
TruePositives 15517 15520 15520 15515 15520
FalsePositives . 1927 1944 1947 1923 1950
TrueNegatives | 101345 101328 101325 101349 | 101322
FalseNegatives | 22 19 19 24 19
Recall | 0.998584 : 0.998777 ; 0.998777 : 0.998455 = 0.998777
Precision | 0.889532 | 0.888685 i 0.888533 | 0.889724 | 0.88838
F-measure | 0.940909 | 0.940521 | 0.940435 : 0.940959 = 0.94035 |
Confidence Threshold 0.4 (DBClean)
(conﬁguration A
database | DBClean

reducing alternatives

confidence threshold 0.4

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 171
L SVM kernel | polynomial )
g 5
& 2 O
N o <)
S & g § A
& |
g & N <& & &
& g 3 » g S
< X < Q & O
TruePositives 15519 15521 15521 15519 15521
FalsePositives = 1999 2003 2000 1999 2005
TrueNegatives | 101273 101269 101272 101273 | 101267
FalseNegatives | 20 18 18 20 18
Recall © 0.998713 { 0.998842 | 0.998842 i 0.998713 | 0.998842
Precision | 0.885889 i 0.8857 : 0.885851 : 0.885889 : 0.885599
F-measure | 0.938924 | 0.938874 | 0.938959 i 0.938924 0.938817)
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Confidence Threshold 0.5 (DBClean)

( ®
configuration

database

DBClean

reducing alternatives

confidence threshold 0.5

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 158
L SVM kernel | polynomial )
3
7 £  F 5 &
§ & 3 & & IS
& g g ? g IS
= g ~ Q & S
TruePositives | 15521 15523 15521 15521 15523
FalsePositives 2025 2032 2027 2025 2033
TrueNegatives | 101247 101240 101245 101247 101239
FalseNegatives 18 16 18 18 16
Recall | 0.998842 { 0.99897 @ 0.998842 @ 0.998842 i 0.99897
Precision : 0.884589 : 0.88425 : (0.884488 : (.884589 : 0.884199
F-measure | 0.93825 | 0.938116 = 0.938193 = 0.93825 | 0.938087 |

Confidence Threshold 0.1 (DBDirtier)

( 5
configuration

database

DBDirtier

reducing alternatives

confidence threshold 0.1

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

658

SVM kernel

polynomial
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5
£ 5 & g s | A
g & 3 < s &
& g g & g e
= 9 =~ Q &) O
TruePositives | 14688 14846 14854 14513 14759
FalsePositives = 1576 1623 1619 1527 1596
TrueNegatives = 102467 102420 102424 102516 102447
FalseNegatives | 851 693 685 1026 ¢ 780
Recall @ 0.945235 { 0.955403 | 0.955917 § 0.933973 | 0.949804
Precision | 0.903099 @ 0.901451 i 0.901718 i 0.9048 | 0.902415
F-measure | 0.923686 i 0.927643 | 0.928027 i 0.919155 0.925503
Confidence Threshold 0.2 (DBDirtier)
(conﬁguration A
database | DBDirtier
reducing alternatives | confidence threshold 0.2
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors : 491
L SVM kernel | polynomial )
5
. A <
§ & g <& 5 IS
F i & 3 & g IS
= & = Q) & S
TruePositives 15173 15219 15233 15117 15194
FalsePositives : 1764 1806 1808 1742 1790
TrueNegatives | 102279 102237 102235 102301 102253
FalseNegatives | 366 320 306 422 1 345
Recall © 0.976446 | 0.979407 | 0.980308 i 0.972843 | 0.977798
Precision | 0.895849 | 0.893921 i 0.893903 i 0.896672 | 0.894607
F-measure | 0.934413 | 0.934713 | 0.935114 { 0.933206 0.934354
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Confidence Threshold 0.3 (DBDirtier)

( ®
configuration

database

DBDirtier

reducing alternatives

confidence threshold 0.3

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors { 100
initial unmatch vectors : 323
L SVM kernel | polynomial )
g
s F 8
& g & § g =
;5 4§ 0 F £ § £
) Ad T on) ,5% &
<~ Q = Q & O
TruePositives 15365 15382 15385 15351 15377
FalsePositives 1923 1954 1951 1913 1951
TrueNegatives | 102120 102089 102092 102130 102092
FalseNegatives 174 157 154 188 162
Recall | 0.988802 { 0.989896 ' 0.990089 @ 0.987901 | 0.989575
Precision | 0.888767 | 0.887287 @ 0.88746 : 0.889191 | 0.887408
F-measure | 0.93612 | 0.935787 @ 0.93597 0.935951 | 0.935711 |
Confidence Threshold 0.4 (DBDirtier)
( confi guration N
database | DBDirtier

reducing alternatives

confidence threshold 0.4

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

172

SVM kernel

polynomial
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4 '§ N\
F 7 8
O S § b &
g§ & g & 5 IS
& g 3 & g S
= & = Q & S
TruePositives 15454 15455 15456 15454 15456
FalsePositives = 2088 2095 2098 2087 2106
TrueNegatives | 101955 101948 101945 101956 101937
FalseNegatives | 85 84 83 8% 83
Recall i 0.99453 | 0.994594 | 0.994659 i 0.99453 | 0.994659
Precision | 0.880971 | 0.880627 i 0.880483 i 0.881022 | 0.880082
F-measure | 0.934313 | 0.934147 | 0.934095 i 0.934341 0.933869
Confidence Threshold 0.5 (DBDirtier)
(conﬁguration N
database | DBDirtier
reducing alternatives | confidence threshold 0.5
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors : 160
L SVM kernel | polynomial )
4 '§ N\
. A <
§ & g <& 5 IS
& g 3 & g S
= & = Q) & S
TruePositives 15456 15457 15458 15456 15458
FalsePositives = 2106 2109 2112 2106 2112
TrueNegatives = 101937 101934 101931 101937 101931
FalseNegatives | 83 82 81 83 81
Recall @ 0.994659 | 0.994723 | 0.994787 i 0.994659 | 0.994787
Precision | 0.880082 i 0.879939 i 0.879795 i 0.880082 | 0.879795
F-measure | 0.933869 | 0.933817 | 0.933764 i 0.933869 0.933764
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C.2. Using the n Most Probable Alternatives

4 Most Probable Alternatives (DBClean)

( z
configuration

database | DBClean
reducing alternatives | 4 most probable alternatives
reducing alternative pairs | -
reducing comparison vectors i -
similarity metric ;| Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors | 100
initial unmatch vectors i 746
SVM kernel ;| polynomial

( 3\
g 5
& z O
~ o Q)
3 g o 3 5 =
<
g & N & & &
& g g 2 g S
<~ &) <~ K & S
TrucPositives | 15508 | 15514 15512 15502 | 15513
FalsePositives 1789 1827 1823 1749 1803
TrueNegatives | 101483 101445 © 101449 @ 101523 101469
FalseNegatives 31 25 : 27 37 26

Recall | 0.998005 i 0.998391 0.998262 0.997619 §{ 0.998327

Precision i 0.896572 | 0.894643 0.894837 0.898615 i 0.895877

F-measure | 0.944573 | 0.943674 @ 0.943725 0.945532 | 0.944331 |

3 Most Probable Alternatives (DBClean)

( =
configuration

database | DBClean
reducing alternatives | 3 most probable alternatives
reducing alternative pairs | -
reducing comparison vectors i -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 649
SVM kernel | polynomial
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g 5
%) 2 O
~ o QR
° g & g 5§ A
~ ;
g & N < 5 &
& g 3 ? g | A2
= 9 =~ Q &) O
TruePositives 15511 15516 15513 15509 15516
FalsePositives = 1812 1846 1835 1772 1823
TrueNegatives | 101460 101426 101437 101500 | 101449
FalseNegatives | 28 23 26 30 23
Recall | 0.998198 ; 0.99852 ; 0.998327 : 0.998069 @ 0.99852
Precision | 0.895399 | 0.893676 i 0.894224 | 0.89746 | 0.894861
F-measure | 0.944008 | 0.943193 | 0.943412 | 0.945094 = 0.943853 |
2 Most Probable Alternatives (DBClean)
(conﬁguration N
database | DBClean

reducing alternatives |

2 most probable alternatives

reducing alternative pairs |

reducing comparison vectors |

similarity metric | Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors 100
initial unmatch vectors | 452
L SVM kernel | polynomial )
g g
& ) O
~= o Q
S8 & g § IS
5
g & N <& & &
& g 3 » g S
< X < Q & O
TruePositives 15513 15518 15519 15512 15519
FalsePositives = 1861 1879 1874 1841 1886
TrueNegatives = 101411 101393 101398 101431 101386
FalseNegatives | 26 21 20 2720
Recall | 0.998327 | 0.998649 i 0.998713 | 0.998262 = 0.998713
Precision | 0.892886 : 0.891993 i 0.892256 : 0.893909 | 0.89164
F-measure | 0.942667 | 0.942312 | 0.942488 i 0.943208 0.942144 |
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Using the n Most Probable Alternatives — Comparison (DBClean)

DBClean

—»— ExpSim
MaxAProbSim

—+— BestPartnerSim
ExpSimUDC
CWTW

- - Baseline

3 2 1
most probable alternatives

4 Most Probable Alternatives (DBDirtier)

DBClean

0.900 -

0.895

0.890

precision

0.885

4 3 2
most probable alternatives

4 ®
configuration

database

DBDirtier

reducing alternatives

4 most probable alternatives

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 756
L SVM kernel i polynomial )
g =
& 2 O
~ Ol )
c & £ 5 3
Z :
g 5 N o - &
& g &l ? 8 S
= & = Q & O
TruePositives 13625 13910 13942 13126 13742
FalsePositives 1328 1391 1405 1242 1342
TrueNegatives | 102715 102652 102638 102801 102701
FalseNegatives 1914 1629 1597 2413 1797
Recall | 0.876826 | 0.895167 @ 0.897226 | 0.844713 | 0.884355
Precision i 0.911188 i 0.909091 : 0.908451 0.913558 i 0.911032
F-measure | 0.893677 i 0.902075 = 0.902804 | 0.877788 0.897495)
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3 Most Probable Alternatives (DBDirtier)

( 5
configuration

database | DBDirtier
reducing alternatives | 3 most probable alternatives
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors : 100
initial unmatch vectors | 656
SVM kernel | polynomial

QO
-

S &
TruePositives | 14269 = 14473 14497 13953 14352

¥ §

& 2 O
: 3 o )
s S g S
X ] g ~
X R & ~
g & g =
S Q) &) O

FalsePositives 1434 @ 1483 1497 1368 1452
TrueNegatives | 102609 | 102560 102546 102675 102591
FalseNegatives 1270 |+ 1066 1042 1586 1187

Recall | 0.91827 0.931398 | 0.932943 | 0.897934 | 0.923612
Precision i 0.90868 | 0.907057 i 0.906402 : 0.910711 | 0.908125
F-measure | 0.91345 ' 0.919067 | 0.919481 | 0.904277 0.915803 ]

2 Most Probable Alternatives (DBDirtier)

( T
configuration

database | DBDirtier
reducing alternatives | 2 most probable alternatives
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors . 100
initial unmatch vectors | 454
SVM kernel | polynomial
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g A
) < LS o ~
g F 5 & F g
& g g & g S
= &) < K & O
TruePositives 15204 15248 15282 15137 15251
FalsePositives 1803 1827 1839 1780 1829
TrueNegatives | 102240 102216 | 102204 102263 102214
FalseNegatives 335 291 257 1 402 288
Recall | 0.978441 | 0.981273 : 0.983461 = 0.97413 | 0.981466
Precision | 0.893985 : 0.893001 = 0.892588 @ 0.89478 | 0.892916
F-measure ;| 0.934308 | 0.935059 = 0.935824 = 0.932771 | 0.935099 |

Using the n Most Probable Alternatives — Comparison (DBDirtier)

DBDirtier

—»— ExpSim
MaxAProbSim

—+— BestPartnerSim
ExpSimUDC
CWTW

- - - Baseline

e —

3 2 1
most probable alternatives

DBDirtier

precision

most probable alternatives

C.3. Using a Single Alternative per Tuple

1 Most Probable Alternative (DBClean)

( s
configuration

database

DBClean

reducing alternatives

1 most probable alternative

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

138

SVM kernel

polynomial
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( results
true positives 15527
false positives 2074
true negatives | 101198
false negatives 12
recall i 0.999228
precision | 0.882166
F-measure | 0.937055 )

Cry with the Wolves (DBClean)

( .
configuration

database | DBClean
reducing alternatives | Cry with the Wolves
reducing alternative pairs | -
reducing comparison vectors i -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection : nearest-based
initial match vectors i 100
initial unmatch vectors | 138
SVM kernel | polynomial

(results
true positives 15528
false positives 2040
true negatives i 101232
false negatives 11
recall | 0.999292
precision | 0.88388
F-measure | 0.938049

1 Most Probable Alternative (DBDirtier)

( T
configuration

database | DBDirtier
reducing alternatives | 1 most probable alternative
reducing alternative pairs | -
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors . 100
initial unmatch vectors | 139
SVM kernel | polynomial
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Cry with the Wolves (DBDirtier)

(results N
true positives | 15460
false positives | 2116
true negatives | 101927
false negatives | 79
recall | 0.994916
precision | 0.879609
| F-measure = 0.933716
( confi guration
database | DBClean

reducing alternatives

Cry with the Wolves

reducing alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 139
L SVM kernel ;| polynomial
(results )
true positives | 15469
false positives | 2079
true negatives | 101964
false negatives 70
recall = 0.995495
precision | 0.881525
| F-measure = 0.93505 |

C.4. Reducing Alternative Pairs with a Confidence Threshold

Confidence Threshold 0.1 (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

confidence threshold 0.1

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

490

SVM kernel

polynomial
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( '§ )
F 7 8
O S § b &
F & g < 5 S
& g 3 & g S
= 9 =~ Q &) O
TruePositives 15514 15519 15517 15512 15519
FalsePositives = 1846 1872 1863 1832 1859
TrueNegatives | 101426 101400 101409 101440 101413
FalseNegatives | 25 20 22 2720
Recall | 0.998391 ; 0.998713 ; 0.998584 : 0.998262 @ 0.998713
Precision | 0.893664 | 0.892358 i 0.892808 | 0.894373 | 0.893026
F-measure | 0.943129 | 0.942545 | 0.942738 | 0.943466 = 0.942917 |

Confidence Threshold 0.2 (DBClean)

( 5
configuration

database | DBClean
reducing alternatives | -
reducing alternative pairs | confidence threshold 0.2
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler

trainings vector selection | nearest-based

initial match vectors i 100
initial unmatch vectors i 311
L SVM kernel | polynomial )
5 5
& 2 O
N o <)
S g & £ § IS
& |
g & N < & S
& g 3 » g S
< X < Q & O
TruePositives 15518 15521 15519 15516 15521
FalsePositives = 1918 1933 1929 1912 1936
TrueNegatives = 101354 101339 101343 101360 101336
FalseNegatives | 21 18 20 23 18
Recall © 0.998649 | 0.998842 | 0.998713 i 0.99852 | 0.998842
Precision | 0.889998 : 0.889252 : 0.889443 : 0.890291 : 0.889099
F-measure | 0.941198 | 0.940866 i 0.940916 i 0.941305 0.940781)
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Confidence Threshold 0.3 (DBClean)

( ®
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

confidence threshold 0.3

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 215
L SVM kernel | polynomial )
3
5 N A = R
SRV R S A -
& g g ? g IS
= < = Q & S
TruePositives 15520 15523 15521 15520 15523
FalsePositives 1963 1975 1970 1957 1977
TrueNegatives | 101309 101297 101302 101315 101295
FalseNegatives 19 16 18 ; 19 16
Recall { 0.998777 { 0.99897 | 0.998842 | 0.998777 i 0.99897
Precision i 0.887719 | 0.88713 | 0.887371 0.888024 i 0.887029
F-measure | 0.939979 | 0.939734 @ 0.939812 | 0.94015 0.939677 |

Confidence Threshold 0.4 (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

confidence threshold 0.4

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

155

SVM kernel

polynomial
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g 5
& 2 O
3 o <)
S8 & g 5 IS
~
g & N < & &
& g 3 ? g S
= 9 =~ Q &) O
TruePositives 15526 15528 15528 15526 15528
FalsePositives . 2026 2027 2026 2026 2027
TrueNegatives | 101246 101245 101246 101246 101245
FalseNegatives | 13 11 11 3 ¢ 1
Recall | 0.999163 ; 0.999292 ; 0.999292 : 0.999163 @ 0.999292
Precision | 0.884572 | 0.884534 i 0.884585 | 0.884572 | 0.884534
F-measure | 0.938382 | 0.938418 | 0.938446 : 0.938382  0.938418 |
Confidence Threshold 0.5 (DBClean)
(conﬁguration A
database | DBClean

reducing alternatives

reducing alternative pairs

confidence threshold 0.5

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 148
L SVM kernel | polynomial )
5 5
& 2 O
N o <)
S g & £ § IS
& |
g & N <& & &
& g 3 » g S
< X < Q & O
TruePositives 15525 15527 15525 15525 15527
FalsePositives . 2016 2021 2017 2016 2021
TrueNegatives | 101256 101251 101255 101256 101251
FalseNegatives | 14 12 14 14 12
Recall © 0.999099 | 0.999228 | 0.999099 i 0.999099 | 0.999228
Precision | 0.885069 i 0.88483 : 0.885019 : 0.885069 @ 0.88483
F-measure | 0.938634 | 0.938556 | 0.938605 i 0.938634 0.938556)
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Confidence Threshold — Comparison (DBClean)

DBClean DBClean
‘ N 0.900 [ ‘
0.9990 - 2 St
= (265142535
// g
= 0.9985 - —»— ExpSim 2
§ MaxAProbSim g SN
i —+— BestPartnerSim a 0.890 |-
0.9980 | ExpSimUDC
"""""""""""""""" CWTW
- - - Baseline
0.9975 - ﬂ 0.885 |- I
1 1 1 1 1
/Q\’ /QC} Q‘b /Q"x /Qﬁa /Q'\/ Q% Q?) /Qb& /Qb
7 7 7 7 7 7 7 7 7 7
alternative pair confidence threshold ¢ alternative pair confidence threshold ¢
Confidence Threshold 0.1 (DBDirtier)
e X 2
configuration
database | DBDirtier

reducing alternatives

reducing alternative pairs

confidence threshold 0.1

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 493
L SVM kernel i polynomial )

( '§ )
o < g = A
s g  F £ 4§ &
g 2 g F & S
< &) < Q &) O
TruePositives 15184 15231 15234 15125 15212
FalsePositives 1768 1808 1801 1744 1793
TrueNegatives | 102275 102235 102242 102299 102250
FalseNegatives 355 308 ¢ 305 @ 414 327
Recall | 0.977154 | 0.980179 : 0.980372 ' 0.973357 | 0.978956
Precision | 0.895706 : 0.89389 = 0.894276 @ 0.896615 | 0.89456
F-measure ;| 0.934659 | 0.935048 = 0.935347 = 0.933412 | 0.934857 |
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Confidence Threshold 0.2 (DBDirtier)

( 2
configuration

database

DBDirtier

reducing alternatives

reducing alternative pairs

confidence threshold 0.2

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 312
L SVM kernel ;| polynomial )
g =
& z O
) o Q
S8 & g § =
5
g & i Ty &5 &
g . & 3 2 g S
S A = Q g S
TruePositives | 15402 15415 15419 15392 15412
FalsePositives | 1963 1993 1987 1953 1991
TrueNegatives | 102080 102050 102056 102090 102052
FalseNegatives | 137 124 120 147 127
Recall | 0.991183 | 0.99202 i 0.992277 | 0.99054 @ 0.991827
Precision | 0.886957 : 0.885512 i 0.885844 i 0.887403 | 0.885594
F-measure | 0.936178 | 0.935745 | 0.936045 | 0.936139 | 0.935705 |
Confidence Threshold 0.3 (DBDirtier)
(conﬁguration A
database | DBDirtier

reducing alternatives

reducing alternative pairs

confidence threshold 0.3

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

217

SVM kernel

polynomial
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3
F 7 g
5 - <
5 5 g <& 5 &
& g g 5 g S
< & = Q &) S
TruePositives 15434 15442 15441 15428 15440
FalsePositives 2026 2043 2040 2020 2048
TrueNegatives ;| 102017 102000 102003 102023 101995
FalseNegatives 105 97 98 o111 99
Recall | 0.993243 | 0.993758 | 0.993693 | 0.992857 | 0.993629
Precision ; 0.883963 : 0.883157 = 0.883302 @ 0.884227 | 0.882891
F-measure | 0.935422 { 0.935199 @ 0.935251 | 0.935399 0.934993 )
Confidence Threshold 0.4 (DBDirtier)
( confi guration N
database | DBDirtier
reducing alternatives | -
reducing alternative pairs | confidence threshold 0.4
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 156
L SVM kernel | polynomial )
( '§ )
4 g i £ 5 =
s & § & F g
g 2 s | F & S
= & = Q & S
TruePositives 15465 15466 15465 15465 15465
FalsePositives 2103 2109 2108 2103 2110
TrueNegatives | 101940 101934 101935 101940 101933
FalseNegatives 74 73 74 74 74
Recall | 0.995238 i 0.995302 | 0.995238 | 0.995238 | 0.995238
Precision { 0.880294 0.88  0.880043 @ 0.880294 | 0.879943
F-measure | 0.934244 | 0.934106 @ 0.934102 0.934244 | 0.934046 |
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Confidence Threshold 0.5 (DBDirtier)
(conﬁguration A
database | DBDirtier
reducing alternatives | -
reducing alternative pairs | confidence threshold 0.5
reducing comparison vectors i -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 149
L SVM kernel : polynomial )
5 g
& 2 O
3 o Q
o L g S
-~/ q 5 g A
g | & < R, & ~
g 8 5 5 S =
: A T [5) A
= A <~ Q S S
TruePositives = 15465 15466 15465 15465 15466
FalsePositives | 2121 2125 2124 2125
TrueNegatives | 101922 101918 101919 101922 101918
FalseNegatives | 74 73 74 73
Recall | 0.995238 | 0.995302 | 0.995238 i 0.995238 | 0.995302
Precision | 0.879393 | 0.8792 | 0.879243 | 0.879393 | 0.8792
F-measure | 0.933736 | 0.933655 | 0.933651 i 0.933736 0.933655
Confidence Threshold — Comparison (DBDirtier)
DBDirtier DBDirtier
1.0000 | L ] ‘
/* ________________________________________
0910 F=======mmmmmmsmmmmmeiioooaaaaaaas .
0.9500 | .
% —— ExpSim % 0.900 - -
§ 0'9000: ____________________________ q—lE\ilez):?:rrt(:zf::n g \
ExpSimUDC 0.890 |- N i
0.8500 L Btie ol \\\q |
' |
N @" N Q?J » N @‘ Q{""‘ Q?" Q°
&// &// &// &// &// ’&// \// \/ \// \//

alternative pair confidence threshold ¢

alternative pair confidence threshold ¢
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C.5. Using the n Most Probable Alternative Pairs

8 Most Probable Alternative Pairs (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

8 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors ;| 696
L SVM kernel : polynomial )

3
g§ 0§ &
o < LS = ~
§ & ¥ & &5 IS
& & & g g =
<~ &) <~ Q &) S
TruePositives 15509 15514 @ 15511 15506 15514
FalsePositives 1802 1833 1830 1756 1810
TrueNegatives | 101470 101439 | 101442 = 101516 101462
FalseNegatives 30 25 ¢ 28 1 33 25
Recall | 0.998069 ; 0.998391 ' 0.998198 | 0.997876 : 0.998391
Precision i 0.895904 | 0.894333 | 0.89447 0.898274 i 0.895521
L F-measure | 0.944231 | 0.943502 @ 0.943491 | 0.945459 0.944162

6 Most Probable Alternative Pairs (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

6 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

638

SVM kernel

polynomial
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( § )
o | £ LS ) A
§ & 5 < 5 &
s 8 5 & g A
< A <~ Q g e
TruePositives 15510 15515 15513 15509 15515
FalsePositives . 1817 1850 1836 1781 1825
TrueNegatives | 101455 101422 101436 101491 © 101447
FalseNegatives | 29 24 26 30 24
Recall | 0.998134 ; 0.998455 ; 0.998327 : 0.998069 @ 0.998455
Precision | 0.895135 | 0.893464 i 0.894173 | 0.896992 | 0.894752
F-measure | 0.943833 | 0.943046 | 0.943384 | 0.944835 0.943763 |

4 Most Probable Alternative Pairs (DBClean)

( g
configuration

database | DBClean
reducing alternatives | -
reducing alternative pairs | 4 most probable alternative pairs
reducing comparison vectors | -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors : 534
SVM kernel | polynomial

g e
& z O
N o Q
g8 & g g I
&
g & N < & &
F i & g 12 g S
= & = Q & e
TruePositives 15513 15519 15515 15512 15518
FalsePositives = 1837 1867 1858 1815 = 1854
TrueNegatives | 101435 101405 101414 101457 © 101418
FalseNegatives | 26 20 24 27 i 21

Recall 0.998327 { 0.998713 | 0.998455 | 0.998262 0.998649
Precision | 0.894121 | 0.892615 i 0.893052 | 0.89525 | 0.893277
F-measure @ 0.943355 | 0.942688 | 0.942817 | 0.943954 | 0.943028
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2 Most Probable Alternative Pairs (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

reducing alternative pairs

2 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 321
L SVM kernel : polynomial )

\
g g
& z ©
,Q H Q) H Q
o e L F R
5 5 & F A s
2 2 ¥y 8 - &
S & & & & =
= & = Q & O
TruePositives 15519 15522 15523 15519 15523
FalsePositives 1911 1925 1924 1905 1945
TrueNegatives | 101361 101347 101348 101367 101327
FalseNegatives 20 17 ; 16 20 16
Recall | 0.998713 | 0.998906 | 0.99897 | 0.998713 : 0.99897
Precision : 0.890361 : 0.889666 : 0.889723 : 0.890668 : 0.888654
F-measure | 0.94143 | 0.941127 @ 0.941187 | 0.941601 0.940588

Using the n Most Probable Alternative Pairs — Comparison (DBClean)

recall

0.9990

0.9985

0.9980

0.9975

DBClean

—»— ExpSim
MaxAProbSim

ExpSimUDC
CWTW

- - - Baseline

most probable alternative pairs

—+— BestPartnerSim

DBClean

0.900 1

0.895 |

precision

0.890

0.885

most probable alternative pairs
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8 Most Probable Alternative Pairs (DBDirtier)

( z
configuration

database

DBDirtier

reducing alternatives

reducing alternative pairs

8 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 704
L SVM kernel ;| polynomial )
g =
& z O
) o Q
S 8 o g g S
5
g & i Ty &5 &
s & 3 2 g IS
< A ~ Q S O
TruePositives | 14263 14483 14478 13932 14355
FalsePositives | 1437 1490 1498 1372 1458
TrueNegatives | 102606 102553 102545 102671 102585
FalseNegatives | 1276 1056 1061 1607 1184
Recall | 0.917884 | 0.932042 { 0.93172 | 0.896583 @ 0.923805
Precision | 0.908471 | 0.906718 i 0.906234 : 0.91035 | 0.907797
F-measure | 0.913153 { 0.919205 { 0.918801 | 0.903414 | 0.915731 |
6 Most Probable Alternative Pairs (DBDirtier)
(conﬁguration A
database | DBDirtier

reducing alternatives

reducing alternative pairs

6 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

644

SVM kernel

polynomial
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( § )
o S LS 2 A
54 5 £ & £
g 2 s | F & S
= &) < K RS O
TruePositives | 14628 14773 14786 | 14412 14696
FalsePositives | 1544 1585 1586 1489 1555
TrueNegatives | 102499 | 102458 = 102457 = 102554 | 102488
FalseNegatives 911 766 753 1127 843
Recall | 0.941373 | 0.950705 0.951541 & 0.927473 | 0.945749
Precision | 0.904526 | 0.903106  0.903127  0.906358 | 0.904314
Fomeasure | 0922582 0.926294° 0.926702° 0.916794 | 0.924567 |

4 Most Probable Alternative Pairs (DBDirtier)

( 5
configuration

database | DBDirtier
reducing alternatives | -
reducing alternative pairs | 4 most probable alternative pairs
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 538
SVM kernel | polynomial

g 4
& z O
’.Q H Q) H Q
0 s F 7 A
S i ;
§ & A - A B &
& g g & 8 S
< &) < K B O
TruePositives | 15084 15152 15162 = 14978 15123
FalsePositives | 1705 1753 1753 1672 1743
TrueNegatives | 102338 © 102290 = 102290 = 102371 | 102300
FalseNegatives 455 387 37T 561 416

Recall | 0.970719 | 0.975095 0.975738 | 0.963897 | 0.973229

Precision i 0.898445 | 0.896303 | ().8963645 0.89958  0.896656

F-measure | 0.933185 i 0.93404 | 0.934369 @ 0.930628 0.933374 |
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2 Most Probable Alternative Pairs (DBDirtier)

( z
configuration

database

DBDirtier

reducing alternatives

reducing alternative pairs

2 most probable alternative pairs

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors : 100
initial unmatch vectors | 323
L SVM kernel : polynomial )
( S )
§g 7§
o £ § S A
s 0§ F &  F £
& g 3 2 g B
< A ~ Q S O
TruePositives | 15395 15406 15414 15381 15418
FalsePositives | 1925 1952 1966 1909 1982
TrueNegatives = 102118 102091 102077 ¢ 102134 102061
FalseNegatives | 144 133 125 158 121
Recall | 0.990733 | 0.991441 { 0.991956 | 0.989832 @ 0.992213
Precision | 0.888857 i 0.887545 | 0.886881 i 0.889589 | 0.886092
F-measure = 0.937034 | 0.93662 | 0.93648 | 0.937037 = 0.936155 |

Using the n Most Probable Alternative Pairs — Comparison (DBDirtier)

DBDirtier
‘ 1
#/
—»— ExpSim
L MaxAProbSim
_____________________________ —+— BestPartnerSim
ExpSimUDC
"""""""""""""""""" CWTW
| - - - Baseline
I I I
8 6 4 2 1

most probable alternative pairs

DBDirtier

0.91

0.90

precision

0.89

most probable alternative pairs
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C.6. Best Partner Reduction

Best Partner Reduction (DBClean)

( 5
configuration

database | DBClean
reducing alternatives | -
reducing alternative pairs | Best Partner
reducing comparison vectors i -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors { 574
SVM kernel : polynomial

f g
ER
: A (0 NS Y
5§ & 7 g  F S
& 2 g & g S
<~ &) <~ K K S
TrucPositives | 15520 | 15523 15521 15520 | 15523
FalsePositives 1963 1975 1970 1957 1977
TrueNegatives | 101300 | 101297 101302 101315 | 101295
FalseNegatives 19 16 18 19 16
Recall | 0.998777 i 0.99897 = 0.998842 | 0.998777 : 0.99897
Precision i 0.887719 | 0.88713 | 0.887371 0.888024 | 0.887029
| F-measure | 0.939979 | 0.939734  0.939812 ' 0.94015 | 0.939677

Best Partner Reduction (DBDirtier)

( 5
configuration

database | DBDirtier

reducing alternatives | -
reducing alternative pairs | Best Partner
reducing comparison vectors i -
similarity metric | Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

979

SVM kernel

polynomial
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g 5
& z O
3 o <)
| g & £ § A
5
g & N < & &
& g 3 ? g S
= & = Q & S
TruePositives 15434 15442 15441 15428 15440
FalsePositives . 2026 2043 2040 2020 2048
TrueNegatives = 102017 102000 102003 102023 101995
FalseNegatives | 105 97 98 111 99
Recall | 0.993243 : 0.993758 ; 0.993693 : 0.992857 @ 0.993629
Precision | 0.883963 | 0.883157 i 0.883302 | 0.884227 | 0.882891
F-measure | 0.935422 | 0.935199 | 0.935251 | 0.935399 = 0.934993 |
C.7. Representative Comparison Vector
Representative Comparison Vector (DBClean)
(conﬁguration N
database | DBClean

reducing alternatives | -
reducing alternative pairs | -
reducing comparison vectors
similarity metric

trainings vector selection
initial match vectors

initial unmatch vectors
SVM kernel

expected similarity values
Soft TFIDF — JaroWinkler
nearest-based

100

138

polynomial

(results
true positives
false positives
true negatives
false negatives
recall
precision
F-measure

6731
202
103070
8808
0.433168
0.970864
0.599057 |
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Representative Comparison Vector (DBDirtier)

( 5
configuration

database

DBDirtier

reducing alternatives

reducing alternative pairs

reducing comparison vectors

expected similarity values

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 139
L SVM kernel | polynomial
(results N
true positives | 650
false positives | 66
true negatives | 103977
false negatives | 14889
recall = 0.04183
precision 0.907821
F-measure = 0.079975 )

C.8. Alternative Confidence Threshold and Best Partner Reduction

Confidence Threshold 0.1 and Best Partner Reduction (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

confidence threshold 0.1

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

506

SVM kernel

polynomial
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5
F 7 8
O S § b &
g§ & g & 5 IS
& g 3 & g S
= & = B & S
TruePositives | 15514 15517 15517 15513 15518
FalsePositives | 1847 1869 1864 1829 1863
TrueNegatives 101425 101403 101408 101443 101409
FalseNegatives | 25 22 22 26 21
Recall © 0.998391 | 0.998584 | 0.998584 i 0.998327 | 0.998649
Precision | 0.893612 | 0.8925 | 0.892756 i 0.894534 | 0.892814
F-measure | 0.9431 | 0.942566 | 0.94271 i 0.943584 @ 0.94277 )
Confidence Threshold 0.2 and Best Partner Reduction (DBClean)
(conﬁguration A
database | DBClean
reducing alternatives | confidence threshold 0.2
reducing alternative pairs | Best Partner
reducing comparison vectors | -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 409
L SVM kernel | polynomial )
8§ A
. A <
§ & g <& 5 IS
& g 3 & g S
= & = Q) & S
TruePositives 15515 15520 15518 15515 15521
FalsePositives | 1886 1902 1898 1881 1905
TrueNegatives 101386 101370 101374 101391 101367
FalseNegatives | 24 19 21 24 18
Recall @ 0.998455 { 0.998777 | 0.998649 i 0.998455 | 0.998842
Precision | 0.891615 : 0.890828 i 0.89102 : 0.891872 | 0.890681
F-measure | 0.942016 { 0.941719 | 0.941769 i 0.942159 0.941665
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Confidence Threshold 0.3 and Best Partner Reduction (DBClean)

( ®
configuration

database

DBClean

reducing alternatives

confidence threshold 0.3

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors | 293
L SVM kernel | polynomial )
&
7 £  F 5 &
§ & 3 & & IS
& g g ? g IS
= & = Q & O
TruePositives 15522 15525 15523 15521 15525
FalsePositives 1950 1966 1961 1946 1974
TrueNegatives | 101322 101306 | 101311 | 101326 101298
FalseNegatives 17 14 16 18 14
Recall | 0.998906 | 0.999099 @ 0.99897 | 0.998842 i 0.999099
Precision i 0.888393 : 0.887599 @ 0.88784 0.88859 i 0.887194
F-measure | 0.940414 | 0.940054 @ 0.940133 | 0.940496 0.939827 |

Confidence Threshold 0.4 and Best Partner Reduction (DBClean)

( 5
configuration

database

DBClean

reducing alternatives

confidence threshold 0.4

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

170

SVM kernel

polynomial
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g &
& 2 O
3 o <)
SR/ & g 5 IS
g
g & N < & &
F . & g 12 g S
< A <~ Q g e
TrucPositives 15521 | 15523 | 15521 | 15521 15523
FalsePositives | 2001 2005 2002 2001 2007
TrueNegatives = 101271 101267 101270 101271 ¢ 101265
FalseNegatives 18 16 18 18 5 16

Recall 0.998842 i 0.99897 | 0.998842 0.998842% 0.99897
Precision | 0.885801 | 0.885612 i 0.88575 | 0.885801 | 0.885511

F-measure @ 0.938931 | 0.938882 | 0.938903 | 0.938931 0.938825

Confidence Threshold and Best Partner Reduction — Comparison (DBClean)

DBClean DBClean
0.9995 ‘ o000l ‘ :
0.9990 <
f 08
- N g
g
0.890
5L
0.9975 | | | .
S g 5
& o ¥ 55 Mo &
N Q7 Q7 & I\ R Q7 &
)\,Q X z ‘b\/\,\ X z ,bﬁ/\’x X 7 ‘b\/\,\ X z ‘b\/\ ,)\,Q
Q)ejo ‘\>Q NQ &Q \)Q Q)@o
%@% Q)?’% Q)?’% Q)?’%
DBClean
0.946 :
0.944 1 —%— ExpSim
° MaxAProbSim
E —+— BestPartnerSim
3 ExpSimUDC
g 0942 —o— CWTW
i - - - Baseline
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Confidence Threshold 0.1 and Best Partner Reduction (DBDirtier)

( ®
configuration

database | DBDirtier
reducing alternatives | confidence threshold 0.1
reducing alternative pairs | Best Partner
reducing comparison vectors | -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection : nearest-based
initial match vectors i 100
initial unmatch vectors i 509
SVM kernel | polynomial

QO
5
5

5
§ g ©
s 5 8
-

F 0§ &£ F
= §y 8
= Q IS

g
= & §

TruePositives | 15203 15236 15240 | 15145 15231

FalsePositives 1773 1800 ¢ 1799 1751 1797
TrueNegatives | 102270 102243 © 102244 | 102292 102246
FalseNegatives 336 303 ¢ 299 | 394 308

Recall | 0.978377 i 0.980501 0.980758 0.974644 i 0.980179

Precision | 0.895558 | 0.894341 7 0.894419 " 0.896366 | 0.894468

F-measure | 0.935138 | 0.935441 @ 0.935601 0.933868 0.935364

Confidence Threshold 0.2 and Best Partner Reduction (DBDirtier)

( 5
configuration

database | DBDirtier
reducing alternatives i confidence threshold 0.2
reducing alternative pairs | Best Partner
reducing comparison vectors i -
similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors | 411
SVM kernel ;| polynomial
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3
F 7 8
O S § b &
F & g < 5 S
& g 3 & g S
= 9 =~ Q &) O
TruePositives 15310 15335 15339 15285 15328
FalsePositives = 1848 1878 1878 1836 1866
TrueNegatives | 102195 102165 102165 102207 102177
FalseNegatives | 229 204 200 254 211
Recall |+ 0.985263 ; 0.986872 ; 0.987129 : 0.983654 = 0.986421
Precision | 0.892295 | 0.890896 : 0.890922 | 0.892763 | 0.891474
F-measure | 0.936477 | 0.936431 | 0.936561 : 0.936007 = 0.936547 |

Confidence Threshold 0.3 and Best Partner Reduction (DBDirtier)

( 5
configuration

database

DBDirtier

reducing alternatives

confidence threshold 0.3

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric | Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors i 295
L SVM kernel | polynomial )
8§ A
o A <
§ & g <& 5 IS
& g 3 & g S
= & = Q) & S
TruePositives 15405 15413 15416 15396 15413
FalsePositives = 1975 1996 1993 1971 1993
TrueNegatives | 102068 102047 102050 102072 102050
FalseNegatives | 134 126 123 143 126
Recall © 0.991377 { 0.991891 | 0.992084 i 0.990797 : 0.991891
Precision | 0.886364 : 0.885347 i 0.885519 | 0.886509 | 0.885499
F-measure | 0.935934 { 0.935595 | 0.935778 i 0.935756 0.935681
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Confidence Threshold 0.4 and Best Partner Reduction (DBDirtier)

( ®
configuration

database

DBDirtier

reducing alternatives

confidence threshold 0.4

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100
initial unmatch vectors i 171
L SVM kernel i polynomial )
4 N\
3 =
& 2 O
= g S
2 5 & I A
5 i
g & v < &
& 2 & 5 - =
2 & 2
= & ~ Q A S
TruePositives 15454 15455 15456 15453 15456
FalsePositives 2083 2091 2095 2082 2102
TrueNegatives | 101960 101952 101948 © 101961 101941
FalseNegatives 85 8 8 86 83
Recall | 0.99453 | 0.994594 | 0.994659 @ 0.994466 | 0.994659
Precision i 0.881223 : 0.880828 : 0.880634 0.881266 i 0.880282
L F-measure | 0.934454 | 0.93426 = 0.93418 | 0.93445 | 0.933982 )
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Confidence Threshold and Best Partner Reduction — Comparison (DBDirtier)

DBDirtier

DBDirtier
T T
—
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— g
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C.9. Using the n Most Probable Alternatives and Best Partner Reduction

4 Most Probable Alternatives and Best Partner Reduction (DBClean)

( z
configuration

database | DBClean
reducing alternatives | 4 most probable alternatives
reducing alternative pairs | Best Partner
reducing comparison vectors i -
similarity metric ;| Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors | 100
initial unmatch vectors i 556
SVM kernel ;| polynomial

( \
g 5
& 2 o
~Q H Q) H Q
° g £ i F B S
~ i i
g & A - A B &
& g g & 8 S
<~ &) <~ K & S
TruePositives | 15511 15515 15513 15511 15516
FalsePositives | 1826 1855 1845 1805 1841
TrueNegatives | 101446 | 101417 | 101427 = 101467 | 101431
FalseNegatives 28 24 i 26 i 28 23

Recall | 0.998198 | 0.998455 0.998327 0.998198 i 0.99852
Precision ; 0.894676 : 0.893207 : 0.893709 : 0.895761 : 0.893933
F-measure | 0.943606 | 0.942903 | 0.943126 = 0.944209 0.943337

3 Most Probable Alternatives and Best Partner Reduction (DBClean)

( =
configuration

database | DBClean
reducing alternatives | 3 most probable alternatives
reducing alternative pairs | Best Partner
reducing comparison vectors i -
similarity metric { Soft TFIDF — JaroWinkler
trainings vector selection | nearest-based
initial match vectors i 100
initial unmatch vectors { 504
SVM kernel | polynomial
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( '§ )
o | £ LS ) A
§ & 5 < 5 &
s 8 3 & g | A2
< A <~ Q g S
TruePositives 15514 15518 15514 15513 15518
FalsePositives | 1846 1869 1864 1828 1862
TrueNegatives 101426 | 101403 ¢ 101408 | 101444 101410
FalseNegatives | 25 21 25 26 21
Recall | 0.998391 ; 0.998649 ; 0.998391 : 0.998327 : 0.998649
Precision | 0.893664 | 0.892506 i 0.892738 | 0.894585 | 0.892865
F-measure | 0.943129 | 0.942599 | 0.942613 | 0.943613 = 0.942799 |

2 Most Probable Alternatives and Best Partner Reduction (DBClean)

( s
configuration

database !

i DBClean

reducing alternatives |

2 most probable alternatives

reducing alternative pairs |

Best Partner

reducing comparison vectors '

SOl TEIDE ~ JaroWinkier

similarity metric |

trainings vector selection

nearest-based

initial match vectors | 100
initial unmatch vectors | 385
L SVM kernel | polynomial
g \
s F &
o | L g S
5 .8 g 3 g S
& <o) N3 ) o) &
F & g 5 2 S
= A < Q & S
TruePositives 15514 15519 15519 15513 15521
FalsePositives | 1891 1907 1900 1882 1916
TrueNegatives = 101381 101365 101372 101390 : 101356
FalseNegatives | 25 20 20 260 | 18
Recall : 0.998391 { 0.998713 | 0.998713 i 0.998327 | 0.998842
Precision | 0.891353 i 0.890566 : 0.890924 : 0.891808 | 0.890119
F-measure | 0.941841 | 0.941544 | 0.941744 i 0.942066 0.941351)




138

Appendix

Most Probable Alternatives and Best Partner Reduction — Comparison (DBClean)

DBClean

0.9990

Y

0.946

N N \©
‘0%0 & ‘0%0 e ‘o'%o &
$O & O X O &
Qo Qo Qo
o> QY > QT ERN 4
& X F X & X
<& @@5 %&“ @@5 %&‘\ @@5
¥ ¥ ¥
DBClean

0.945 == m == mmm oo .

0.944

0.943

F-measure

Q Q Q
S S S
> & & &
O <& O & O &
o o o
SN S8 SN
o o S
A% > %F 9 °
¥ ¥ ¥

precision

DBClean
0.900 =

0.898 - b
0.896 - h
0.894

0.892

—»— ExpSim
MaxAProbSim

—+— BestPartnerSim
ExpSimUDC

—— CWTW

- - - Baseline

4 Most Probable Alternatives and Best Partner Reduction (DBDirtier)

( =
configuration

database

DBDirtier

reducing alternatives

4 most probable alternatives

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors

100

initial unmatch vectors

561

SVM kernel

polynomial
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4 '§ N\
F 7 8
O S § b &
g§ & g & 5 IS
g i & 3 & g S
= & = Q & S
TruePositives 15102 15161 15164 15012 15141
FalsePositives | 1716 1752 1749 1689 1744
TrueNegatives 102327 102291 102294 102354 102299
FalseNegatives | 437 378 375 527 398
Recall | 0.971877 | 0.975674 i 0.975867 | 0.966085 @ 0.974387
Precision | 0.897966 | 0.896411 | 0.896588 i 0.898868 : 0.896713
F-measure | 0.933461 | 0.934365 | 0.934549 | 0.931266 = 0.933938 |

3 Most Probable Alternatives and Best Partner Reduction (DBDirtier)

( 5
configuration

database | DBDirtier

reducing alternatives |

3 most probable alternatives

reducing alternative pairs |

Best Partner

reducing comparison vectors |

similarity metric | Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors 100
initial unmatch vectors | 508
L SVM kernel | polynomial )
g g
&3 z O
N o <)
S8 & g § IS
5
5 & < &c’v & &
& g 3 » g S
< X < Q & O
TruePositives 15194 15225 15230 15131 15220
FalsePositives = 1773 1799 1800 1743 1797
TrueNegatives | 102270 102244 102243 102300 102246
FalseNegatives | 345 314 309 408 |+ 319
Recall | 0.977798 | 0.979793 i 0.980115 | 0.973743 = 0.979471
Precision | 0.895503 | 0.894326 i 0.894304 : 0.896705 | 0.8944
F-measure | 0.934843 i 0.93511 | 0.935245 { 0.933638 0.935004
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2 Most Probable Alternatives and Best Partner Reduction (DBDirtier)

( S
configuration

database

DBDirtier

reducing alternatives

2 most probable alternatives

reducing alternative pairs

Best Partner

reducing comparison vectors

similarity metric

Soft TFIDF — JaroWinkler

trainings vector selection

nearest-based

initial match vectors i 100

initial unmatch vectors i 387
L SVM kernel | polynomial )
4 N\
g =
& 2 O
,Q H @ H Q
o S  F R
5 4 L F  F =
I2 2 N p— Ce N
5 S & & & =
=~ IS = Q) & O
TruePositives 15333 15351 15370 15303 15361
FalsePositives 1874 1894 1901 1856 1898
TrueNegatives | 102169 102149 | 102142 | 102187 102145
FalseNegatives 206 188 169 | 236 178
Recall | 0.986743 | 0.987901 | 0.989124 & 0.984812 | 0.988545
Precision i 0.891091 : 0.890171 : 0.889931 0.891835 i 0.890028
L F-measure | 0.936481 | 0.936493 @ 0.936909 | 0.936021 0.936703
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Most Probable Alternatives and Best Partner Reduction — Comparison (DBDirtier)
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C.10. Final Evaluation

DBClean
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