
University of Hamburg
Faculty of Mathematics,
Informatics and Natural Sciences

Bachelor Thesis

Search-space reduction techniques for
duplicate detection in probabilistic data

Steffen Friedrich (mat. no. 5944434) Wolfram Wingerath (mat. no. 5945090)

BSc Informatics, 6th semester
7friedri@informatik.uni-hamburg.de

BSc Informatics, 6th semester
7wingera@informatik.uni-hamburg.de

1st assessor: Prof. Dr. Norbert Ritter
2nd assessor: Prof. Dr.-Ing. Wolfgang Menzel

Solum certum nihil esse certi
– Pliny the Elder

1

Foreword

Since we began our studies of computer science three years ago, we have been introduced
to many topics and discovered our great interest for the theoretical aspects of computer
science. Our favourite field of research, however, was databases.
We got an introduction to relational databases in our third semester by Prof. Dr. Norbert
Ritter that was widely extended in the subsequent lecture by him and Prof. Dr.-Ing.
Wolfgang Menzel one semester later. In our fifth semester, we participated in the Hanseatic
Mainframe Summit 2009 where we learned of IBM’s mainframe technology, the huge scale
of databases in modern finance business and their complexity by IBM employees and IBM
customers. Our interest for databases had grown with every course we had taken on the
subject and hence we chose to write our bachelor thesis about a related topic.

We would like to thank Prof. Dr. Norbert Ritter and Prof. Dr.-Ing. Wolfgang Menzel for
having agreed to supervise and assess this thesis.
Our special thanks go to Fabian Panse for his helpful criticism and support, especially
during the last weeks.

Steffen Friedrich Wolfram Wingerath

Hamburg, November 25th, 2010

2

3

Abstract

English

Search space reduction (SSR) techniques are used today to minimise the computational
costs of duplicate detection in certain data, but there are no SSR techniques available
for probabilistic data yet. The purpose of this thesis is to investigate how the SSR tech-
niques Blocking and the Sorted Neighborhood Method (SNM) used for certain data can
be adapted to probabilistic data. Another aim is to compare the adapted SSR techniques
regarding their effectiveness and the quality of their results.
Among others, uncertainty-lineage databases are presented where every tuple consists of
one or more mutually exclusive representations of one and the same real-world entity, so-
called tuple alternatives. Furthermore, three strategies using certain key values, namely
multi-pass over possible worlds, key per tuple and key per alternative, and one SNM strategy
using probabilistic key values for search space reduction are discussed. The implementa-
tions of the adapted SSR strategies were tested on generated (synthetic) probabilistic data
and the achieved results are compared by the metrics pairs completeness, reduction ratio
and precision as well as by their respective execution times.
The comparison results indicate that the key per alternative strategy outperforms the other
strategies, because it resulted in the best pairs completeness with an acceptable precision
and was comparatively fast.

4 Abstract

German

Techniken der Suchraumreduzierung (SSR, von engl. search space reduction) werden
heutzutage benutzt, um den Rechenaufwand der Duplikatenerkennung in sicheren Daten
(engl. certain data) zu minimieren. Es gibt jedoch noch keine SSR-Techniken für die Du-
plikatenerkennung in probabilistischen Daten. Zielsetzung dieser Arbeit ist es, zu unter-
suchen, wie die zur Duplikatenerkennung in sicheren Daten eingesetzten SSR-Techniken
Blocking und Sorted Neighborhood Method (SNM) für den Einsatz in probabilistischen
Daten angepasst werden können. Weiterhin sollen die angepassten SSR-Techniken bezüglich
ihrer Effektivität und der Qualität ihrer Resultate verglichen werden.
Unter anderem werden uncertainty-lineage databases präsentiert, bei denen jedes Tupel
aus mehreren Repräsentationen ein und derselben Realweltentität, sog. Tupelalternativen,
besteht, welche sich gegenseitig ausschließen. Weiterhin werden die drei Strategien multi-
pass over possible worlds, key per tuple und key per alternative diskutiert, welche sichere
Schlüsselwerte (engl. certain key values) verwenden, sowie auch eine SNM-Strategie, die
mit probabilistischen Schlüsselwerten arbeitet. Die Implementationen wurden auf gener-
ierten (synthetischen) probabilistischen Daten getestet und die Resultate werden anhand
der Metriken pairs completeness, reduction ratio und precision sowie anhand der jeweiligen
Laufzeiten verglichen.
Die Vergleichsresultate deuten darauf hin, dass die Strategie key per alternative die an-
deren Strategien übertrifft, weil mit ihr die beste pairs completeness erzielt werden konnte,
sie eine akzeptable precision lieferte und vergleichsweise schnell war.

5

Contents

Abstract 3

1. Introduction 7
1.1. Motivation . 7
1.2. State of research . 8
1.3. Goals . 9
1.4. Chapter outline . 9

2. Basics 11
2.1. Modeling uncertainty . 11

2.1.1. Probabilistic databases . 11
2.1.2. Lineage databases . 13
2.1.3. Uncertainty-lineage databases . 14

2.2. Data integration . 16
2.2.1. Normalisation of data models . 17
2.2.2. Schema management . 17
2.2.3. Duplicate detection . 18
2.2.4. Data fusion . 20

2.3. Search space reduction in certain data . 20
2.3.1. Evaluation metrics . 22
2.3.2. Blocking . 25
2.3.3. Sorted Neighborhood Method . 26
2.3.4. Other techniques . 29

3. Adapting certain data SSR techniques to probabilistic data 31
3.1. Generating certain key values for search space reduction 31

3.1.1. Multi-pass over possible worlds . 32
3.1.2. Key per tuple . 34
3.1.3. Key per alternative . 36
3.1.4. Modification: combining key values 37

3.2. Processing probabilistic keys . 39

4. Experiments 41
4.1. Testing framework . 41
4.2. Test data . 43

4.3. Experiment configuration . 45
4.3.1. The database size . 45
4.3.2. The database configuration . 46
4.3.3. The SSR technique configuration . 47

4.4. SSR experiments . 49
4.4.1. Possible worlds experiments . 49
4.4.2. Key per tuple experiments . 50
4.4.3. Key per alternative experiments . 52
4.4.4. Probabilistic key experiments . 53
4.4.5. Experimental results . 54

5. Summary and future prospects 57

Appendix 59
A. Duration experiment series . 59
B. Database size experiment series . 60
C. Database configuration experiment series . 61
D. SSR technique configuration experiment series 63
E. SNM: possible worlds experiment series . 64
F. Blocking: possible worlds experiment series 65
G. SNM: key per tuple experiment series . 66
H. Blocking: key per tuple experiment series 67
I. SNM: key per alternative – combined keys experiment series 68
J. Blocking: key per alternative – combined keys experiment series 69
K. SNM: key per alternative experiment series 70
L. Blocking: key per alternative experiment series 71
M. SNM: probabilistic keys experiment series 72
N. Evaluation experiment series . 73
O. Bigram Indexing: all alternatives experiment series 74
P. Evaluation experiment series 50k . 76

Bibliography 77

List of Figures 81

List of Tables 83

Statutory Declaration 85

7

1. Introduction

We begin the first chapter by motivating the use of duplicate detection in probabilistic
data. For that purpose, we give a short overview over the state of research in the field
of probabilistic databases and their integration. Furthermore, we point out the role of
duplicate detection in the data integration process and state why search space reduction
technqiues are required. Finally, we define our goals and provide a chapter outline.

1.1. Motivation

Many applications use multiple data sources, so that it is often necessary to merge in-
formation from several databases into one single database. This process is referred to as
data integration.
One of the major problems with data integration, however, is that data of different sources
may overlap, i.e. two or more sources may have contradictory information on the same
real-world entity1. So, even if the sources only contain certain data, the result of the data
integration process can be uncertain, because it is unknown which of the conflicting source
data sets represents reality best.

Data in the different data sources contradicting one another can make data integration
extremely hard. If the integrated database is a certain database, a choice has to be made
which database to trust more, as only one possible world can be represented. Making such
a choice during the integration process – if possible at all – can be very time-consuming
and thus also expensive, as it cannot be fully automated.
In [vKdK09], van Keulen et al. mention a thumb rule stating that about 90 percent of the
developement effort of the data integration process is devoted to the conflict resolution of
those few conflict cases.

Several approaches to overcome this problem have been proposed, e.g. van Keulen et al.
suggest the integration of certain data into a probabilistic database, so that conflicts do
not have to be resolved during the integration process, but instead the uncertainty can be
modeled directly into the database ([vKdK09]). The conflict-free data could be used right
away and the resolution of uncertainty could be done later.

Traditionally, a database is considered to represent a part of reality. We call such a
representation a certain world. But in many applications, data are known to be uncertain

1By real-world entity, we do not only mean objects and persons, but also more abstract things that can
be modeled into a database, such as buying transactions.

8 1. Introduction

or imprecise. In such cases it does not suffice to represent reality by just one certain world,
as there actually are many possible worlds.

Though there already have been many applications that would profit from uncertain
databases, there are still no commercial products available on the market. But proba-
bilistic databases have been researched in recent years and there are some prototypes for
the relational data model such as MayBMS, MYSTIQ and Trio as well as for the XML
data model such as IMPrECISE or PXML ([vKdK09], [dK08]). We only cover Trio in
this work.
A tuple in the probabilistic databases considered in our work consists of one or more
mutually exclusive representations of one and the same real-world entity, so-called tuple
alternatives, that are stored with their respective probabilities.

1.2. State of research

In contrast to the integration of certain data, the integration of probabilistic data has
not been researched much as the development of probabilistic databases is still in an
early stage.
An essential step of data integration is the identification of duplicates, i.e. different tu-
ples corresponding to the same real-world entity. This process is called duplicate detection
and is accomplished by tuple comparisons. Generally, comparing all pairs of tuples from
different source databases is not feasible due to their sheer number. Hence, the process
of increasing the efficiency by reducing the number of comparisons, referred to as search
space reduction, is a crucial part of duplicate detection.
In [PvKdKR09], duplicate detection in the process of integrating probabilistic data is dis-
cussed and some ideas to adapt existing search space reduction techniques to probabilistic
data are outlined. In this work, we first investigate methods of search space reduction
used in the duplicate detection process of certain data integration and then focus on how
those methods can be adapted to the integration of probabilistic data. The methods we
concentrate on are Blocking and the Sorted Neighborhood Method (SNM).

Blocking was proposed as a means of search space reduction already over 40 years ago
([New67]). According to [Jar89], the idea of Blocking is to compute a key value for each
tuple, to divide the tuples into mutually exclusive blocks by their key values and finally to
compare only tuples in the same block. But since corresponding tuples can differ (e.g. due
to typos) and thus also their key values, tuples with similar (and not necessarily equal)
key values are assigned to the same block. Of course, the key values have to be computed
in such a way that corresponding tuples have similar key values.

The Sorted Neighborhood Method as described in [HS98] consists of three steps: The first
step is to compute a key value for each tuple from relevant attributes. In the next step, the
tuples are sorted by their keys and finally, in step three, every tuple is compared only to
a fixed number of its neighbours in the sorted list of tuples. Again, corresponding tuples

1.3. Goals 9

should have similar key values to ensure they are neighbouring tuples in the sorted tuple
list and hence are compared.

1.3. Goals

The goal of our work is to discuss three variants of adapting the two methods mentioned
above as introduced in [PvKdKR09], implement those variants in Java and finally evaluate
their effectiveness and the quality of the results, i.e. the number of rejected matches. We
cover the following variants using certain key values in this work:

multi-pass over possible worlds: Since probabilistic databases are sets of certain databases,
search space reduction can be performed on each without any adaptions. As the
number of possible worlds in a probabilistic database can be very large, running
passes over all of them seems to be infeasible and using only a selection of possible
worlds seems more appropriate. But as running multiple passes on the most probable
worlds is likely to yield very similar results, we take more than one selection approach
into account.

key per tuple: Another variant is to resolve the uncertainty on tuple-level by computing
one certain key value for each tuple from its alternatives. By now, there are conflict
resolution techniques that seem suitable for this purpose, for example those used for
fusion of certain data.

key per alternative: It is also possible to create one key value for each tuple alternative
in the database. Thus a tuple can be assigned to several blocks (Blocking) or can
appear several times in the sorted list (SNM).

In addition to the above certain key techniques, we examine the possibility of using prob-
abilistic key values for search space reduction which is also proposed in [PvKdKR09].

1.4. Chapter outline

After the introduction of probabilistic and lineage databases, we describe the ULDB data
model and Trio database management system in particular in Chapter 2. We also give an
overview over the information integration process. In more detail, we survey search space
reduction strategies as a part of the duplicate detection in data integration of certain data
with focus on Blocking and the Sorted Neighborhood Method (SNM).
In Chapter 3, we investigate how those methods used for certain data integration can be
adapted to the integration of probabilistic data.
We describe our testing framework and our test data in Chapter 4. We also compare the
adapted techniques of search space reduction by experimental results w.r.t. effectiveness
and quality.
Finally, a summary of our work and future prospects are presented in Chapter 5.

10 1. Introduction

11

2. Basics

In this chapter, we introduce the concepts our work is based on.
We begin with a view on some data models extending the relational data model primarily
by concepts for modeling uncertainty. Then we give an overview over data integration in
order to help locating search space reduction in this process. Finally, we survey search
space reduction in certain data with focus on the techniques Blocking and the Sorted
Neighborhood Method.

2.1. Modeling uncertainty

In this section, we begin with the introduction of probabilistic and lineage databases, then
describe uncertainty-lineage databases and present Trio database management system as
the only implementation according to [Wid08] and [BSH+08].

2.1.1. Probabilistic databases

According to [DS04], a probabilistic relational database (PDB) is a probability distribu-
tion over many possible worlds, each of which is one possible state of the database. A
probabilistic database is a special form of an uncertain database (UDB), which is the gen-
eral term for a database that represents a set of possible worlds. In the typical notion of
probabilistic relational databases, a probability value in the range of [0,1] is assigned to
every tuple ti representing the probability of its existence. This probability value is mostly
called confidence c(ti).
An essential shortcoming of such probabilistic databases, however, is that they support
only uncertainty about a tuple’s existence, and not about its attribute values.

In order to model not only uncertainty on both tuple and attribute level, but also depen-
dencies between attribute values, the x-tuple concept was introduced. An x-tuple consists
of one or more mutually exclusive representations of a real-world entity, so-called tuple
alternatives. So, tuple alternatives within an x-tuple represent the same real-world entity
in different possible worlds and differ in attributes that were declared uncertain at schema
creation time. We write ti,j when we refer to the jth alternative of tuple ti.
X-relations are sets of x-tuples and correspond to relations known from common RDBMSs.
For convenience, we call x-tuples, x-relations and tuple alternatives also plainly tuples, re-
lations and alternatives respectively.
The confidence value for an alternative is optional and represents its probability to be the

12 2. Basics

correct representation of its respective real-world entity. The confidence values of all alter-
natives of one tuple sum up to the probability of this tuple’s existence; if this sum is smaller
than 1, it is implicitly uncertain whether the tuple exists at all. Tuples whose existence
is uncertain are called maybe x-tuples. In order to model tuple uncertainty explicitly and
independently from confidence values, x-tuples can be marked with a maybe annotation
(?) indicating possible non-existence. When we refer to the alternative of a maybe tuple
ti that represents its non-existence, we write ti,?. Since the confidence of a tuple ti is c(ti),
the non-existence alternative of ti has a confidence of c(ti,?) = 1− c(ti).

Figure 2.1.: A traditional probabilistic database (PDB) with two x-relations movies and
studios holding certain x-tuples (ts1 and ts2), maybe x-tuples (tm2 and ts3)
and an x-tuple with several alternatives (tm1). The view shows all studios
with their respective numbers of produced movies. Note that tuples tv2,2 and
tv2,3 are identical, but have been derived from different alternatives.

Figure 2.1 illustrates a probabilistic database with two x-relations and a view. The studios
relation holds studio names and the movies relation holds information about title, produc-
tion year and studio of movies. The view is composed of studio names from the studios
relation with their respective numbers of produced movies, which are computed from the
movies relation.
Tuples ts1 and ts2 are certain tuples as their confidences are both 1. Since there is no
confidence value assigned to ts3 , its existence is not certain and it is marked with a
maybe annotation.
The movies relation illustrates that the x-tuple concept does not only offer modeling un-

2.1. Modeling uncertainty 13

certain attribute values for a tuple, but also dependencies between them. For example, the
year and studio attribute values of tuple tm1 occur only in two combinations: If the movie
is from 1966, it was produced by Twentieth Century Fox, whereas it is a Republic Pictures
movie, if the movie is from 1967. The combinations of 1966 and Republic Pictures or 1967
and Twentieth Century Fox as production year and studio respectively are not possible.
As a consequence, finding out the actual value for one of the attributes would resolve un-
certainty for both attribute values.
Besides the movie Batman, there is another movie entitled Catman, which exists with a
probability of only 60 percent.

In the view, all studios are listed with the number of movies they might have produced and
their respective confidences. Tuples tv2,2 and tv2,3 are identical, but have been derived from
different alternatives. It is important to note that tv2,2 only exists, given that Twentieth
Century Fox’s only movie was Batman. In more formal words, tv2,2 has been derived from
ts2,1 , tm1,1 and tm2,?

. Hence, its confidence value is c(tv2,2) = c(ts2,1) · c(tm1,1) · c(tm2,?
)

= 1 · 0.8 · (1− 0.6) = 0.32. Accordingly, tv2,3 is only correct, if Twentieth Century Fox only
produced the movie Catwoman and not Batman.
The above makes one conceptual flaw of purely probabilistic databases obvious: The query
result tuple alternatives are in no way connected to the alternatives they were derived from,
and hence such a database cannot answer the question, where the data have been derived
from. As a consequence, confidence values have to be computed along with the actual data
of the query result. This can lead to a tremendous computation overhead for complex
queries, if only few confidences are needed. Furthermore, it cannot be determined which
alternatives are mutually exclusive, once the result has been computed. For instance, it
cannot be derived from the view that the alternatives tv1,2 and tv2,4 cannot be present in
the same possible world, although it is quite obvious: If Batman is a Republic Pictures
movie, tv1,2 is true, but in this case Twentieth Century Fox can at most have produced one
movie, namely the movie Catman, and so tv2,4 cannot not be true.

A concept to keep track of the derivation of data is called lineage and is introduced in the
next subsection.

2.1.2. Lineage databases

In a lineage database (LDB) according to [BSH+08], tuples are supplemented with infor-
mation about from which tuples in the database (internal lineage) or from which outside
sources like programs or devices (external lineage) they were derived. Lineage can be de-
fined as a function λ over all tuples ti in the database where λ(ti) denotes the set of tuples
from which ti was derived. Tuples with empty lineage are called base tuples1 and relations
of such tuples are called base relations.

In Figure 2.2, the only base relation holds information about movies corresponding to
Figure 2.1. The view is composed of studio names from the movies relation, i.e. names

1Base tuples may have external lineage, but we only consider internal lineage in our work.

14 2. Basics

Figure 2.2.: A lineage database (LDB). Tuples tv1 and tv2 have lineage information attached
to them stating that they were derived from tuples tm1 and tm2 respectively.

of studios that have already produced a movie. Empty lineage is omitted and hence only
lineage for the view is illustrated.
The lineage feature can be very useful, when it becomes important why certain data are
in the database. Queries in relational databases, for example, often contain double entries,
just like the illustrated view. But in contrast to common relational databases, in lineage
databases it is possible to find out why there are double entries based on their lineage.
Though not illustrated by this simple example, the lineage of a tuple does not necessarily
consist only of base tuples. But this is not a problem, because a lineage set can always be
traced to a set of base tuples by recursively replacing derived tuples in the lineage set by
their own lineage, until only base tuples remain.

2.1.3. Uncertainty-lineage databases

An uncertainty-lineage database (ULDB) can be understood as a probabilistic database
where each possible world is a lineage database. Hence, lineage in a ULDB is not defined
over all tuples, but over all tuple alternatives. A tuple alternative can only be present in
a possible world, if the alternatives referred to by its lineage are present as well.
In our work, we only consider internal lineage and furthermore presume that it is well-
behaved. Well-behaved lineage is always acyclic, deterministic and uniform and thus its
semantics are quite intuitive. For example, there can be no alternatives that are derived
from each other and alternatives of the same tuple cannot have equal lineage.
A more formal view on well-behaved ULDBs is provided in [BSH+08].

Figure 2.3 illustrates a view that is again composed of studio names from the already
known studios relation with their respective numbers of produced movies derived from the
movies relation (see Figure 2.1). However, in contrast to the corresponding probabilistic
view without lineage, the confidence values have not been computed so far. By using
lineage in probabilistic databases, the computation of data and their confidences become
independent, so that in ULDBs confidence values can be computed on-demand based on
the respective alternatives’ lineage.

2.1. Modeling uncertainty 15

Figure 2.3.: An uncertainty-lineage database (ULDB) combines the x-tuple concept with
lineage on alternative level.

Furthermore, lineage enables the ULDB to perform coexistence checks of alternatives, i.e.
to determine whether several given alternatives can exist in the same possible world or
whether they cannot. This is possible by simply checking the different lineages for con-
tradictions. For example, checking the lineage sets of the alternatives tv1,2 and tv2,4 for
contradictions reveals that those alternatives are mutually exclusive, as they are derived
from the mutually exclusive alternatives tm1,1 and tm1,2 .

Data lineage can also help defining meaningful confidence values for tuple alternatives that
originated from different data sources. If some of the sources are deemed more reliable than
others, alternatives from those sources can be assigned a greater confidence value.

Constructing possible worlds in a ULDB

In a possible world (also called possible-instance), every tuple is represented by exactly
one alternative. Note that tuple ti is represented by alternative ti,?, when it is missing, i.e.
not present in a possible world. Base alternatives cannot be derived and hence the correct
base alternatives have to be specified in each possible world, while lineage makes implicitly
clear which of the derived alternatives are the correct ones – depending on the base tuples.
So, a possible world in a ULDB can be constructed by choosing exactly one alternative for
every base tuple.

Since a possible world is determined entirely by the base tuples, the confidence of a possible
world can be computed from the base tuples alone: It is the product of the confidence

16 2. Basics

values of all alternatives of which the possible world is composed. Note that this includes
non-existence alternatives for tuples that are not present.

Trio – an uncertainty-lineage database

Trio DBMS is the only implementation of the ULDB data model that we are aware of. It
has its own query language called TriQL2 which is an enhancement of SQL that supports
probabilistic and lineage features by some new semantics and constructs.
Programs can work on a Trio database via an extended Python DB 2.0 API and users can
perform admistrative tasks via a command-line or a graphical user interface.
Trio works on a common relational database and translates most TriQL queries or data
modification commands to SQL queries or commands which are then executed on the
underlying database. There are also some functionalities implemented by stored procedures
for efficiency or other reasons.

To be precise, Trio’s datamodel is not the standard ULDB data model, but the ULDBv

data model, which is discussed in [STW08]. The ULDBv extends the ULDB data model
by a versioning system: When performing data modification commands (insert, update,
delete) in Trio, old data are never deleted, but instead remain in the database as an older
version, while new data are stored as new versions.

2.2. Data integration

Integration of IT systems can be divided into two classes: application integration and in-
formation integration. While application integration is a matter of combining IT processes,
information integration describes the process of merging several information sources into
a single one. The more specific term data integration is often used for information inte-
gration applied to structured data ([MM08]). We only consider integration of structured
data in our work.

Integrating databases means to facilitate uniform access to homogeneously structured
databases by either a virtual or a materialised data integration system. Virtual data inte-
gration means that queries are transformed and then forwarded to the source databases,
whereasmaterialised data integration implies that the integrated data actually reside in the
integrated database and that queries are executed without accessing the source databases
([CGL01]). Querying the integrated information system is likely to yield a better result
than querying only one of the source databases and, of course, it is less complicated for
the user than querying all source databases. So, one of the great advantages of using an
integrated information system is that all existing data can be accessed through only one
interface. Data warehouses which have been used successfully in enterprises for many years
are a classic example of (materialized) integrated information systems.

2pronounciation: ’tri:kl

2.2. Data integration 17

Figure 2.4.: The data integration process can be divided into four steps: the normalisation
of data models (1.), schema management (2.), duplicate detection (3.) and
data fusion (4.).

In this section, we describe the different steps of the data integration process according
to [LN06], where Ulf Leser and Felix Naumann discuss many problems which can occour
during the data integration process and present adequate approaches to solve them.
An overview of the steps in the data integration process is given in Figure 2.4: First, the
different data sources are transformed into compatible data models if necessary. Then
heterogeneity arising from differences between the source databases’ schemata and the
integrated database’s schema are resolved, so that all data are available in a common data
model and schema. The next step, the duplicate detection, is to identify tuples referring to
the same real-world entity in order to merge them in the final data fusion step.

2.2.1. Normalisation of data models

When integrating databases, the first problem that has to be sorted out is the heterogeneity
of the sources on data model level. If the source databases differ in their data models, e.g.
some are relational and some are XML databases, a conversion of data from one data
model into another becomes necessary.

2.2.2. Schema management

Schema management subsumes all methods to handle structural (and to some extent even
semantic) heterogeneity on schema level and is based on meta data, i.e. the schemata of
the data sources and the integrated system. Resolving schema heterogeneity tends to be
a very complicated task best performed by domain experts, because this task requires the
ability to understand and interprete the data.

18 2. Basics

Schema management is often performed in two steps: mapping creation and
schema mapping.
Mappings are attribute correspondencies between the schemata of the data sources and
the destination schema and thus reflect the semantic relationship between source and in-
tegrated schemata. They can be created manually, but for large databases it is often more
convenient to have them created automatically by schema matching techniques ([RB01]).
In order to guarantee semantic correctness, all results of schema matching have to be ver-
ified by a domain expert.
In the second step, which is called schema mapping, data transformation rules from the
source database schemata to the integrated database schema are derived from the map-
pings. Some schema mapping formalisms and a good overview of related work are given
in [FHH+09].

Figure 2.5.: Schema management. First, mappings are created and, secondly, transforma-
tion rules are derived from the mappings.

Schema management is illustrated in Figure 2.5 with the example of two movie databases
A and B that are to be integrated into one single database.

2.2.3. Duplicate detection

Once the sorts of heterogeneity described above have been resolved, the source data are
available in a global context, i.e. they are consistent w.r.t. data model and schema. But
still, data of the different sources may overlap and so some real-world entities can have
multiple – possibly contradictory – representations in the integrated data, which are called

2.2. Data integration 19

duplicates. As implied by the name, duplicate detection3 refers to the detection of such
duplicates for their later fusion and is an essential step in the data integration process to
keep the data free from contradictions.
The research of this topic goes back to 1969, when Fellegi and Sunter first published
a theoretical framework for duplicate detection in [FS69] that was based on the work
[NKAJ59] from 1959 by Newcombe. The basic idea of duplicate detection is to compare
all tuples, mostly in pairs, and to decide whether they are treated as matches (duplicates)
or not. In order to increase effectiveness and efficiency, duplicate detection comprises four
phases according to [HS98]: data preparation, search space reduction, in-depth comparison
and building the transitive closure of the declared matches.

During the data preparation, rather obvious errors are detected and – if possible – removed
in order to increase the effectiveness of the duplicate detection. For example, the data
can be represented in different formats (”The Dark Knight” vs. ”Dark Knight, The”) or
units (e vs. £) or they can be plainly incorrect (e.g. because of typos) or inconsistent. An
example of inconsistencies is a director who is younger than a movie he or she has directed.
Some typical data preparation techniques are normalisation to convert values in a stan-
dardised format or unit, finding missing values or outliers and reference tables which help
to find and resolve inconsistencies. A good overview of these techniques is given in [MF03],
but since data preparation is also particularly interesting for data mining, really detailed
descriptions can also be found in data mining books like [DJ03].

The search space reduction is supposed to reduce the number of thorough and hence ex-
pensive tuple comparisons by filtering out highly dissimilar tuple pairs as unmatches with
cheap comparison techniques. While pairwise comparison of all tuples seems merely ineffi-
cient for small databases, it is downright infeasible for large databases. As the number of
duplicates in the data is usually very small in comparison to the overall number of tuples,
search space reduction can strongly reduce the number of comparisons and thus increase
the efficiency of the duplicate detection considerably.
In Section 2.3, we go into detail about search space reduction.

In the following passage, we give a short overview of the in-depth comparison according
to [EIV07] and [PvKdKR09]. Each of the remaining tuple pairs is assigned to either the
set of matching tuples M or the set of unmatching tuples U depending on the result of the
in-depth comparison of the involved tuples4.
The similarity of two tuples is determined based on the similarity of their attribute values.
This is commonly referred to as field matching or attribute value matching. There is a great
variety of distance measures that are quite commonly used here, such as character-based
or phonetic similarity metrics, all of which are more or less appropriate depending on the
data.

3Other commonly used names for duplicate detection are record linkage, merge-purge problem and entity
resolution.

4In semi-automatic approaches, tuple pairs can also be assigned to the set of possibly matching tuples P
for later examination by domain experts.

20 2. Basics

Whether a tuple pair is assigned to M or U depends on the applied decision model, which
might for example be probabilistic or rule-based. The probabilistic matching model was
first mentioned by Newcombe et al. in 1959 ([NKAJ59]) and formalised by Fellegi and
Sunter in 1969 ([FS69]). The first proposal of a rule-based approach to duplicate detection
that we are aware of was made by Wang and Madnick in 1989 ([WM89]).

According to [HS98], the set of declared matches (declared duplicates) is extended to its
transitive closure in the final phase of the duplicate detection. Imagine three tuples ta, tb
and tc where the set of declared matches (after the in-depth comparison) contains (ta,tb)

and (tb,tc), but not the tuple pair (ta,tc). Either (ta,tc) should be in the set of declared
matches or (ta,tb) or (tb,tc) should not. So extending the set of declared matches to its
transitive closure simply means resolving conflicts by inferring the transitivity of equality.

Although the topic of duplicate detection has been researched for many years, apparently
there are still no standardised large-scale benchmarking data and thus its hardly possible
to draw a meaningful comparison between different duplicate detection techniques.

2.2.4. Data fusion

Data fusion is the last step of data integration as we describe it and refers to the process
of merging all duplicates into single tuples and thus resolving the remaining conflicts.
According to [BN08], automatic data fusion is still in its infancy and hence commercial
data integration systems often fuse data by mediating strategies, i.e. computing average
values, or by deciding strategies, i.e. simply choosing one of the existing tuples, and filling
missing values with data from other tuples corresponding to the same real-world entity.
Due to the lack of adequate automatic solutions, human interaction can be required to
achieve a satisfying result and this makes data fusion a potentially expensive and time-
consuming task.

In recent years, ideas about how to save time and reduce costs for data fusion have been
published. For example in [dKvK07], van Keulen et al. suggest to finish data integration
without fusing the duplicates, but instead storing the integrated (partially conflicting) data
into a probabilistic database and thus delaying the conflict resolution, e.g. in order to leave
it to application users.

2.3. Search space reduction in certain data

This section is devoted to search space reduction for duplicate detection in the process of
certain data integration.
We begin with a motivation of search space reduction for duplicate detection and examine
metrics that can be used for evaluation of search space reduction techniques. After that,
we survey the two techniques Blocking and the Sorted Neighborhood Method in detail and,
finally, give an overview of other existing approaches.

2.3. Search space reduction in certain data 21

As described in Subsection 2.2.3, a key issue of data integration is the duplicate detec-
tion, i.e. identifying all tuples corresponding to the same real-world entities, in most
cases by pairwise comparisons of all tuples with each other. The point of search space
reduction in particular is to improve the efficiency of duplicate detection by detecting
obvious unmatches cheaply and thus reducing the number of expensive in-depth compar-
isons5. Finding adequate and inexpensive comparison methods, however, requires knowl-
edge about the data to be compared and hence search space reduction is usually done
semi-automatically. Nonetheless, fully automated search space reduction has already been
object of research ([Bil06]).

The first search space reduction techniques were invented over 40 years ago and divided
the set of all tuples into so-called partitions or blocks and all subsequent in-depth tuple
comparisons were only performed between tuples of the same partition or block respec-
tively. For this reason, search space reduction is also often referred to as partitioning or
blocking. We do not use the term blocking in this context, though, because we find the
ambiguity of the word blocking very confusing: Blocking is not only used as a common
term for the search space reduction technique described in subsection 2.3.2, but also often
used for search space reduction in general. We only use the term Blocking for the search
space reduction technique.

Figure 2.6.: Search space reduction during duplicate detection. The dashed boundaries of
the initial search space and of the unmatches indicate that the sets are never
materialised, since they are of no use for the duplicate detection process.

While duplicate detection basically means to assign each tuple pair either to the set of
matching tuples M or unmatching tuples U, in terms of search space reduction, tuple
pairs are either assigned to U or not assigned at all. So all tuple pairs remaining in the
reduced search space are no obvious unmatches and hence might (or might not) be matches.

5Another approach to improving the efficiency of duplicate detection we do not cover in our work is to
reduce the costs of the tuple comparisons and not only to reduce their number.

22 2. Basics

The (final) assignment of tuple pairs to either M or U is carried out during the in-depth
comparison. This is illustrated in Figure 2.6.

Search space reduction is based on the observation that in many cases highly similar tu-
ples make up only a very small portion of a data set ([Bil06]) and hence most of the
in-depth comparisons are unnecessary, because obvious dissimilarities can also be exposed
by cheaper means. Since the number of tuple pairs grows quadratically with the size of
the data set, search space reduction becomes a matter not only of performance, but of
feasibility for integration of larger sets of data.
Consider two data sources A and B with 100,000 tuples each. Basically, there are
(100,000+ 100,000)2 = 4 · 1010 tuple pairs, but most of them are still unnecessary: Taking
into account that we do not have to compare reflexive tuple pairs, i.e. tuple pairs in the
form of (a,a), we can reduce this number by 200,000. And still, the number of remaining
tuple pairs is twice as large as the number of necessary tuple comparisons, because every
comparison of two tuples a and b has two symmetric pair representations in the search
space, namely (a,b) and (b,a). So there actually are (100,000+100,000)2−2·100,000

2 ≈ 2 · 1010
tuple pairs to consider for duplicate detection. If A and B are known to be duplicate-free
already, this number is reduced by approximately one half to 100,000 · 100,000 = 1010, but
still astronomously huge.

In [HS95], Hernández and Stolfo address the problem of disk-resident databases often being
much larger than the main-memory, which causes the common search space reduction
methods to be very slow due to the I/O bottleneck, and present a possibility to perform
search space reduction completely in the main-memory, independently of the size of the
data set: Their approach is called the Clustering Method and mainly consists of, first,
clustering the data, i.e. mapping them into an n-dimensional cluster space by an n-attribute
key, and secondly, perform search space reduction on each cluster and combine the resulting
sets of tuple pairs6.
But of course, this approach can only be beneficial, if the resulting clusters can be loaded
completely into the main-memory and, furthermore, if tuples representing the same real-
world enitity are assigned to the same cluster.

2.3.1. Evaluation metrics

In general, search space reduction is based on cheap comparisons and hence is known to
cause two kinds of errors: false acceptance, i.e. leaving an actual unmatch in the search
space, and – even worse – false rejection, i.e. removing an actual match from the search
space by assigning it to U. False rejection is worse than false acceptance, because an actual
match that is rejected is not considered again (unless recovered by the transitive closure)
and therefore may change the result for the worse, whereas a false acceptance is eventually

6As a matter of fact, the authors propose using the Clustering Method not only for search space reduction
in particular, but for duplicate detection in general.

2.3. Search space reduction in certain data 23

corrected during the in-depth comparison and hence has no impact on the quality of the
duplicate detection result at all.

Figure 2.7.: The trade-off between PC and PR. Shifting the similarity threshold to the left
increases the precision, but decreases the pairs completeness. Shifting it to the
right has the opposite effect.

Two metrics used to measure quality and effectiveness are pairs completeness (PC), also
referred to as recall, and reduction ratio (RR) ([LF05]). The pairs completeness represents
the share of correctly accepted tuple pairs in the actual matches and the reduction ra-
tio indicates by which factor the search space was reduced. In simple words: High pairs
completeness indicates high quality of the result and high reduction ratio indicates high
effectiveness of the search space reduction.
Of course, it is desirable to maximise both PC and RR, but usually these are conflicting
goals, as it is illustrated in Figure 2.7: The entire search space consists of actual matches
(AM) and actual unmatches (AU). Search space reduction means to assign each tuple pair
to either the set of acceptances (A) or to the set of rejections (R) on the basis of some
similarity threshold. Figuratively spoken, it means to draw a line (in this case a dashed
one) between the tuple pairs that are accepted as possible duplicates and the tuple pairs
that are rejected. Since errors occur during this process, the set of acceptances (A) consists
of two subsets, namely the set of true acceptances (TA), i.e. correctly identified matches,
and the set of false acceptances (FA), i.e. tuple pairs that are in fact unmatches. Similarly,
the set of rejections (R) consists of true rejections (TR) and false rejections (FR).
Back to the trade-off between pairs completeness and reduction ratio: Loosening the re-
jection criteria (moving the dashed line to the left) and thus rejecting more tuples tends
to increase reduction ratio, since less tuple pairs are accepted as possible matches. But it
also tends to decrease pairs completeness, because actual matches are rejected more easily.
Making the rejection criteria more strict has the opposite effect.

We want to introduce two more measures, the first of which is the precision (PR) ([BS06]).
The precision is the share of true acceptances (TA) in the accepted tuples pairs (A) and it

24 2. Basics

is far more helpful than the reduction ratio, when it comes to comparing different SSR tech-
niques by their results: Consider two duplicate-free data sources with 100,000 tuples each.
As mentioned before, the entire search space comprises 1010 tuple pairs. Assume we wanted
to compare a perfect SSR technique that yielded PC = 1 and PR = 1 to another SSR tech-
nique that achieved a result with PC = 1 and PR = 0.001. If there were 10,000 duplicate
tuples, the better of the two techniques would reduce the search space to 10,000 tuple pairs,
while the worse technique would only reduce it to 10,000

0.001 = 10,000,000. As a conseqeunce,
using the better technique would result in a reduction ratio of RR ≈ 1− 10,000

1010
= 0,999999

and applying the worse technique in a reduction ratio of RR ≈ 1− 10,000,000
1010

= 0,999. The
problem simply is that RR ≈ 1 in almost every case anyway.
The other measure we want to introduce is the fβ-score (Fβ) according to [vR79], which
combines two metrics in one single value. The basic fβ-score is computed from pairs com-
pleteness (recall) and precision, but it can also be computed from pairs completeness and
reduction ratio as we define it below. Since two measures are combined in it, a trade-off
between those two measures has to be modeled into the fβ-score, i.e. a decision as to how
much more important one measure is than the other. For example, a high pairs complete-
ness is – usually – much more important for a search space reduction technique than a
high reduction ratio. So increasing the pairs completeness while decreasing the reduction
ratio is often acceptable and thus should improve the fβ-score in many cases. However,
to which extent it is acceptable to reduce the search space at the expense of the pairs
completeness depends on many factors, for example the data you are working with or the
available computing power. This trade-off has to be made in every scenario. The pairs
completeness in the fβ-score is weighted by factor β: For β2 = 1 PC and RR are equally
weighted, while PC has a higher weight for β2 > 1 and a smaller weight for β2 < 1.
Combining two metrics in one value makes comparing different SSR techniques much sim-
pler, because only one value has to be considered. The fβ-score could for example be helpful
when it comes to optimising effectiveness and quality of an SSR technique automatically.

We define the above metrics as real numbers in the range of [0,1], where 0 is the worst and
1 is the best value, as follows:

pairs completeness (PC) =
|true acceptances|
|actual matches|

reduction ratio (RR) = 1− |acceptances|
|all tuple pairs|

precision (PR) =
|true acceptances|
|acceptances|

fβ-score (Fβ) =
(β2 + 1) · PC · RR

PC+ β2 · RR .

2.3. Search space reduction in certain data 25

2.3.2. Blocking

The idea of blocking can be traced back to [NK62] from 1962, where Newcombe proposed
reducing the search space by only considering tuple7 pairs that agree on a characteristic
such as surname or date of birth. Blocking has been referred to as the standard or tra-
ditional search space reduction technique ever since and has been used in many practical
applications ([Jar89], [BCC03], [EIV07], [Chr08b], [dVKCC09]).

Blocking means to separate a single large set of tuples into smaller mutually exclusive sets
called blocks and to restrict further comparisons to tuples within the same block ([New67]).
As described in [EIV07], first, a block key value is computed for each tuple from a single
attribute value or a combination of several attribute values. Often the block key value is a
simple concatenation of attribute values or parts of attribute values, but in many cases it
has proven beneficial to process the attribute values before building the key value to make
it more robust against small data errors, for example by applying phonetic encodings to
the key attribute values.
Tuples that agree in the block key are finally assigned to the same block and considered
candidate duplicates. Blocking roughly works like hashing, where the key attribute values
correspond to the hash input and the block key value corresponds to the hash code.

Figure 2.8.: In Blocking, a key value is computed for each tuple and all tuples with identical
key values are paired. In this example, not all actual matches (bold tuple pairs)
are accepted, because some key attribute values are erroneous.

An illustration of the Blocking technique is shown in Figure 2.8 where Blocking is used
for duplicate detection in a movie relation. In this example, a block key value is the
concatenation of the first three characters of a movie’s title and its production year. The
initial search space consists of ten tuple pairs, but most of them are quite obviously no
duplicates and hence unnecessary to compare in detail. The only two actual matches in
this example are (1,2) and (4,5).

7Since our work is based on relational databases, we use the term tuple known from relational databases
instead of the more general term record as the author does.

26 2. Basics

As the blocks only contain very few tuples each, only few tuple pairs for later comparison
remain in the search space. But unfortunately, not only highly dissimilar tuple pairs are
left out. Typos or other differences in block key attribute values which may result in false
rejections are a major problem with Blocking: Although tuple 2 is erroneous in the title
attribute value, tuples 1 and 2 agree in the block key and the tuple pair (1,2) remains in
the search space, because the part of the title that is relevant for the block key value is not
affected. Tuples 4 and 5, however, are not assigned to the same block, although they are
almost identical, because the block key value of tuple 5 is affected by a typo in the title.
In this example, we yield a pairs completeness of PC = 1

2 = 0.5, a reduction ratio of
RR = 1− 1

15 = 0.93 and a precision of PR = 1
1 = 1.

Choosing the block key always means a trade-off between pairs completeness and reduction
ratio (or precision). A key by which the tuples are sorted into large blocks makes Blocking
very ineffective since the search space is hardly reduced, but on the other hand, a key that
causes the tuples to be assigned to too small blocks is likely to cause more false rejections.
However, key attributes should not only be chosen by their discriminating power, but also
by their error rate; using key attributes which are likely to be erroneous is also likely to
result in tuples being sorted into wrong blocks. Common ways to cope with false rejections
due to erroneous attribute values are to prefer credible key attributes or to run multiple
Blocking passes with different keys and combine the resulting tuple pairs.

2.3.3. Sorted Neighborhood Method

The first detailed description of the Sorted Neighborhood Method we are aware of was
published by Hernández and Stolfo in [HS95] and [HS98]. This subsection is based on
those sources.
Consider a data set in which duplicate tuples are to be detected. In order to reduce the
set of candidate duplicate pairs, the Sorted Neighborhood Method is performed in three
phases: First, for each tuple a key value is computed (similarly to the block key value in
Blocking). Secondly, the tuples in the data set are sorted – usually lexicographically – by
their respective keys into a list and, finally, all tuples in the list within a certain distance
are paired with each other and the resulting pairs remain in the reduced search space.

The underlying assumption is that duplicate tuples have similar key values and hence
are neighbouring tuples in the sorted list resulting from step two. As a consequence,
keys should be designed in such a way that duplicate tuples do have similar key values.
When creating keys by concatenating (portions of) tuple attributes, it is not only critical to
consider their discriminating power and reliability, but also that the attributes determining
the first parts of the key have the highest impact on where the tuples are inserted into the
sorted list. Hence, error-prone key attributes can still be facilitated for the key’s tail and
do not have to be neglected for key design.

Figure 2.9 illustrates the three phases of the Sorted Neighborhood Method on the data
known from the illustration of Blocking in Figure 2.8. The key values built in phase one

2.3. Search space reduction in certain data 27

Figure 2.9.: The Sorted Neighborhood Method is more error tolerant than Blocking in most
cases, but also results in a smaller reduction ratio.

are again designed as a concatenation of the first three characters of the movie title and the
movie’s production year. After a key value has been computed for each tuple, a sorted list
of all tuples ordered by their keys is created8. Phase three can be visualised as a window of
fixed size w = 3 that is moved sequentially over the sorted list, where all tuples appearing
within the window at the same time are paired with each other. At the beginning, the first
w tuples are paired and then the window is moved one entry down, so that the first tuple
slides out of the window and the next tuple slides into the window. Note that in each step,
the window corresponds to a block of tuples in Blocking, only that the blocks here overlap.
Obviously, the pairs completeness PC = 2

2 = 1 is perfect, but reduction ratio
RR = 1− 9

15 = 0.4 and precision PR = 2
9 = 0.2 are not as good as in our Blocking example.

The trade-off between pairs completeness and reduction ratio lies not only in the key
design, but in the window size w. The window size is w = 2 at least, meaning only direct
neighbours in the sorted list are paired, and can naturally not be larger than the number
of all tuples, where the search space is not reduced and all tuples are paired with each
other. Increasing w tends to increase the pairs completeness, but also results in a smaller
reduction ratio, since more tuples are paired. Decreasing w improves the reduction ratio,

8In order to guarantee a deterministic tuple order, tuples with equal key values in the sorted list are
ordered by their internal ID.

28 2. Basics

but can lead to more false rejections; if there are more than w tuples with the same key
value, not even all tuples with the same key value will get paired, although they are rather
likely duplicate candidates. In our example, in spite of the key values of tuples 1 and 2

being the same, it depends on the order of those two tuples in the sorted list9 whether
tuple 1 or tuple 2 is paired with tuple 3.
According to [HS98], simply increasing the window size is not a very effective solution to
this problem, because the number of false acceptances grows very fast with the window
size. Hernández and Stolfo recommend to apply the transitive closure to the result of the
in-depth comparison. This, however, might result in a low reduction ratio when using an
already large window.

To compensate for the shortcomings of the basic Sorted Neighborhood Method, many
modifications and extensions have been developed, some of which we describe in the fol-
lowing.

Multi-pass SNM

As already mentioned, tuples that correspond to the same real-world entity can differ in
some attribute values and thus might differ in their key values as well, depending on how
the key is built, i.e. which part of the key value is computed from which attribute values. To
make up for major differences, deciding for one key design and just increasing the window
size is not an adequate option. An easier and more effective approach is to run several
independent passes with different keys and relatively small windows and to combine all
resulting tuple pairs of the different passes. When all passes have a high precision (and thus
a relatively high reduction ratio), the combined result can have a high pairs completeness,
although the pairs completeness was small in every single pass. According to Hernández
and Stolfo, running only few passes with small window sizes and computing the transitive
closure of the result of the in-depth comparison yields much better pairs completeness and
reduction ratio than a single pass with a large window.

Increasing the window size hardly affects the pairs completeness, but decreases the re-
duction ratio and hence is no promising option to improve the result. Given that small
windows are used, however, the pairs completeness approaches 1 rather quickly with every
additional pass, while the reduction ratio decreases only slowly. Still, since every additional
pass requires sorting the entire set of tuples, the number of passes should be kept minimal
as well to save computation time.

Adaptive SNM

A problem of the basic Sorted Neighborhood Method is that tuples with highly similar or
even identical key values may not be paired with each other, if their number is large in
comparison to the static window size. But while in the basic SNM a predefined number of

9Note that the tuple order depends on the sorting algorithm used in the second phase.

2.3. Search space reduction in certain data 29

fixed-size overlapping blocks are created from the sorted list of tuples, the sorted tuple list
in the Adaptive SNM approach presented in [YLyKG07] is divided into mutually exclusive
blocks of variable size where, optimally, all corresponding duplicates are assigned to the
same block.
Size and range of the blocks are determined dynamically through measuring the metri-
cal distance10 between the key values of the first and the last tuple in the window and
comparing it to a distance threshold φ. As long as the key distance does not exceed φ,
the window is enlarged. But if it exceeds the threshold, the window is shrunk, until the
threshold value is met again. Now a block is defined over the range of the window and
the procedure is repeated, beginning at the first tuple in the list succeeding the block. In
this approach, the window is not used to stencil blocks out of the list, but rather to shape
them according to the data.
Let ti denote the tuple on index i of the sorted list of n tuples and dist(ta,tb) denote the key
distance of tuples ta and tb. Roughly, this approach is not only based upon the assump-
tion that similar tuples are near neighbours in the sorted list, but also that dist(ti,ti+1)

≤ dist(ti,ti+2) ≤ . . . ≤ dist(ti,tn) for i < n and that dist(ti,tj) ≤ φ < dist(ti,tk) holds
when tuples ti and tj are in the same block and tk is in a different one.

2.3.4. Other techniques

Even though Blocking and the Sorted Neighborhood Method seem to be the most promi-
nent approaches in the related work, there are some other approaches to search space
reduction that can even outperform them when configured properly ([BCC03]). We want
to introduce the approaches that seem most promising to us in this subsection.

Q-gram Indexing

The Q-gram Indexing technique as described in [Chr08a] on page 35 is similar to Blocking,
but much more flexible. The concept is to create more than one key for every tuple and
to assign every tuple to several blocks. We illustrate this procedure by an example in
Figure 2.10.

The first step is to create key values for the tuples, just like it is in normal Blocking.
Afterwards, all q-grams of a key, i.e. all substrings of the length q, are saved to a list. A
very common form of Q-gram Indexing used for search space reduction is Bigram Indexing
(q = 2). In step three, the final key values are computed from the q-gram list and a
threshold t in the range of 0 and 1, which is 0.8 in this example. The number of q-grams
in a valid key is the threshold t multyplied by the length l of the q-gram list and hence
t · l = 0.8 · 6 = 4.8 ≈ 5 in our example. So the final key values in our example only contain
5 out of the initial 6 q-grams. Note that the order of the remaining q-grams in the final

10Note that not the distance of the tuples in the sorted list is meant, but a metrical distance between keys,
for example the edit distance.

30 2. Basics

Figure 2.10.: Q-gram Indexing works similarly to Blocking, but can assign every tuple to
more than one block.

key value is not changed. Finally, the q-gram combinations are concatenated to build the
new key values by which the corresponding tuple is assigned to several blocks.

Clustering methods

In [ME97] Monge and Elkan describe the problem of search space reduction in terms
of making out clusters, i.e. the connected components, of an undirected graph where
every tuple is represented by a vertex and where vertices representing actually matching
tuples are connected with an edge. The idea is that the duplicate relationship of tuples is
transitive, i.e. that tuples a and c are inferred to be duplicates, if a and b as well as b and
c are duplicates.
For the sake of efficiency, a union-find data structure is used to identify the connected
components. The tuples are only compared to a representative of each cluster in order to
minimise the number of tuple comparisons. This is assumed to be a major improvement
to the efficiency with little negative effect on the result.

In [MNU00] McCallum et al. propose a clustering variant for search space reduction
involving overlapping clusters, so-called canopies. All tuples are grouped in canopies with
approximately similar tuples. The tuples in each canopy are then paired and the resulting
sets of tuple pairs are unified to become the reduced search space.

31

3. Adapting certain data SSR techniques
to probabilistic data

In the previous chapter we introduced data models extending the common relational data
model by the x-tuple concept for modeling data uncertainty. We also described the process
of duplicate detection in certain data and went into detail with the search space reduction
techniques Blocking and the Sorted Neighborhood Method.
This chapter is devoted to the adaption of the above conventional techniques of search
space reduction to the ULDB model.

The one big issue here is that uncertain attribute values may result in uncertain key values.
So in order to make conventional search space reduction techniques applicable to proba-
bilistic data, the uncertainty of the key values has to be resolved.
There are basically two approaches to those adaptions mentioned in [PvKdKR09] that we
discuss in the following: generating only certain key values and thus resolving uncertainty
during the key generation, or generating uncertain key values and so considering the un-
certainty during the remaining steps of the individual search space reduction techniques.

3.1. Generating certain key values for search space reduction

A certain data tuple corresponds to an x-tuple with only one alternative with a confidence
of 1. And since – in terms of x-tuples – every certain data tuple has only one alternative,
there is only one valid key value per tuple.
Probabilistic tuples, however, can have several alternatives which can differ in the attribute
values from which the key values are computed. As a consequence, generating certain key
values from probabilistic tuples is much less straight-forward: For example, what key values
should be computed for a movie tuple when it consists of several alternatives differing in
the spelling of the title and the production year? But the advantage of using certain key
values for search space reduction in probabilistic data is that only the key generation has to
be modified and the rest of the search space reduction technique can be applied unchanged.
In this section, we discuss three strategies of certain key generation and illustrate them for
the Sorted Neighborhood Method.

32 3. Adapting certain data SSR techniques to probabilistic data

3.1.1. Multi-pass over possible worlds

As described earlier, ULDBs can be seen as probability distributions over certain databases,
so-called possible-instances or possible worlds. One conceptually simple way to perform
search space reduction on a probabilistic database is to construct possible worlds from a
ULDB (see 2.1.3), to apply perfectly conventional search space reduction techniques to
each world individually and to combine the results.
Figure 3.1 illustrates the sorted key lists according to SNM in different possible worlds
constructed from a very small ULDB with only three tuples. In spite of the small number
of tuples and alternatives in this example, there are already quite many possible worlds.
As the number of possible worlds in a ULDB in a realistic scenario with thousands or
millions of tuples is usually tremendous, in practise, running passes on all possible worlds
is infeasible and using only a selection of possible worlds seems the only option. But as
illustrated, the most probable worlds are normally almost equal, since they differ in only
few tuple alternatives. Furthermore, some tuples are not present in some possible worlds
and thus cannot be paired with other tuples for later in-depth comparison. For example,
tuple tm2 is missing in possible world W2.

Figure 3.1.: The above x-relation represents twelve possible worlds. Performing SNM on
different possible worlds yields different sorted key lists.

The decision which possible worlds should be used for subsequent passes is not easily made;
once the first run has been performed on the most probable world, an additional second
pass over the second most probable world will not improve the result much, because the
most probable possible worlds are usually very similar. For a better result, worlds should
be considered that have not only a rather high probability, but are also as dissimilar from
one another as possible.
We propose performing at least the first run on the most probable world with all tuples
present, in order to prevent missing tuples, even when the subsequent passes are executed

3.1. Generating certain key values for search space reduction 33

on possible worlds with missing tuples. In our implementations of this strategy only worlds
without missing tuples are considered at all. Furthermore, we compute and save the key
values for all alternatives once at the beginning of the procedure, so that they do not have
to be computed again for subsequent passes1.

We implemented two variants of this strategy. One is to construct the most probable worlds
(W1, W2, . . .) and the other is to construct highly dissimilar possible worlds.

Building the most probable worlds

First, W1 is built from the most probable tuple alternative of every tuple, while sorting the
remaining tuple alternatives into a list by their confidence values as illustrated in Figure
3.2. The basic idea is to build the next most probable worldWn by choosing an alternative
ti,j from the list of remaining tuple alternatives to replace the corresponding alternative
ti,k from W1 in such a way that the confidence c(Wn) of Wn is maximal2.

Figure 3.2.: In order to guarantee that the most probable worlds are built, the confidence
values have to be normalised before sorting.

Choosing the most probable alternative from the list is quite simple, but the resulting
probable world is not necessarily the next probable one. To guarantee that the next most

1Since our other strategies are single-pass strategies, computing and saving key values before does not
bring any advantages there.

2Note that ti,j and ti,k both represent the same tuple ti.

34 3. Adapting certain data SSR techniques to probabilistic data

probable world is generated, the confidence values of the alternatives in the list have to
be normalised before sorting. Since the confidence of a possible world is the product of
all contained tuple alternatives’ confidences, c(Wn) = c(W1) · c(ti,j)c(ti,k)

holds, where c(ti,j)
c(ti,k)

is
the normalised confidence of ti,j . In other words: c(W1) and c(Wn) are the same product,
differing only in one single factor which is c(ti,k) in c(W1) and c(ti,j) in c(Wn). Hence, the
confidence of Wn is maximal, where c(ti,j)

c(ti,k)
is maximal.

In our illustrating example in Figure 3.2, the choice of tm1,2 as the most probable of
the remaining alternatives results in replacing alternative tm1,1 . Logically, the resulting

probable world is
c(tm1,2)

c(tm1,1)
= 0.38

0.62 ≈ 0.61 times as probable as W1. But the normalised
confidence is even greater for tm3,2 and the world that results from replacing tm3,1 by this

alternative is
c(tm3,2)

c(tm3,1)
= 0.3

0.45 ≈ 0.67 times as probable as W1.
If there is more than one alternative with a normalised confidence of 1, several equally
probable and yet dissimilar possible worlds can be built by replacing tuple alternatives
from the most probable world by the alternatives with a normalised confidence of 1 in any
combination. So there are scenarios in which the most probable worlds actually are not
very similar.

Building highly dissimilar possible worlds

Our second implementation of the possible worlds approach as illustrated in Figure 3.3
is to perform search space reduction on several possible worlds that are very dissimilar
from each other. Here as well, the most probable world is constructed for the first pass.
Afterwards, a possible world is built by using only the second most probable alternative of
each tuple. If a tuple has only one single alternative (and hence no second most probable
alternative), the most probable one is used. Accordingly, a possible world is then built
from the third most probable tuple alternatives, and so forth. This procedure is repeated,
until all alternatives have been used.
The number of worlds constructed by this procedure is rather small, as it cannot be greater
than the maximum number of alternatives per tuple. Furthermore, each additional pass is
likely to add many new tuple pairs and thus to improve the result much. So, this variant
of the possible world strategy seems by far more promising than constructing the most
probable worlds.

3.1.2. Key per tuple

Another strategy is to resolve the uncertainty on tuple-level by computing one certain key
value for each tuple from its alternatives. Our idea is to first compute a single alternative
for every tuple as a representative and to create a key value from this representative. To do
so, meta data such as confidence values may be used as well as the actual attribute values.
Of course, when computing a representative for key creation, only key attributes have to
be considered. There are basically two strategies of computing a representative, which can

3.1. Generating certain key values for search space reduction 35

Figure 3.3.: When building highly dissimilar worlds, the confidence of the constructed
worlds is of secondary importance.

be derived from the strategies discussed in [BN08]: deciding strategies, i.e. choosing one
of the already existing alternatives, and mediating strategies, i.e. computing one that does
not necessarily exist.
A very simple deciding strategy is to pick the most probable alternatives3 as illustrated in
Figure 3.4. This is equivalent to search space reduction on just the most probable world
with no missing tuples, because the resulting SNM list here is also sorted by the key values
of the most probable tuple alternatives.

Figure 3.4.: The key per tuple strategy applied to the Sorted Neighborhood Method. In this
example, a tuple’s key value is computed from its most probable alternative.

3Note that alternatives representing tuples’ absence are not chosen.

36 3. Adapting certain data SSR techniques to probabilistic data

But it seems possible that an alternative computed with a mediating strategy represents
a tuple better than one of the already existing ones. As pointed out in [PvKdKR09],
conflict resolution techniques used for fusion of certain data might be suitable for mediating
strategies. In [BN08], some conflict resolution techniques are mentioned that seem usable
for computing attribute values for a tuple representative from the tuple’s alternatives. We
describe the concepts of some techniques with the help of the tuple depicted in Figure 3.5.
The cry with the wolves (CWTW) technique describes choosing the most often occurring
value. In our example, the production year chosen by CWTW for the tuple representative
would be 2004. Obviously, this production year has an overall confidence of only 0.15 +

0.15 + 0.05 = 0.35, whereas 1969 is the correct production year with a confidence of 0.4.
For our purpose, it seems logical to adapt CWTW in such a way that not the most often
occurring, but the most probable value is chosen for the representative.
By another technique, referred to as meet in the middle (MITM), an average value is
chosen. For techniques like Blocking, where only tuples with equal keys are paired it
makes sense to take one of the existing values, e.g. the median: 1996 for the production
year in our example. But if a technique like the Sorted Neighborhood Method is used
where tuples are paired due to key value similarity, choosing the expectancy value can
be even more appropriate. The expectancy value of the production year of the illustrated
tuple is 1969 · 0.4 + 1996 · 0.25 + 2004 · (0.15 + 0.15 + 0.05) = 1988.
By roll the dice (RTD), one of the given values is picked randomly. We use this simple
technique as a fallback strategy, when the primary technique brings an ambiguous result.
The two most probable studio names in our example, namely Twentieth Century Fox and
Republic Pictures, both have the same confidence of 0.4, so that the adapted CWTW
approach would not bring one, but two results. In this case, it seems appropriate to just
pick one value at random.
Take the information (TTI) specifies that any value is preferred to a missing value and
makes sense in combination with any of the other techniques.
Naturally, different techniques may be used for different attributes, e.g. MITM can be used
for numbers, while string values can be processed with CWTW first and post-processed
with RTD in case of an ambiguous result.

3.1.3. Key per alternative

It is also possible to create key values not for tuples, but for tuple alternatives, so that
tuples may have more than one key value computed for them. As a consequence, a tuple
can be assigned to several blocks (Blocking) or can appear several times in the sorted list
(SNM) as shown in Figure 3.6. Since tuples may appear several times in the sorted list
and hence also more than once in a window (SNM), the number of resulting tuple pairs
per window can vary. In order to prevent this effect, our implementations of this approach
work with a modified window: Like in our example, the window size is increased by one
for every added tuple that already was in the window, so that each window holds the same

3.1. Generating certain key values for search space reduction 37

Figure 3.5.: Different variants of the key per tuple strategy can be combined. The key
value of the illustrated x-tuple is composed of the expectancy value of the year
and a prefix of the most probable studio name.

number of different tuples4.
There are many approaches to decide which alternatives should also be used for key value
creation. One of them is to simply use all alternatives. Another idea is to use only a
predefined number of alternatives per tuple, e.g. the two most probable alternatives, or to
use the most probable alternative of every tuple and, in addition, a share of the remaining
alternatives, for example the 10,000 most probable remaining alternatives in the database.
Just as well, a confidence threshold could be defined and only the remaining alternatives
with a confidence exceeding the threshold could be chosen.

3.1.4. Modification: combining key values

One aspect of certain key generation that has not been considered so far is that different
alternatives of the same tuple can have equal key values. Problems that can arise here
can be prevented by computing a key value for every alternative first and then combining
alternatives with equal key values for every tuple.

It makes sense to combine the key values when building the most probable possible worlds
to make sure the constructed SNM lists really are different ones and the most likely key
value set is used for search space reduction. For example, if an alternative is replaced
by another alternative of the same tuple with the same key value, the resulting SNM list
is identical to the predecessor list. As to building highly dissimilar worlds, though, we
assume that better results can often be achieved without combining key values, because

4Actually, the last window may hold less tuples.

38 3. Adapting certain data SSR techniques to probabilistic data

Figure 3.6.: The key per alternative strategy applied to the Sorted Neighborhood Method
where a key value is generated for every alternative.

the number of constructed worlds5 in this approach is very small anyway and might even
be reduced when equal key values are combined for every tuple.

Combining key values can also make sense for deciding key per tuple strategies: In Fig-
ure 3.7, tuple alternative tm3,1 is the most probable alternative, but with a confidence of
0.45 its key value is not the most probable, since alternatives tm3,2 and tm3,3 agree in their
key value and have a combined confidence of 0.3+0.25 = 0.55. This example demonstrates
that the combined key value of some alternatives may represent a tuple better (or at least
may be more probable) than the key value of the most probable alternative.
Although computing and combining key values before choosing a representative does not
make much sense for mediating strategies, since the representative here is computed from
attribute values (and not from key values), it can actually be beneficial to compute and
combine subkeys first: For example, if the key of a tuple consists of the first three char-
acters of the movie title concatenated with the production year, all possible title subkeys
can be computed and combined, so that the most probable subkey value is chosen – and
not the subkey value of the most probable title.

When using all alternatives, combining key values does not change the SSR result, because
tuples are only considered once per block and only once per window with our improved
windowing technique. But it can be beneficial for SNM to combine key values nonetheless,

5Even though we use the term ’possible worlds’ here again for the sake of simplicity, we want to make
clear that we actually do not build possible worlds when combining key values first, but sets of possible
worlds containing different alternatives of the same tuple with equal key values.

3.2. Processing probabilistic keys 39

Figure 3.7.: When combining key values, the confidences of equal key values are summed
up.

because the sorted list of tuples is reduced and, as a consequence, the sorting can be
executed faster.
When not all alternatives are used, combining the key values does not only speed up search
space reduction, but also has an impact on its result. If for example the two most probable
alternatives of every tuple are used, there might be tuples with two alternatives in the list
having the same key value. This cannot happen, if key values are combined first.
We always combine key values in our implementations when computing key values per
alternative, because it can make the SNM list shorter and thus can accelerate the procedure.
Furthermore, it maximises the diversity of the key values of the selected alternatives.

3.2. Processing probabilistic keys

In [PvKdKR09], it is proposed to deal with data uncertainty by generating a probabilistic
key value for every x-tuple first and to resolve the uncertainty when the tuples are sorted
into a list according to their probabilistic key values. The probabilistic key value of an
x-tuple is computed in such a way that every x-tuple alternative has a corresponding key
value alternative. The variant of the probabilistic key strategy discussed here is applicable
to the Sorted Neighborhood Method, but not to Blocking. We do not discuss a probabilistic
key approach for Blocking, because it is out of the scope of our work.

In order to sort the tuples into a list by their probabilistic key values, we perform pairwise
comparisons of the tuples with each other as illustrated in Figure 3.8: There are two
tuples tm1 and tm2 with two alternatives each. The tuple alternatives can only occur in
four combinations, where each of these combinations occurs with a certain probability. In
order to determine in which order the tuples should be inserted into the SNM list, their
most likely order is computed: Alternatives tm1,1 and tm2,1 are part of the same world with
a probability of c(tm1,1) · c(tm2,1) = 0.8 · 0.6 = 0.48. In a possible world, in which those
alternatives are both present, tm1 comes after tm2 in the SNM list, because the key value of
tm1,1 is greater than the key value of tm2,1 (BAT1969 > BAT1959). Tuple tm1 comes before
tm2 in two combinations with a probability of 0.32 + 0.08 = 0.4 and the tuples have both
equal key values with a probability of only 0.12. Accordingly, the two tuples are sorted
into the list in their most likely order: tm1 after tm2 .

40 3. Adapting certain data SSR techniques to probabilistic data

Figure 3.8.: The probabilistic key approach applied to the Sorted Neighborhood Method.
The tuples are sorted considering all tuple alternatives’ key values.

If two tuples are most likely equal, their list order is determined by their second most likely
order and by their database IDs to guarantee a deterministic list order.
Another idea is to not just compare key alternatives by a comparison function, but by a
distance measure, so that it would also be taken into consideration to what extent one key
value is greater or smaller than another – and not only whether at all.

Besides processing probabilistic key values as described above, the sorting function can be
chosen in such a way that this strategy corresponds to the certain key per tuple or key
per alternative strategy. For example, if the sorting function sorts tuples by their most
probable key alternative, the procedure is practically the same as one of the certain key per
tuple variants with combined keys. Similarly, sorting tuples several times into the SNM
list by all key alternatives corresponds to one of the certain key per alternative strategies
with combined keys.

41

4. Experiments

Our implementations of the search space reduction techniques are actually not standalone
pieces of work, but part of the project QloUD1 concerning integration of probabilistic data
sources. We implemented the search space reduction techniques in Java. The input for an
SSR technique is always a set of x-relations, from which the reduced search space (a set of
tuple pairs) is computed as output.
However, with the goal of our work not only being the implementation of the discussed SSR
techniques, but also to try them out and to evaluate them regarding their effectiveness and
the quality of their results, we were facing two challenges: First, a great amount of data like
the number of actual matches, actual non-matches and so forth had to be collected during
the experiments and many metrics had to be computed in order to make a meaningful
comparison and evaluation of the different SSR techniques. Doing this by hand is very
time-consuming and error-prone – let alone formatting the results. The second, probably
more severe challenge was the absolute lack of appropriate testing data. We are simply not
aware of any probabilistic benchmarking data at all on which to perform our experiments.
In this chapter, we begin with an overview over the testing framework for our implemen-
tations of the adapted SSR techniques and a description of our test data in the first two
sections. We then explain how we configured our experiments in the third section and,
in the fourth section, compare the different SSR techniques on the basis of experimental
results.

4.1. Testing framework

The documents in the appendix were generated with our testing framework: Data like the
number of correctly identified duplicate tuple pairs were recorded and then used to rate
the techniques according to the metrics discussed in Subsection 2.3.1. Furthermore, we did
not only automatise data aggregation during our SSR experiments, but also the generation
of diagrams to illustrate the results.

Besides the above mentioned metrics we also consider the execution times of the dif-
ferent SSR techniques. Our experiment hardware was a notebook with a Core 2 Duo
P8700@2.8GHz and 2 · 2048MB DDR2 PC 6400 memory. Since we executed all experi-
ments in Java under Windows, the measured execution times can be expected to be rather
inaccurate: The duration of an experiment can, for example, be influenced by background

1Quality of Uncertain Data (http://vsis-www.informatik.uni-hamburg.de/projects/QloUD/index.php)

http://vsis-www.informatik.uni-hamburg.de/projects/QloUD/index.php

42 4. Experiments

Figure 4.1.: Computing the average duration of an experiment. First, the average duration
of all runs is built (purple line). To reduce the impact of outliers, only values
that do not exceed 125% of this value are then used to determine the average
duration of an experiment without outliers (red line).

tasks running on the operating system or by Java’s garbage collection.
To keep the impact of side effects on the runtime minimal, we stopped all running processes
not necessary for the experiments and disabled swap files to prevent overshoots as far as
possible. Furthermore, we executed all our experiments several times in a row and com-
puted an average value to get a better result. But since there were still obvious overshoots,
by which we mean values that exceed 125% of the average value, we took the average value
excluding the outliers as final result.
Figure 4.1 illustrates the execution times of an experiment over 100 runs and the average
runtime with and without outliers. We are of the opinion that, if two SSR techniques differ
greatly in their measured execution times, it can be assumed that the one that was faster
according to the measured data actually is faster.

Average duration

first experiment 451.35 ms

second experiment 449.92 ms

third experiment 452.57 ms

fourth experiment 452.40 ms

Table 4.1.: The average duration of an experiment can be reproduced in independent
experiments.

To demonstrate that the average duration is a reproducible value, we repeated one Blocking
experiment series (key per tuple, most probable alternative) four times. The single average

4.2. Test data 43

duration values are presented in Table 4.1. Ranging from about 449ms to about 453ms, the
maximum deviation is smaller than 1%. Detailed diagrams can be found in Appendix A.

4.2. Test data

Since there are only few probabilistic database systems at all, it is hardly surprising that
we did not find probabilistic data sets to test our probabilistic search space reduction
techniques.
Our solution to this problem was to generate probabilistic data ourselves. In order to make
the data as realistic as possible, we decided to use real-world data from an existing certain
database. So we extracted title, production year, studio and director of about 1,500,000

movies from the online movie database IMDb2 with the Java application JMDb3 and stored
the data to an HSQLDB4.
But as many movies are released several times in different versions, there were still quite
many duplicates in the data: Several movie tuples had the same title, only that some had
additional information put in brackets at the end of the title string. To keep the database
free from duplicates, we removed all tuples with additional information in brackets in their
title strings. Then we identified tuples with identical titles and removed most of them in
such a way that every title became unique. Our certain real-world movie data set had been
reduced strongly to a size of about 300,000 tuples, but was also duplicate-free.

Figure 4.2.: Probabilistic data can be generated from certain data with ProbDataGen.

2The Internet Movie Database (http://www.imdb.com)
3Java Movie Database (http://www.jmdb.de)
4HyperSQL DataBase (http://hsqldb.org)

http://www.imdb.com
http://www.jmdb.de
http://hsqldb.org

44 4. Experiments

We programmed a Java application named ProbDataGen to generate probabilistic data
from the duplicate-free certain data. With ProbDataGen it is possible to choose among sev-
eral HSQL databases holding certain movie data to generate a probabilistic movie database
with duplicates, where the user can make several adjustments, e.g. the number of dupli-
cates or the maximal number of alternatives per tuple. The generated probabilistic data
are then stored in such a way that they can be loaded into our x-tuple data model and
can be used for SSR experiments: In addition to the actual movie attribute values, every
HSQLDB movie tuple has an x-tuple ID, an alternative ID and a confidence value. So
every HSQLDB tuple represents an x-tuple alternative.
Figure 4.2 illustrates probabilistic data that were generated from certain data with Prob-
DataGen. The process of generating a probabilistic database is performed in the following
steps:

1. Create a new database of a given size: First, a new database is created and filled
with the desired number of randomly chosen (certain) movie tuples.

2. Generate x-tuple IDs: Every x-tuple is assigned a unique x-tuple ID.

3. Generate duplicates: Now, some movie tuples are duplicated, so that they appear
twice in the movie relation. The duplicates are then assigned x-tuple IDs. Since it is
necessary for the computation of the metrics discussed in Subsection 2.3.1 to know
the duplicate pairs, i.e. the actual matches, they are also stored to the database.

4. Generate confidence values: In this step, a confidence value is assigned to every tuple
in the database. The confidence values are generated randomly to some degree, but
they are also influenced by several parameters. For example, the user can define the
probability of generating a confidence value smaller than 1, i.e. the probability to
turn a tuple into a maybe tuple.

5. Adding alternatives: At this point, some alternatives are added to the tuples, so that
there actually are x-tuples with more than one alternative. Adding a few alterna-
tives to an x-tuple means to duplicate the (only) x-tuple alternative several times
and distribute the tuple’s confidence among all alternatives afterwards. Since all al-
ternatives of that tuple are identical except for the confidence value, their alternative
IDs are modified in such a way that the alternatives are enumerated from 1 to the
number of the x-tuple’s alternatives in order to guarantee that the combination of
x-tuple ID and alternative ID is unique for every x-tuple alternative. The user can
define many parameters for this step as well, e.g. the minimal alternative confidence
or how many alternatives at least and how many at most are generated for a tuple.

6. Add errors: Finally, some errors are added to the x-tuples. Whether errors are
added to a certain attribute value and of what kind or how serious they are, is
decided randomly according to several user-defined parameters, but always following
two rules: The first rule is that the chance of generating an error is greater for
alternatives with small confidence values. The second rule is that the alternatives
of a tuple have to differ somehow, when the errors have been added, since x-tuple

4.3. Experiment configuration 45

alternatives are mutually exclusive, i.e. they must not be identical.
Errors that can occur in the production year are simply wrong numbers. Strings, i.e.
the title, director and studio, are affected by typo-like errors, for example missing
or transposed neighbouring characters and wrong spelling such as a ’novie’ instead
of ’movie’. The director and studio attribute values are even exchanged with other
values to simulate not only erroneous, but downright wrong data.

4.3. Experiment configuration

Doing experimental research on the differences of search space reduction techniques is a
wide field. There are countless experiment configurations that might be worth trying for
one reason or another. In order to keep the number of experiments small, though, we chose
the experiments with our primary goal in mind: to draw a meaningful comparison between
the different SSR variants presented in Chapter 3.
In the first subsection, we describe our experiments to determine a reasonable database size
for our main experiments. The second subsection is about the properties of the database
used for the experiments. In the third subsection, we discuss several key designs (and
window sizes) for our SSR techniques.

4.3.1. The database size

In spite of hardware limitations, it was our intention to execute the SSR experiments on a
preferably large database, i.e. a database with many alternatives. On the other hand, we
had to make sure the search space reduction techniques could still be executed at all, since
we only used 3GB memory for search space reduction. When nearly as much memory is in
use as is available, Java’s garbage collection is done with a slower more thorough algorithm
than usual, the MarkSweep garbage collector. Using this garbage collector can make the
duration values of the SSR experiments less comparable, because the garbage collection
overhead grows faster. We chose the number of alternatives in the database in such a way
that this particular – more expensive – garbage collector is not used at all.

DB100k DB200k DB300k DB400k

overall alternatives 100,000 200,000 300,000 400,000

GC time, PS Scavenge (ms) 5,661 22,753 25,521 54,208

GC time, PS MarkSweep (ms) 0 0 8,120 22,037

Table 4.2.: We chose to execute the experiments on DB200k.

We tried search space reduction with several SNM and Blocking variants on databases with
100,000 to 400,000 tuple alternatives and recorded the maximal garbage collection time for

46 4. Experiments

each database. Table 4.2 clearly shows that the MarkSweep garbage collector is not used
for SSR at all on a database with 100,000 or 200,000 alternatives, so we decided to use a
database with 200,000 tuple alternatives. The search space reduction variants we used are
listed in Appendix B.

4.3.2. The database configuration

Having determined a suitable number of alternatives, it was still unclear what difference
the number of duplicates in the database or the number of alternatives per tuple made for
the different SSR techniques. Table 4.3 shows the properties of the different databases we
used. In Appendix C, there are more information on the corresponding experiments. All
databases had 200,000 tuples, but differed in the number of duplicates or the number of
alternatives per tuple.
We took a database with 3,000 duplicates and maximally 3 alternatives per tuple as refer-
ence database and created two more databases with 30,000 and 50,000 duplicates and two
other databases with a maximum of 6 and 12 alternatives per tuple. Then we performed
some search space reduction techniques on all databases and compared the pairs complete-
ness, the reduction ratio and the precision. The SSR techniques were configured rather
arbitrarily: We just built the key values by concatenating the first three characters of the
title string and the production year and used a window size of 3 for the SNM variants.

DB3kDP DB30kDP DB50kDP DBmax6Alt DBmax12Alt

overall tuples 113,000 130,000 160,000 73,000 43,000

overall alternatives 200,000 200,000 200,000 200,000 200,000

duplicate pairs 3,000 30,000 50,000 3,000 3,000

min alternatives 1 1 1 1 1

max alternatives 3 3 3 6 12

Table 4.3.: Database configuration experiment series – databases.

Although the actual results differed from database to database, the proportions of the
results achieved by the different SSR techniques were very similar each time. There is
one exception, though: The pairs completeness of search space reduction based on the
highly dissimilar worlds variant of the possible worlds strategy got much better with more
alternatives per tuple. And this is not very surprising, because the number of possible
worlds constructed here depends on the number of alternatives per tuple. Ranking all
other SSR techniques by their pairs completeness yields the same order, independently of
the database. For reduction ratio and precision, the order even remains the same without
any exceptions.
In other words, our experiments suggest that an SSR technique is – in relation to the
other techniques – roughly as good on a database with few duplicates or alternatives per
tuple as on a database with many. We chose to execute all main SSR experiments on

4.3. Experiment configuration 47

database DBmax6Alt with 3,000 duplicates and at most 6 alternatives per tuple. The
detailed database properties are listed in Table 4.4.

DBmax6Alt

overall tuples 113,000

overall alternatives 200,000

duplicate pairs 3,000

min. alternatives 1

max. alternatives 6

smallest tuple confidence 0.080025

biggest tuple confidence 1.0

smallest alternative confidence 0.08

biggest alternative confidence 1.0

Table 4.4.: Some properties of the database we executed subsequent experiments on.

4.3.3. The SSR technique configuration

Finally, we wanted to find good configurations for Blocking and the Sorted Neighborhood
Method in order to make the comparison of the different SSR techniques more significant:
After all, comparing a well-configured approach with an ill-configured one could distort the
results. In Appendix D, there are two tables holding information on the results of perform-
ing Blocking and the Sorted Neighborhood Method, e.g. the pairs completeness, reduction
ration and precision that were achieved using a certain key function. All alternatives (key
per alternative) with combined key values were used for SNM. For Blocking, we did not
combine key values, because it slows down Blocking (see Subsection 4.4.3).

key function title:prefix(3),
year:attribute

title:prefix(3),
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute title:attribute

window size 2 12 12 2 2 12

pairs
completeness

0.387666666667 0.759333333333 0.924666666667 0.889333333333 0.889 0.924666666667

reduction ratio 0.999976391051 0.999762498329 0.999767230456 0.999977709099 0.999977705026 0.999767230926

precision 0.007715783188 0.001502325373 0.001866625754 0.018747145417 0.018736695681 0.001866629522

average
duration (ms)

1,668.66 34,084.96 37,557.56 1,773.7 1,579.7 34,884.73

Table 4.5.: Sorted Neighborhood Method: configuration experiment series. The experi-
ments were executed using all alternatives with combined key values.

Table 4.5 shows the results for the Sorted Neighborhood Method. We started with the
concatenation of the first three characters of the title and the production year as key with
the minimal window size 2, which resulted in a rather low pairs completeness of just above
0.38 and a precision of less than 0.01. Increasing the window size to 12 improved the pairs
completeness significantly to over 0.75, decreased the precision even further and increased

48 4. Experiments

the average experiment duration by factor 20. Using the entire title instead of a three-
character prefix led to another improvement of the pairs completeness to over 0.92, slightly
increased reduction ratio, precision and duration. Reducing the window size to 2 at that
point, also reduced the pairs completeness a little to about 0.88 and the duration strongly
by more than factor 20, but at the same time increased the precision by the ten-fold. Using
the raw title only yielded very similar, but slightly worse results than using title and year
– with a window size of 2 as well as 12.

key function title:prefix(3),
year:attribute

title:prefix(8),
year:attribute

title:attribute,
year:attribute

title:attribute title:prefix(6) title:prefix(8)

pairs
completeness

0.539 0.465 0.384333333333 0.754333333333 0.889333333333 0.859

reduction ratio 0.999775037245 0.999998988949 0.999999819405 0.999999641002 0.999943811078 0.999981497056

precision 0.001125839157 0.216111541441 1 0.987347294939 0.007437244763 0.021814764964

average
duration (ms)

3,303.53 910.03 1,004.13 711.36 1,180.86 857

Table 4.6.: Blocking: configuration experiment series. The experiments were executed us-
ing all alternatives without combining key values.

To find a good key for Blocking, we made similar experiments. The results are presented
in Table 4.6. First, we tested the key composed of the three-character prefix of the title
plus the production year. Since the precision was very low, we tried a larger title prefix of
8 characters and the entire title as well. The pairs completeness decreased, while reduction
ratio and precision grew, when the title prefix did. And this makes sense, because tuples
are less likely assigned to the same block when they must agree on the first 8 (or all)
instead of 3 characters of their title. Although with the key composed of the full title and
the production year pairs completeness was only about 0.38, it is noteworthy that actually
a perfect precision, i.e. a precision of 1, could be achieved.
Using the raw title attribute alone as key improved the pairs completeness to over 0.75 and
reduced reduction ratio and precision a little. Now, the pairs completeness could easily be
improved at the expense of reduction ratio and precision by only using a prefix of the title:
the shorter the prefix, the better the pairs completeness.
With a title prefix of the length 6, the pairs completeness was over 0.88, which is comparable
to the result achieved by SNM with our chosen key and window size, but also with a worse
precision of less then 0.01.

We chose to use a key composed of the raw title and the production year for the Sorted
Neighborhood Method, because it led to a good pairs completeness and the best precision
in this experiment series. Regarding Blocking, we decided for the title prefix of the length
8 as key, because it led to a similar precision as the SNM variant just mentioned, and also
to a good pairs completeness of 0.859.

4.4. SSR experiments 49

4.4. SSR experiments

This section is devoted to the comparison of our implementations of the adapted SSR
variants presented in Chapter 3. We compare the different implementations in separate
subsections and explain which implementation we chose for Blocking and which for SNM
for the overall comparison in Subsection 4.4.5. To have well comparable results, we chose
implementations that seemed best for search space reduction in one single pass5.

4.4.1. Possible worlds experiments

There are only two variants of the multi-pass over possible worlds strategy, namely building
the most probable worlds and building highly dissimilar worlds. Our first experiments con-
cerned the Sorted Neighborhood Method and the results are visualised in Figure 4.3. For
more details see Appendix E. We tested building the 6 most probable worlds and achieved
a pairs completeness of 0.815 and a precision of roughly 0.02. Doubling the amount of
constructed worlds almost doubled the average duration, but had virtually no other effect
on the result. This corresponded to our expectations: Building twice as many worlds is
roughly twice as expensive, but since the constructed worlds only differ in very few tuple
alternatives, the result remains pretty much the same.
Next, we tried the other variant, building highly dissimilar worlds, with only 4 worlds and
observed a pairs completeness of about 0.88 and a precision of almost 0.015. Increasing
the number of different worlds increased the pairs completeness and decreased the pre-
cision slightly where the effect on the result got smaller for very additional world. The
average experiment duration increased steadily. Building 6 dissimilar worlds, i.e. the max-
imum number of different worlds, was better with combined key values and yielded a pairs
completeness of 0.889 and a precision of little more than 0.014.

0.82

0.84

0.86

0.88

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: possible worlds – 6 most probable worlds (SNM:PW–6MPW)
Sorted Neighborhood Method: possible worlds – 12 most probable worlds (SNM:PW–12MPW)
Sorted Neighborhood Method: possible worlds – 4 dissimilar worlds (SNM:PW–4DW)
Sorted Neighborhood Method: possible worlds – 5 dissimilar worlds (SNM:PW–5DW)
Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds (SNM:PW–6DW)
Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds – combined keys (SNM:PW–6DPW–CK)

1.4

1.6

1.8

2

2.2
·10−2

P
re

ci
si

on

0.5

1

1.5

·104

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.3.: Sorted Neighborhood Method: possible worlds experiment series.

5By single-pass SSR strategies we also mean the multi-pass over possible worlds strategy, although it is,
strictly speaking, no single-pass strategy.

50 4. Experiments

Similar results were achieved by the Blocking experiments, which are illustrated in Fig-
ure 4.4 and presented in more detail in Appendix F. Blocking on the 6 most probable
worlds was – again – slower than on 4 highly dissimilar worlds and resulted in a worse
pairs completeness. Furthermore, it was even worse w.r.t. the precision, if only slightly.
Each time we increased the number of dissimilar worlds, we observed an improved pairs
completeness and a (slightly) improved precision. Naturally, the experiments with more
dissimilar worlds also took more time.
Finally, we tried Blocking on 6 highly dissimilar worlds with an abbreviated title prefix of
length 7 to bring the precision down a little to the level of the corresponding SNM variant.
The result was a pairs completeness of 0.867, i.e. about 2 percents under the corresponding
SNM pairs completeness, at a precision of roughly 0.013 (0.014 with SNM).

0.8

0.85

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: possible worlds – 6 most probable worlds (B:PW–6MPW)
Blocking: possible worlds – 4 dissimilar worlds (B:PW–4DW)
Blocking: possible worlds – 5 dissimilar worlds (B:PW–5DW)
Blocking: possible worlds – 6 dissimilar worlds (B:PW–6DW)
Blocking: possible worlds – 6 dissimilar worlds 7 (B:PW–6DW7)
Blocking: possible worlds – 6 dissimilar worlds 7 – combined keys (B:PW–6DW7–CK)

1.4

1.6

1.8

2

2.2

·10−2

P
re

ci
si

on

4,000

6,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.4.: Blocking: possible worlds experiment series.

In summary, building dissimilar worlds was notably faster than building some of the most
probable worlds, while it also resulted in a comparable precision and a pairs complete-
ness that was more than 6 percent better for SNM and even over 8 percent better for
Blocking.

4.4.2. Key per tuple experiments

The detailed results of our key per tuple experiments are shown in Appendix G (SNM)
and Appendix H (Blocking). The results of the experiment series concerning the Sorted
Neighborhood Method are shown in Figure 4.5. We started with two deciding key per tuple
variants. Our initial experiment was using the most probable alternative (MPA) variant,
i.e. computing one key value from each tuple’s most probable alternative, and resulted in
a pairs completeness of almost 0.82 and a precision of about 0.02. Afterwards, we tried
the cry with the wolves (CWTW) variant, i.e. to combine the key values and use the most
probable one. The result was almost the same. We also tried the title attribute alone as
key for both variants instead of title plus production year, but this did not change the
result significantly either.

4.4. SSR experiments 51

The mediating variant we chose for our experiment used a key composed of the most
probable title and the expectancy value of the production year. And again, the results
remained practically unchanged, but when we finally used an eight-character prefix instead
of the entire title, pairs completeness and precision decreased.

0.76

0.78

0.8

0.82

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: key per tuple – most probable alternative – (SNM:KPT–MPA)
Sorted Neighborhood Method: key per tuple – most probable alternative – title (SNM:KPT–MPA–T)
Sorted Neighborhood Method: key per tuple – cry with the wolves (SNM:KPT–CWTW)
Sorted Neighborhood Method: key per tuple – cry with the wolves– title (SNM:KPT–CWTW–T)
Sorted Neighborhood Method: key per tuple – mediating – (SNM:KPT–M)
Sorted Neighborhood Method: key per tuple – mediating 8 (SNM:KPT–M8)

2.05

2.1

2.15

·10−2
P

re
ci

si
on

1,000

1,200

1,400

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.5.: Sorted Neighborhood Method: key per tuple experiment series.

As Figure 4.6 illustrates, the Blocking experiments returned similar results: Both the MPA
and the CWTW variants led to a pairs completeness between 0.77 and 0.78 and a precision
of about 0.02. For Blocking, we used a different mediating strategy where the key was a
concatenation of the title and the median of the production year instead of the expectancy
value. A pairs completeness of only 0.321 was the result, but the precision was once again
perfect. We tried to improve the pairs completeness by trimming the title subkey to 8 and
later to 3 characters. However, the pairs completeness did not even reach 0.50, before the
precision dropped to less then 0.002.

0.4

0.6

0.8

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: key per tuple – most probable alternative (B:KPT–MPA)
Blocking: key per tuple – cry with the wolves (B:KPT–CWTW)
Blocking: key per tuple – mediating – title year (B:KPT–M–TY)
Blocking: key per tuple – mediating 8 (B:KPT–M8)
Blocking: key per tuple – mediating 3 (B:KPT–M3)

0

0.5

1

P
re

ci
si

on

500

1,000

1,500

2,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.6.: Blocking: key per tuple experiment series.

It is hard to draw a meaningful comparison between the key per tuple variants discussed
above, since most of them achieved very similar results. The cheapest of the variants – and
arguably the most intuitive – is simply using the most probable alternatives to compute

52 4. Experiments

key values, and it worked nearly as well as any of the other variants, only a bit faster.
However, using CWTW tended to improve the pairs completeness slightly, and hence we
chose the CWTW variants for SNM and Blocking for the overall comparison.

4.4.3. Key per alternative experiments

Before starting the experiments to compare the different variants of the key per alterna-
tive strategy we conducted experiments concerning the question what effect combining
the key values has on the SSR result. We compared different variants with and with-
out combining key values for both the Sorted Neighborhood Method (Appendix I) and
Blocking (Appendix J).
First, we tried the 2 most probable alternatives with and without combined key values
for SNM, but could not make out any noteworthy differences in the results apart from a
small acceleration. We guessed that combining key values might have had so little effect,
since the key was composed of the entire title and the production year and hence there
simply were barely any equal key values to combine. So we trimmed the key to a three-
character title prefix concatenated with the production year and repeated the experiments:
Pairs completeness and precision decreased considerably, but the differences between the
variant using combined keys and the other variant were again negligible. Unsurpris-
ingly, pairs completeness, reduction ratio and precision were exactly the same when using
all alternatives.
Blocking delivered different results, though: Combining key values led to better pairs
completeness and precision with little negative effect on the average duration. Using all
alternatives with combined key values only slowed the procedure down.
In conclusion, combining key values led to slightly better pairs completeness – and in case
of Blocking better precision – and was faster for SNM while slower for Blocking. For this
reason, we chose to combine key values for all key per alternative variants apart from
Blocking with all alternatives.

0.84

0.86

0.88

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: key per alternative – 2 most probable alternatives (SNM:KPA–2MPA)
Sorted Neighborhood Method: key per alternative – 4 most probable alternatives (SNM:KPA–4MPA)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Sorted Neighborhood Method: key per alternative – most probable and 30,000 remaining alternatives (SNM:KPA–MPA30kRA)
Sorted Neighborhood Method: key per alternative – threshold 0.1 (SNM:KPA–T0.1)
Sorted Neighborhood Method: key per alternative – threshold 0.3 (SNM:KPA–T0.3)

0

0.01

0.02

P
re

ci
si

on

0

500

1,000

1,500

2,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.7.: Sorted Neighborhood Method: key per alternative experiment series.

4.4. SSR experiments 53

In Appendix M, detailed information about our SNM key per alternative experiments can
be found. Figure 4.7 also illustrates the results. All our key per alternative variants use
the most probable key value of each tuple, but there are different approaches to select ad-
ditional key values. We started the experiment series with variants using the 2 and 4 most
probable as well as all alternatives per tuple. The pairs completeness ranged from roughly
0.87 with 2 alternatives and a precision of over 0.021 to almost 0.89 with all alternatives
and a precision of nearly 0.019.
After that, we tried using the 30,000 most probable tuple alternatives in the database
remaining after the most probable alternatives had already been chosen. This turned out
to be even slower than using all alternatives, probably because sorting the list of remaining
alternatives by the confidence is quite expensive. Another way to choose remaining alter-
natives not on tuple, but on database level is to select only alternatives with a confidence
exceeding a certain threshold value. A threshold of 0.1 yielded a result comparable to using
the 30,000 most probable remaining tuple alternatives, but it was significantly faster – even
faster than using only the 2 most probable alternatives per tuple. Increasing the threshold
reduced pairs completeness and average duration, but led to a higher precision.

0.78

0.8

0.82

0.84

0.86

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: key per alternative – 2 most probable alternatives (B:KPA–2MPA)
Blocking: key per alternative – 4 most probable alternatives (B:KPA–4MPA)
Blocking: key per alternative – all alternatives (B:KPA–AA)
Blocking: key per alternative – most probable and 30,000 remaining alternatives (B:KPA–MPA30kRA)
Blocking: key per alternative – threshold 0.1 (B:KPA–T0.1)
Blocking: key per alternative – threshold 0.3 (B:KPA–T0.3)

2.16

2.17

2.18

·10−2

P
re

ci
si

on

800

1,000

1,200

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.8.: Blocking: key per alternative experiment series.

An overview over the results of the Blocking experiment series is given in Figure 4.8. More
details are presented in Appendix L.
The best results in terms of pairs completeness for the Sorted Neighborhood Method as
well as for Blocking were achieved using all alternatives. The other SNM variants of this
approach all showed a somewhat lower pairs completeness at a higher precision, while the
other Blocking variants even had worse precision and average duration.

4.4.4. Probabilistic key experiments

In order to find out what results could be achieved using probabilistic key values, we
repeated the SNM configuration experiment series described in Section 4.3.3 with proba-
bilistic key values. The results are shown in Figure 4.9. For more details see Appendix M.

54 4. Experiments

Using a title prefix and the production year as key and the minimal window size proved
to be very ineffective with a pairs completeness of only 0.36 and a precision smaller than
0.01. Increasing the window size to 12 led to a ten-fold increase of the experiment’s average
duration, while the precision decreased by factor 10 and the pairs completeness roughly
doubled and thus was still far below 0.8.
Choosing the entire title concatenated with the production year as key and the window
size 2 resulted in a pairs completeness of more than 0.8 and a precision over 0.02 where the
average duration was comparable to using the title prefix and year. Setting the window size
to 12 again had the same effect on average duration and precision as before, but increased
the pairs completeness only by about 6 percent. We also tried the title alone as key, but
the results were essentially the same.

0.4

0.6

0.8

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: probabilistic keys – 3 (SNM-W2:PK3)
Sorted Neighborhood Method: probabilistic keys – 3 (SNM-W12:PK3)
Sorted Neighborhood Method: probabilistic keys (SNM-W2:PK)
Sorted Neighborhood Method: probabilistic keys (SNM-W12:PK)
Sorted Neighborhood Method: probabilistic keys – title (SNM-W2:PK–T)
Sorted Neighborhood Method: probabilistic keys – title (SNM-W12:PK–T)

0

1

2

·10−2

P
re

ci
si

on

0

0.5

1

1.5

2

·104
A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.9.: Sorted Neighborhood Method: probabilistic key experiments.

Regarding the probabilistic key approach, we decided to use the same configuration as for
the certain key strategies: the minimal window size and a key composed of the entire title
and production year. We were able to achieve a pairs completeness of almost 0.81 at a
precision of more than 0.02.

4.4.5. Experimental results

For a better evaluation of all the different SSR variants discussed above, we chose the best
of every SSR strategy and made a direct comparison. Figure 4.10 illustrates the results,
which are presented in more detail in Appendix N.
Regarding the Sorted Neighborhood Method, the best pairs completeness was achieved
using all alternatives with the key per alternative strategy at a pretty high precision and
a rather low experiment runtime. The same variant was clearly the best for Blocking,
because it led to the best pairs completeness, precision and average duration.
In terms of pairs completeness, building highly dissimilar worlds was comparable to using
all alternatives for both SSR techniques, but the precision was slightly lower and the
average execution time was far worse. Although the key per tuple variants had an even

4.4. SSR experiments 55

smaller average duration then using all alternatives, the precision was slightly and the
pairs completeness by far smaller than with building highly dissimilar worlds. Finally, the
probabilistic key approach did not work well at all in comparison to the other variants; the
pairs completeness was the worst in the experiment series for SNM.

0.8

0.85

0.9

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds (SNM:PW–6DW)
Blocking: possible worlds – 6 dissimilar worlds (B:PW–6DW)
Sorted Neighborhood Method: key per tuple – cry with the wolves (SNM:KPT–CWTW)
Blocking: key per tuple – cry with the wolves (B:KPT–CWTW)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)
Sorted Neighborhood Method: probabilistic keys (SNM:PK)

1.4

1.6

1.8

2

2.2

·10−2
P

re
ci

si
on

2,000

4,000

6,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

Figure 4.10.: The best adapted SSR variants in comparison.

In summary, using all alternatives is rather fast and results in a very good pairs complete-
ness with an acceptable precision. Furthermore, we conclude that the Sorted Neighbor-
hood Method seemingly outperforms Blocking in terms of pure pairs completeness. So, for
single-pass search space reduction, SNM might be the better choice. With Blocking, on
the other hand, an astonishingly high precision can be yielded – given that an appropriate
key is available. As listed in Table 4.6, Blocking with all alternatives reached over 0.75

pairs completeness with a precision of over 0.98. Hence, an even better result than with
the Sorted Neighborhood Method can perhaps be delivered by multi-pass Blocking, when
more than one key is known by which a result with high precision can be achieved.
Since we did not do much optimisation of key design or window size, we expect the dis-
cussed implementations can all be improved further, for example, by phonetic encoding or
other key functions or slightly different window sizes. Hence, our conclusions should only
be considered tendencies as to which implementation might achieve the best result.

Comparison with Bigram Indexing

According to [BCC03], Bigram Indexing can lead to significantly improved pairs com-
pleteness and precision in comparison to Blocking or the Sorted Neighborhood Method.
To verify this statement, we conducted further experiments: Appendix O shows the re-
sults of Bigram Indexing SSR in combination with the all alternatives variant. Note that
we had to reduce the database size from 200,000 to 50,000 tuple alternatives, because
our testing machine simply ran out of memory when executing Bigram Indexing on the
large database. We performed the evaluation experiments of Blocking and SNM again
on the smaller database (see Appendix P). The results were similar to the results on the

56 4. Experiments

larger database.
We tested several combinations of key design and threshold in our Bigram Indexing ex-
periments and observed a pairs completeness of 0.972 with a precision of more than 0.18

with a twelve-character title prefix as key and a threshold of 0.7. Using a threshold of 0.8
decreased the pairs completeness to less than 0.93, but increased the precision to over 0.30.
It should also be mentioned that Bigram Indexing in our experiments took a few hundred
times more time than any of the Blocking or SNM variants. We assume the actual average
duration overhead of Bigram Indexing had been far less extreme, if our testing machine
had been equipped with more memory.
Based on these experimental results we assume Bigram Indexing to have much more po-
tential in terms of pairs completeness and precision. But performing Bigram Indexing
also appears to require much more memory and seems to be much slower than performing
Blocking or the Sorted Neighborhood Method.

57

5. Summary and future prospects

Duplicate detection is a computationally very expensive task that is a crucial part of the
data integration process. Search space reduction techniques are used today to minimise
the computational costs of duplicate detection in the process of certain data integration,
but there are no SSR techniques available for the integration of probabilistic data yet.
In Chapter 2, we presented traditional probabilistic databases, lineage databases and
uncertainty-lineage databases, described the process of certain data integration and went
into detail with search space reduction where our focus lay on the SSR techniques Blocking
and the Sorted Neighborhood Method.
We investigated how SSR techniques used in certain data could be adapted to the inte-
gration of probabilistic data in Chapter 3 by the example of the SSR techniques Blocking
and the Sorted Neighborhood Method. In detail, we discussed three SSR strategies for
probabilistic data using certain key values, namely multi-pass over possible worlds, key per
tuple and key per alternative, and covered one SNM variant using probabilistic key values.
We generated probabilistic test data from a certain data movie database, implemented
our SSR strategies and then tested them on the generated (synthetic) probabilistic data.
Chapter 4 covered the description of our testing framework and our test data. Further-
more, the achieved results were compared by the metrics pairs completeness, reduction
ratio and precision as well as by their respective runtimes.
The comparison results indicated that the key per alternative strategy outperforms the
other strategies, because it resulted in the best pairs completeness with an acceptable
precision and was comparatively fast. Besides, the Sorted Neighborhood Method seems
to achieve a higher pairs completeness, whereas a much higher precision seems achievable
with Blocking. The best results could be achieved with Bigram Indexing, which appeared
to have a longer runtime and much higher memory requirements.

One of the major obstacles we encountered was the total lack of standardised probabilistic
benchmarking data. Although we were able to draw some conclusions from our experiments
on the generated probabilistic data, it remains to be seen whether similar results can be
achieved in a real scenario or what (absolute) results, e.g. what pairs completeness, can
be achieved at all. Following studies may consider search space reduction in the context of
duplicate detection and investigate to what extent the performance of duplicate detection
and the quality of its result are affected. For example, it could be investigated whether the
result of the duplicate detection can be improved by extending it to its transitive closure.
Furthermore, future work may focus on other SSR techniques for probabilistic data, for ex-
ample a Blocking variant using probabilistic key values or different multi-pass approaches.

58 5. Summary and future prospects

The possibilities of using clustering techniques for search space reduction in probabilistic
data have also not been dealt with by us and may be investigated further.

59

Appendix

A. Duration experiment series

0 20 40 60 80 100

450

500

550

600

run
B:KPT-MPA - first experiment

m
s

tolerance range
duration
average duration
average duration without outlier

0 20 40 60 80 100

450

500

550

run
B:KPT-MPA - second experiment

m
s

tolerance range
duration
average duration
average duration without outlier

0 20 40 60 80 100

450

500

550

run
B:KPT-MPA - third experiment

m
s

tolerance range
duration
average duration
average duration without outlier

0 20 40 60 80 100

450

500

550

run
B:KPT-MPA - fourth experiment

m
s

tolerance range
duration
average duration
average duration without outlier

60 Appendix

B. Database size experiment series

0

2

4

·104

GC time, PS Scavenge

m
s

DB100k

DB200k

DB300k

DB400k

0

1

2

·104

GC time, PS MarkSweep

m
s

DB100k

DB200k

DB300k

DB400k

Used SSR variants

Sorted Neighborhood Method: possible worlds – dissimilar worlds (SNM:PW–DW)

Blocking: possible worlds – dissimilar worlds (B:PW–DW)

Sorted Neighborhood Method: key per tuple – most probable alternative (SNM:KPT–MPA)

Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)

Blocking: key per alternative – all alternatives (B:KPA–AA)

C. Database configuration experiment series 61

C. Database configuration experiment series

DB3k
DP

DB30
kD

P

DB50
kD

P

DBmax
6A

lt

DBmax
12
Alt

0.4

0.5

0.6

0.7

0.8

Pairs completeness

Sorted Neighborhood Method: possible worlds – dissimilar worlds (SNM:PW–DW)
Blocking: possible worlds – dissimilar worlds (B:PW–DW)
Sorted Neighborhood Method: key per tuple – most probable alternative (SNM:KPT–MPA)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)

DB3k
DP

DB30
kD

P

DB50
kD

P

DBmax
6A

lt

DBmax
12
Alt

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

Reduction ratio

Sorted Neighborhood Method: possible worlds – dissimilar worlds (SNM:PW–DW)
Blocking: possible worlds – dissimilar worlds (B:PW–DW)
Sorted Neighborhood Method: key per tuple – most probable alternative (SNM:KPT–MPA)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)

62 Appendix

DB3k
DP

DB30
kD

P

DB50
kD

P

DBmax
6A

lt

DBmax
12
Alt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Precision

Sorted Neighborhood Method: possible worlds – dissimilar worlds (SNM:PW–DW)
Blocking: possible worlds – dissimilar worlds (B:PW–DW)
Sorted Neighborhood Method: key per tuple – most probable alternative (SNM:KPT–MPA)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)

D. SSR technique configuration experiment series 63

D. SSR technique configuration experiment series

key function title:prefix(3),
year:attribute

title:prefix(3),
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute title:attribute

window size 2 12 12 2 2 12

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 150,730 1,516,316 1,486,104 142,315 142,341 1,486,101

rejections 6,384,292,770 6,382,927,184 6,382,957,396 6,384,301,185 6,384,301,159 6,382,957,399

pairs
completeness

0.387666666667 0.759333333333 0.924666666667 0.889333333333 0.889 0.924666666667

reduction ratio 0.999976391051 0.999762498329 0.999767230456 0.999977709099 0.999977705026 0.999767230926

precision 0.007715783188 0.001502325373 0.001866625754 0.018747145417 0.018736695681 0.001866629522

average
duration (ms)

1,668.66 34,084.96 37,557.56 1,773.7 1,579.7 34,884.73

Sorted Neighborhood Method

key function title:prefix(3),
year:attribute

title:prefix(8),
year:attribute

title:attribute,
year:attribute

title:attribute title:prefix(6) title:prefix(8)

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 1,436,262 6,455 1,153 2,292 358,735 118,131

rejections 6,383,007,238 6,384,437,045 6,384,442,347 6,384,441,208 6,384,084,765 6,384,325,369

pairs
completeness

0.539 0.465 0.384333333333 0.754333333333 0.889333333333 0.859

reduction ratio 0.999775037245 0.999998988949 0.999999819405 0.999999641002 0.999943811078 0.999981497056

precision 0.001125839157 0.216111541441 1 0.987347294939 0.007437244763 0.021814764964

average
duration (ms)

3,303.53 910.03 1,004.13 711.36 1,180.86 857

Blocking

64 Appendix

E. SNM: possible worlds experiment series

0.82

0.84

0.86

0.88

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: possible worlds – 6 most probable worlds (SNM:PW–6MPW)
Sorted Neighborhood Method: possible worlds – 12 most probable worlds (SNM:PW–12MPW)
Sorted Neighborhood Method: possible worlds – 4 dissimilar worlds (SNM:PW–4DW)
Sorted Neighborhood Method: possible worlds – 5 dissimilar worlds (SNM:PW–5DW)
Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds (SNM:PW–6DW)
Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds – combined keys (SNM:PW–6DPW–CK)

1.4

1.6

1.8

2

2.2
·10−2

P
re

ci
si

on

0.99997

0.999975

0.99998

R
ed

u
ct

io
n

ra
ti

o

0.5

1

1.5

·104

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:P
W
–6
M
PW

SN
M
:P
W
–1
2M

PW

SN
M
:P
W
–4
DW

SN
M
:P
W
–5
DW

SN
M
:P
W
–6
DW

SN
M
:P
W
–6
DP

W
–C
K

key function title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

window size 2 2 2 2 2 2

combined keys yes yes no no no yes

other
information

6 worlds 12 worlds 4 worlds 5 worlds 6 worlds 6 worlds

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 113,006 113,009 178,171 185,803 189,454 188,208

rejections 6,384,330,494 6,384,330,491 6,384,265,329 6,384,257,697 6,384,254,046 6,384,255,292

false
acceptances

110,561 110,564 175,518 183,140 186,787 185,540

false rejections 555 555 347 337 333 332

true
acceptances

2,445 2,445 2,653 2,663 2,667 2,668

true rejections 6,384,329,939 6,384,329,936 6,384,264,982 6,384,257,360 6,384,253,713 6,384,254,960

pairs
completeness

0.815 0.815 0.884333333333 0.887666666667 0.889 0.889333333333

reduction ratio 0.999982299789 0.999982299319 0.999972092947 0.999970897542 0.999970325683 0.999970520845

precision 0.021636019326 0.021635444965 0.014890189762 0.0143323843 0.014077295808 0.014175805492

average
duration (ms)

8,720.85 15,408.82 5,217.4 6,253.8 7,377.94 7,403.68

F. Blocking: possible worlds experiment series 65

F. Blocking: possible worlds experiment series

0.8

0.85

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: possible worlds – 6 most probable worlds (B:PW–6MPW)
Blocking: possible worlds – 4 dissimilar worlds (B:PW–4DW)
Blocking: possible worlds – 5 dissimilar worlds (B:PW–5DW)
Blocking: possible worlds – 6 dissimilar worlds (B:PW–6DW)
Blocking: possible worlds – 6 dissimilar worlds 7 (B:PW–6DW7)
Blocking: possible worlds – 6 dissimilar worlds 7 – combined keys (B:PW–6DW7–CK)

1.4

1.6

1.8

2

2.2

·10−2

P
re

ci
si

on

0.99997

0.999975

0.99998

R
ed

u
ct

io
n

ra
ti

o

4,000

6,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

B:
PW

–6
M
PW

B:
PW

–4
DW

B:
PW

–5
DW

B:
PW

–6
DW

B:
PW

–6
DW

7

B:
PW

–6
DW

7–
CK

key function title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(7) title:prefix(7)

combined keys no no no no no yes

other
information

6 worlds 4 worlds 5 worlds 6 worlds 6 worlds 6 worlds

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 109,151 117,004 117,402 117,617 196,634 195,467

rejections 6,384,334,349 6,384,326,496 6,384,326,098 6,384,325,883 6,384,246,866 6,384,248,033

false
acceptances

106,814 114,475 114,852 115,062 194,033 192,891

false rejections 663 471 450 445 399 424

true
acceptances

2,337 2,529 2,550 2,555 2,601 2,576

true rejections 6,384,333,686 6,384,326,025 6,384,325,648 6,384,325,438 6,384,246,467 6,384,247,609

pairs
completeness

0.779 0.843 0.85 0.851666666667 0.867 0.858666666667

reduction ratio 0.9999829036 0.999981673579 0.99998161124 0.999981577564 0.999969201074 0.999969383863

precision 0.021410706269 0.021614645653 0.021720243267 0.021723050239 0.013227620859 0.013178695125

average
duration (ms)

6,326.57 3,358.29 4,176.43 4,921.91 7,252.98 7,145.17

66 Appendix

G. SNM: key per tuple experiment series

0.76

0.78

0.8

0.82

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: key per tuple – most probable alternative (SNM:KPT–MPA)
Sorted Neighborhood Method: key per tuple – most probable alternative – title (SNM:KPT–MPA–T)
Sorted Neighborhood Method: key per tuple – cry with the wolves (SNM:KPT–CWTW)
Sorted Neighborhood Method: key per tuple – cry with the wolves – title (SNM:KPT–CWTW–T)
Sorted Neighborhood Method: key per tuple – mediating – (SNM:KPT–M)
Sorted Neighborhood Method: key per tuple – mediating 8 (SNM:KPT–M8)

2.05

2.1

2.15

·10−2

P
re

ci
si

on

0.8

0.9

1

1.1

1.2

R
ed

u
ct

io
n

ra
ti

o

1,000

1,200

1,400

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:K
PT

–M
PA

SN
M
:K
PT

–M
PA

–T

SN
M
:K
PT

–C
W
TW

SN
M
:K
PT

–C
W
TW

–T

SN
M
:K
PT

–M

SN
M
:K
PT

–M
8

key function title:attribute,
year:attribute

title:attribute title:attribute,
year:attribute

title:attribute title:attribute,
year:attribute

title:prefix(8),
year:attribute

window size 2 2 2 2 2 2

combined keys no no yes yes title:yes title:yes

other
information

title:CWTW,
year:EXP

title:CWTW,
year:EXP

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 112,999 112,999 112,999 112,999 112,999 112,997

rejections 6,384,330,501 6,384,330,501 6,384,330,501 6,384,330,501 6,384,330,501 6,384,330,503

false
acceptances

110,553 110,553 110,554 110,550 110,559 110,706

false rejections 554 554 555 551 560 709

true
acceptances

2,446 2,446 2,445 2,449 2,440 2,291

true rejections 6,384,329,947 6,384,329,947 6,384,329,946 6,384,329,950 6,384,329,941 6,384,329,794

pairs
completeness

0.815333333333 0.815333333333 0.815 0.816333333333 0.813333333333 0.763666666667

reduction ratio 0.999982300885 0.999982300885 0.999982300885 0.999982300885 0.999982300885 0.999982301198

precision 0.021646209258 0.021646209258 0.021637359623 0.021672758166 0.021593111443 0.020274874554

average
duration (ms)

976.57 871.45 1,360.79 1,142.77 1,171.66 1,155.55

H. Blocking: key per tuple experiment series 67

H. Blocking: key per tuple experiment series

0.4

0.6

0.8

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: key per tuple – most probable alternative (B:KPT–MPA)
Blocking: key per tuple – cry with the wolves (B:KPT–CWTW)
Blocking: key per tuple – mediating – title year (B:KPT–M–TY)
Blocking: key per tuple – mediating 8 (B:KPT–M8)
Blocking: key per tuple – mediating 3 (B:KPT–M3)

0

0.5

1

P
re

ci
si

on

0.99985

0.9999

0.99995

1

R
ed

u
ct

io
n

ra
ti

o

500

1,000

1,500

2,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

B:
KP

T–
M
PA

B:
KP

T–
CW

TW

B:
KP

T–
M
–T
Y

B:
KP

T–
M
8

B:
KP

T–
M
3

key function title:prefix(8) title:prefix(8) title:attribute,
year:attribute

title:prefix(8),
year:attribute

title:prefix(3),
year:attribute

combined keys no yes title:yes title:yes title:yes

other
information

title:CWTW,
year:MEDIAN

title:CWTW,
year:MEDIAN

title:CWTW,
year:MEDIAN

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 107,124 109,152 963 4,652 916,993

rejections 6,384,336,376 6,384,334,348 6,384,442,537 6,384,438,848 6,383,526,507

false
acceptances

104,807 106,815 0 3,486 915,611

false rejections 683 663 2,037 1,834 1,618

true
acceptances

2,317 2,337 963 1,166 1,382

true rejections 6,384,335,693 6,384,333,685 6,384,440,500 6,384,437,014 6,383,524,889

pairs
completeness

0.772333333333 0.779 0.321 0.388666666667 0.460666666667

reduction ratio 0.99998322109 0.999982903443 0.999999849165 0.999999271354 0.999856370724

precision 0.021629140062 0.021410510114 1 0.250644883921 0.001507099836

average
duration (ms)

590.61 844.13 803.39 801.73 2,205.43

68 Appendix

I. SNM: key per alternative – combined keys experiment
series

0

0.2

0.4

0.6

0.8

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: key per alternative – 2 most probable alternatives (SNM:KPA–2MPA)
Sorted Neighborhood Method: key per alternative – 2 most probable alternatives – combined keys (SNM:KPA–2MPA–CK)
Sorted Neighborhood Method: key per alternative – 2 most probable alternatives 3 (SNM:KPA–2MPA3)
Sorted Neighborhood Method: key per alternative – 2 most probable alternatives 3 – combined keys (SNM:KPA–2MPA3–CK)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Sorted Neighborhood Method: key per alternative – all alternatives – combined keys (SNM:KPA–AACK)

0

0.01

0.02

P
re

ci
si

on

0.999978

0.999979

0.99998

0.999981

R
ed

u
ct

io
n

ra
ti

o

0

500

1,000

1,500

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:K
PA

–2
M
PA

SN
M
:K
PA

–2
M
PA

–C
K

SN
M
:K
PA

–2
M
PA

3

SN
M
:K
PA

–2
M
PA

3–
CK

SN
M
:K
PA

–A
A

SN
M
:K
PA

–A
AC

K

key function title:attribute,
year:attribute

title:attribute,
year:attribute

title:prefix(3) title:prefix(3) title:attribute,
year:attribute

title:attribute,
year:attribute

window size 2 2 2 2 2 2

combined keys no yes no yes no yes

other
information

2 alternatives 2 alternatives 2 alternatives 2 alternatives

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 125,660 126,539 121,331 127,178 142,314 142,314

rejections 6,384,317,840 6,384,316,961 6,384,322,169 6,384,316,322 6,384,301,186 6,384,301,186

false
acceptances

123,060 123,930 121,127 126,976 139,646 139,646

false rejections 400 391 2,796 2,798 332 332

true
acceptances

2,600 2,609 204 202 2,668 2,668

true rejections 6,384,317,440 6,384,316,570 6,384,319,373 6,384,313,524 6,384,300,854 6,384,300,854

pairs
completeness

0.866666666667 0.869666666667 0.068 0.067333333333 0.889333333333 0.889333333333

reduction ratio 0.999980317783 0.999980180105 0.999980995838 0.999980080018 0.999977709255 0.999977709255

precision 0.020690752825 0.020618149345 0.001681351015 0.001588325025 0.018747277148 0.018747277148

average
duration (ms)

1,561.32 1,554.6 1,418.81 1,316.08 1,864.87 1,834.87

J. Blocking: key per alternative – combined keys experiment series 69

J. Blocking: key per alternative – combined keys experiment
series

0.83

0.84

0.85

0.86

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: key per alternative – 2 most probable alternatives – combined keys (B:KPA–2MKPA–CK)
Blocking: key per alternative – 2 most probable alternatives (B:KPA–2MPA)
Blocking: key per alternative – 4 most probable alternatives – combined keys (B:KPA–4MKPA–CK)
Blocking: key per alternative – 4 most probable alternatives (B:KPA–4MPA)
Blocking: key per alternative – all alternatives – combined keys (B:KPA–AA–CK)
Blocking: key per alternative – all alternatives (B:KPA–AA)

2.16

2.17

2.18

·10−2

P
re

ci
si

on

0.8

0.9

1

1.1

1.2

R
ed

u
ct

io
n

ra
ti

o

850

900

A
ve

ra
ge

d
u
ra

ti
on

B:
KP

A–
2M

KP
A–

CK

B:
KP

A–
2M

PA

B:
KP

A–
4M

KP
A–

CK

B:
KP

A–
4M

PA

B:
KP

A–
AA

–C
K

B:
KP

A–
AA

key function title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8)

combined keys yes no yes no yes no

other
information

2 alternatives 2 alternatives 4 alternatives 4 alternatives

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 115,725 114,609 117,838 117,578 118,132 118,132

rejections 6,384,327,775 6,384,328,891 6,384,325,662 6,384,325,922 6,384,325,368 6,384,325,368

false
acceptances

113,221 112,138 115,272 115,024 115,555 115,555

false rejections 496 529 434 446 423 423

true
acceptances

2,504 2,471 2,566 2,554 2,577 2,577

true rejections 6,384,327,279 6,384,328,362 6,384,325,228 6,384,325,476 6,384,324,945 6,384,324,945

pairs
completeness

0.834666666667 0.823666666667 0.855333333333 0.851333333333 0.859 0.859

reduction ratio 0.99998187391 0.999982048709 0.999981542949 0.999981583673 0.999981496899 0.999981496899

precision 0.0216375027 0.021560261411 0.021775658107 0.021721750668 0.0218145803 0.0218145803

average
duration (ms)

915.45 903.28 934.63 932.29 892.66 843.7

70 Appendix

K. SNM: key per alternative experiment series

0.84

0.86

0.88

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: key per alternative – 2 most probable alternatives (SNM:KPA–2MPA)
Sorted Neighborhood Method: key per alternative – 4 most probable alternatives (SNM:KPA–4MPA)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Sorted Neighborhood Method: key per alternative – most probable and 30,000 remaining alternatives (SNM:KPA–MPA30kRA)
Sorted Neighborhood Method: key per alternative – threshold 0.1 (SNM:KPA–T0.1)
Sorted Neighborhood Method: key per alternative – threshold 0.3 (SNM:KPA–T0.3)

0

0.01

0.02

P
re

ci
si

on

0.999978

0.99998

0.999982

R
ed

u
ct

io
n

ra
ti

o

0

500

1,000

1,500

2,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:K
PA

–2
M
PA

SN
M
:K
PA

–4
M
PA

SN
M
:K
PA

–A
A

SN
M
:K
PA

–M
PA

30
kR

A

SN
M
:K
PA

–T
0.1

SN
M
:K
PA

–T
0.3

key function title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

window size 2 2 2 2 2 2

combined keys yes yes yes yes yes yes

other
information

2 alternatives 4 alternatives 30,000 remaining
alternatives

threshold = 0.1 threshold = 0.3

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 126,539 139,388 142,314 126,012 123,925 115,129

rejections 6,384,316,961 6,384,304,112 6,384,301,186 6,384,317,488 6,384,319,575 6,384,328,371

false
acceptances

123,930 136,730 139,646 123,412 121,340 112,643

false rejections 391 342 332 400 415 514

true
acceptances

2,609 2,658 2,668 2,600 2,585 2,486

true rejections 6,384,316,570 6,384,303,770 6,384,300,854 6,384,317,088 6,384,319,160 6,384,327,857

pairs
completeness

0.869666666667 0.886 0.889333333333 0.866666666667 0.861666666667 0.828666666667

reduction ratio 0.999980180105 0.999978167557 0.999977709255 0.999980262649 0.999980589538 0.999981967262

precision 0.020618149345 0.019069073378 0.018747277148 0.020632955592 0.020859390761 0.021593169401

average
duration (ms)

1,554.6 1,810.63 1,834.87 2,041.66 1,501.14 1,384.75

L. Blocking: key per alternative experiment series 71

L. Blocking: key per alternative experiment series

0.78

0.8

0.82

0.84

0.86

P
ai

rs
co

m
p
le

te
n
es

s

Blocking: key per alternative – 2 most probable alternatives (B:KPA–2MPA)
Blocking: key per alternative – 4 most probable alternatives (B:KPA–4MPA)
Blocking: key per alternative – all alternatives (B:KPA–AA)
Blocking: key per alternative – most probable and 30,000 remaining alternatives (B:KPA–MPA30kRA)
Blocking: key per alternative – threshold 0.1 (B:KPA–T0.1)
Blocking: key per alternative – threshold 0.3 (B:KPA–T0.3)

2.16

2.17

2.18

·10−2

P
re

ci
si

on

0.8

0.9

1

1.1

1.2

R
ed

u
ct

io
n

ra
ti

o

800

1,000

1,200

A
ve

ra
ge

d
u
ra

ti
on

B:
KP

A–
2M

PA

B:
KP

A–
4M

PA

B:
KP

A–
AA

B:
KP

A–
M
PA

30
kR

A

B:
KP

A–
T0
.1

B:
KP

A–
T0
.3

key function title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8) title:prefix(8)

combined keys no no no no no no

other
information

2 alternatives 4 alternatives 30,000 remaining
alternatives

threshold = 0.1 threshold = 0.3

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 114,609 117,578 118,132 114,015 113,593 108,794

rejections 6,384,328,891 6,384,325,922 6,384,325,368 6,384,329,485 6,384,329,907 6,384,334,706

false
acceptances

112,138 115,024 115,555 111,554 111,139 106,442

false rejections 529 446 423 539 546 648

true
acceptances

2,471 2,554 2,577 2,461 2,454 2,352

true rejections 6,384,328,362 6,384,325,476 6,384,324,945 6,384,328,946 6,384,329,361 6,384,334,058

pairs
completeness

0.823666666667 0.851333333333 0.859 0.820333333333 0.818 0.784

reduction ratio 0.999982048709 0.999981583673 0.999981496899 0.999982141748 0.999982207846 0.999982959517

precision 0.021560261411 0.021721750668 0.0218145803 0.021584879183 0.021603443874 0.021618839274

average
duration (ms)

903.28 932.29 843.7 1,321.69 898.91 852.26

72 Appendix

M. SNM: probabilistic keys experiment series

0.4

0.6

0.8

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: probabilistic keys – 3 (SNM-W2:PK3)
Sorted Neighborhood Method: probabilistic keys – 3 (SNM-W12:PK3)
Sorted Neighborhood Method: probabilistic keys (SNM-W2:PK)
Sorted Neighborhood Method: probabilistic keys (SNM-W12:PK)
Sorted Neighborhood Method: probabilistic keys – title (SNM-W2:PK–T)
Sorted Neighborhood Method: probabilistic keys – title (SNM-W12:PK–T)

0

1

2

·10−2

P
re

ci
si

on

0.9998

0.99985

0.9999

0.99995

1

R
ed

u
ct

io
n

ra
ti

o

0

0.5

1

1.5

2

·104

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
–W

2:P
K3

SN
M
–W

12
:P
K3

SN
M
–W

2:P
K

SN
M
–W

12
:P
K

SN
M
–W

2:P
K–

T

SN
M
–W

12
:P
K–

T

key function title:prefix(3),
year:attribute

title:prefix(3),
year:attribute

title:attribute,
year:attribute

title:attribute,
year:attribute

title:attribute title:attribute

window size 2 12 2 12 2 12

combined keys yes yes yes yes yes yes

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 112,999 1,242,669 112,998 1,242,666 112,998 1,242,665

rejections 6,384,330,501 6,383,200,831 6,384,330,502 6,383,200,834 6,384,330,502 6,383,200,835

false
acceptances

111,919 1,240,507 110,575 1,240,065 110,578 1,240,064

false rejections 1,920 838 577 399 580 399

true
acceptances

1,080 2,162 2,423 2,601 2,420 2,601

true rejections 6,384,328,581 6,383,199,993 6,384,329,925 6,383,200,435 6,384,329,922 6,383,200,436

pairs
completeness

0.36 0.720666666667 0.807666666667 0.867 0.806666666667 0.867

reduction ratio 0.999982300885 0.999805359856 0.999982301042 0.999805360326 0.999982301042 0.999805360483

precision 0.009557606704 0.0017398036 0.021442857396 0.002093080522 0.021416308253 0.002093082206

average
duration (ms)

1,777 19,946.67 1,859.47 19,292.57 1,657.53 19,161.43

N. Evaluation experiment series 73

N. Evaluation experiment series

0.8

0.85

0.9

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds (SNM:PW–6DW)
Blocking: possible worlds – 6 dissimilar worlds (B:PW–6DW)
Sorted Neighborhood Method: key per tuple – cry with the wolves (SNM:KPT–CWTW)
Blocking: key per tuple – cry with the wolves (B:KPT–CWTW)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)
Sorted Neighborhood Method: probabilistic keys (SNM:PK)

1.4

1.6

1.8

2

2.2

·10−2

P
re

ci
si

on

0.99997

0.999975

0.99998

R
ed

u
ct

io
n

ra
ti

o

2,000

4,000

6,000

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:P
W
–6
DW

B:
PW

–6
DW

SN
M
:K
PT

–C
W
TW

B:
KP

T–
CW

TW

SN
M
:K
PA

–A
A

B:
KP

A–
AA

SN
M
:P
K

key function title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

window size 2 - 2 - 2 - 2

combine keys no no yes yes yes no yes

other
information

6 worlds 6 worlds

total tuple
pairs

6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500 6,384,443,500

acutal matches 3,000 3,000 3,000 3,000 3,000 3,000 3,000

acutal
unmatches

6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500 6,384,440,500

acceptances 189,454 117,617 112,999 109,152 142,314 118,132 112,998

rejections 6,384,254,046 6,384,325,883 6,384,330,501 6,384,334,348 6,384,301,186 6,384,325,368 6,384,330,502

false
acceptances

186,787 115,062 110,554 106,815 139,646 115,555 110,575

false rejections 333 445 555 663 332 423 577

true
acceptances

2,667 2,555 2,445 2,337 2,668 2,577 2,423

true rejections 6,384,253,713 6,384,325,438 6,384,329,946 6,384,333,685 6,384,300,854 6,384,324,945 6,384,329,925

pairs
completeness

0.889 0.851666666667 0.815 0.779 0.889333333333 0.859 0.807666666667

reduction ratio 0.999970325683 0.999981577564 0.999982300885 0.999982903443 0.999977709255 0.999981496899 0.999982301042

precision 0.014077295808 0.021723050239 0.021637359623 0.021410510114 0.018747277148 0.0218145803 0.021442857396

average
duration (ms)

7,377.94 4,921.91 1,360.79 844.13 1,834.87 843.7 1,859.47

74 Appendix

O. Bigram Indexing: all alternatives experiment series

DB50k

overall tuples 19,000

overall alternatives 50,000

duplicate pairs 750

min. alternatives 1

max. alternatives 6

smallest tuple confidence 0.080618

biggest tuple confidence 1.0

smallest alternative confidence 0.08

biggest alternative confidence 1.0

0.8

0.85

0.9

0.95

P
ai

rs
co

m
p
le

te
n
es

s

Bigram Indexing 0.5: key per alternative – all alternatives 3 (BI0.5:KPA–AA3)
Bigram Indexing 0.6: key per alternative – all alternatives 3 (BI0.6:KPA–AA3)
Bigram Indexing 0.8: key per alternative – all alternatives 3 (BI0.8:KPA–AA3)
Bigram Indexing 0.7: key per alternative – all alternatives 12 (BI0.7:KPA–AA12)
Bigram Indexing 0.8: key per alternative – all alternatives 12 (BI0.8:KPA–AA12)

0

0.1

0.2

0.3

P
re

ci
si

on

0.94

0.96

0.98

1

R
ed

u
ct

io
n

ra
ti

o

0

1

2

3

·105

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

O. Bigram Indexing: all alternatives experiment series 75

BI
0.5

:K
PA

–A
A3

BI
0.6

:K
PA

–A
A3

BI
0.8

:K
PA

–A
A3

BI
0.7

:K
PA

–A
A1

2

BI
0.8

:K
PA

–A
A1

2

key function title:prefix(3),
year:attribute

title:prefix(3),
year:attribute

title:prefix(3),
year:attribute

title:prefix(12) title:prefix(12)

threshold 0.5 0.6 0.8 0.7 0.8

combined keys no no no no no

total tuple
pairs

180,490,500 180,490,500 180,490,500 180,490,500 180,490,500

acutal matches 750 750 750 750 750

acutal
unmatches

180,489,750 180,489,750 180,489,750 180,489,750 180,489,750

acceptances 11,083,419 1,827,637 404,065 3,980 2,241

rejections 169,407,081 178,662,863 180,086,435 180,486,520 180,488,259

false
acceptances

11,082,690 1,826,937 403,465 3,251 1,547

false rejections 21 50 150 21 56

true
acceptances

729 700 600 729 694

true rejections 169,407,060 178,662,813 180,086,285 180,486,499 180,488,203

pairs
completeness

0.972 0.933333333333 0.8 0.972 0.925333333333

reduction ratio 0.938592784662 0.989874054313 0.997761294916 0.999977948978 0.999987583834

precision 0.000065773928 0.000383008223 0.001484909606 0.183165829146 0.309683177153

average
duration (ms)

306,271.33 62,703.73 3,365.73 362,788 127,042.87

76 Appendix

P. Evaluation experiment series 50k

0.8

0.9

P
ai

rs
co

m
p
le

te
n
es

s

Sorted Neighborhood Method: possible worlds – 6 dissimilar worlds (SNM:PW–6DW)
Blocking: possible worlds – 6 dissimilar worlds (B:PW–6DW)
Sorted Neighborhood Method: key per tuple – cry with the wolves (SNM:KPT–CWTW)
Blocking: key per tuple – cry with the wolves (B:KPT–CWTW)
Sorted Neighborhood Method: key per alternative – all alternatives (SNM:KPA–AA)
Blocking: key per alternative – all alternatives (B:KPA–AA)
Sorted Neighborhood Method: probabilistic keys (SNM:PK)

0.05

0.1

0.15

P
re

ci
si

on

0.9998

0.9999

1

R
ed

u
ct

io
n

ra
ti

o

500

1,000

1,500

A
ve

ra
ge

d
u
ra

ti
on

(m
s)

SN
M
:P
W
–6
DW

B:
PW

–6
DW

SN
M
:K
PT

–C
W
TW

B:
KP

T–
CW

TW

SN
M
:K
PA

–A
A

B:
KP

A–
AA

SN
M
:P
K

key function title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

title:prefix(8) title:attribute,
year:attribute

window size 2 - 2 - 2 - 2

combined keys no no yes yes yes no yes

other
information

6 worlds 6 worlds

total tuple
pairs

180,490,500 180,490,500 180,490,500 180,490,500 180,490,500 180,490,500 180,490,500

acutal matches 750 750 750 750 750 750 750

acutal
unmatches

180,489,750 180,489,750 180,489,750 180,489,750 180,489,750 180,489,750 180,489,750

acceptances 40,312 3,918 18,999 3,438 27,417 4,000 18,999

rejections 180,450,188 180,486,582 180,471,501 180,487,062 180,463,083 180,486,500 180,471,501

false
acceptances

39,630 3,281 18,399 2,895 26,727 3,347 18,426

false rejections 68 113 150 207 60 97 177

true
acceptances

682 637 600 543 690 653 573

true rejections 180,450,120 180,486,469 180,471,351 180,486,855 180,463,023 180,486,403 180,471,324

pairs
completeness

0.909333333333 0.849333333333 0.8 0.724 0.92 0.870666666667 0.764

reduction ratio 0.999776653065 0.999978292486 0.999894736842 0.999980951906 0.999848097268 0.999977838169 0.999894736842

precision 0.016918039294 0.162582950485 0.031580609506 0.157940663176 0.025166867272 0.16325 0.030159482078

average
duration (ms)

1,400.85 390.03 273.35 155.21 442.64 157.67 376.36

77

Bibliography

[BCC03] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast
blocking methods for record linkage, 2003.

[Bil06] Mikhail Bilenko. Adaptive blocking: Learning to scale up record linkage.
In In Proceedings of the 6th IEEE International Conference on Data Mining
(ICDM-2006), pages 87–96, 2006.

[BN08] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv.,
41(1):1–41, 2008.

[BS06] Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Method-
ologies and Techniques. Data-Centric Systems and Applications. Springer,
2006.

[BSH+08] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald,
and Jennifer Widom. Databases with uncertainty and lineage. VLDB J.,
17(2):243–264, 2008.

[CGL01] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Description
logics for information integration. In In Computational Logic: From Logic
Programming into the Future (In honour of Bob Kowalski), Lecture Notes in
Computer Science, pages 41–60. Springer, 2001.

[Chr08a] Peter Christen. Febrl - Freely Extensible Biomedical Record Linkage Manual.
The Australian National University, 0.4.1 edition, 2008.

[Chr08b] Peter Christen. Febrl – an open source data cleaning, deduplication and
record linkage system with a graphical user interface. InKDD ’08: Proceeding
of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1065–1068, New York, NY, USA, 2008. ACM.

[DJ03] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and
Data Cleaning. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[dK08] Ander de Keijzer. Management of Uncertain Data - towards unattended
integration. PhD thesis, University of Twente, Enschede, February 2008.

[dKvK07] A. de Keijzer and M. van Keulen. User feedback in probabilistic integration.
In Second International Workshop on Flexible Database and Information Sys-
tem Technology (FlexDBIST 2007), Regensburg, Germany, pages 377–381,
Los Alamitos, September 2007. IEEE Computer Society Press.

78 Bibliography

[DS04] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases, 2004.

[dVKCC09] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen. Robust
record linkage blocking using suffix arrays. In CIKM ’09: Proceeding of
the 18th ACM conference on Information and knowledge management, pages
305–314, New York, NY, USA, 2009. ACM.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
Duplicate record detection: A survey. IEEE Trans. on Knowl. and Data
Eng., 19(1):1–16, 2007.

[FHH+09] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J. Miller, Lu-
cian Popa, and Yannis Velegrakis. Clio: Schema mapping creation and data
exchange. In Conceptual Modeling: Foundations and Applications, pages
198–236, 2009.

[FS69] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64:1183–1210, 1969.

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem
for large databases. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data, pages 127–138, New York,
NY, USA, 1995. ACM.

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data Mining and Knowledge
Discovery, 2:9–37, 1998.

[Jar89] Matthew A. Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American Statis-
tical Association, 84:414–420, 1989.

[LF05] Patrick Lehti and Peter Fankhauser. A precise blocking method for record
linkage. In DaWaK, pages 210–220, 2005.

[LN06] Ulf Leser and Felix Naumann. Informationsintegration: Architekturen und
Methoden zur Integration verteilter und heterogener Datenquellen. dpunkt,
2006.

[ME97] Alvaro Monge and Charles Elkan. An efficient domain-independent algo-
rithm for detecting approximately duplicate database records. In SIGMOD
workshop on data mining and knowledge discovery, May 1997.

[MF03] Heiko Müller and Johann-Christoph Freytag. Problems, methods, and chal-
lenges in comprehensive data cleansing. Technical Report 164, Humboldt
University Berlin, 2003.

[MM08] Matteo Magnani and Danilo Montesi. Uncertainty in data integration: cur-
rent approaches and open problems, 2008.

Bibliography 79

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering
of high-dimensional data sets with application to reference matching. In
KDD ’00: Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 169–178, New York, NY,
USA, 2000. ACM.

[New67] Howard B. Newcombe. Record linking: The design of efficient systems for
linking records into individual and family histories, 1967.

[NK62] Howard B. Newcombe and James M. Kennedy. Record linkage: making max-
imum use of the discriminating power of identifying information. Commun.
ACM, 5(11):563–566, 1962.

[NKAJ59] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic
linkage of vital records. Science, 130:954–959, October 1959.

[PvKdKR09] Fabian Panse, Maurice van Keulen, Ander de Keijzer, and Norbert Ritter.
Duplicate detection in probabilistic data. In Proceedings of the 2nd Inter-
national Workshop on New Trends in Information Integration (NTII 2010),
number TR-CTIT-09-44 in CTIT technical report series, Enschede, Decem-
ber 2009. Centre for Telematics and Information Technology, University of
Twente. Extended version of NTII2010 workshop paper.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

[STW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Data modifi-
cations and versioning in trio. Technical Report 2008-5, Stanford InfoLab,
2008.

[vKdK09] Maurice van Keulen and Ander de Keijzer. Qualitative effects of knowledge
rules and user feedback in probabilistic data integration. The VLDB Journal,
July 2009.

[vR79] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

[Wid08] Jennifer Widom. Trio: A system for data, uncertainty, and lineage. In
Managing and Mining Uncertain Data. Springer, 2008.

[WM89] Y. Richard Wang and Stuart E. Madnick. The inter-database instance iden-
tification problem in integrating autonomous systems. In Proceedings of the
Fifth International Conference on Data Engineering, pages 46–55, Washing-
ton, DC, USA, 1989. IEEE Computer Society.

[YLyKG07] Su Yan, Dongwon Lee, Min yen Kan, and C. Lee Giles. Adaptive sorted
neighborhood methods for efficient record linkage. In INTERNATIONAL
CONFERENCE ON DIGITAL LIBRARIES, pages 185–194. ACM, 2007.

80 Bibliography

81

List of Figures

2.1. A traditional probabilistic database (PDB) 12
2.2. A lineage database (LDB) . 14
2.3. An uncertainty-lineage database . 15
2.4. Data integration in four steps . 17
2.5. Schema management . 18
2.6. Search space reduction during duplicate detection 21
2.7. The trade-off between PC and PR . 23
2.8. Blocking . 25
2.9. The Sorted Neighborhood Method . 27
2.10. Q-gram Indexing . 30

3.1. Multi-pass over possible worlds . 32
3.2. Most probable worlds with (normalised) confidence values 33
3.3. Building highly dissimilar possible worlds 35
3.4. Key per tuple strategy applied to SNM . 35
3.5. Combining variants of the key per tuple strategy 37
3.6. Key per alternative strategy applied to SNM 38
3.7. Combining key values . 39
3.8. Probabilistic key approach applied to SNM 40

4.1. Computing the average duration of an experiment 42
4.2. Generating probabilistic test data . 43
4.3. SNM: possible worlds experiment series . 49
4.4. Blocking: possible worlds experiment series 50
4.5. SNM: key per tuple experiment series . 51
4.6. Blocking: key per tuple experiment series 51
4.7. SNM: key per alternative experiment series 52
4.8. Blocking: key per alternative experiment series 53
4.9. SNM: probabilistic key experiments . 54
4.10. The best adapted SSR variants in comparison 55

82 List of Figures

83

List of Tables

4.1. The average duration of a repeated experiment 42
4.2. Databases of different size . 45
4.3. Database configuration experiment series – databases 46
4.4. The database for the SSR experiments . 47
4.5. SNM: configuration experiment series . 47
4.6. Blocking: configuration experiment series 48

84 List of Tables

85

Statutory Declaration

We hereby declare that we have developed and written the enclosed thesis entirely by
ourselves and have not used sources or means without declaration in the text. Any thoughts
or quotations which were inferred from these sources are clearly marked as such. Individual
responsibilities for certain sections are as follows:

ch
ap
ter

St
eff
en
Fr
ied
ric
h

W
olf
ram

W
ing
era
th

1 1.2, 1.4 1–1.1, 1.3
2 2.2, 2.3.1, 2.3.2, 2.3.4 2–2.1, 2.3, 2.3.3
3 3–3.1, 3.1.2, 3.1.4 3.1.1, 3.1.3, 3.2
4 4.3, 4.4.2, 4.4.4, 4.4.5 4–4.2, 4.4–4.4.1, 4.4.3
5 5

This thesis was not submitted in the same or in a substantially similar version, not even
partially, to any other authority to achieve an academic grading and was not published
elsewhere.

We agree that a copy of this thesis may be made available in the Informatics Library of
the University of Hamburg.

Steffen Friedrich Wolfram Wingerath

Hamburg, November 25th, 2010

	Abstract
	Introduction
	Motivation
	State of research
	Goals
	Chapter outline

	Basics
	Modeling uncertainty
	Probabilistic databases
	Lineage databases
	Uncertainty-lineage databases

	Data integration
	Normalisation of data models
	Schema management
	Duplicate detection
	Data fusion

	Search space reduction in certain data
	Evaluation metrics
	Blocking
	Sorted Neighborhood Method
	Other techniques

	Adapting certain data SSR techniques to probabilistic data
	Generating certain key values for search space reduction
	Multi-pass over possible worlds
	Key per tuple
	Key per alternative
	Modification: combining key values

	Processing probabilistic keys

	Experiments
	Testing framework
	Test data
	Experiment configuration
	The database size
	The database configuration
	The SSR technique configuration

	SSR experiments
	Possible worlds experiments
	Key per tuple experiments
	Key per alternative experiments
	Probabilistic key experiments
	Experimental results

	Summary and future prospects
	Appendix
	Duration experiment series
	Database size experiment series
	Database configuration experiment series
	SSR technique configuration experiment series
	SNM: possible worlds experiment series
	Blocking: possible worlds experiment series
	SNM: key per tuple experiment series
	Blocking: key per tuple experiment series
	SNM: key per alternative – combined keys experiment series
	Blocking: key per alternative – combined keys experiment series
	SNM: key per alternative experiment series
	Blocking: key per alternative experiment series
	SNM: probabilistic keys experiment series
	Evaluation experiment series
	Bigram Indexing: all alternatives experiment series
	Evaluation experiment series 50k

	Bibliography
	List of Figures
	List of Tables
	Statutory Declaration

