
University of Hamburg
Faculty of Mathematics,
Informatics and Natural Sciences

Master Thesis

Basic Functionalities of a Grid-Infrastructure
for Service-Oriented Content Management

Christian Ewers

ChristianEwers@gmx.de

Course of study: Informatics

Matriculation number: 5417450

Hamburg, 06/27/2007

Tutors: Kathleen Krebs, Cataldo Mega

1st Advisor: Prof. Dr. Norbert Ritter

2nd Advisor: Dr. Heiko Rölke

Contents I

Contents

1 Introduction 1
1.1 Content Management Challenges . 1

1.2 Content Management as a Service (CMaaS) 1

1.2.1 Email Archiving and Management (EAM) 2

1.2.2 Business Use Cases . 2

1.2.3 Preliminary Work . 3

1.2.4 CMaaS Fields of Responsibility . 4

1.2.5 Next Steps - Applying Service Orientation and Automation 5

1.3 Thesis Objectives . 5

1.3.1 Thesis Structure . 6

2 Technological Prerequisites 7
2.1 Content Management . 7

2.1.1 Enterprise Content Management (ECM) 7

2.1.2 Email Archiving and Management 8

2.2 Trends in Enterprise IT Architectures . 8

2.3 Service Orientation Concepts . 9

2.3.1 The Service-Oriented Architecture (SOA) 10

2.3.2 SOA Roles . 11

2.4 Grid Computing . 12

2.4.1 The Idea Behind Grid Computing 12

2.4.2 Open Grid Services Architecture - OGSA 14

2.5 Web Services Resource Framework - WSRF 17

2.5.1 Sample Scenario . 17

2.5.2 Keeping State - The concept of a WS-Resource 19

2.5.3 WS-ServiceGroup (WSRF-SG) . 21

2.5.4 WS-BaseNotification (WS-BN) . 21

2.5.5 Web Services Resource Metadata (WS-ResourceMetadataDescriptor) 22

2.6 Web Services Distributed Management (WSDM) 23

2.6.1 WSDM-MUWS - Management Using Web Services 23

2.7 Grid Computing in the IT Industry . 26

2.7.1 Utility Computing / Software as a Service / On-demand Computing 26

2.7.2 Service Level Agreements . 27

2.8 Autonomic Computing . 27

2.8.1 Properties of an Autonomic Computing System 28

3 Requirement Specifications 31

II Contents

3.1 Scenario . 31

3.1.1 Feature Requests for the EAM Service Solution 31

3.2 The CMaaS Approach . 35

3.2.1 Applying Service-Orientation to the EAM System 35

3.2.2 Achieving System Manageability through Automation 37

3.2.3 Applying Autonomic Computing Concepts 38

3.2.4 The Vision of an Autonomic, Service-Oriented Email Archiving Sys-

tem . 39

3.3 The Building Blocks of the EAMS Infrastructure 40

3.3.1 Service Runtime . 42

3.3.2 Resource Management . 44

3.3.3 System Automation . 48

3.4 Summary . 51

4 Service Runtime Evaluation 53

4.1 The WSRF Basic Profile Specification . 53

4.1.1 XML Processing in the Enterprise 53

4.2 Evaluation of the WSRF Basic Profile (WSRF-BP) 54

4.2.1 Handling State with WSRF . 54

4.2.2 Registry Service . 56

4.2.3 Resource State Monitoring . 57

4.2.4 Summary . 58

4.3 The Use of WSDM to Achieve Manageability 59

4.3.1 Metrics and Metadata . 59

4.3.2 A WSDM-based Resource Model . 60

4.3.3 Summary . 62

4.4 Evaluation of WSRF Implementations . 62

4.4.1 Existing WSRF Implementations . 62

4.4.2 Globus Toolkit 4 (GT4) . 62

4.4.3 Apache Muse . 63

4.4.4 Performance Comparison . 64

4.4.5 Programming Model . 65

4.4.6 Code Generation and Data Binding 67

4.4.7 Deployment . 68

4.4.8 Additional Features . 71

4.4.9 Summary . 72

5 IBM Dynamic Infrastructure and WebSphere XD 73

5.1 IBM Dynamic Infrastructure (IDI) . 73

5.1.1 On Demand Service . 73

5.1.2 The IBM DI Resource Model (DIRM) 74

Contents III

5.1.3 Order Processing . 76

5.1.4 The Life Cycle of an On Demand Service 76

5.1.5 Service Life Cycle Management . 77

5.1.6 Tooling . 77

5.1.7 Summary . 78

5.2 IBM WebSphere Extended Deployment V6.0 (WXD) 79

5.2.1 On Demand Router . 79

5.2.2 Resource Sharing . 80

5.2.3 Service Policies . 81

5.2.4 Work Classes . 82

5.2.5 Creation of Service Policies and Work classes 82

5.2.6 Summary . 83

6 Implementation 85
6.1 Infrastructure . 85

6.1.1 Development Infrastructure . 85

6.1.2 Target infrastructure . 85

6.1.3 Testing Data . 86

6.2 Implementation Architecture . 86

6.2.1 Email Processing Workflow . 87

6.2.2 Common Capabilities . 87

6.3 Implementation Details . 89

6.3.1 PAI Service . 89

6.3.2 ResourceFactory (Factory) . 90

6.3.3 Dispatcher . 91

6.3.4 Advanced Registry . 91

6.3.5 The Web Client . 93

6.4 Summary . 94

7 Conclusions and Further Lines of Investigation 95

List of Abbreviations 99

List of Figures 101

Listings 103

Bibliography 105

Trademarks 111

Affidavit 113

IV Contents

1

1 Introduction

Since the introduction of classical document management systems in the 1980s, the re-

quirements on solutions for handling electronic content in IT businesses evolved im-

mensely. From simple document digitizing to complex functionalities of today’s Enter-
prise Content Management Systems (ECMS), the usage of electronic information revolution-

ized the office workflows.

By providing more and more functionalities, ECM systems often became very complex,

expensive and sometimes hard to manage applications in today’s IT infrastructures.

1.1 Content Management Challenges

With Content Management systems (CMS) originally designed for handling digitized

business letters, the amount of documents that had to be handled was modest and man-

ageable. Today’s ECM systems have to process documents, images, audio or even video

files. ECMS have to fulfill legal regulations like the Sarbanes-Oxley Act (SOX) of 20021

in the U.S. or the GDPdU in Germany of 20012. These regulations dictate, e.g. how long

business documents have to be archived and accessible for official inspections. As the

mandatory archiving duration of documents often exceeds a decade, these regulations

are driving the requirements on scalability aspects of ECMS higher and higher. The im-

mense amount of content, dictated to be archived, is causing a change in the field of

responsibilities of today’s ECMS. So far, as read-only access dominated overall requests,

ECMS were mostly optimized for search and retrieval aspects, to provide fast access to

documents. Now, ECMS have to provide high-performance document ingest capabilities

at the same time.

1.2 Content Management as a Service (CMaaS)

The University of Stuttgart (IPVS), IBM® (Böblingen, Germany) and the University of

Hamburg (VSIS) initiated a joint project that addresses the rising challenges of Enter-

prise Content Management. The Content Management as a Service (CMaaS) project has

the objective to develop a scalable, dynamic, automated and high-performance Content

Management solution, which can be offered by a Software as a Service (SaaS) approach

(see section 2.7.1). By this approach, customers can use a Content Management Service

without considering about infrastructure aspects like scaling or performance. The service

can just be requested with a to be defined Quality of Service (QoS). At the same time, the

1http://www.sarbanes-oxley.com
2"Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen” (GDPdU) - available at

http://www.bundesfinanzministerium.de

2 1 Introduction

SaaS concept can implicate challenges for the service provider. These will be discussed

in more detail in chapter 3.

As an important and at the same time relatively self-contained aspect of ECM, Email
Archiving and Management (EAM) was chosen as a representative field of research for the

CMaaS project. A future attempt to generalize the research results from EAM to other

Content Management aspects is considered to be possible.

1.2.1 Email Archiving and Management (EAM)

Since the late 1990s the management of email messages became an important aspect of

ECM, as a lot of B2B (Business-to-Business) communication today is done via email. The

information, saved in email documents, has to be accessible for the enterprises them-

selves and has to fulfill the legal regulations stated above. From simple email archiving

and backup functionalities, Email Management today has to provide classification and or-

ganization functionalities to make access to emails more comfortable and compliant to

legal regulations.

Following an analysis by the Radicati Group3, corporate users sent and received 133 emails

per day in 2005. An increase of up to 160 emails per day in 2009 is expected, a vol-

ume grew by 20%. Taking an average size of 0.11MB per email, each user produces

14.7MB data that must be archived [Gro05]. For corporations with about 10,000 employ-

ees, around 150GB of emails must be handled per day. With the mentioned dictated

long-term archiving and accessibility regulations, scalability aspects of EAM systems are

becoming a real challenge. The CMaaS project tries to address these challenge by decom-

posing an EAMS into easy to manage components within a service-oriented system.

1.2.2 Business Use Cases

The aspects of adding to and retrieving emails from an EAMS can be considered as two

main usage scenarios of EAM. The upcoming use cases provide a short overview of these

two categories.

Ingest

The process of adding an email document to the EAM system is referred to as the ingest
process or just ingest. The detailed description including the analysis of active components

during the ingest process are part of the master thesis by Malte Biß [Biß07]. The ingest

process can be categorized into automatic or manual ingest.

Automatic Ingest If the automatic ingest process is activated, the EAM system captures

all emails being received or sent over the used email servers and adds them to the

archive. With customizable filters, only specific categories like specific mailboxes

or department belongings can be selected for archiving.
3The Radicati Group, Inc. - http://www.radicati.com

1.2 Content Management as a Service (CMaaS) 3

Manual Ingest A user selects a list of emails in his email client application that should

be archived and presses the archive button. This can be motivated by corporate reg-

ulations dictating maximum mailbox sizes per user. The archiving system retrieves

the selected emails from the email server and adds them to the archive. Due to sys-

tem configuration, the archived emails will be deleted completely from the email

server or replaced by lightweight so called stub-objects, which e.g. might contain an

excerpt of the email itself.

Retrieval

The retrieval process includes the tasks of searching a document in the archive and re-

trieving the document if the search was successful.

Regular Search and Retrieve If users need access to previously archived emails, they

can search the archive for the specific documents. As search keywords parts of the

subject, sender or even body text can be used. When the email has been found, it

can be opened directly or re-imported into the user’s mailbox.

Court case search In case of a legal inspection, a company may be forced to provide all

emails from the last year that satisfy a particular category. For this, the complete

archive will be searched and all matching emails retrieved.

The further discussion will mainly focus on the ingest process of EAM.

1.2.3 Preliminary Work

In a former project of IBM and the University of Stuttgart the scalability possibilities of

the IBM DB2® Content Manager4 (Content Manager) were evaluated. In general, the

Content Manager consists of a central catalog that handles metadata (Library Server) and

a set of possibly distributed content repositories (Resource Manager). As the scalability of

the central catalog depends on the used database, the first approach examined the scala-

bility possibilities based on the scaling functionalities of the underlying RDBMS. Details

and results of this approach can be found in [MWM05].

A completely different approach to achieve the required scale-out functionalities for gen-

eral Content Management systems is to distribute both central catalog and content repos-

itories to a cluster. By the separation and distribution of these two components a lot of

computational work needed for the catalog creation can be shifted to other resources. In

theory, this should lead to a system scalability almost linear to the number of used com-

puting nodes [WMM+07].

To prove the theoretical concepts, a prototype was developed which from now on will be

referred to as the cmgrid-prototype.

4http://www-306.ibm.com/software/data/cm/cmgr/mp/ - 05/2007

4 1 Introduction

The cmgrid-prototype

Figure 1.1 shows a simplified architecture of the cmgrid-prototype. The following de-

scription is arranged according to the steps taken by the system to process an email doc-

ument. As a central component, the Scheduler coordinates the distribution of jobs among

Figure 1.1: Simplified architecture of the cmgrid prototype [Sch06]

the computing nodes. On each node, a Worker process is started, which keeps process-

ing as long as it gets jobs from the Scheduler. The job distribution is done via a “pull”-

request of the Worker process. When a job-request is received by the Scheduler, it takes a

job-object from its jobQueue (not shown in the picture) and allocates it to the requesting

Worker. The job-Object contains the location and credentials for accessing the emails (e.g.

pop3/IMAP/Notes - Server). After getting an email document from the server, its origi-

nal form is archived in a content repository. Based on its type, the documents content is

formed into a Lucene-document and added to the local Lucene5 index. As general access

to content is more and more driven by full-text search, a distributed Lucene index was

chosen as the new data-format for the prototype’s catalog. First tests are indicating that

the theoretical assumption of nearly linear scalability is met by the prototype. For a final

assignment of general scalability capabilities more significant tests and measurements

have to be undertaken [WMM+07].

1.2.4 CMaaS Fields of Responsibility

As common for corporate projects, the responsibilities between the universities are di-

vided in different research areas.

Stuttgart
The actual logic of the Content Management tasks are examined and implemented

5Apache™ Lucene - http://lucene.apache.org

1.3 Thesis Objectives 5

by the team in Stuttgart. Concepts like index distribution, data model or distributed
search are part of their field of responsibility.

Hamburg
The CMaaS team in Hamburg examines how concepts like Software as a Service,

service orientation or automatic provisioning can be applied to Content Management.

1.2.5 Next Steps - Applying Service Orientation and Automation

While the team in Stuttgart focuses on the challenges of high-performance and scala-

bility, the CMaaS team in Hamburg faces the aspects of service orientation and system

automation. The thesis Componentization and Orchestration of Content Management Ser-
vices by Malte Biß [Biß07], analyzes the possibilities of how to divide so-called Content
Management components into Content Management services and how these services can be

orchestrated to create an EAM service. The results of that work will be used in this thesis

in order to identify infrastructure requirements.

The specific objectives of this thesis are presented in the next section.

1.3 Thesis Objectives

From a business perspective, the Software as a Service (SaaS, see section 2.7.1) concept

seems to be a suitable approach for an Email Archiving and Management System (EAMS).

Service consumers only pay for service consumption (email archiving) and do not have

to handle the complexity of EAM systems with respect to the underlying runtime envi-

ronment and IT infrastructure. The service provider is completely responsible for cop-

ing with the challenges of scalability, performance and system management to maintain

the guaranteed Quality of Service (QoS). The infrastructure used by the provider as the

basis for the EAM system has a great influence on how flexibly, dynamically and au-

tonomously the system will run.

Different infrastructure solutions have to be analyzed by this thesis. As a project member,

IBM is interested in the possibility of using the IBM products IBM Dynamic Infrastructure
(IDI) and IBM WebSphere® Extended Deployment (WXD) as infrastructure components for

the intended EAM system. In addtion to this, available standards and open-source solu-

tions from the Grid computing area shall be examined.

This thesis will answer the central question:

Are the above mentioned systems and standards capable of forming the infras-
tructure for the intended EAM system?

The theoretical results have to be evaluated with an implementation of a simple proto-

type.

6 1 Introduction

1.3.1 Thesis Structure

After this introduction, an overview of the technological prerequisites like service ori-

entation and Grid computing is given in chapter 2. Before the stated products can be

evaluated, the requirements on the infrastructure demanded by a service oriented EAM

system will be analyzed and discussed in chapter 3. The standards WSRF and WSDM

and their implementations by the Globus Toolkit 4 and Apache Muse are evaluated in chap-

ter 4. Chapter 5 will discuss the integrated solutions IBM Dynamic Infrastructure and IBM
WebSphere Extended Deployment. Based on the evaluation a prototype was implemented

to test the theoretical results. The design and other implementation details are presented

in chapter 6. Conclusions and an outlook on further research directions in the CMaaS

project in chapter 7 are closing this thesis.

7

2 Technological Prerequisites

This thesis analyzes the infrastructure requirements for a service oriented Content Man-

agement system and evaluates solutions of the Grid computing field. To do this, the

terms SOA, Content Management, Grid computing and other technologies needed for this

thesis will be introduced in this chapter. The Grid computing and Web Services related

standards WSRF and WSDM will be examined in detail, as they are essential for many

parts of this thesis. A short introduction to Autonomic Computing concepts will close this

chapter, as these are needed during the requirements process in chapter 3.

2.1 Content Management

The CMaaS project wants to develop a next generation Content Management solution. Be-

fore discussing the resulting infrastructure requirements, the term Content Management
(CM) has to be introduced first. This introduction will only provide a short overview

of Content Management, as a detailed knowledge of specific Content Management pro-

cesses is not needed for this thesis. For more information about CM, the reader is referred

to [VOI05] or [GSM+01].

In general, the area of Content Management addresses the computational handling of

arbitrary content. From classical Document Management Systems to today’s Enterprise Con-
tent Management Systems, the handled content has been extended from simple digitized

or electronic text-documents, to emails, images and even videos.

Document Management (DM) offers integrated management functionalities for the life-
cycle of a document. With the usage of a Document Management System (DMS) a central

repository for all documents of a company is provided.

2.1.1 Enterprise Content Management (ECM)

With the move from DM to ECM, the processed content is expanded from real documents
to content in a more general matter. Enterprise Content Management Systems (ECMS)

have to manage even video or audio-files and integrate them in a way, that a real infor-

mation benefit is created. By talking about Enterprise CM, the usage of an ECM within an

enterprise as the central infrastructure for content and information shall be emphasized

[VOI05]. The Association for Information and Image Management (AIIM)1 associates ECM to

the technologies that are used to "capture, manage, store, preserve, and deliver content and
documents related to organizational processes."

1http://www.aiim.org

8 2 Technological Prerequisites

Capture
The capture category combines functionalities and components for generating, cap-

turing, preparing and processing analog and electronic information. This includes

technologies like digital imaging, text recognition or indexing.

Indexing
Indexing is an important aspect of content capturing. During the index process,

metadata documents are created so that documents can be found. Indexing

can be based on keywords or full-text. The term indexing will be used a lot

in this thesis, as the architecture used in the CMaaS project uses a distributed

indexing approach to achieve improved scalability.

Manage
The manage category combines the components Document Management, Collabo-

ration, Web Content Management, Records Management and Workflow / Business

Process Management.

Store
Components of the store category are used for the storage of information that is not

required to archive on long-term storage.

Preserve
Long-term and safe storage and backup of information is combined in the preserve
category.

Deliver
Components that are responsible to present information handled by the other four

categories are classified to the deliver category.

2.1.2 Email Archiving and Management

The aspect of email archiving and management (EAM) is one important aspect of ECM.

With the still immensely growing amount of emails (see 1.2.1) the requirements on EAM

systems are getting harder to fulfill. This thesis focuses on the EAM process referred

to as the ingest process which can be compared with the general ECM processes capture
and store. The ingest process contains e.g. the tasks parsing, de-duplication, compliance
scanning, indexing and archiving of emails. For a detailed discussion of these tasks, the

reader is referred to [Biß07].

2.2 Trends in Enterprise IT Architectures

Since the first usage of computers in enterprises, the IT architectures have changed enor-

mously. In the beginning, all used applications ran on a mainframe and were con-

trolled from dumb computer terminals. The mainframe offered the possibility to serve

many applications simultaneously with integrated resource and workload management,

2.3 Service Orientation Concepts 9

to achieve an optimal overall utilization. Foster and Tuecke describe these types of cen-

tralized IT architectures (figure 2.1 (a)) as being decoupled vertically and integrated horizon-
tally [FT05]. With the emergence of inexpensive, but powerful servers, an acquisition of

new hardware for specialized software installations became a common approach. By this,

the former centralized architecture was transformed into a set of isolated application-

specific silos (figure 2.1 (b)).

Motivated by combining pieces of information from different applications, so called En-
terprise Application Integration (EAI) solutions were designed, to work as a gateway be-

tween different applications. Early approaches implemented the EAI as a hub that trans-

lated data among the applications. The problem of these EAI approaches is that for each

application a plugin for the EAI hub must be implemented.

Figure 2.1: Evolution of Enterprise IT Architecture [FT05]

Current approaches try to solve the problem of disintegration with a more general ap-

proach. The overall goal is to get the benefits of vertical decoupling and horizontal inte-
gration to today’s distributed, heterogenous systems. The service-oriented architecture

(SOA) and Grid computing concepts are addressing these problems by using a grid-

infrastructure to integrate different resources into a single logical resource and service-

oriented concepts to interact between different applications (figure 2.1 (c)).

The next sections will introduce these concepts, as the goal of the CMaaS project is to

design a next generation Content Management system by using a service-oriented archi-

tecture and Grid computing technology.

2.3 Service Orientation Concepts

When looking at today’s IT magazines and websites, service orientation and the service-

oriented architecture seem to be in the focus everywhere. The ideas and concepts behind

these hype topics will be discussed in this section.

10 2 Technological Prerequisites

2.3.1 The Service-Oriented Architecture (SOA)

The key element behind the concept of service orientation is, of course, the service itself.

Service Newcomer and Lomow describe services from two different perspectives, the

business and the technical perspective. From a business perspective, services rep-

resent and correspond to business activities or functions that can be accessed ac-

cording to established service-specific policies. Technically, services are reusable

components with well-defined interfaces that abstract from the internal implemen-

tation and allow the decoupling of service provider and service requester [NL04].

When looking at definitions for SOA [PW05],[SDt06],[NL04], many of them vary in de-

tails, although sharing the same key concepts, combined by the following definition,

which will be used within this thesis.

Service-Oriented Architecture (SOA) A service-oriented architecture is an architectural

style that enables the composition of distributed capabilities by the use of standard-

ized, loosely coupled services through well-defined interfaces.

From a business perspective, these loosely coupled services represent business function-

alities which are made available and form the building blocks of current and future busi-

ness applications [Coh06]. When talking about horizontal integration, SOA does not try

to brake the architecture of disintegrated data silos, but offers the data as services. These

data services can be used and combined by applications (which can be services itself), to

create a new federated view on the underlying data.

Advantages and Disadvantages of a SOA

A service oriented architecture promises to offer many advantages for enterprises, but

comes with a set of disadvantages too. The following paragraph will outline some of

them. For more information about the advantages and disadvantages of a SOA, the

reader is referred to [NL04], [Coh06].

Advantages

• A SOA offers a flexible and comfortable solution for information and application

integration.

• By using standardized interfaces, a service can be accessed from a variety of users

and applications.

• By composing business services out of fine grained services, a simple reconfigura-

tion and adaptation of existing business processes is possible.

2.3 Service Orientation Concepts 11

Disadvantages

• When composing applications out of services, the availability of these services be-

comes critical for the proper functionality of the application.

• The advantage of being able to use external services entails issues like quality as-

pects of the delivered data. The reliability and trustworthiness of the external ser-

vice now has a great influence on one’s own application.

2.3.2 SOA Roles

Components of a SOA can be assigned to one of three specific roles: the service consumer,

the service provider or the service broker (see figure 2.2). A provider publishes a service

at the service broker (often also called service registry or discovery facility). A consumer

who is interested in the service by the provider can discover it at the broker and bind

the service for usage. The binding process can include policy negotiations between the

provider and the consumer before the service can be used.

Figure 2.2: Roles in a service-oriented architecture

The terms service provider and consumer will be used throughout this thesis. The sepa-

ration of these two roles are a central part of service orientation concepts.

Message Exchange Patterns

Within a SOA, services can communicate by using different message exchange patterns
(MEP). Three of the most common patterns in SOA designs [Coh06] are illustrated in

figure 2.3 and are described shortly in the following paragraph.

Request/Response The Request/Response pattern (figure 2.3 (a)) is the most simple pat-

tern. The service consumer makes a synchronous requests to the provider and waits

actively for the response message. Because of the blocking behaviour while a con-

sumer waits for the response, the MEP can produce scalability and performance

problems, due to memory use and waiting threads.

12 2 Technological Prerequisites

Figure 2.3: Popular message exchange patterns in SOA designs

Publish/Subscribe When using a Publish/Subscribe pattern (figure 2.3 (b)), the service

provider offers a set of methods for the consumer to register for a set of messages.

Whenever the provider gets information the consumer is interested in, he sends a

message (publishes) to the consumer. If a consumer is not interested in the infor-

mation any longer, he can unsubscribe his registration.

Broadcast A Broadcast MEP (figure 2.3 (c)) is used whenever a broad set of consumers is

interested in a specific information-topic. In this MEP the provider sends messages

without expecting any responses. A variation of the Broadcast MEP is the Multicast
MEP, in which not all but a group of consumers are notified automatically by the

provider.

2.4 Grid Computing

While SOA addresses the challenge of horizontal integration of applications (see section

2.2), the Grid computing concept can be assigned to the aspect of the horizontal integration
of hardware resources.

This thesis will evaluate how concepts and technologies related to Grid computing can

be used within the CMaaS project. The ideas, standards and concepts of Grid computing

will be introduced in the following sections.

2.4.1 The Idea Behind Grid Computing

With the overall idea of providing access to computing power as easily as people can

access electricity through the electric power grid today, Ian Foster2 introduced the term

computational Grid in 1998 [FK99]. Although this visionary idea has already existed for

decades [VG65], with their book The Grid. Blueprint for a new computing infrastructure.,
Foster and Kesselmann presented concepts and design recommendations which built the

2Ian Foster is often cited as the father of the Grid

2.4 Grid Computing 13

base for the emerging field of research named Grid computing. A computational grid was

defined as a “hardware and software infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end computational capabilities” [FK99].

Spelling Notes
The spelling of term Grid varies a lot in the literature. For this thesis, the spelling

policy used by Plaszsak et al. will be used [PW05, page 60]. Whenever speaking

about local or enterprise-wide grids, grid should be spelled with lower case. Only

when referring to the ubiquitous world-wide system that Foster and others had in

mind and may exist in the future, the upper case spelling the Grid will be used.

Already established common spelling conventions, for the terms Grid computing
and Grid technology are written with an uppercase G.

Over the years, on one hand the definitions became more specific, but on the other a

diversity of different definitions appeared. Many definitions focus on the concept of

inter-cooperating organizations, which can form virtual organizations by sharing resources

using a grid infrastructure [FKT01]. Other definitions talk about Grid computing in a

more abstract way and focus on the action of resource sharing itself without concerning

themselves with what can be done with these shared resources. A widely adopted and

accepted definition was again formulated by Ian Foster as a three point checklist, to classify

a system as a grid or not [Fos02]. Following the checklist, a grid is a system that:

1. coordinates resources that are not subject to centralized control

2. ... using standard, open, general-purpose protocols and interfaces

3. to deliver nontrivial qualities of service.

In recent years, grid computing has also become more and more important in the indus-

try. Almost all major companies in the computer industry advertise their Grid computing

solutions. With the lack of open standards, these technologies mostly do not qualify as

Grid computing systems according to Foster’s checklist.

The goal of this thesis is not to develop a Content Management system which satis-

fies Foster’s checklist, but to evaluate the possibilities a grid infrastructure has to offer

for service-oriented Content Management. Accordingly, for this thesis a definition by

Plaszczak et al. [PW05] will be used, as it focuses on the functionalities the Grid comput-

ing technology has to offer.

Grid Computing “Grid computing is the technology that enables resource virtualiza-

tion, on-demand provisioning, and service (or resource) sharing between organiza-

tions.” [PW05]

In the next sections the terms resource virtualization, on-demand provisioning and ser-

vice (or resource) sharing will be discussed in more detail.

14 2 Technological Prerequisites

Resource virtualization and resource sharing

The term resource has various meanings in computer science. When talking about re-

source virtualization, a resource is some kind of hardware like a server or network device.

Virtualization makes this hardware resource become accessible through standardized in-

terfaces. One approach of achieving virtualization is the introduction of a service layer

between hardware resources and applications [PW05]. This concept corresponds with

the idea of horizontal integration mentioned in the introduction of this chapter (section

2.2). Figure 2.1 (c) on page 9 illustrates the resource sharing concept by the symbolic grid
infrastructure box, which virtualizes from the underlying hardware boxes.

Grid resources Within a grid infrastructure a grid resource is defined as “any element

of the networked infrastructure that is made available for usage with standardized

grid protocols.” (from [PW05]) This definition includes software such as applica-

tions or operating systems besides the virtualized hardware resources stated above.

In this thesis, a resource has the broad meaning of a grid resource as defined above.

Otherwise the resources will be stated as explicit hardware or software resources.

Resource sharing By having a pool of resources, applications can discover and bind

resources on demand due to the real demand. In an optimal scenario, resources

can be shared between applications automatically by the workload management

system to optimize system-wide utilization.

On-demand Provisioning

The term on-demand provisioning outlines the utility behaviour of a grid infrastructure by

assigning the ability of providing resources (provisioning) at the time they are needed

(on-demand). This fits well in the picture of accessing computing resources as easily as

electricity. Depending on the kind of resources to provide, different actions have to be

taken. These actions can vary from switching on a server to installing necessary applica-

tions within an enterprise application server.

2.4.2 Open Grid Services Architecture - OGSA

In 2002 Ian Foster, Carl Kesselman, Jeffrey Nick and Steven Tuecke introduced the Open
Grid Services Architecture (OGSA) to define a standardized Grid architecture which de-

scribes mechanisms for creating, naming and discovering transient Grid service instances.

They stated that standardization is essential to let the vision of Grid computing become

reality [FKNT02].

Based on that original work, the Global Grid Forum3 (GGF) announced OGSA 1.0 in

01/2005 [FKS+05]. Currently, the official public version of OGSA is 1.5 from 07/2006

[FKS+06].
3The GGF is now part of the Open Grid Forum (OGF). http://www.ogf.org/

2.4 Grid Computing 15

Conceptual View of OGSA

From a high-level view, OGSA is a collection of capabilities a Grid architecture could pro-

vide. Capabilities are sets of related functions offered by resources of a grid (for resources

see section 2.4.1). Because these functions are offered by services of an underlying grid
infrastructure, the capabilities can be seen as service collections and compositions.

They can be ordered in a semi-layered representation, due to their levels of abstraction

and their dependency on lower level capabilities (see figure 2.44). For example, the Moni-
toring & Analytics capability depends amongst others on the capabilities Sensors and Net-
works of the bottom layer. The OGSA specification focuses on capabilities from the middle

layer, but comprises low level capabilities, due to the stated dependencies.

Figure 2.4: The OGSA conceptual view (adapted version from forge.gridfoum.org)

Infrastructure Services

OGSA capabilities base on a set of common services. These infrastructure services (also

called "core services" [FKNT02] or Grid fabric [FKS+06]) emerged out of a set of recommen-

dations for basic service functionalities [FKNT02] over the Open Grid Services Infrastruc-

ture (OGSI) [BDP+03] to the Web Services Resource Framework (WSRF) (see section 2.5),

now recommended in OGSA version 1.5.

They all share a common set of base functionalities that are essential for an OGSA based

grid environment and build the base for all higher level OGSA capabilities. Figure 2.5

illustrates a middleware stack consisting of standard Web Services, the WSRF and OGSA

capabilities for service-oriented applications.

The infrastructure services provide functions like naming, representing state, notification
4The original graphic is from http://forge.gridforum.org. GridForge is a collaboration website used by the

OGF to share documents and meeting materials.

16 2 Technological Prerequisites

and messaging. For the future, the OGF5 plans to extend OGSA with standards for secu-

rity, transactions and orchestration aspects within the infrastructure layer.

Figure 2.5: How OGSA fits in the middleware stack (adapted version from [LB05])

OGSA Capabilities

On top of the infrastructure services OGSA defines a set of capabilities an OGSA based

Grid might offer. The standard does not dictate the existence of capabilities, but recom-

mends them. An excerpt of these capabilities is presented next.

Resource Management Besides the infrastructure profile, which provides the basis for

all other services, a capability is needed to virtualize from the underlying hardware.

Mechanisms are needed for management and configuration.

Execution Management In an open grid system, users of the grid can submit jobs to an

execution management service that is responsible for the actual job distribution and

dispatching to the responsible service.

Provisioning To realize the vision of a permanently available computing grid, the in-

frastructure offers a provisioning service that is capable of deploying, configuring

and delivering services to a consumer.

The OGSA WSRF Basic Profile (WSRF-BP)

One problem about the OGSA specification is that it does not define a standard, but only

recommends technologies and concepts. To create a common base and enable interop-

erability between OGSA based grids, the OGF announced the OGSA WSRF Basic Profile
1.0 (WSRF-BP) in 2006 [FMS06]. It extends the WS-I Basic Profile 1.1 [BEF+] of the Web

Services Interoperability Organization (WS-I)6, which addresses interoperability between

Web Services implementations.

5Open Grid Forum - http://www.ogf.org/
6http://www.ws-i.org/, last visited 6/2007

2.5 Web Services Resource Framework - WSRF 17

The profile recommends a set of specifications as infrastructure services. The following

specifications for addressing, modeling, and management of state are considered:

• The set of standards combined in the Web Services Resource Framework (WSRF) (see

section 2.5) provide addressing, modeling and state-management functionalities.

• WS-BaseNotification (see 2.5.4) offers simple publish/subscribe and event based

messaging mechanisms.

In an OGSA based grid environment, a WSRF-BP-implementation takes the part of the

core services in the software stack shown in figure 2.5.

2.5 Web Services Resource Framework - WSRF

The Web Services Resource Framework is a set of specifications by the OASIS7 consor-

tium that defines a generic framework for modeling and accessing stateful resources by

using Web Services. The current version WSRF v1.2 combines the following OASIS spec-

ifications [OAS06b]:

WS-Resource
The WS-Resource specification describes the relation between a Web-Service and a

resource within WSRF and builds the base for all other specifications in the frame-

work.

WS-ResourceProperties (WSRF-RP)
This standard specifies how to declare the properties of a resource. The values of

these properties represent the current state of a resource.

WS-ResourceLifetime (WSRF-RL)
Specifies interfaces for the service life cycle of a WS-Resource [SB06].

WS-ServiceGroup (WSRF-SG)
Describes how collections of WS-Resources can be formed and monitored.

WS-BaseFaults (WSRF-BF)
Defines a XML-Schema for faults that may occur within WSRF environments.

In addition to these standards WSRF uses the functionalities defined by the WS-Base-

Notification specification (WS-N) [OAS06a]. The functionalities provided by WS-N will

be discussed in section 2.5.4. The next section will illustrate the use of WSRF by present-

ing a simple scenario using stateful Web Services.

2.5.1 Sample Scenario

This following scenario is based on the scenario from The WSRF-Primer by Tim Banks

[Ban06].

7Organization for the Advancement of Structured Information Standards [OAS]

18 2 Technological Prerequisites

The ShoppingCartService

An online shop wants to offer its clients a Web Service based shopping service. The

user of this service is able to create a shopping cart, add and remove items to the cart

and proceed to the checkout (Figure 2.6). To implement this service, stateful Web Service

Figure 2.6: The ShoppingCartService

technologies are not needed. An implementation with standard Web Services might have

the following interface schema:

Listing 2.1: Porttypes and operation for the CartService with standard Web Services

1 Porttype: WSSimpleShoppingCartCreation

2 Operation: WSCreateCart

3 input

4 output

5 Porttype: WSSimpleShoppingCart

6 Operation: WSCreateCart

7 input

8 output

9 WSCartUnknownFault

10 Operation: WSRemoveItem

11 input

12 output

13 WSCartUnknownFault

14 Operation: WSAddItem

15 input

16 output

17 WSCartUnknownFault

18 Operation: WSGetCart

19 input

20 output

21 WSCartUnknownFault

22 Operation: CartCheckout

23 input

24 output

25 WSCartUnknownFault

26 WSBillingFault

2.5 Web Services Resource Framework - WSRF 19

When creating a cart on the server, the client gets a cartId in the response message to the

create-operation (2.2).

Listing 2.2: WSCreateCartRequest with a non-WSRF service

1 <SOAP-ENV:Header>

2 . . .

3 <wsa:To SOAP-ENV:mustUnderstand="1">

4 http://www.example.com/WSSimpleShoppingService

5 </wsa:To>

6 </SOAP-ENV:Header>

7 <SOAP-ENV:Body>

8 <ws-ssc:WSCreateCartRequest>

9 <ws-ssc:ProductCode>Cat-A2004-87968556</ws-ssc:ProductCode>

10 <ws-ssc:Quantity>1</ws-ssc:Quantity>

11 </ws-ssc:WSCreateCartRequest>

12 </SOAP-ENV:Body>

Listing 2.3: Corresponding “WSCreateCartResponse" to listing 2.2

1 <SOAP-ENV:Body>

2 <ws-ssc:WSCreateCartResponse

3 <ws-ssc:Cart>S1</ws-ssc:Cart>

4 <ws-ssc:ServiceAddress>

5 <wsa:Address>http://example.com/ShoppingService</wsa:Address>

6 </ws-ssc:ServiceAddress>

7 </ws-ssc:WSCreateCartResponse>

8 </SOAP-ENV:Body>

The returned cartId (line 3 in listing 2.3) has to be submitted in every subsequent request

the client makes to the service. This has to be described in a documentation that comes

with the service description and will not be done automatically by the service runtime.

For example, to get the current content of his cart, the client has to include the cartId in

the message-body as shown in the following listing:

1 <ws-ssc:WSGetCart>

2 <ws-ssc:Cart>S1</ws-ssc:Cart>

3 </ws-ssc:WSGetCart>

2.5.2 Keeping State - The concept of a WS-Resource

When designing WSRF, the OASIS consortium tried to avoid the flaws of its predecessor

OGSI8. Instead of extending Web Services with proprietary semantics and functionalities,

WSRF builds on top of the existing W3C Web Services standards9. To design a stateful

service that can be described according to existing W3C standards, the OASIS consortium

designed the construct called WS-Resource.
8Open Grid Services Infrastructure [BDP+03]
9W3C - World Wide Web Consortium - http://www.w3.org/

20 2 Technological Prerequisites

The Implied Resource Pattern

The construct of a WS-Resource is defined by the relationship of a stateless Web Service

and a stateful resource. The creation of a WS-Resource by this combination is referred to

as the "implied resource pattern" (see figure 2.7) [LB05],[Fos05].

The combination is realized with the use of the EndpointReference element of the WS-

Addressing specification [BCC+04]. This pattern allows the creation of a stateful resource

without violating the WSDL 1.1 specification. Applied to the shopping service, a specific

cart can be addressed with the use of an WS-Addressing EPR in the header of a SOAP

message. An excerpt of a SOAP-header addressing a specific shopping cart with the

cartId S1 is illustrated in listing 2.4.

Figure 2.7: The implied resource pattern

Listing 2.4 shows an excerpt of the header of a SOAP-message, which addresses the spe-

cific shopping cart resource S1. The wsa:To element contains the address of the stateless

Web Service. By an arbitrary number of additional reference parameters, a specific stateful

resource can be addressed. In the example the cartId is the only reference parameter.

Listing 2.4: WSRF SOAP-Message

1 <wsa:To>

2 http:/example.com/ShoppingCartService

3 </wsa:To>

4 <wsa:ReferenceParameters>

5 <sample:CartId>S1</sample:CartId>

6 </wsa:ReferenceParameters>

Resource Properties

The state of a resource is represented by the value of its properties stored in a Resource-
Properties document (RP-doc). This XML-document contains information about the pub-

lic state of a resource. In the example of a shopping cart, the items that are currently in

the cart can be modeled as resource properties. WSRF offers standardized operations for

2.5 Web Services Resource Framework - WSRF 21

accessing the RP-doc and the contained properties. The action of putting an item into

the shopping cart can be realized as the action of adding an item element to the resource

properties document of the cart WS-Resource. A simple example of a shopping cart with

two items is illustrated by its RP-document in listing 2.5.

Listing 2.5: Content of a shopping cart realized as ResourceProperties

1 <ssc:SimpleShoppingCart>

2 <ssc:Item>

3 <ssc:ProductCode>Cat-A2004-87968556</ssc:ProductCode>

4 <ssc:Description>Garden String - 150m</ssc:Description>

5 <ssc:Quantity>1</ssc:Quantity>

6 <ssc:ProductPrice>1.59</ssc:ProductPrice>

7 </ssc:Item>

8 <scc:Item>

9 <ssc:ProductCode>Cat-A2004-47286265</ssc:ProductCode>

10 <ssc:Description>Garden Rake</ssc:Description>

11 <ssc:Quantity>1</ssc:Quantity>

12 <ssc:ProductPrice>29.59</ssc:ProductPrice>

13 </scc:Item>

14 </ssc:SimpleShoppingCart>

2.5.3 WS-ServiceGroup (WSRF-SG)

The WSRF documentation specifies a ServiceGroup (SG) as a by-reference collection of Web
Services [MSB06]. Services and WS-Resources that are part of the SG are called its Mem-
bers. The internal structure of a ServiceGroup is illustrated in figure 2.8. Each member is

associated with a WS-Resource called ServiceGroupEntry. These entry elements represent

the member resources within the ServiceGroup. The ServiceGroupRegistration extends the

SG by offering the add operation as a public interface.

If a WS-Resource is added to a SG an entry resource is created which represents the newly

added member by holding the member’s endpoint reference. A client can retrieve a com-

plete list of all members or query a specific list of members by submitting an XPath query.

Requests to the SG are delegated to its entries and further to the member resources. If a

member is removed from the SG, its specific entry resource will be destroyed.

2.5.4 WS-BaseNotification (WS-BN)

WS-BaseNotification [GHM06] forms the base for the specification family WS-Notification

[OAS06a] (WS-N). WS-Notification also includes WS-Topics and the WS-BrokeredNotfi-

cation specification which allows the use of more complex message exchange patterns.

WS-BaseNotification standardizes interfaces and resources for the use of topic-based Pub-
lish/Subscribe communication (section 2.3.2) between Web Services and/or WS-Resources.

22 2 Technological Prerequisites

Figure 2.8: Schema of a WSRF-ServiceGroup

2.5.5 Web Services Resource Metadata (WS-ResourceMetadataDescriptor)

The Web Services Resource Metadata specification (Version 1.0, [TC06d]) defines the con-

cept of a Web Services Resource Metadata Descriptor (WS-RMD), to provide additional

information about the resource properties of a WS-Resource, e.g. if a property can be

changed via a SetResourceProperties operation, and to restrict the possible values of the

properties.

By using fault messages as a return of a SetResourceProperties operation the client can be

told that he can not change the value of a specific property. By offering that information

within a WS-RMD, a client would be aware of that fact in advance. This also applies to

the exposing of valid property values in the metadata descriptor.

A metadata descriptor is bound to a specific portType of a WSDL-file in a similar way as

a ResourceProperties document through the reference of the attributes wsrmd:Descriptor
and wsrmd:DescriptorLocation in the portType element (see listing 2.6). An example WS-

RMD file will follow in section 2.6.1.

Listing 2.6: Referencing a metadata descriptor for a specific portType

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <wsdl:definitions>

3 <wsdl:portType

4 wsrmd:Descriptor="xs:QName"?

5 wsrmd:DescriptorLocation="xs:anyURI"?

6 ...>

7 <!-- operations etc. -->

8 </wsdl:portType>

2.6 Web Services Distributed Management (WSDM) 23

9 </wsdl:definitions>

The possibility of defining multiple metadata descriptors within one WS-RMD file makes

the use of two attributes for the reference necessary.

2.6 Web Services Distributed Management (WSDM)

In addition to the WSRF framework, in August 2006 the OASIS consortium defined the

Web Services Distributed Management family of standards, which consists of the spec-

ifications WSDM Management Using Web Services (MUWS) and WSDM Management Of
Web Services (MOWS) [TC06b], [TC06c], [TC06a]. In the following only the concepts and

specifications of WSDM-MUWS are presented, as WSDM MOWS is not relevant for this

thesis.

2.6.1 WSDM-MUWS - Management Using Web Services

WSDM MUWS addresses the manageability of an arbitrary resource with the use of Web

Services. The main focus of WSDM lies on the manageable resource which can be ac-

cessed by a Web Service endpoint and can be configured and monitored by a manage-

ability consumer (see figure 2.9). This concept will now be demonstrated by an example

Figure 2.9: The concept of a manageable resource in WSDM (from [TC06b])

from the MUWS specification [TC06b].

Taking a printer as an example of a resource, it has the central functional aspect of print-

ing, which could be made accessible through a WS-Resource with the use of WSRF and

assuming the printer could be able to indicate its online status and/or toner level: In

WSDM terms these indications form a set of so called manageability capabilities.

MUWS defines an implementation of a manageable resource as a set of manageability capa-
bilities offered over a Web Service endpoint.

Manageability Capabilities (from [TC06b])
A manageability capability is defined as a capability that

• is uniquely identified in time and environment,

24 2 Technological Prerequisites

• has defined semantics (such as those provided by any section in this specifica-

tion that describes a new capability),

• is associated with a set of properties, operations, events (notifications) and

metadata (including policies).

Composability

The composability concept of WSDM allows a manageable resource implementation to

support a non-conflicting mix of capabilities and Web Services features. Figure 2.10

shows a possible composition of a manageable printer resource implementation.

Figure 2.10: Composability (from [TC06b])

The shown software stack in figure 2.10 consists of two main types of compositions.

1. Composition of Web Services implementation aspects
The resource implementation can use aspects provided by the Web Services imple-

mentation to enable manageability. These are common functionalities that are not

specially bound to the printer resource. For example, the aspect addressing is cov-

ered by WS-Addressing, properties by WSRF, notifications by WS-Notifications and

the operations are corresponding to operations defined by WSDL.

2. Composition of manageability capabilities
WSDM distinguishes between common and resource-specific manageability capa-

bilities.

Common manageability capabilities MUWS offers a set of common manageabil-

ity capabilities that can be used for a wide range of resources. For example, it

defines capabilities for the operational state, the caption and description and

relationships to other resources. The only capability a manageable resource

2.6 Web Services Distributed Management (WSDM) 25

has to implement is the identity capability, which inherits the existence of the

muws1:ResourceId within the ResourceProperties document of the resource

(section 2.5).

Resource-specific manageability capabilities Besides the common capabilities, a

resource can implement resource specific capabilities. In the case of a printer,

a toner indication could be such a manageability capability. WSDM is meant

to be a generic specification with which one can define a new resource model,

or which can be used with existing resource models. In the latter case the

existing model can be exposed as an Web service endpoint with the use of

custom manageability capabilities.

Metadata and Metrics

The MUWS specification defines a set of metadata elements that apply to the basic man-

ageability of a manageable resource. Besides general metadata like mutability, modifi-

ability or valid values of properties also specified by WS-RMD, MUWS defines a set of

metadata related to manageability.

Any property element may have a muws2:Units element which can be used to define

the default unit of that property. MUWS defines metadata that allows declaring proper-

ties of a resource as metrics. For example, the printer resource might have the property

PrintedPages, which describes the number of pages that were printed with the current

toner cartridge. The RP-document only defines the element as xsd:int-type with a fixed

occurrence of one. WSDM MUWS allows to add metadata that enriches the definition

with information about gathering time, type of values changes and the period of time the

value of the metric is collected.

Listing 2.7 illustrates the declaration of the property by adding metric-specific metadata

such as the gathering time for the metric, the way its value can change (ChangeType line

14) and the time period for which the metric is valid (TimePeriod). The example uses

WS-RMD (section 2.5.5) to define general and WSDM-specific metadata (The listing only

shows an extract of a metadata descriptor file).

The first step to define a metric is the addition of the Metrics-Capability metadata item

(line 9). A property has to be mutable and not modifiable to be qualified as a metric (as

shown in line 8).

Listing 2.7: Declaration of the property printedPages as a metric by the addition of meta-

data
1 <?xml version="1.0" encoding="UTF-8"?>

2 <wsrmd:Definitions

3 xmlns:wsrmd="http://docs.oasis-open.org/wsrf/rmd-1"

4 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd">

5 <wsrmd:MetadataDescriptor interface="printer:PrinterPortType"

6 name="PrinterMetadata">

26 2 Technological Prerequisites

7 <wsrmd:Property name="PrintedPages"

8 modifiability="read-only" mutability="mutable">

9 <muws2:Capability>

10 http://docs.oasis-open.org/wsdm/muws/capabilities/Metrics

11 </muws2:Capability>

12 <!-- Metric specific metadata -->

13 <muws2:TimeScope>SinceReset</muws2:TimeScope>

14 <muws2:ChangeType>Gauge</muws2:ChangeType>

15 <muws2:GatheringTime>OnChange</muws2:GatheringTime>

16 </wsrmd:Property>

17 </wsrmd:MetadataDescriptor>

18 </wsrmd:Definitions>

The current WSDM specification (Version 1.1) does not define how to apply and where to

define metadata for a manageable resource, but mentions WS-RMD as a possible recom-

mendation in future releases of WSDM. The WSDM MUWS Primer [MWE06] also uses

WS-RMD to describe and expose WSDM metadata.

WSDM Event Format

WSDM defines an XML format to represent management events within a system. Clients

can subscribe to custom events and will be notified via WS-Notification when these

events occur. Common events like the creation of a resource can be broadcast to the

system, which makes a special discovery process for new resources unnecessary.

2.7 Grid Computing in the IT Industry

The term Grid computing is mostly related to the academic driven concept of resource

sharing between organizations. In the IT industry a couple of terms related to Grid com-

puting emerged, which focus on the business driven concepts. Although being com-

parable in the offered features, these business driven terms do not denote the use of a

standardized grid-infrastructure. This means, that most of the offered solutions for e.g.

Utility Computing can not be noted as a Grid computing infrastructure when applying

Foster’s checklist (section 2.4) [FT05].

2.7.1 Utility Computing / Software as a Service / On-demand Computing

The concepts denoted by Utility Computing or Software as a Service (SaaS) overlap signif-

icantly with Grid computing. Grid computing is associated with the idea of accessing

computational power as easy as electricicty. The term utility highlights the offering of the

computational power by a service provider to service consumers, along with specific

Quality of Service (QoS) guarantees.

2.8 Autonomic Computing 27

On-demand computing focuses on the aspect of automatic provisioning of computing re-

sources, if necessary, to meet changing requirements [FT05].

The three business driven concepts share the idea of the two roles of a service provider

and a service consumer. Because of the fact that the offered service is not standardized

but consists of a customized set of applications, the service provider is often also denoted

as Application Service Provider (ASP).

The contract between an ASP and his customers contains information about the intended

behaviour of the offered service or application. The ASP guarantees a specific level of
service. This agreement is often signed by a so-called Service Level Agreement.

2.7.2 Service Level Agreements

A Service Level Agreement (SLA) is a contract between a service provider and a consumer

which specifies the intended usage of the service by the consumer and the service guar-

antees by the provider. A detailed description of the functionalities of the service is im-

portant to avoid misunderstandings between the parties. According to that the defini-

tion by Strassner specifies a SLA as a “formal negotiated agreement between two parties

designed to create a common understanding about products, services, priorities, respon-

sibilities, and so forth” [Str04].

Besides the common understanding of the service, the specification of the guaranteed Qual-

ity of Service (QoS) is a major aspect of a SLA. These specifications are normally stated

as service level objectives (SLO).

A SLO is a specification of a metric property and a guaranteed level of service for that

metric. Crawford’s et al. definition of a SLA includes the following common metrics for

SLOs [CBC+05]:

• “Performance and capacity (such as end-user response times, business volumes,

throughput rates, system sizing, and utilization levels)

• Availability (mean time between failure for all or parts of the system, disaster re-

covery mechanisms, mean time to recovery, etc.)

• Security (for example, response to systematic attempts to break into a system)”

For example, for the stated metric end-user response time a SLO can be applied like “90%

of all end-user response times have to be shorter than 50 ms”. Obviously, to be effective,

the metrics used for a SLO must be measurable with the used system.

2.8 Autonomic Computing

With the growth in size and matter of functionalities, computing systems are becoming

more and more complex. The management and configuration of such systems require

28 2 Technological Prerequisites

expensive experts. Autonomic Computing (AC) tries to make computing systems more

self-managed and less complex to administer.

2.8.1 Properties of an Autonomic Computing System

Autonomic systems are described as collections of so called autonomic elements (AE).

These autonomic elements and the autonomic system itself have the ability of self-man-

agement, which is described as the combination of self-configuration, self-optimization, self-
healing and self-protection [KC03], [HKC+06], [GC03]. According to this definition, auto-

nomic systems are also known as systems with self-star properties [BJM+05].

Self-configuration
Self-configuration describes the ability of a system to execute most of the installa-

tion and configuration tasks automatically following high-level policies.

Self-optimization
A system that offers self-optimization continuously tries to improve its performance

and efficiency.

Self-healing
With self-healing, the ability of a system to detect, diagnose and react automatically

on software and hardware problems is described.

Self-protection
A autonomic system is able to defend itself against network attacks and resulting

failures. This property of a system is called self-protection.

An autonomic element consists of the so called managed element and an autonomic man-
ager (AM) (see figure 2.11). The managed element offers sensors and effectors through

standardized management interfaces. The autonomic manager uses these interfaces to

control the element. The management process of the AM is often described by the so

called MAPE-Loop, which stands for the management phases monitor, analyze, plan and

execute. The AM continuously monitors the managed element and writes the monitoring

data to its knowledge base (KB). The received data is evaluated against a defined target

state during the analyze phase. If the current system state is not tolerable, actions are

planned (plan phase) which are executed in the execute phase. How these actions are

derived during the planning phase can be described with service policies.

Autonomic Computing Policies

The upcoming section is mainly based on the article “An Artificial Intelligence Perspec-

tive on Autonomic Computing Policies” by Kephart and Walsh [KW04] and describes

different types of policies that can be used in autonomic computing.

The current state S of a system can be described as a vector of system attributes, which

can be measured directly or indirectly through sensors. Generally a policy defines an

action α which transforms the system from its current state S into a new possible state σ

2.8 Autonomic Computing 29

Figure 2.11: The structure of an autonomic element (from [KC03])

(see figure 2.12).

Kephart and Walsh define a policy as “any type of formal behavioral guide" [KW04] which

purpose is to provide guidance for an autonomic system to choose actions to move it into

desirable states. Three types of policies which could be useful for autonomic computing

are described, the Action, Goal and Utility Function policies. These differ in the way of

how to select an action α, how to define the new possible state σ and how to decide if the

current state S qualifies for a specific policy.

Figure 2.12: System state transitions based on actions α1 - α3 (from [KW04])

Action policies - What should be done?

As the name indicates, action policies define actions that should be executed if a

system is in a given current state. The state (σ) that will be reached by executing

an action is not defined explicitly. The developer of the policy base has to know in

which state the system will be transformed by a specific action α.

Goal policies - Which states are desired?

Goal policies do not define exactly what to do in a specific state, but which states

are desired. Reaching one of these desired states forms the goal of the policy. The

system has to compute a set of actions to transform the system from the current

state S to a desired state σ.

Utility function policies - What objective should be optimized?

30 2 Technological Prerequisites

Instead of classifying states in "desirable" and "undesirable", like goal policies do, a

utility function continuously selects the next desired state as the one with the high-

est utility from the set of possible states.

To use utility functions, a detailed system model is needed. The model must de-

scribe the effects of low-level actions, for being able to identify the actions which

will transform the system to a state with better utility.

31

3 Requirement Specifications

As stated in section 1.2, the CMaaS-team wants to develop a high-performance, scalable

and dynamic email archiving system. This chapter will describe these goals in more de-

tail and analyze the implied requirements for the infrastructure.

The following scenario will illustrate the need of a new archiving solution. It is based

on the high-level goals of the CMaaS project presented in the introduction of this thesis

(section 1.2). It is meant as an exemplary scenario and does not cover all aspects of email

archiving.

3.1 Scenario

SimpleServe is a server-hosting provider and runs a data center which contains servers that

can be rented by its customers. The rented servers can be used by the customers in arbi-

trary ways to satisfy their computing demands (see left part of figure 3.1).

As an additional service, SimpleServe offers a managed email hosting solution. On top

of this simple hosting solution, SimpleServe wants to offer a new Email Archiving and

Management (EAM) service to its customers.

Figure 3.1 shows the change of the business perspective by moving to a Software as a Ser-
vice (SaaS) approach. In its current business model, the business objects are the dedicated

servers offered to its customers. By offering an EAM service, the business objects become

abstract, customizable services. The servers on which the EAM service is running are be-

coming transparent to the customers. This change also includes a shift of responsibilities

for the provider. With the old model SimpleServe had to provide the location, electricity

and the hardware itself, while the usage and utilization of the hardware were down to its

customers. Now, aspects like resource utilization, software installation and configuration

as well as the service availability became part of the provider’s responsibility. The next

section describes the features demanded by SimpleServe and its customers for the EAM

service.

3.1.1 Feature Requests for the EAM Service Solution

It is reasonable that SimpleServe has different demands on the EAM system than its cus-

tomers. The customers are only interested in the offered service functionalities and how

they can configure and use the service. The provider needs a way to offer the EAM ser-

vice with its existing resources. Due to this fact, the feature requests are separated into

two different views, the Provider’s view (SimpleServe) and the Customer’s view (service

consumers).

32 3 Requirement Specifications

Figure 3.1: Comparison of business objects for the dedicated server and EAM service
business models.

A second classification can be applied by allocating the features to the life cycle phases of

the EAM service. Sahai and Graupner [SG05] associate the five phases service creation, ser-
vice provisioning, service composition, service usage and service management to the life cycle

of a Web Service. This classification focuses on the technical aspects of a Web Service and

does not include the creation of a customer-specific service instance based on an abstract

EAM service. In [Bre07], an additional phase between the creation and the provisioning

of a service describes the process. In the so called subscription phase, the service consumer

subscribes to an instance of the EAM service. Based on the two classifications, a combi-

nation of both can be used to describe both technical and business aspects of the EAM

service (see figure 3.2).

Figure 3.2: The life cycle phases of an EAM service

3.1 Scenario 33

Creation

• Provider’s view
SimpleServe wants to offer its customers a specific EAM service that is configured

according to their special needs. The provider specifies the functionalities and pos-

sible configurations of the service by with an offering. As in a Software as a Service
approach, the customers will be charged according to service usage, metrics and

costs for the EAM service have to be defined. Possible service level objectives that

can be specified in a Service Level Agreement (SLA) have to be included in the

providers offering.

• Customer’s View
For the customer, the creation phase starts with getting an offering by the provider.

If the provided functionalities are suitable, the customer agrees with the provider

on a contract (subscription) that specifies the general definitions of the offering. As

part of the subscription, a SLA defines service goals, prices and penalties in case

of a SLA violation. A possible service goal for the EAM service is the guaranteed

throughput of emails in megabytes per second. By subscribing to the service, the

customer creates a custom EAM service as illustrated as a service module on the right

side in figure 3.1.

Instantiation

• Customer’s view
After subscribing, the customer usually wants to use the service as soon as possi-

ble. The instantiation phase must be transparent and as short as possible for the

customer.

• Provider’s view
During the instantiation phase, all resources required for the EAM service need to

be allocated from a pool of free resources specified by the provider. The allocation

process has to be based on the made subscription by the customer. With the pro-

visioning, the necessary software has to be installed and started on the allocated

resources. If needed, external services have to be discovered and allocated (Com-

position phase). As this installation and configuration tasks have to be processed

every time an EAM service is created, it has to be automated as far as possible.

Production

The requirements of the production phase are again separated in scaling-specific and

accounting-specific aspects.

Scaling aspects

34 3 Requirement Specifications

• Customer’s View
During time periods like a day, week, month or even an hour, email traffic rates

can vary a lot. As long as the divergence to the defined average rate in the SLA is

within an also defined tolerance, the EAM service has to compensate traffic peaks.

The compensation of longer high traffic time periods has to be possible for an extra

charge as well.

Most customers of SimpleServe experienced a continuous growth of email traffic.

An automatic or manual adaptation of the initial SLA during the production phase

has to be possible. The scalability of the EAM service should not be limited, as long

as the customers are willing to pay for the guaranteed performance objectives.

• Provider’s view
With offering an EAM solution as a service, the provider is responsible for its proper

functionality during the phase of production. To avoid penalties for SLA violations,

the service management focuses on holding the service within tolerable states. This

includes automatic provisioning of new resources to compensate traffic peaks. On

the other side, as resource utilization is an issue of the provider, the SLA has to be

fulfilled with as little resources as possible to minimize costs.

If the customer changes his demands during runtime, the infrastructure has to react

automatically to the changed situation. The scalability of the system should not be

limited by any technical means, but by the number of resources in the data center.

As long as resources are available, the EAM service can scale-out by allocating more

resources. By deallocating resources it can scale-in, when the demand falls.

Accounting

• Customer’s view
The pay-per-use model is the key aspect for a customer to subscribe to an EAM

service. With a traditional model, the customers had to pay for a set of dedicated

servers, without considering the real usage. With the EAM service, besides a base

rate which depends on the guaranteed SLAs, customers pay for actual service us-

age. This usage has to be measurable in a customer-friendly form, like processed

emails in megabytes.

• Provider’s view
The accounting model is the biggest challenge for a provider when moving to an

SaaS business model. The usage prices offered to the customers have to cover the

expenses for resource operation. A detailed monitoring infrastructure is needed to

achieve optimal resource utilization.

3.2 The CMaaS Approach 35

Termination

• Customer’s view
If the customer has no need for the EAM service any longer, he can just unsubscribe

from it. From that point onwards, no costs are generated for his account.

• Provider’s view
If a customer quits a subscription to the EAM service, the used resources have to be

deallocated and made available for later usage.

3.2 The CMaaS Approach

The above-mentioned scenario illustrated the intended usage of the EAM system seen

from the perspective of a service consumer and a service provider. While for the con-

sumer the usage of the system gets a lot easier than using its own EAM installation, a

lot of questions arise for the service provider. A suitable infrastructure is needed, which

supports the provider during all phases of the service runtime (see figure 3.2).

Two main aspects of the needed EAM system are performance and scalability. As the sys-

tem should scale with the demands of the customers, it needs to be capable of processing

an almost arbitrary amount of emails, as long as enough hardware for usage is available

and the customer is willing to pay for that performance. With the cmgrid-prototype (see

section 1.2.3), the CMaaS team in Stuttgart tries to cope with the aspects of scalability and

performance [WMM+07].

3.2.1 Applying Service-Orientation to the EAM System

With the beginning of this thesis (9/2006), the CMaaS team in Hamburg faces the aspects

of service-orientation and management automation. Generally, a service-oriented archi-

tecture (SOA) promises the advantages of location transparency and service composition

(section 2.3.1). The thesis “Componentization and Orchestration of Content Management

Services” [Biß07] analyzes, how service orientation can be applied to an EAM system.

With applying the theoretical concept to the cmgrid prototype, the impact of the approach

to the reached overall performance is measured.

A Service-Oriented EAM system

In a service-oriented architecture the atomic element is the service. This indicates that all

components of the EAM system have to be transformed into or encapsulated by a ser-

vice. One of the possible service-oriented designs is shown in figure 3.3. All included

services are part of a scalable service pool. Besides the mainly static components Work-
load Manager and Registry, a set of Content Management services (CM services) is present in

the service pool. The abstract term CM service was chosen, as the actual implementations

36 3 Requirement Specifications

can vary in service granularity. The design possibilities of the CM services are discussed

in detail in [Biß07]. As an example, a CM Service could be responsible for the complete

ingest process (see use cases in section 1.2.2) or only for parts like indexing, parsing or

archiving of an email document.

The second main component of the system is the Content Repository. In this design it is a

logical component that is combined from a distributed catalog, implemented as full-text
search indices, and an Archive which is responsible for the actual archiving of the origi-

nal email documents. The Repository Interface offers an integrated access to the content

repository, without requiring knowledge about the distributed approach.

Figure 3.3: A service-oriented design for the EAM system

The arrows in figure 3.3 indicate the communication between the system components

during the ingest process. In the example, a CM service is responsible for all tasks during

the ingest process. A simplified workflow for the ingest process is executed as follows.

The Workload Manager continuously monitors the email server(s) for new incoming or

outgoing emails (1). If new emails are sensed, an archiving job is created that can be

processed by a CM service. The Workload Manager requests the Registry for available

CM services (2) and passes the generated archiving job to a specific CM service that is

most suitable, due to the internal workload management algorithm (3). During the actual

content management work, the CM service gets the mail document from the email server

(4), generates the search index and passes the original email to the Archive (5).

For a detailed description of the internal process within the CM services, the reader is

3.2 The CMaaS Approach 37

referred to [Biß07].

Terms and Definitions Figure 3.4 illustrates the connection between the terms EAM

service, EAM instance and CM service. The distinction between the EAM service and an

EAM instance is important for the discussion in the following sections.

EAM Service
The EAM service is the business service a provider is offering to consumers (his

customers).

EAM Instance
An EAM instance is a consumer specific, running EAM service.

CM Service
An EAM service consists of a set of internal content management services, which

are responsible for the actual content management work. Details about CM Services

can be found in [Biß07].

Figure 3.4: Structure of an EAM service

3.2.2 Achieving System Manageability through Automation

As stated in the scenario (section 3.1), with the usage of the Software as a Service (SaaS)

approach (see section 2.7.1), almost all responsibilities are shifted from the customers to

the service provider.

As a key feature, an EAM instance should be able to scale out and scale in automatically

due to the specified service level agreements. In other words, an EAM instance is able

to add or remove resources to its resource pool automatically. With this capability, the

resource utilization of a single EAM instance should be improved and optimized.

38 3 Requirement Specifications

As it is intended that more EAM instances will be active in the data center at the same

time, a controlling mechanism for resource allocation is needed. Otherwise conflicts be-

tween different EAM instances would occur, if multiple instances wanted to allocate the

same resources simultaneously. Without making assumptions on its architecture or im-

plementation, this resource allocation service should be part of a data center manager, which

is responsible for data center wide resource management functionalities. If an EAM in-

stance needs more resources, it has to send a request to the data center manager, which

has the knowledge about free resources. Figure 3.5 shows a snapshot of current resource

allocation in a data center between the EAM instances A,B and C and a pool of free re-

sources under the control of the data center manager.

Figure 3.5: Resource allocation between EAM instances by the data center manager

Terms and Definitions

EAM Manager
The EAM manager is an instance wide autonomic manager that is responsible for

the configuration and optimization of an EAM instance.

Data Center Manager
The data center manager is an autonomic manager that is responsible for the data

center wide system configuration and optimization. It has access to a system-wide

resource model which contains information on all resources within the data center.

3.2.3 Applying Autonomic Computing Concepts

The autonomic computing paradigm promises to transform complex computing systems

into a set of mainly self-managed components under the control of an autonomic manager

(see 2.8 and [KC03], [HKC+06], [GC03]). A key concept of autonomic computing is self-

management, which combines the capabilities self-configuration, self-optimization, self-

healing and self-protection [KC03].

3.2 The CMaaS Approach 39

The high-level requirements described in the scenario can be mapped to these self-* prop-
erties. In this thesis the properties self-configuration, self-optimization, self-healing and

self-protection are used to classify the autonomic requirements.

Self-configuration

An autonomic EAM service will be installed and configured on demand. If a customer

decides to subscribe to the service and all informations needed are given, the system

allocates the necessary hardware from the resource pool, installs operating systems and

applications. The internal services will automatically connect to the service registry after

instantiation. In other words, all actions that are taken between a subscription and the

first service usage have to be automated.

Self-optimization

With current EAM systems running on rented, dedicated servers, the system utilization

is down to the customer. By introducing the “pay per use” concept and service level

agreements, the need of better system utilization is critical for the service provider.

To approach this problem, the EAM service should be able to scale-out (allocation of new

resources, see Use Case 1, figure 3.6) and scale-in (return of idle resources, see Use Case

2, figure 3.7) automatically, due to current system utilization and according to the agreed

service level objectives. In the use cases, the existence of a Resource Management System
(RMS) that is responsible for the allocation of free resources is assumed.

Besides this coarse-grained scaling based on hardware resources, optimization based on

internal service-configurations should be supported, too. Different types of content de-

mand different service configurations. The possibility to assign resources independently

- e.g. for parsing, archiving and indexing components during runtime - could increase

overall system performance. The infrastructure should provide control mechanisms that

allow such fine-grained optimizations.

Self-healing and Self-protection

The self-healing and self-protection capabilities needed for an EAM system especially

assign the content, that is archived. At any time, the archived data must be accessi-

ble. Hardware failures such as hard disk or complete server crashes have to be compen-

sated. The mechanisms also enable hardware maintenance during the production phase,

as servers can be disconnected from the system without influencing its processing.

3.2.4 The Vision of an Autonomic, Service-Oriented Email Archiving System

When applying general autonomic computing concepts (section 2.8) to the EAM service,

the data center (or the part that is reserved for the EAM service) becomes an autonomic

system with the EAM instances and the data center manager as the autonomic elements.

40 3 Requirement Specifications

Use Case 1 - System scale-out

Description The number of resources allocated to the EAM service is increased.

Actors Resource Management Service (RMS), CM service

Rationale The application manager detects or predicts an SLA-violation by
falling below the guaranteed throughput level and orders the RMS
to add a server with “N” CM services to the application pool.

Preconditions The data-center contains idle resources that can be used for the EAM
service.

Normalflow

1. The RMS removes a server from the pool of free servers and adds
it to the EAM service model.

2. The RMS installs the needed software on the server.

3. “N" CM services are deployed and instantiated.

4. The CM services process their internal startup actions and add
themselves to the Registry.

5. Upon completion, the CM services set their status to “available”.

Postconditions A new server with the requested number of services was added to
the application-pool

Figure 3.6: Use Case 1 - System scale-out

Figure 3.8 shows a high-level model of an autonomic and dynamic email archiving sys-

tem by applying the described SOA and autonomy concepts to the design from figure

3.3.

The figure shows a service pool, which contains both static and dynamic services from

figure 3.3. The EAM instance manager controls and optimizes the internal CM services.

The email ingest is processed equally to the process in figure 3.3 and is omitted in this

figure.

The autonomic manager continuously gets data from the sensors of the EAM instance,

which could be collected instance-wide by a monitoring service. Due to the specific SLAs,

the manager propagates management actions to the specific services or the resource man-

agement system. The RMS should include a provisioning service, which can be used to

scale the service pool by changing hardware allocations and service instantiations. This

high-level view shows the intended behaviour of the system, but does not make any

assumptions on the overall architecture of the EAM service.

3.3 The Building Blocks of the EAMS Infrastructure

The high-level design of the autonomic EAM system in figure 3.8 motivates three building
blocks for the EAM system.

3.3 The Building Blocks of the EAMS Infrastructure 41

Use Case 2 - System scale-in

Description The number of resources allocated to the EAM service is reduced.

Actors Resource Management Service (RMS), CM service

Rationale The application manager recognizes bad system utilization and or-
ders the RMS to remove a server from the resource pool.

Preconditions -

Normalflow

1. The RMS allocates a server that should be removed from the sys-
tem.

2. The CM services that are running on the server are notified about
the shutdown.

3. The RMS waits until all CM services have been successfully shut
down.

3.1 Each CM service sets its status to “unavailable” to avoid new job
transmissions.

3.2 Local indexes will be transfered to other services.

3.3 The CM services remove themselves from the Registry.

3.4 The CM services notify the RMS that it is ready for shut down.

4. The RMS removes the server from the application-model, removes
installed services and adds it to the pool of free servers.

Postconditions The number of servers allocated to the EAM service is reduced.

Figure 3.7: Use Case 2 - System scale-in

Service Runtime
The Service Runtime offers the basic infrastructure functionalities needed for the

EAM system.

Resource Management System
The Resource Management System has to provide the resource allocation and man-

agement functionalities that are needed for automatic resource provisioning. The

Resource Management System has to provide access to monitoring data, needed by

the System Automation Component.

System Automation
All aspects of automation and self-management can be assigned to an abstract Sys-
tem Automation component. In a real implementation, the responsibilities assigned

to this single component can be implemented in separated components. The main

responsibility of this component is to activate resource provisioning tasks if SLA

violations occur.

In the remainder of this section, the detailed requirements on these three infrastructure

components are described.

42 3 Requirement Specifications

Figure 3.8: Concept of an autonomic email archiving and management system

3.3.1 Service Runtime

The service runtime provides the basic functionalities for the service oriented EAM sys-

tem. As the intended architecture for the EAM service is a SOA, all system components

have to be at least accessible through interfaces provided by the service runtime [NL04].

The essential requirements can be categorized into two groups. The first are the function-

alities needed for implementing the design concepts developed by Malte Biß in [Biß07].

Secondly, the Resource Management System and the System Automation components require

specific functionalities.

Design-Specific Requirements

It must be at least possible to implement all services from the service-oriented design

shown in figure 3.3 on page 36.

Registry
The registry has to offer at least classical directory service functionalities as all CM

services has to be discoverable. An idea for simple workload management is that

the registry also has access to state information of its entries [Biß07]. This require-

ment goes further than classical registry functionalities, but would allow comfortable

access to services.

Workload Manager

3.3 The Building Blocks of the EAMS Infrastructure 43

No specific requirements are demanded by the Workload Manager service. The gen-

eral requirements needed for general system management are presented in the In-
frastructure requirements section.

Content Management Services
As stated before, the CM services are the ones actually responsible for Content

Management tasks. The different granularity designs for CM services, discussed

in [Biß07], have to be realizable with the selected runtime. For testing purposes, an

easy adjusting of granularity at deployment time should be provided.

One of the reasons a service-oriented concept was chosen is the ability of recon-

figuring the system during runtime. Figure 3.9 illustrates how the EAM system

can be reconfigured. Based on resource utilization, additional CM services can be

started, as shown on two nodes on the right side of the figure. Later these services

can be shut down, if they take up too much system resources. These service-based

Figure 3.9: Service based system reconfiguration

reconfiguration steps imply that services can be started, stopped and destroyed if

necessary. In other words, the services need to be aware of their state and in this

case their current state in the service life-cycle. These state-aware services are often

called stateful services.

Infrastructure Requirements

Seeing the service runtime in the context of an autonomic system, the runtime services are

becoming the manageable elements that are controlled by an autonomic manager. With-

out considering the autonomic manager itself, to become manageable, external interfaces

for monitoring and management access are needed [WHW+04]. These interfaces are of-

ten called the sensors and effectors of a manageable element [KC03]. The EAM-specific

requirements for the effectors and sensors are discussed next.

Monitoring Interfaces - Sensors
To optimize the configuration of an EAM instance and to keep it within defined ser-

vice level objectives, an autonomic manager needs access to the state information

of a CM service. When examining the coarse grained CM service referred to as PAI

44 3 Requirement Specifications

service1, which includes all tasks of the ingest process, state information like the size

and location of the index, the number of processed emails or the current working

status are needed to get a view of the current state of the EAM system.

To offer practical service-based monitoring, besides classical polling of needed in-

formation, the runtime should offer some kind of publish/subscribe mechanism to

minimize message exchanges.

Management Interfaces - Effectors
The management interfaces of a manageable element are the interfaces which al-

low to change the configuration or state of an element. In case of the CM services

these include all configuration options that can influence the content management

process.

3.3.2 Resource Management

The Resource Management System (RMS) should offer a kind of abstraction layer on top

of the used computing hardware. The three main responsibilities are the management

of resource allocation, the provisioning service, which automates software installations,

and the offering of detailed monitoring data.

Provisioning Service

When a customer subscribes to the EAM service, a new instance has to be created. A

set of hardware resources will be allocated for the instance (see next section) that have

to be set up for the EAM service. In a real-world scenario, the data center of the service

provider would not be used exclusively for the EAM service, but for a collection of SaaS

applications. Though unused resources can be assigned to different kinds of services,

which e.g. have different requirements for the operating system or application servers.

The provisioning service must be able to install a specific server configuration on a clean
server.

Resource Allocation

As illustrated in section 3.2.2, the data center manager or even a manual management com-

ponent need to be aware of the current resource usage in the data center. A common way

to model resource allocations is by the use of a hierarchical resource model.

Resource Model

A Resource Model illustrates allocations with simple “belongs to” relations. In [SCD+97]

three different perspectives on Quality of Service (QoS) driven resource management are

1PAI stands for parsing, archiving and indexing of an email. Indeed a PAI service is responsible for all
other content management tasks, too.

3.3 The Building Blocks of the EAMS Infrastructure 45

introduced, the Application, Resource and System perspective. These perspectives are used

for the hierarchical layers of an exemplary, simplified resource model in figure 3.10. On

Figure 3.10: The three perspectives of resource management

top of the hierarchy in the system perspective, the RMS itself works to manage all re-

sources of the data center. The application layer contains virtual elements, which repre-

sent e.g. EAM instances or the pool of free resources. Elements in the resource layer rep-

resent real hardware or software resources of the data center. Each element is associated

with an element of the application layer, to model its current allocation. If a free resource

is allocated to an EAM instance, the representing element in the model is “moved” to the

EAM instance by changing the association from the “free resources” element to the spe-

cific EAM instance element. Within the resource perspective, more associations, which

illustrate the installed software components or services on a hardware resource are pos-

sible. When deallocating a resource, the system knows which applications have to be

removed.

The use of a resource model indicates that all changes of the infrastructure must be syn-

chronized with the RMS system to avoid inconsistent resource models.

Required Monitoring Functionalities

The System Automation component needs detailed monitoring data to keep an EAM in-

stance within the area of the guaranteed service level objectives. For this, monitoring

data from the resource and the application layer are needed. As higher-level elements

of the resource model are aggregations of lower-level elements, metrics of the applica-

tion layer are aggregated from resource perspective metrics. This mapping is critical for

the SLA management, as service level objectives are formulated with application-wide

metrics (see section 2.7.2). To enable the optimization of resource utilization, low-level

monitoring data like CPU-utilization, memory usage or disk-capacity are needed. In the

following, the requirements on the offered metrics will be discussed.

46 3 Requirement Specifications

Metrics

Truong et al. [TSF06] developed a classification of relevant grid-service metrics based

on QoS and dependability taxonomies from [SCD+97] and [ALR01]. Their taxonomy is

motivated by the ad-hoc binding of prior unknown grid-services. For this thesis, the tax-

onomy was adapted to illustrate the required metrics on the application level (see figure

3.11). The adapted classification only summarizes some of the possible essential metrics

for the EAM system. The detailed analysis of metrics needed for SLA-management is

beyond the scope of this thesis and will be the subject of future research. Some of the

used EAM specific metrics are described below. Not all of them are shown in figure 3.11.

Figure 3.11: Classification of QoS metrics (based on [TSF06])

Performance
The performance of a system can be described by time or by ratio metrics.

Time
Time information can be used for different metrics like a response time for a

request, the latency of an action. Some examples are given below.

ResponseTime
The response time is defined as the time period between a client-request

3.3 The Building Blocks of the EAMS Infrastructure 47

and the time the client receives the response. For the EAM service re-

sponse times could be defined for regular search, manual archiving or email
retrieval requests.

Latency - TimeToFindable
The TimeToFindable metric defines the time period from the beginning of

an ingest request (automatic or manual) to the time the ingested document

can be found in the system.

Ratio - ServiceThroughput
In "classical" Web Services, the throughput of a service is defined as the num-

ber of processed requests over a period of time. As the EAM service offers

different services, separate throughput metrics must be defined.

ArchivingThroughput
The archiving throughput defines the amount of data (in bytes) the service

was able to archive in a period of time. Throughput-rates for different time

periods should be accessible.

SearchThroughput
The search throughput defines the ratio of regular search requests per time

period (see use case in section 1.2.2).

RetrievalThroughput
The retrieval throughput describes the amount of documents (as data in

bytes) per time period that can be retrieved from the archive.

Dependability
The dependability category contains metrics, which depend on other metrics or a

set of metrics. For this example, the functionalities required by the workload man-

agement component are divided into the two components Dispatcher and Crawler.

More about this componentization can be found in [Biß07].

Availability
Availability is defined by the equation Availability = UpTime

PeriodOfT ime [TSF06],

where UpTime is the part of time in PeriodOfT ime in which the service has

been available. A service is available when it is ready for immediate use2.

By having a complex system instead of a “simple” Web Service, the availabil-

ity of the EAM service depends on the availability of its internal components

(see figure 3.12). An EAM service is available for archiving, if all static ser-

vices (Dispatcher, Registry, Crawler) and at least one CM service of each category

needed (in the simple example just one PAI service) is available. The availabil-

ity of the internal services itself depend on the availability of the hardware

resources they are running on (not shown in the figure). Nevertheless an EAM

service could be available for a retrieval request if the Crawler and Dispatcher

are unavailable, as long as all retrieval-related services are available.

2From http://www-128.ibm.com/developerworks/library/ws-quality.html - last visited on 04/17/2007

48 3 Requirement Specifications

Figure 3.12: Dependencies of application-wide availability on the internal resources

Reliability
Reliability describes the capability of delivering correct service. The reliabil-

ity of a system is often described through its “mean time between failures”

(MTBF) [TSF06]. Application-wide reliability depends on the reliability of

each CM Service.

3.3.3 System Automation

The System Automation component has to execute management tasks, which are normally

handled manually. One approach for system automation is the autonomic computing

concept (see section 2.8). Having discussed which tasks have to be automated in section

3.2.3, this section will describe an autonomic computing architecture, that could be used

for the EAM system.

An Autonomic Architecture for the EAM System

How autonomic elements can be arranged to form a production system, is the key issue

of the IBM whitepaper “An architectural blueprint for autonomic computing” [IBM06]. It sug-

gests the components manageability endpoints3, autonomic managers (AM), knowledge

sources and manual managers as the building blocks of autonomic computing. These

components can be composed to form self-managed systems.

Figure 3.13 illustrates a “generic hierarchical arrangement of autonomic and manual

managers” [IBM06], which form a topology of the building blocks.

The bottom layer consists of the managed resources (MR), which can consist of servers,

storage components or applications. The resources itself could contain some self-man-

agement capabilities, illustrated by the autonomic control loop. Layer two standardizes the

access to the MRs by applying manageability endpoint implementations to each resource.

By this approach the general management access to a database or to an application is

3Also called touchpoints

3.3 The Building Blocks of the EAMS Infrastructure 49

Figure 3.13: Autonomic computing reference architecture [IBM06]

nearly the same and only differ by the specific endpoint implementation.

Each resource can be controlled by an AM, which uses the resource-specific manage-

ability endpoint to realize self-management capabilities. These autonomic managers are

orchestrated by AMs in the layer above. These orchestrating AMs differ in their perspec-

tives on the system and self-management capabilities and offer system-wide autonomic

capabilities by incorporating lower level control loops. On top of all layers, a manual

manager can configure the system by accessing the manageability endpoints of the or-

chestrating AMs through some kind of control console. All layers have access to a set of

knowledge sources which enable knowledge sharing between different AMs

Another key component of the architecture is the Enterprise Service Bus (ESB), which acts

as a glue between all other components. The term Enterprise Service Bus is frequently

used in business products4. The basic responsibilities commonly assigned to an ESB cor-

respond with the classical responsibilities of a service runtime.

For this thesis, the presented architecture was mapped onto the EAM system. The adapt-

ed version of the architecture is illustrated in figure 3.14. This architecture separates the

hierarchical layers in vertical containers depending on their association with an EAM in-

stance. The knowledge sources (omitted in figure 3.14), which were shared between and

accessible by all layers and AMs, now have to offer different views on the data for every

EAM instance and a complete view for the data center management components. The

layer of managed resources consists of actual hardware resources like servers and e.g.

the CM Services which can all be handled independently as a manageable element. To

4e.g. Oracle® Enterprise Service Bus, IBM WebSphere Enterprise Service Bus

50 3 Requirement Specifications

Figure 3.14: Hierarchical autonomic architecture of the EAM service

realize this manageability all resources offer standardized effectors and sensors through

their manageability endpoint. The Endpoint Autonomic Managers are realizing autonomy for

the manageable resources. In case of a CM services, that means that it can optimize itself

by adjusting its configuration to reach better utilization. This layer is transparent to the

above layer of Orchestrating Autonomic Managers and could be omitted due to complex-

ity reasons. To allow administrators and customers to monitor and configure the EAM

instances manually, a control interface that acts as a manual manager is placed on top of

the hierarchy. Users can configure the behaviour of the orchestrating managers by e.g.

adjusting service level objectives, configure new plans or updating the knowledge base

of an autonomic manager.

Key Requirements for an Autonomic Manager

The autonomic manager is the central part of an autonomic system (see section 2.8. The

management phases Monitor, Analyze, Plan and Execute all rely on the so called Knowl-
edge Base. The component which realize the analyzing and planning has to offer a pro-

grammable kind of reasoning engine.

Knowledge Base
The Knowledge Base (KB) of an autonomic manager stores and provides all infor-

mation for the proper functionality of the AM. For the EAM instance, the KB must

contain or have access to instance wide monitoring data, the resource model of the

instance and service level objectives and policies. This also includes a requirements

3.4 Summary 51

on the resource management system, that monitoring metrics have to be compati-

ble to the metrics used for the service level objectives and policies. Generally, the

expression of information in a machine-readable form is essential for the usability

of the KB.

Reasoning Engine
The reasoning engine of an AM is responsible for the proper reactions of the system

in case of SLA violations. In section 2.8 three different types of service policies

were introduced, action, goal and utility function policies. Action policies are the

simplest form of policies and rely on a deep knowledge of system behaviour.

3.4 Summary

The requirements for a service oriented, automated EAM system are complex and nu-

merous. For this thesis, these requirements were classified into the three categories Ser-
vice Runtime, Resource Management and System Automation. As the base for the complete

system, the service runtime has to offer manageable services, that can provide state in-

formation about the applications or resources they represent in a standardized way. The

Resource Management System has to offer resource allocation and provisioning functionali-

ties. By providing EAM instance specific perspectives on the resource model, services can

get access to available resources within an EAM instance. Application based monitoring

data has to be combined with low-level information like CPU and memory usage to al-

low the optimization of resource utilization. The System Automation category combines

requirements that are needed, to transform the EAM system into an autonomic system.

System automation requires the manageability of the used services and resources. The

formulation of service level objectives and service policies in a machine-readable and in-

terpretable form is the major requirement and challenge for a successful implementation.

More detailed research has to be done in this sector to formulate the actual service goals

and effects of planned actions to the system.

52 3 Requirement Specifications

53

4 Service Runtime Evaluation

This part of the evaluation focuses on the required service runtime for the EAM system,

presented in chapter 3.

4.1 The WSRF Basic Profile Specification

When designing a SOA, the use of open standards for service accessibility is critical (SOA
Principals and guidelines in [NL04]). Web Services are a common way to implement a SOA,

although with the lack of state, traditional web service technologies are not adequate as

the intended infrastructure. By the usage of proprietary semantics and functions, the

state awareness of traditional Web Services can be achieved, but this destroys the benefit

of open standards.

The Open Grid Service Architecture (OGSA, section 2.4.2) can be seen as the de facto stan-

dard for Grid computing. In an OGSA-based grid, every resource is based on a grid

/ infrastructure service. The recommended service infrastructure is the Web Services

Resource Framework (WSRF, see 2.5). It defines how to access and populate arbitrary

resources through the use of Web Services technology. In 2006 the OGF1 announced the

OGSA WSRF Basic Profile 1.0, to accomplish basic interoperability between OGSA imple-

mentations. According to this, the service runtime layer in an OGSA based grid should

be exchangeable as long as it is compatible to the WSRF Basic Profile.

Other parts of OGSA are not fully standardized or even fully specified, which makes

the Basic Profile a good base for the service runtime of the intended EAM service. After

a short discussion about XML processing in enterprise environments, the WSRF Basic

Profile will be compared to the requirements defined in section 3.3.1.

4.1.1 XML Processing in the Enterprise

XML- and especially SOAP-based communication entails messaging overhead by mes-

sage size and processing time, which kept many businesses from using XML in enterprise

applications.

Chen et al. showed that "SOAP is a compelling protocol to its binary alternatives for small mes-
sages" [CYZ+06]. The intended usage of the service runtime only includes management

and orchestration messages, which means that message sizes should stay in tolerable

dimensions. Data-intensive processes like email ingestion and retrieval will remain on

existing standards like POP3 or IMAP.

1The Open Grid Forum - http://www.ogf.org

54 4 Service Runtime Evaluation

4.2 Evaluation of the WSRF Basic Profile (WSRF-BP)

This section will evaluate the theoretically usage of WSRF-BP, without considering actual

implementations.

4.2.1 Handling State with WSRF

As stated in section 3.3.1, the required service runtime needs a standardized service

life cycle management. Services need to be instantiated, stopped and destroyed as re-

quired. In WSRF the actual state of a resource is represented by its ResourceProper-
ties (see 2.5). The intended state information from the requirements catalog in section

3.3.1 completed jobs, operational state or the service registry location must be specified in the

ResourceProperties-document (RP-document). By this representation information about

the service can be read or configured by standardized web services calls.

Listing 4.1: Representing state in WSRF

1 <xsd:element name="ResourceProperties">

2 <xsd:complexType>

3 <xsd:sequence>

4 <element name="CompletedJobs"

5 type="xsd:int" minOccurs="1" maxOccurs="1"/>

6 <element name="OperationalState"

7 type="xsd:string" minOccurs="1" maxOccurs="1"/>

8 <element name="RegistryLocation"

9 type="wsa:EndpointReference" minOccurs="1" maxOccurs="1"/>

10 </xsd:sequence>

11 </xsd:complexType>

12 </xsd:element>

Service Life Cycle

The life cycle of a service in WSRF is covered by the WS-ResourceLifetime [SB06] stan-

dard. It defines the lifetime of a WS-Resource as the period between its instantiation and

its destruction.

Service Creation

The current WSRF standards do not specify the way to create a WS-Resource, though

earlier versions [CFF+04] included the WS-Resource Factory Pattern as the default way.

The pattern is still stated as best practice in the WSRF Application notes [WM06]. Figure 4.1

shows the message flow for this pattern.

By the use of a factory service, other resources can be created as needed. A client (WS-

Client) that needs a specific resource (WS-Resource) for processing submits a createRe-

4.2 Evaluation of the WSRF Basic Profile (WSRF-BP) 55

WS-Client WSResource-Factory

createResource()

WSResource

<<create>>

EPR

EPR

process()

Figure 4.1: The WS-Resource Factory Pattern message flow

source() request to the factory. The factory responds with the endpoint reference (EPR)

of the created resource. The client can then use the EPR to address the newly created

resource. In the example it submits a general process() request to the resource.

Service Pausing

There is no standardized way to pause a service in WSRF. The state of a service is very

specific to the actual implementation. Although a representation of state is possible

through the use of resource properties as shown in listing 4.1. The actual implemen-

tation must provide the needed actions to process the wanted state transitions requested

by a SetResourceProperties requests. A WSRF-implementation should provide a way to

react directly on property change requests.

Service Destruction

WS-ResourceLifetime offers explicit and implicit ways for service destruction that may be

supported by a WS-Resource.

• Explicit destruction For explicitly destroying a resource WSRL defines the wsrl:de-
stroy operation. Listing 4.2 shows a sample destroy message. (Due to text format-

ting, the message contains line breaks that are not part of a real destroy message).

Listing 4.2: Destroying a WS-Resource through a wsrl-destroy message

1 <SOAP-ENV:Envelope>

2 <SOAP-ENV:Header>

3 <wsa:Action>

4 http://docs.oasis-open.org/wsrf/rlw-2/

5 ImmediateResourceTermination/DestroyRequest

6 </wsa:Action>

56 4 Service Runtime Evaluation

7 <wsa:To>http://example.com/PaiService</wsa:To>

8 <wsa:ReferenceParameters>

9 <ResourceId>1</ResourceId>

10 </wsa:ReferenceParameters>

11 </SOAP-ENV:Header>

12 <SOAP-ENV:Body>

13 <wsrf-rl:Destroy/>

14 </SOAP-ENV:Body>

15 </SOAP-ENV:Envelope>

• Implicit/Scheduled Destruction In many scenarios it is common that resources

have an initial lifetime when created. For example the shopping cart from section

2.5.1 would have an initial lifetime in which it is available for the customer before

it is deleted automatically. This can be compared to a maximum session lease time

of a web application.

For using implicit resource destruction, the properties wsrf-rl:TerminationTime and

wsrf-rl:CurrentTime must be included in the RP-document of the according resource.

The destruction of a resource can be scheduled by setting the termination time to a

desired time. To let a service requester set a resource termination time without re-

quiring a specific accuracy of clock synchronization between the service requester

and the service provider, the WS-Resource offers the current time property, which

represents the local time of the resource.

Termination time can be scheduled by setting an explicit time by a setResourceProp-

erty() call or by specifying a time offset from the current time which the resource

uses to calculate the corresponding new termination time.

4.2.2 Registry Service

Section 3.3.1 stated the necessity of a registry service that is capable to provide state infor-

mation about the registered entries. WSRF offers the needed functionality with the WS-

Resource called ServiceGroup (section 2.5.3). Generally speaking, these service groups

can combine arbitrary WS-Resources and Web Services. By applying a so-called Member-
shipContentRules, the set of allowed WS-Resources for a service group can be restricted.

The same mechanism can be used to enrich the entries of the service group with state in-

formation about the members. Listing 4.3 illustrates, how a simple rule is defined within

a WS-ResourceMetadata descriptor. As the membership rules of a service group are re-

alized as resource properties, the rule is applied by setting a static property value. The

rule dictates the existence of the muws2:OperationalStatus property for all WS-Resources

that should be added to the service group. The property will automatically added to the

Content property of the entry elements.

4.2 Evaluation of the WSRF Basic Profile (WSRF-BP) 57

Listing 4.3: MembershipContentRule which restricts the registry to WS-Resources with

the OperationalStatus property

1 <wsrmd:MetadataDescriptor

2 interface="wsrf-sg:ServiceGroupRP"

3 name="ServiceGroupMetadata">

4 <wsrmd:Property

5 name="wsrf-sg:MembershipContentRule">

6 <wsrmd:StaticValues>

7 <wsrf-sg:MembershipContentRule

8 ContentElements="muws2:OperationalStatus"/>

9 </wsrmd:StaticValues>

10 </wsrmd:Property>

11 </wsrmd:MetadataDescriptor>

When querying the service group about its members, the responses will contain the value

of the OperationalStatus of the members. A workload management resource could use

these information for load balancing and scheduling.

4.2.3 Resource State Monitoring

Having access to the state of a resource via its resource properties does not solve the

problem of effective state monitoring, when, for example, a monitoring service is only

interested in state transitions.

WSRF uses WS-BaseNotification (see section 2.5.4, [GHM06]) to provide an event-based

notification service. Notification consumers can subscribe to WSRF specific events like

resource property changes, resource termination and ServiceGroup entry additions or

removals. For example, an interested service can subscribe to changes of the property

CompletedJobs from listing 4.1 by sending a message like the one shown in listing 4.4. The

listing only shows the body-contents of the complete SOAP-Message.

Listing 4.4: Subscription message for resource changes.

1 <wsnt:Subscribe>

2 <wsnt:ConsumerReference>

3 <wsa:Address>http://host/service/ServiceGroupEntry</wsa:Address>

4 <wsa:ReferenceParameters>

5 <muse-wsa:ResourceId>ResourceId</muse-wsa:ResourceId>

6 </wsa:ReferenceParameters>

7 </wsnt:ConsumerReference>

8 <wsnt:Filter>

9 <wsnt:TopicExpression

10 Dialect="http://[...]/wsn/t-1/TopicExpression/Concrete">

11 cmgrid:CompletedJobs

12 </wsnt:TopicExpression>

13 </wsnt:Filter>

14 </wsnt:Subscribe>

58 4 Service Runtime Evaluation

Every time the CompletedJobs property gets changed, all subscribers get a so-called Re-
sourcePropertyValueChangeNotification message. An excerpt of such a message is shown in

listing 4.5.

Listing 4.5: Sample resource change notification for a subscription as in listing 4.4

1 <wsnt:Notify xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">

2 <wsnt:NotificationMessage>

3 <wsnt:SubscriptionReference>

4 <!-- subscriber -->

5 </wsnt:SubscriptionReference>

6 <wsnt:Topic>

7 cmgrid:CompletedJobs

8 </wsnt:Topic>

9 <wsnt:ProducerReference>

10 <!-- monitored resource / producer -->

11 </wsnt:ProducerReference>

12 <wsnt:Message>

13 <wsrf-rp:ResourcePropertyValueChangeNotification>

14 <wsrf-rp:OldValues>

15 <cmgrid:CompletedJobs>99</cmgrid:CompletedJobs>

16 </wsrf-rp:OldValues>

17 <wsrf-rp:NewValues>

18 <cmgrid:CompletedJobs>100</cmgrid:CompletedJobs>

19 </wsrf-rp:NewValues>

20 </wsrf-rp:ResourcePropertyValueChangeNotification>

21 </wsnt:Message>

22 </wsnt:NotificationMessage>

23 </wsnt:Notify>

This event- and topic-based monitoring reduces message exchanges. Subscriptions can

be paused and deleted and external monitoring systems can subscribe to resources, with-

out knowledge of the EAM system. Only the monitored WS-Resources are aware of the

external subscriber. Nevertheless, how effective and scalable SOAP-based application

monitoring is in for practical implementations has to be tested by experiments.

4.2.4 Summary

The WSRF and WSN specifications allow a flexible and standardized way to specify and

access stateful resources through standardized Web Services. By subscribing to a resource

property change, interested clients will be notified automatically by WS-Notification.

This allows flexible application-based monitoring that can be switched on and off with-

out interfering with the running application. External management and monitoring tools

can access application data transparently without the knowledge of the EAM service.

On the other side, the lack of semantics forces all clients to be aware of the meaning of

resource properties. WSRF does not define a way to describe the properties in more de-

4.3 The Use of WSDM to Achieve Manageability 59

tail. WSRF ServiceGroups offer a simple way to aggregate resources for discovery, but

complex relationships between resources can not be described.

4.3 The Use of WSDM to Achieve Manageability

The last section showed that the WSRF-BP is sufficient for the required virtualization and

manageability functionalities. Nevertheless, this can only be achieved by the use of pro-

prietary semantics defined for the used resource properties.

The Web Services Distributed Management (WSDM) specification (see section 2.6) pro-

mises to enable better manageability of resources. Generally, WSDM enriches WSRF with

management-specific semantics and definitions that should allow a standardized man-

agement of resources in a distributed environment.

The specification consists of the two parts Management Using Web Services (MUWS) and

Management Of Web Services (MOWS) (see section 2.6. As the intention of this section is

to find a service runtime that can be used to manage other resources, this evaluation will

only analyze the MUWS part of WSDM.

4.3.1 Metrics and Metadata

WSDM MUWS defines a set of extensions on top of WSRF to enrich the resource proper-

ties of a resource with metadata or to declare them as metrics.

Figure 4.2: State diagram for the operational state of a resource

Listing 4.6: Construction of a state taxonomy

1 <xsd:element name="UnavailableState" >

2 <xsd:complexType>

3 <xsd:complexContent>

4 <xsd:restriction base="muws2:OperationalState" />

5 </xsd:complexContent>

6 </xsd:complexType>

7 </xsd:element>

60 4 Service Runtime Evaluation

8
9 <xsd:element name="AvailableState" >

10 <xsd:complexType>

11 <xsd:complexContent>

12 <xsd:restriction base="muws2:OperationalState" />

13 </xsd:complexContent>

14 </xsd:complexType>

15 </xsd:element>

16
17 <!-- The idle state is a substate of the available state -->

18 <xsd:element name="IdleState" >

19 <xsd:complexType>

20 <xsd:complexContent>

21 <xsd:restriction base="cmgrid:AvailableState" />

22 </xsd:complexContent>

23 </xsd:complexType>

24 </xsd:element>

Listing 4.6 shows the XML representation of the states Unavailable, Idle and the state

Available. The Available consists of the sub-states Idle, Running, Stopping and Stopped.

Both, the Unavailable and Available states are sub-states of the common cmgrid:Opera-

tionalState. The idle state in line 18 is a restriction of the Available state to indicate that it

is a sub-state of Available.

4.3.2 A WSDM-based Resource Model

With the use of WSRF ServiceGroups, a representation of the used resources within the

system can be implemented, although this simple aggregation of resources does not build

a correct and complete resource model of the project. Another restriction of Service-

Groups to build a resource model is that all entries in the group have to be a WS-Resource

or Web Service. WSDM MUWS can be used to create a new or to expose an existing re-

source model through a Web Service endpoint.

The intended archiving system consists of a couple of components, which will be mod-

eled as resources or services. A simplified, high-level schema of this containment associ-

ation is shown in figure 4.3. The example illustrates an archiving service containing the

components Registry, Dispatcher and Crawler, whereas Dispatcher and Crawler are part

of the required workload manager (see [Biß07]).

WSDM MUWS offers the manageability capability muws2:Relationships (see 2.6.1) to mo-

del this kind of associations. The capability requires the existence of the muws2:Relation-
ship property within the ResourceProperties document of the resource, which will hold

and expose the resource model. An instance of a relationship element representing the

model from figure 4.3 is shown in listing 4.7.

4.3 The Use of WSDM to Achieve Manageability 61

Figure 4.3: Simplified resource model

Listing 4.7: The use of the WSDM MUWS RelationshipType to create a resource model

1 <?xml version="1.0" encoding="UTF-8"?>

2 <muws2:Relationship>

3 <muws2:Name>Service contained in an external service</muws2:Name>

4 <muws2:Type>

5 <cmgrid:ContainmentType/> <!-- user defined type -->

6 </muws2:Type>

7 <!-- Archiving Service -->

8 <muws2:Participant>

9 <muws2:Role> <!-- user defined role -->

10 cmgrid:roles:external:archiving-service

11 </muws2:Role>

12 <muws1:ManageabilityEndpointReference/>

13 <muws2:ResourceId><!-- ArchivingServiceID --></muws2:ResourceId>

14 </muws2:Participant>

15 <!-- Contained services -->

16 <muws2:Participant>

17 <muws2:Role>

18 cmgrid:roles:internal:registry

19 </muws2:Role>

20 <muws1:ManageabilityEndpointReference>

21 <!-- RegistryEPR -->

22 </muws1:ManageabilityEndpointReference>

23 </muws2:Participant>

24 <muws2:Participant>

25 <muws2:Role>

26 cmgrid:roles:internal:dispatcher

27 </muws2:Role>

28 <muws1:ManageabilityEndpointReference>

29 <!-- DispatcherEPR -->

30 </muws1:ManageabilityEndpointReference>

31 </muws2:Participant>

32 <muws2:Participant>

33 <muws2:Role>

62 4 Service Runtime Evaluation

34 cmgrid:roles:internal:crawler

35 </muws2:Role>

36 <muws1:ManageabilityEndpointReference>

37 <!-- CrawlerEPR -->

38 </muws1:ManageabilityEndpointReference>

39 </muws2:Participant>

40 </muws2:Relationship>

The defined relationship has the exemplary, user-defined type cmgrid:ContainmentType
and a participant element for each component of figure 4.3, which shall be connected by

this relationship. The role element of each participant defines the role it plays in the rela-

tionship. These role types are project-specific and should be defined and described in the

declaration of the particular relationship type (in this case the cmgrid:ContainmentType).

4.3.3 Summary

By using the WSDM specification for the creation of manageability endpoints, the oppor-

tunity of using existing or emerging WSDM-aware tools for management or monitoring

is given. A data center wide solution for resource management could be used instead of

an EAM service specific WSRF based solution with service specific semantics. By using

the resource modeling capabilities, external tools can monitor the complete system by

expanding all defined relationships.

4.4 Evaluation of WSRF Implementations

After evaluating the theoretical usage of the WSRF Basic Profile, this section will analyze

existing implementations of the standard.

4.4.1 Existing WSRF Implementations

Currently (October 2006) only two open-source Java implementations of WSRF are avail-

able that could fit as the service runtime for the EAM system.

1. Globus Toolkit 4 - Java WS Core (stated as GT4)

2. Apache Muse 2 (stated as Muse)

4.4.2 Globus Toolkit 4 (GT4)

The Globus Toolkit 4 is the reference implementation of OGSA 1.0 and its development

process had a direct influence on the OGSA specification. Besides a WSRF implementa-

tion within the WS Core (available in Java, C and Python), the toolkit implements dif-

ferent OGSA capabilities as shown in figure 4.4. With version 4.0 of the toolkit, WSRF

is used as the underlying grid service infrastructure. Although OGSA advises that all

4.4 Evaluation of WSRF Implementations 63

Figure 4.4: Globus Toolkit 4 architecture overview (http://www.globus.org/toolkit/)

other services should build on the grid infrastructure, many toolkit components are not

WSRF-compliant yet, as they were implemented before OGSA or WSRF were defined. It

is likely that these components will be refactored in upcoming releases of the toolkit.

GT4 focuses on the classical view of Grid computing, by providing an infrastructure

which enables resource sharing “across corporate, institutional, and geographic bound-

aries without sacrificing local autonomy” 2. Especially the security components of GT4

are designed for this distributed approach. The intended EAM system will likely not

run across corporate boundaries, but stay within a closed infrastructure. Security con-

cepts for the system could be reached within application logic and will not be discussed

any further. As the Globus Toolkit is separated into different modules, single modules

can be installed as stand-alone components. The Information Services components (figure

4.4) will be included in the ongoing discussion, as they are directly using the underlying

WSRF services.

4.4.3 Apache Muse

Apache Muse (Muse) is a Java-based framework that covers the WSRF-Basic Profile and

the MUWS-part of the Web Services Distributed Management (WSDM) standard. Muse

2http://www.globus.org/toolkit/about.html, visited 03/12/2007

64 4 Service Runtime Evaluation

is based on the IBM alphaWorks Autonomic Integrated Development Environment3, whose

runtime source code was contributed to the Apache Muse project in June 2006. The also

existing tooling components for WSDM were contributed to the Eclipse project4 and are

developed in collaboration with the Apache Muse team.

Muse can be deployed as a stand-alone web application or as a Axis25 service into a J2EE

container. As a third possibility, an OSGi6 resource bundle can be created, which can be

run in an OSGi container as e.g. Eclipse Equinox 7.

For the ongoing comparison, the Axis2-based deployment method is used, as it is the

most robust version yet (as of December 2006) and offers the possibility of using Axis2
plug-in modules like e.g. WS-Security.

4.4.4 Performance Comparison

By using Web Services as the basis for a distributed infrastructure, XML processing is

becoming a critical part when it comes to system performance.

Using SOAP - Trade-off between Universality and High-performance

SOAP abstracts message transportation and addressing from the underlying transporta-

tion layer. One can either use standard HTTP request-response communication or decou-

pled WS-Addressing-based communication. With the growth of possibilities comes an

decrease of overall performance. For each communication step the system has to parse

incoming and create new outgoing XML messages. When using a SOAP-based com-

munication, XML processing performance becomes even more important [HGvEZ06],

[CGB02] for the overall performance of a system.

XML Processing

A real performance comparison between GT4 and Muse would include a significant

benchmark test. As this would imply benchmark implementations for both solutions,

this could not be done in this thesis.

The underlying Web Services layer of both implementations has a great impact in pro-

cessing performance. For each request, the incoming SOAP-message has to be analyzed,

parsed and passed to the WSRF-stack. A comparison of Apache Axis1 and Axis2 as the

used Web Services stacks, will result in a meaningful direction of the overall performance.

Axis1 is one of the most used Web Services implementations of recent years and had a

great influence on the success of Web Services. With the move from Axis1 to Axis2, the

3http://www.alphaworks.ibm.com/tech/aide, last visited 03/12/2007
4http://www.eclipse.org
5http://ws.apache.org/axis2/
6http://www.osgi.org/
7http://www.eclipse.org/equinox/

4.4 Evaluation of WSRF Implementations 65

Apache community switched from a SAX-based8 to a StAX-based9 XML-parsing API.

Without discussing the general differences between SAX and StAX, especially when it

comes to SOAP communication with WS-Addressing, the use of a StAX-parser has sev-

eral advantages. To pass a SOAP message to the WSRF-layer, the Web Services stack has

to read the SOAP-Header to get the address of the final receiver of the message. With

SAX, during the parsing-phase, the complete XML document has to be processed, al-

though the application is only interested in the SOAP-Header [PHE+06]. With a growing

message size, this can have a great influence on processing performance. StAX enables

the application to pause the parsing process at any time. By this, after parsing the SOAP

Headers, the message can be directly passed to the corresponding handlers (receivers).

Based on the SOAP Benchmark V1 and V210 (see [GSC+04], [HGS+05] and [HGvEZ06])

Devanum Sirinivas of WSO211 compared the SOAP processing performance of Axis1 ver-

sion 1.4 and an Axis2 version 1.012. The benchmark emulates standard workloads which

appear typically in a WSRF environment with a lot of property requests. Sources and

results of the benchmark can be viewed and accessed at http://wso2.org/library/

91. The comparison shows that Axis2 works four to five times faster than Axis1, espe-

cially when processing complex XML types.

4.4.5 Programming Model

Being the base for a longtime project, the programming model of the WSRF-implemen-

tation should be clear, understandable and easy to learn, to support later changes and

enhancements of the project. This section will analyze and compare the programming

models of GT4 and Apache Muse.

GT4 Programming Model

The programming model of GT4 carries the concept of the implied resource pattern (see

2.5.2) down to the implementation level.

In general a developer has to implement three main components to create a WS-Resource.

• The service object represents the stateless part of the WS-Resource construct. From

the client point of view all operations offered by the provider are implemented by

the service, although internal theses operations can be implemented by the use of

reusable operation providers.

• The resource object represents the resource defined by the ResourceProperties doc-

ument referred in the portType definition in the corresponding WSDL-file (see sec-

8SAX = Simple API for XML
9StAX = Streaming API for XML

10http://grid.cs.binghamton.edu/projects/soap_bench/ - 05/2007
11WSO2 is a Open Source technology company. http://www.wso2.com
12The used version was a source snapshot from May 15,2006

http://wso2.org/library/91
http://wso2.org/library/91
http://grid.cs.binghamton.edu/projects/soap_bench/

66 4 Service Runtime Evaluation

tion 2.5).

• The resource home is used by the service class to get access to the resource object.

GT4 provides a set of default implementations that can be used by the integration of

so-called operation providers. These providers assume the existence of operation specific

resource properties the programmer has to include in the resource object.

Figure 4.5 shows a conceptual view of a WS-Resource in GT4. If a client wants to access

a WS-Resource, the stateless Web Service class uses the resource home to find an existing

or to create a new resource. Operations that change the state of the resource are operated

on the properties that are contained in the resource object.

Figure 4.5: Globus Toolkit 4 programming model

Apache Muse Programming Model

The programming model of Apache Muse is based on the composability concept of

WSDM (see section 2.6). A resource in Muse consists of a set of capabilities which can be

chosen from default implementations of standard capabilities or from self-implemented,

project specific capabilities.

In the Muse programming model, functions and properties of a WS-Resource are held

within a single capability class, which is seen as the "atomic unit of design"14. This principle

enables an easy composition of capabilities to implement a WS-Resource according to the

composability concept. Muse provides default implementations for all WSRF/WSDM

capabilities and offers abstract capability classes that can be used to develop new capa-

bilities.

The resource type serves as an interface for capabilities wishing to communicate with other

capabilities. If the functionality of the default resource implementation is not suitable, it

can be exchanged by specifying a different class in the descriptor (see upcoming section).

The resource router is responsible for mapping requests to the according resources and

14http://ws.apache.org/muse/docs/2.2.0/manual/architecture/programming-model.html

4.4 Evaluation of WSRF Implementations 67

Figure 4.6: Apache Muse programming model13

works transparently to the developer. Muse resources can be deployed in J2EE, OSGi

and J2ME environments. The environment-specific isolation layer offers a unified envi-

ronment for the resource implementations.

For testing different service granularities introduced in [Biß07], the programming model

of Apache Muse offers a flexible way for implementations. By combining only functional

aspects into one capability, a future combination of these capabilities to one or more WS-

Resources is possible at deployment time. The possibility of accessing informations about

implemented capabilities of a resource during runtime allows a flexible way to realize dif-

ferent service granularities. Listing 4.8 shows a possible way how Muse capabilities can

be implemented to support fine or large grained services. The example shows an excerpt

of a possible “parsing-capability" implementation, which has to dispatch a jobDocument

to an either a local "indexing-capability" or a remote "indexing-service".

Listing 4.8: "Pseudo-code” for a possible usage of the composability concept to realize

different service granularities

1 //Does the resource also implement the indexing-capability?

2 if(getResource.hasCapability("indexing")){

3 //if yes, execute the index process remotely

4 getResource().getCapability("indexing").process(jobDocument);

5 }else{

6 //otherwise, retrieve an indexing-service from the registry

7 IndexService index = getRegistry.lookupService("indexing");

8 index.process(jobDocument);

9 }

4.4.6 Code Generation and Data Binding

When it comes to code generation, both toolkits offer nearly the same functionalities.

Starting with the WSDL-file, a WSDL2Java command-line tool generates stub-classes, for

68 4 Service Runtime Evaluation

both server and client applications. For GT4, java classes for all used XML types in the

WSDL file are generated automatically. Apache Muse allows the usage of data binding

mechanisms too, but the generation has to be processed manually. Handling WSDL-files

is much easier with GT4, as it provides a simple, but proprietary way to declare the use of

standard WSRF capabilities through simple attributes. With Muse, all required message

and operation definitions have to be inserted manually in the WSDL-file, which is often

very complex and error-prone.

The tooling application for Apache Muse simplifies the code generation and especially

the handling of WSDL-files. Currently (06/2007), it is only available as a technological
preview as part of the Eclipse Test & Performance Tools Platform15 and is only compatible

with Muse version 2.0.

4.4.7 Deployment

The deployment process combines the installation and configuration of a software sys-

tem. This section analyzes the questions of how complex the needed configuration is and

which steps have to be taken to get a WS-Resource “up-and-running".

Deployment of a GT4 WS-Resource

The GT4 WSRF implementation uses Apache Axis 1 (Axis) as the underlying Web Ser-

vices container. For the deployment process, GT4 uses the standard WSDD (Web Services

Deployment Descriptor) of Axis to bind the needed classes to the service.

An excerpt of a sample deployment descriptor from [Sot] is shown in listing 4.9. For

each service that is deployed to the container, a service element is inserted in the outer de-
ployment element. The className (line 6) parameter defines the implementation class that

should be used for the service. By changing this value, alternative service implementa-

tions can be used and exchanged during deployment time. As Axis needs access to the

WSDL-file, the location is specified by the parameter wsdlFile. The handlerClass parameter

tells Axis to use the GT4 specific implementation for processing requests.

Listing 4.9: A sample WSDD file for a WS-Resource in GT4

1 <?xml version="1.0" encoding="UTF-8"?>

2 <deployment name="defaultServerConfig">

3 <service name="examples/core/singleton/MathService"

4 provider="Handler" use="literal"

5 style="document">

6 <parameter name="className" value="org.[...].MathService"/>

7 <wsdlFile>share/[...]/Math_service.wsdl</wsdlFile>

8 <!-- [...] -->

9 <parameter name="handlerClass"

10 value="org.globus.axis.providers.RPCProvider"/>

15http://www.eclipse.org/tptp/

4.4 Evaluation of WSRF Implementations 69

11 <!-- [...] -->

12 </service>

13 </deployment>

Besides the WSDD file, a JNDI16 deployment file is required. Listing 4.10 shows a simple

deployment file for a WS-Resource which can be used for the simple math operations

addition and subtraction. The example is also taken from [Sot].

Listing 4.10: A JNDI deployment file for a simple WS-Resource

1 <?xml version="1.0" encoding="UTF-8"?>

2 <jndiConfig>

3 <service name="examples/core/singleton/MathService">

4 <resource name="home" type="org.[...].MathResourceHome"> 1

5 <resourceParams>

6 <parameter>

7 <name>factory</name>

8 <value>org.globus.wsrf.jndi.BeanFactory</value>

9 </parameter>

10 </resourceParams>

11 </resource>

12 </service>

13 </jndiConfig>

The name attribute of the service element is used to map the JNDI and the service defini-

tion in the WSDD file (listing 4.9). A service element contains a resource element, which

is used to specify the Java class of the resource home used by the service. A arbitrary list

of resource parameters can be passed to a resource at initialization time. In the example,

only the factory-class that GT4 should use to create JavaBeans17 is passed to the resource.

Deployment Process GT4 defines its own packaging archive format, the so-called GAR

(Grid Archive) format. An Ant build-file to create a GAR file from the implemented

classes, the WSDL-files and descriptor files is bundled with GT4. This GAR file can be

deployed directly to the stand-alone GT4 service container.

With additional build-files it is possible to create a WAR file18 from the GT4 installation

or to deploy it directly into an Apache Tomcat servlet container. Generally by creating a

WAR file, a GT4-WSR-Resource should be deployable in standard J2EE containers. The

developers only guarantee full functionality for the stand-alone implementation.

16Java Naming and Directory Interface - http://java.sun.com/products/jndi/
17http://java.sun.com/products/javabeans/docs/spec.html
18WAR = Web Application Archive

70 4 Service Runtime Evaluation

Deployment of a WS-Resource with Apache Muse

The composability concept is directly visible in the muse deployment descriptor. Its main el-

ements will be described with the use of an extract from a sample descriptor file in listing

4.11. Each resource of an Apache Muse project is represented by a resource-type element

(line 4). Each resource-type element describes its context-path (line 5), which represents

the context-path of the address-element of its endpoint reference (see section 2.5.2). The

wsdl element references the used WSDL-file and portType. The java-resource-class (line 13)

defines the base class of the resource. As shown in figure 4.6, this class aggregates a set

of capabilities and acts as an interface for inter-capability access.

Each Muse capability is represented as a capability-element inside the resource-type. It

consists of the capability-specific URI which corresponds to the unique identifier de-

manded by WSDM and the java-capability-class, which implements this capability. The

composability of common and resource-specific capabilities is shown by the use of the

standardized GetResourceProperty capability and its default implementation (line 17)

and the resource specific MyCapability in line 30.

Listing 4.11: A sample Apache Muse deployment descriptor for a WS-Resource

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <muse>

3 [...]

4 <resource-type>

5 <context-path>WsResource</context-path>

6 <wsdl>

7 <wsdl-file>/wsdl/WsResource.wsdl</wsdl-file>

8 <wsdl-port-type>test:WsResourcePortType</wsdl-port-type>

9 </wsdl>

10 <java-id-factory-class>

11 org.apache.muse.core.routing.RandomResourceIdFactory

12 </java-id-factory-class>

13 <java-resource-class>

14 org.apache.muse.ws.resource.impl.SimpleWsResource

15 </java-resource-class>

16 [...]

17 <capability>

18 <capability-uri>

19 http://docs.oasis-open.org/wsrf/rpw-2/Get

20 </capability-uri>

21 <java-capability-class>

22 org.apache.muse.ws.resource.properties.get.impl.SimpleGetCapability

23 </java-capability-class>

24 </capability>

25 <capability>

26 <capability-uri>

4.4 Evaluation of WSRF Implementations 71

27 http://ws.apache.org/muse/test/wsrf/MyCapability

28 </capability-uri>

29 <java-capability-class>

30 org.apache.muse.test.wsrf.MyCapabilityImpl

31 </java-capability-class>

32 </capability>

33 </resource-type>

34 </muse>

Deployment Process The WSDL2Java tool creates an Ant-script, which can be used to

create a WAR file for the WS-Resource. This file includes an Axis2 runtime, in which the

WS-Resource will be deployed. Due to the Apache Muse homepage, the WAR file can be

deployed to any J2EE compatible containers.19

4.4.8 Additional Features

This section compares the WSRF-compatible additional features of GT4 and Muse.

Features of GT4

With its Monitoring and Discovery Service (MDS), GT4 offers a suite of web services to mon-

itor and discover resources and services on Grids. The Index Service collects monitoring

and discovery information and offers them at a central location. By default, all services

and resources in GT4 register themselves at the Index Service at startup. The Trigger Ser-
vice allows to execute programs if defined monitoring events occur. This allows a simple

action-based automation, as provisioning tasks could be triggered if, for example, the

measured email throughput rate falls beyond a defined limit. As this monitoring com-

ponent is not needed on all used resources, an installation of the GT4 with the purpose

of only using the MDS services is possible. Arbitrary WSRF compliant resources and

services can be registered and monitored. So-called Information Providers for cluster mon-

itoring tools like Ganglia20 exist, to combine low level monitoring data such as CPU and

memory usage with application-based monitoring data provided by the WS-Resources.

Features by Muse

The goal of Apache Muse is to provide an implementation of the WSDM specification. As

WSDM is based on WSRF and WS-Notification, the compatibility to the WSRF-BP can be

seen as a side-effect. Section 4.3 showed how WSDM can be used to enable better manage-

ability of WS-Resources. By using Apache Muse- and WSDM-compatible manageable

resources, WSDM compliant monitoring and management tools could be used for the

19During the implementation of the EAM prototype, the J2EE containers IBM WebSphere Application Server
6.1, Jetty 6 and Apache Tomcat 5.5 were tested successfully.

20http://ganglia.sourceforge.net

72 4 Service Runtime Evaluation

EAM system. For example, IBM announced a WSDM data collector21 for its Tivoli® Mon-
itoring22 software. A combination of low-level and application-based monitoring data

could be possible with this solution.

4.4.9 Summary

Summarizing the last sections, Apache Muse can be seen as the better solution for the in-

tended usage. Although both solutions offer a WSRF implementation that could be used

for the EAM service, Muse offers the better package.

The composabilty concept of Muse allows flexible and easy reusability of software com-

ponents. Capabilities can be implemented independently by different developers and

combined to a resource during deployment. The possibility to develop applications on

lightweight servlet containers like Jetty and Tomcat and to use the IBM WebSphere Ap-

plication Server for productive usage is a further advantage.

With the MDS, GT4 provides easy access to monitoring data and resources. On the down-

side, GT4 is meant as a complete solution for Grid computing. Although having a com-

ponent design which allows the stand-alone installation of the WS-Core, the installation

and development of a WS-Resources is very complex compared to development with

Apache Muse.

Globus Toolkit 4 - WS-Core Apache Muse

Pro

- Broad acceptance and usage - Lightweight

- Huge amount of documentation - Active community

- Monitoring and Automation with
MDS

- Variety of deployment possibilities
with J2EE (stand-alone, Axis2) and
OSGi)

- Manageability through WSDM

- Easy and fast development

Contra
- Based on Axis 1 - No experiences known

- Complex development

Figure 4.7: Comparison of GT4 and Apache Muse

21http://catalog.lotus.com/tm?NavCode=1TW10TM3V
22http://www.ibm.com/software/tivoli/products/monitor/

73

5 IBM Dynamic Infrastructure and
WebSphere XD

5.1 IBM Dynamic Infrastructure (IDI)

IBM Dynamic Infrastructure (IDI) refers to itself as a so called On Demand Operating En-
vironment (ODOE). Originally it was created as an ODOE for the products of the SAP

mySAP Business Suite1, and was called IBM Dynamic Infrastructure for mySAP Business
Suite.

IDI offers an infrastructure for data center automation and management tasks. It inte-

grates typical installation, configuration and management capabilities within a central

workflow and provides all actions under a single user interface.

5.1.1 On Demand Service

An On Demand Service (ODS) can be regarded as the context necessary e.g. to provide

resources, to meter resource consumption and correlate it to the consumers (acting in the

context of the subscriber). An ODS will be instantiated separately for each consumer who

subscribes to it. As shown in figure 5.1, an ODS instance is represented by a subscription.

Each subscription is based on an offering-document, which describes and defines the

ODS formally. More information about the offering and the subscription will follow in

the upcoming sections.

Figure 5.1: Offering and subscription in the concept of an on demand service

1SAP Business Suite - http://www.sap.com/germany/solutions/business-suite

74 5 IBM Dynamic Infrastructure and WebSphere XD

5.1.2 The IBM DI Resource Model (DIRM)

The base component of the IBM Dynamic Infrastructure is the IBM DI Resource Model

(DIRM). The DIRM is a composition of manageable resources (MR) and relationships be-

tween them, comparable to the resource modeling functionalities of WSDM, but enriched

with defined semantics and extended relationships.

The concept of a manageable resource (MR) in IDI is similar, but not fully compatible

with a WS-Resource in WSRF or a manageable resource in WSDM. In IDI a manageable

resource is implemented as a stateful web service and has a resource identifier (resour-

ceId), a resource type (resourceType), a resource instance name (resourceInstanceName)

and a resource handle (resourceHandle) as mandatory properties.

Figure 5.2 shows a simplified version of a resource model for the EAM service, which

only shows the main resources.

The IBM DI Domain MR is the logical entry point to the DIRM. The Platform Fabric MR

provides access to a set of supportive manageable resources and helper classes which

together provide a base for all other manageable resources. As an example, the platform

fabric MR has a relationship with the FactoryRegistry MR which keeps factory MRs for

all resources in the system. A factory has a stateless create method, to instantiate new

MRs. The Subscription Registry MR is a registry for all subscriptions managed by IDI.

Other components like the user interface can use this registry to get a list of all subscrip-

tions in the system. The user can then use the subscription as an entry point for further

administrative tasks. The Subscription MR itself holds the context needed for the proper

functionality of the ODS, which was defined based on an offering during the subscription

phase (see section 5.1.4). A subscription is associated with a set of orders (orders are not

MRs), which can be applied to the related ODS MR. The MRs MeterEventLog, Report-

ingSystem and ArchivingSystem provide subscription-specific accounting capabilities.

The PlatformFabricOrderProcessingComponent (PFOPC) is responsible for the correct

processing of orders within the DIRM (more about order processing in section 5.1.3).

With the ODS MR represents the EAM On demand Service and is used as an entry point

to the service specific components. Over the Application MR all components that are

needed for the ODS are listed. These do not represent actual running service or appli-

cations, but describe structure the ODS. These application components are mapped to

the so called ServerCollection MR, which represents all server resources, that are cur-

rently allocated to the ODS. IDI encourages the use of server virtualization techniques

like VMware2 or XEN3. This approach allows a comfortable configuration of the pro-

vided servers. For example, the number of CPUs or memory can be configured per server

instance. The OS Container MR represents such a virtualization container. The actual op-

erating system, the application servers and e.g. the CM services are installed on top of

these containers. The three types of servers, represented by the OS Container MRs, are

2http://www.vmware.com/
3http://www.cl.cam.ac.uk/research/srg/netos/xen/

5.1 IBM Dynamic Infrastructure (IDI) 75

Figure 5.2: A possible IBM DI Resource Model for the EAM service

shown in the figure. These motivate possible configurations for the EAM service. The left

container is configured with a WebSphere Application server, the Web Service runtime

and an arbitrary number of CM Services. The Registry service is installed on a dedicated

server, represented by the middle OS Container. Although not being a manageable re-

source, to get a complete Resource Model, the external email server is allocated to its own

server. By this approach, the DIRM can be used to provide information like its location

about the email server.

76 5 IBM Dynamic Infrastructure and WebSphere XD

5.1.3 Order Processing

The processing of an order document starts at the subscription MR. If the order can be

processed by the subscription MR itself it will be executed, otherwise the order is typi-

cally passed to the OrderProcessingComponent MR (PFOPC). This component handles

the correct workflow of the order. The PFOPC passes the order consecutively to all MRs

in the DIRM. These analyze the order against whether they are affected by it. If so, the

MR executes the specified task and attaches the outcome to the order-document. If the or-

der processing is finished, the processing can be reproduced by analyzing the individual

processing outcomes.

5.1.4 The Life Cycle of an On Demand Service

IDI divides the life cycle of an ODS into the five phases offering, subscription, instantia-

tion, production and termination as shown in figure 5.3. It is a direct implementation of

the service life cycle from [KKP+07] mentioned in section 3.1.

Figure 5.3: The life cycle of an On Demand Service in IDI

Offering
During the offering phase the intended ODS is described and defined by the offer-

ing document, which contains the capabilities of the service as well as the business

metrics used for charging the customer. An offering document contains an initial

order, a set of possible modification orders and a termination order (shown in fig-

ure 5.1). With the initial order the system can build the logical infrastructure to host

the ODS. Modification orders allow, as the name indicates, the modification of the

running ODS. With the termination order the ODS instance can be deleted. These

orders correspond with the other phases of the service life cycle described below.

Subscription
A subscription represents the relationship between a service and a business entity

consuming the service. The subscription is related to one specific ODS instance.

During the subscription, the service provider and the service consumer agree on

5.1 IBM Dynamic Infrastructure (IDI) 77

the content of the initial order, which represents the initial appearance of the ODS

instance, and on the possible modification orders, including prices for the configu-

ration actions represented by the modifications.

In contrast to the offering document, which describes the service in an abstract way,

a subscription contains all necessary informations to instantiate a specific instance

of the ODS.

Instantiation
In the instantiation phase all actions are taken that are required to start the sub-

scribed service. These actions include automated deployment, installation and con-

figuration of hardware and software specified in the initial order.

Production
The most important phase for the customer is, of course, the production phase,

in which the service performs the demanded work, specified in the offering and

agreed to in the subscription. During this phase, the customer can apply modifica-

tion orders to change the configuration of the system. For example, a new server

can be provisioned or more memory can be allocated to an application.

Termination
As the name indicates, in the termination phase all actions are taken to shut down

the ODS. Additionally, all resources which were assigned to the ODS are returned

to the resource pool. Operating systems and software systems installed for the

ODS are uninstalled, if necessary, to bring the resources back to a common form for

future installations.

5.1.5 Service Life Cycle Management

IDI offers management and development capabilities for all five life cycle phases de-

scribed above. Starting with the offering, IT professionals and developers have to specify

the intended ODS in an offering document. Because the contract between a provider and

a consumer closed by a subscription is based on the offering, a well defined and fully

described offering document is crucial for the success of the ODS.

5.1.6 Tooling

To create resource models for the topology of an ODS, IDI offers an UML based tooling

application called MR Designer. After drawing the structure of the manageable resources,

the developer can generate stubclasses for the manageable resources. As these are stan-

dard Java classes, an arbitrary development tool can be used for implementation.

Provisioning and configuration tasks in IDI are activated and processed by Orders. These

are developed as elements of the offering document. The offering can be designed with

the so called Offering Creator and Topology Builder. Provisioning actions can leverage stan-

78 5 IBM Dynamic Infrastructure and WebSphere XD

Pro

- Full coverage of the service life cycle management tasks

- Resource model offers broad overview of the offered service

- Uniform user interface

- Usage can be transparent to the ODS implementation

- Tooling for design and implementation phase

Contra
- Non-standardized stateful Web Services implementation

- No standardized provisioning mechanism
Table 5.1: Pros and cons of IBM DI

dardized automation packages for the IBM Tivoli Provisioning Manager (TPM)4 or any

script that can be executed on the affected resource.

5.1.7 Summary

IBM Dynamic Infrastructure offers a lot of management capabilities needed for an on-

demand service. The resource model offers the flexibility to integrate existing resources

and to extend the service if necessary. The UML-based tooling allows the separation of

design and implementation and provides a high level of abstraction. Although IDI does

not has its own provisioning mechanism, it offers a central service that can leverage pro-

visioning systems like the IBM Tivoli Provisioning Manager or self-implemented scripts

to deploy and install needed resources. Management events in form of orders are au-

tomatically metered and included in customer accounts. IDI does not offer some kind

of autonomic manager, but all functions offered by the web interface are also accessible

through Web Service operations. This creates the possibility for an autonomic manager

to use IDI as the system-wide effector for optimization tasks.

Usage possibilities for the EAM service

By using IDI as the resource management system, the EAM service gets an integrated

web interface for administrative tasks and customer configurations. By describing the

EAM service with an offering document, the provider and consumer can agree on a well-

defined set of operations and functionalities by a subscription. Although IDI does not

offer a fine-grained SLA management, the event-based accounting capabilities are a good

start for a service-based accounting.

With an existing resource model, including provisioning adapters for all resources, the

configuration and management of the EAM service would be possible through the uni-

form Web interface of IDI.

4http://www-306.ibm.com/software/tivoli/products/prov-mgr/

5.2 IBM WebSphere Extended Deployment V6.0 (WXD) 79

5.2 IBM WebSphere Extended Deployment V6.0 (WXD)

IBM WebSphere XD V6.0 (WXD)5 provides virtualization and automated capabilities for

a cluster of IBM WebSphere application servers (WAS). According to IBM, it offers a so-

lution for a dynamic, reliable and adaptable infrastructure [REF+06].

WXD is an extension of IBM WAS Network Deployment V6.0.2 6, which adds central

deployment and clustering capabilities to a cluster of IBM’s standard J2EE7 WebSphere

Application Server V68.

WXD addresses a couple of requirements stated in chapter 3. In the following sections

some of these features will be presented. Afterwards, some recommendations are given

as to how WXD can be used for the EAM system.

5.2.1 On Demand Router

In an WXD production environment, the On Demand Router (ODR) acts as an entry point

to the operational system. Figure 5.4 shows a recommended topology for an WXD in-

stallation [REF+06]. Although more than one proxy server or ODR are allowed, in the

following only one proxy and one ODR will be mentioned.

The proxy server shown in figure 5.4 is needed for security reasons and is transparent for

all servers behind firewall B.

Figure 5.4: Recommended topology for an WXD operational environment (from
[REF+06])

5http://www-306.ibm.com/software/webservers/appserv/extend/
6http://www-306.ibm.com/software/webservers/appserv/was/network/
7J2EE - Java 2 Platform, Enterprise Edition - http://java.sun.com/j2ee
8IBM WebSphere Application Server - http://www-306.ibm.com/software/webservers/appserv/was/

80 5 IBM Dynamic Infrastructure and WebSphere XD

Incoming requests are first of all processed by the ODR. All requests are classified into

a set of defined request types or transaction classes. Each transaction class is linked to

a service class, which is responsible for the processing of the specific transaction class.

The current request is placed in the according service queue. If the current traffic is low,

all requests are directly sent from the queues to the corresponding nodes. Otherwise the

autonomic request flow manager (ARFM) prioritizes the incoming request based on transac-

tion class and a weighted least outstanding requests scheduling algorithm. The dispatching

weights are automatically updated by the ARFM to achieve business goals, based on

measured arrival rates and service times. After the ARFM decided when a request will

be executed, the routing component of the ODR decides on which node of the cluster

the request will be processed. The routing algorithm includes load balancing functional-

ities between the servers of a static or dynamic cluster. For that, the ODR is aware of all

configuration changes of a dynamic cluster.

5.2.2 Resource Sharing

To avoid bad system utilization in a cluster of application servers, WXD allows the dy-

namic allocation and deployment of applications to a set of application servers, based on

business goals. Resource sharing with WXD is based on the constructs node group and

dynamic cluster.

Node group
A node group represents a set of application server instances and virtualizes from

the underlying hardware. Applications are not installed directly to a server, but

mapped to a node group. When running in automatic mode9, the application place-

ment controller (APC) decides where applications that are mapped to the node

group run, and how many server instances are started for each application. A group

of server instances dedicated to a specific application is called a dynamic cluster.

Dynamic cluster
A dynamic cluster (DC) is a set of nodes from a node group dedicated to an ap-

plication. The current size of a DC can be zero, if the application is currently not

required. If the system senses a request for the application, it can start a server

instance for the application and add it to the cluster. The configuration of a DC

is based on a so called server template, which is created by installing a new or se-

lecting an appropriate existing application server that has all desired configuration

settings. A template can then be created by just selecting the server as a template.

If the size of the dynamic cluster has to be increased, the APC can start new server

instances with the given template.

Figure 5.5 shows an exemplary schema of a server cluster under the control of

WXD. The seven servers are partitioned into the node groups A and B. Two dy-
9WXD allows the operating modes automatic, supervised and manual. In supervised mode all planned actions

have to be approved by an administrator within an approval timeout.

5.2 IBM WebSphere Extended Deployment V6.0 (WXD) 81

Figure 5.5: Resource sharing with IBM WebSphere XD

namic clusters are mapped to node group A and three applications are running in

node group B. For each application or DC respectively multiple application server

instances can be started on one node, to allow optimal node utilization. For exam-

ple, in figure 5.5 the DC for application A1 currently runs two server instances per

node, while the DC for application A2 runs even three server instances. On the

other side, application B1 utilizes the node optimally with just one server instance.

When configuring the DC for an application, the administrator has to decide if this

vertical stacking feature (see [REF+06]) should be used and if so, define the lower

and upper boundaries for running server instances.

The application placement controller partitions the node group into dynamic clus-

ters on the base of measured performance data and configured service policies.

5.2.3 Service Policies

Service policies in WXD are used to categorize and prioritize work requests. A service

policy consists of a service goal, its importance level and one or more transaction class

definitions.

Service goals
WXD V6.0 supports four kinds of service policies:

• The Discretionary policy is used for requests that have no significant impor-

tance level. Requests of this type will be processed if no more important re-

quest is waiting. By default, all requests are assigned to this service goal.

82 5 IBM Dynamic Infrastructure and WebSphere XD

• Requests with the service goal Average response time have a higher priority than

Discretionary. The response time can be specified in milliseconds and seconds

and has a target percentage of 90%, which means that at least 90% of the re-

quests must be answered within the given time.

• The service goal Percentile response time is similar to the Average response time
service goal, but has a variable target percentage. To get a higher prioritization

than by Average response time, one can specify the target percentage for example

as 95%.

• The Queue wait time service policy is used for long-running applications. It can

be specified how long requests may wait in the incoming queue. If the limit is

reached, new servers are needed for request processing.

Importance level
If the importance guarantees defined in by the service goals can not be satisfied, the

importance level of the service policy is used to prioritize the policies and the af-

fected requests. Policies can be classified into the seven importance levels: Lowest,

Lower, Low, Medium, High, Higher, Highest.

Transaction classes
Transaction classes and work classes (see next section) are used to connect requests

to service policies and by this to service goals.

5.2.4 Work Classes

With the use of work classes, specific kinds of work belonging to a specific service policy

can be grouped together. This grouping can be based on URIs10, Web Service operations,

HTTP headers, Client or server IP address, port and host names. After a work class is

specified by creating its classification rules, a service policy can be assigned by assigning

a transaction class, which is mapped to the desired policy.

Figure 5.6 shows an overview of the request classification and prioritization process in

WXD. The used URI-based classification rules, defined in the working classes, are group-

ing requests from different J2EE modules. By mapping the working class to a transaction

class, the requests are mapped to a service policy and hence get a specific priority within

the system.

5.2.5 Creation of Service Policies and Work classes

Service policies, transaction classes and work classes can be specified in the Administrative
Console, the management web application of WXD. New policies and classifications can

be created and modified during runtime.

Like most of the administrative tasks in WXD, the creation of policies and classification

rules can be done with a Python-script on the command line. This should make it possible

10URI = Universal Resource Identifier

5.2 IBM WebSphere Extended Deployment V6.0 (WXD) 83

Figure 5.6: Request classification and prioritization in WebSphere XD (from [REF+06])

to connect the WXD configuration and management tasks with other components of the

EAM system.

5.2.6 Summary

With the central management and deployment capabilities, WXD offers a basis for fast

and flexible application provisioning and configuration. Although for the complete pro-

visioning of a server WXD has to leverage an external provisioning service, the on de-

mand deployment of CM services and the vertical stacking feature offer a flexible way to

create a dynamic infrastructure.

The ODR provides workload management functionalities with request categorization

and prioritization. To use the ODR for the EAM service, the provided service level objec-

tives have to be extended, to offer EAM specific SLOs, like archived emails per hour, or

maximum response time for standard search requests. First approaches by Kephart et. al

showed that WXD and Tivoli Intelligent Orchestrator (TIO) can be extended to use utility

functions (see section 2.8.1) for system optimization [KD07].

84 5 IBM Dynamic Infrastructure and WebSphere XD

85

6 Implementation

To evaluate the service-oriented concepts and the usability of WSRF and WSDM, Apache

Muse was chosen to implement a prototype. The advantages of using WSDM-compliant

services, the better theoretical assistance of implementing different service granularities

and the possibility of using a lightweight servlet-container for development and a ro-

bust J2EE application server for testing and production, make Apache Muse the better

candidate for the service runtime. An additional installation of GT4, to use only some

WSRF-comliant parts like the MDS, might be possible, but has not been tested yet.

The implemented prototype does only cover some of the aspects of the ingest process.

6.1 Infrastructure

6.1.1 Development Infrastructure

As Apache Muse runs on multiple J2EE containers, Apache Tomcat 5.51 and Jetty 62 were

used to enable lightweight and fast development. The jetty container was indirectly used

by an Apache Maven 23, to allow continuous development.

6.1.2 Target infrastructure

To test the prototype with realistic hardware, an IBM BladeCenter H located at the Uni-

versity of Stuttgart is available for the CMaaS project. The BladeCenter is equipped and

configured as follows:

• 2x JS21 (2x PowerPC, 4GB RAM)

– AIX® 5.3

– Lotus® Domino® Server

– IBM Content Manager 8.3 Fixpack 3

• 4x HS20 (4x Intel Xeon 3,2 GHz) + 8x HS21 (8x Intel Dual Core 2,3 GHz), each with

4GB RAM

– CentOS Linux4 as operating system

– Apache Tomcat 5.5

– partly installed: IBM WebSphere Application Server 6.1

1http://tomcat.apache.org/
2http://jetty.mortbay.org/
3http://maven.apache.org/
4http://www.centos.org/

86 6 Implementation

The blades are interconnected with standard 1GB LAN. An IBM TotalStorage DS4100

with 8x400 GB SATA-disks connected via fibre channel is used for storage purposes.

6.1.3 Testing Data

To test the prototype, an adapted version of the Enron Email Dataset5, a collection of about

half a million emails from about 150 mailboxes was used. The dataset was made public

during the legal investigation concerning the Enron corporation in 2002. For more infor-

mation about the dataset, the reader is referred to [KY04].

6.2 Implementation Architecture

The architecture of the implemented prototype is based on the architecture design 1 from

figure 3.3 on page 36. The prototype is based on the existing prototype cmgrid, intro-

duced in section 1.2.3. The existing code was split and allocated to the functional compo-

nents Dispatcher and PAI.
These two services and the required Registry were implemented as WS-Resources by us-

ing Apache Muse (see section 4.4.3). Additionally, a ResourceFactory was implemented

to control the creation of PAI WS-Resources. A web application was implemented to

manage and test the prototype.

Figure 6.1: Implementation architecture with component responsibilities

PAI Service
The PAI service encapsulates all functionalities besides job scheduling from the for-

mer prototype.
5http://www.cs.cmu.edu/ enron/

6.2 Implementation Architecture 87

Dispatcher
The Dispatcher service acts as a very simple scheduling and workload management

component.

Registry
The registry holds the endpoint references and specific status informations about

the WS-Resources in the service pool.

Web Client
The Web Client is used as a control center for the prototype.

6.2.1 Email Processing Workflow

Figure 6.2 illustrates the workflow of job processing with the implemented prototype. Via

the web client, a user can upload a job file, containing a list of mailboxes and their respec-

tive location that have to be processed. The jobs are then inserted (1) into a database (IBM

DB2). The Dispatcher continuously scans the database for new jobs (2). If new jobs are

found, the Dispatcher retrieves a list of idle PAI services from the Registry (3). As long as

jobs are available, the Dispatcher submits a job to each PAI-service from the retrieved list

(4) of available services. At last, the PAI services notify the Dispatcher asynchronously

about the outcome of the job (5).

Some of the internal procedures, omitted in this high-level view, are discussed in the

following sections.

Figure 6.2: Email processing workflow of the prototype

6.2.2 Common Capabilities

As shown in section 4.4.5, Apache Muse uses the aggregation of capabilities to form WS-

Resources. All implemented resources use a common set of standard capabilities (see

figure 6.3).

88 6 Implementation

Figure 6.3: Basic capabilities of a resource in the EAM prototype

Get/Set/Query ResourceProperties
As the names indicate, these capabilities are responsible for the basic access to the

resource properties of a WS Resource.

Immediate/Scheduled ResourceTermination
These capabilities expose public interfaces to shut down a resource directly on re-

quest (immediate) or scheduled after a defined offset. To allow a graceful termina-

tion of a resource, the prepareShutdown() method of all capabilities of a resource are

called before final termination.

Notification Producer/Consumer
With these capabilities a WS-Resource can subscribe to, and publish informations

via WS-Notification.

WSDM capabilities
The Identity capability is essential for a WSDM conform manageable resource (see

section 2.6). For being able to monitor and publish the operational and processing

state, all resources implement the OperationalState and State capabilities.

Following this composability concept, a common capability for all resources in the system

was created.

The CMGrid Capability

According to the name of the former cluster based prototype (see section 1.2.3), this com-

mon capability was named CmGrid capability. It provides the resource properties cm-
grid:RegistryEPR and cmgrid:ResourceType.

The cmgrid:RegistryEPR holds the address of the registry service the resource has to add

itself to. This creates the possibility to change the registry during runtime and add all

resources to a new registry. Other capabilities can access this property easily, as shown in

listing 6.1. The shown source code fragment is exemplary for accessing other capabilities

6.3 Implementation Details 89

from the same resource.

Listing 6.1: Access to the CmGridCapability within other capabilities

1 //get the resource, the current capability belongs to

2 Resource thisResource = getResource();

3 //test, if the resource has the CmGrid capability

4 if(thisResource

5 .hasCapability(CmGridCapabilityInterface.NAMESPACE_URI))

6 {

7 //get access to the CMGrid capability

8 CmGridCapabilityInterface cmgridCap =

9 (CmGridCapabilityInterface) getResource()

10 .getCapability(CmGridCapabilityInterface.NAMESPACE_URI);

11
12 //use the capability, e.g. get The registry endpoint reference (EPR)

13 EndpointReference epr =

14 new EndpointReference(cmgridCap.getRegistryEPR());

15 }

For further development, the use of a WSDM relationship property that describes the

association between a resource and its resource registry could be an option. The prop-

erty cmgrid:ResourceType represents the type of the resource (Dispatcher, Registry, Factory,

PAI). It is meant as a “helper property” through which type-based queries are possible at

the registry.

6.3 Implementation Details

Each component of the architecture is implemented as a single web application, to allow

stand-alone testing. The later combination of all resources and components into a single

or a few web applications can be done without much effort.

6.3.1 PAI Service

The PAI WS-Resource is the essential part of the prototype, as it contains all content man-

agement logic of the former prototype. Most of the configuration options of the former

prototype were managed by system properties during start-up. To enable a configuration

of the PAI service during runtime, some of the main configuration parameters are now ac-

cessible through resource properties. The most important properties are presented next.

Specific resource properties

NumberOfThreads
With this property, the internal processing of a PAI service can be influenced. It

specifies with how many threads a PAI service is processing the emails of a job.

90 6 Implementation

At design time, one goal was to lift concurrency from internal Java threads up to

the service layer (see figure 6.4).

First tests showed that a one to one mapping from threads to services does not re-

sult in a practical solution. With service concurrency, many processes were waiting

for I/O (Input/Output) time, as each service now had its own I/O handle to the

mail server or disk drive. With the thread based concurrency, all threads shared the

same I/O handle. Configurations with a mapping of four threads formerly used in

the cmgrid-prototype to two PAI services with two internal threads each used with

the new prototype provided the best results.

As I/O processing depends on the actual used archiving and indexing mecha-

nisms, the NumberOfThreads property offers a way to configure the used concur-

rency mechanism according to the current workload.

FileDumpDirectory, ResourceManagerLocation, ResourceManagerCollection
The PAI service can archive emails in different ways. The simplest archiving type

is the FileSystemDump type, which lets the PAI service just write the documents on

the hard disk. With the FileDumpDirectory property, the directory for the archived

emails can be accessed. When using the IBM Resource Manager as the content

repository, the properties ResourceManagerLocation and ResourceManagerCollection
specify the access to the repository.

IndexDirectory
The IndexDirectory property specifies the directory for the Apache Lucene index on

the file system.

Figure 6.4: Concurrency of the existing (left) and the intended prototype (right)

6.3.2 ResourceFactory (Factory)

The ResourceFactory is needed to allow service-based scaling of the prototype. Gen-

erally speaking, it is responsible for the creation of other WS-Resources. By setting its

resource property NumberOfThreads, the factory creates the given number of resources.

When decrementing the number, it removes the required number of resources. In the

current implementation, the resources that are removed are just selected by chance. In

the future, this could be based on utilization and the current state of the resources.

6.3 Implementation Details 91

6.3.3 Dispatcher

The Dispatcher is a WS-Resource with simple scheduling and workload management ca-

pabilities. Whenever the Dispatcher senses new jobs in the job database, each job will

be dispatched to an idle PAI service. For this, as long as jobs are present, the Dispatcher

queries the Registry for idle PAI services. If the retrieved list is empty, what means that

no idle PAI services are available, the Dispatcher waits for a specific time period, config-

urable by the WaitingIntervall property. This property can be changed during runtime, to

optimize message exchanges. If mostly long-running jobs are executed, a small Waiting-
Intervall can cause unnecessary requests. For the future, a publish/subscribe mechanism

could be used for such situations. If no idle PAI services are available, the Dispatcher sub-

scribes at the registry for idle PAI service. If a PAI service finishes a job and becomes idle,

the Dispatcher will be notified automatically and can dispatch a job to the PAI service.

6.3.4 Advanced Registry

The Registry is implemented as a WSRF ServiceGroup (see section 2.5.3), which has an

initial MembershipContentRule applied during deployment by an metadata descriptor file,

which dictates the existence of the muws2:OperationalStatus and the cmgrid:ResourceType
properties for all resources that will be added to the registry.

For all properties in the MemberShipContentRule, the ServiceGroupEntries get a child

element in their wsrf-sg:Content property. This allows queries that include the properties

and by that the state of the registered resources.

For example, the Dispatcher uses the following XPath-query (listing 6.2) to get a list of

endpoint references of all PAI services that have the operational status “Available".

Listing 6.2: XPath-query used by the Dispatcher, to get all available PAI services.

1 /wsrf-sg:ServiceGroupRP/wsrf-sg:Entry

2 [./wsrf-sg:Content/muws2:OperationalStatus =’Available’

3 and

4 ./wsrf-sg:Content/cmgrid:ResourceType = ’PAI’]

5 /wsrf-sg:MemberServiceEPR

The default implementation of a ServiceGroup in Apache Muse is realized as a delegat-

ing registry. The content element of the service group entries is not kept in the entry re-

source, but fetched on demand from the corresponding member. Figure 6.5 shows a con-

ceptual view of message exchanges during a request, which includes wsrf-sg:Content-

specific filters. The Dispatcher sends a request (1) to the ServiceGroup, which realizes

the Registry component. Internally, the ServiceGroup evaluates the request against the

current ServiceGroupEntries. The entries are delegating the internal request for their

wsrf-sg:Content properties to the PAI resources they represent (2). For the response, the

message flow is reversed back to the ServiceGroup. The XPath query is then evaluated

and (4) the outcome is sent to the Dispatcher as the response.

92 6 Implementation

Figure 6.5: Standard WSRF ServiceGroup implementation of a Apache Muse

ServiceGroup Optimization

To minimize message exchanges during runtime, an advanced ServiceGroup implemen-

tation was developed for the prototype. Instead of delegating each request to the member

resources, the service group entries are keeping the state of the properties. The entries

subscribe at their corresponding member resources for property changes to be aware

of their current state. This approach assumes that the member resources implement

the WS-Notification Producer capability, which is needed for sending resource property

change notifications. To do the subscriptions, the service group entries implement the

WS-Notification Consumer capability.

To compare the two approaches of the ServiceGroup, the message exchanges during job

processing is shown in figure 6.6 for the default and in figure 6.7 for the advanced im-

plementation. The two figures show the Dispatcher (D), the Registry (R) and three PAI

services. When generalizing the number of PAI services toN , with the default implemen-

tation 4 + 2 × N messages are exchanged. With the advanced implementation, a static

number of only six messages are needed.

This example shows how effective the simple enhancement of the ServiceGroup is with

a growing number of PAI services and illustrates the need of effective communication

designs when deailing with a growing number of services.

It must be noted, that during initialization and termination of a PAI service, with the

default implementation, each time only two messages have to be exchanged for adding

to and removing the resource from the Registry. With the advanced implementation the

number of messages increases to four, as the subscribe and unsubscribe procedures cause

two messages at each time. As the lifetime of a resource is relatively long, the additional

two messages should be acceptable.

6.3 Implementation Details 93

Figure 6.6: Message exchange during job processing (default implementation)

Message flow (number of messages in brackets):

1. The dispatcher requests a list of idle PAI services. (1)

2. The request is delegated to the PAI services. (N)

3. The PAI service are responding. (N)

4. The response is sent to the Dispatcher. (1)

5. The Dispatcher submits a job to a PAI service. (1)

6. The PAI responses with the outcome. (1)

Figure 6.7: Message exchange during job processing (advanced implementation)

Message flow (number of messages in brackets):

1. The dispatcher requests a list of idle PAI services. (1)

2. The Registry evaluates the request internally and response directly. (1)

3. The Dispatcher submits a job to a PAI service. (1)

4. The PAI service notifies the Registry about its status (processing). (1)

5. After finishing the job, the PAI service notifies the Registry about its status (idle).
(1)

6. The PAI service sends the job outcome to the Dispatcher. (1)

6.3.5 The Web Client

The implemented web client can be seen as a manual manager of the prototype, when

applying the autonomic architecture from figure 3.14 on page 50. The web client offers

94 6 Implementation

the following functionalities:

• For running tests, lists of actual archiving jobs can be loaded into the job database.

• Remote hosts can be initialized and integrated to the current configuration. Their

factory services are created and add themselves to the registry.

• PAI services can easily be created and destroyed by adjusting the NumberOfRe-
sources property of a factory service.

• Users can use the web client to monitor the current processing of the PAI services.

The current OperationalStatus of each service is displayed and automatically up-

dated on changes. For that, the web client reads the current system state from the

registry.

• The Dispatcher can be started manually if new jobs have been loaded in the database.

By adjusting the WaitingIntervall property with the web client, the scheduling be-

haviour of the Dispatcher can be configured.

• To control the archiving and indexing process, the resource properties NumberOf-
Threads, IndexDirectory and FileDumpDirectory of the PAI services can be changed.

Adapting one of these properties in the web client will update the properties for all

currently available PAI services.

All configuration tasks that are triggered by the web client are using the same WSRF /

WSDM compatible “effectors” an autonomic manager could use in the future.

6.4 Summary

The implemented prototype has proven the practical usage of WSRF and WSDM for

system management. The measurements made so far did not detect the overhead as a

slow-down for the overall performance. Although, statements on the actual influence of

SOAP-based communication overhead on a production system can not be given yet.

The gained flexibility through service-based scaling and configuration possibilities im-

proved the prototype’s overall manageability. PAI services can be added through the

system during runtime and are automatically used for email processing. Tests with run-

ning services on up to ten servers have shown that possible performance bottlenecks like

the registry or the dispatcher performed well and failure-free.

The experiences of the development process affirmed the results from the theoretical eval-

uation of Apache Muse. The composability concept allowed the independent develop-

ment of capabilities and a later combination to a single WS-Resource.

Significant "ingest-performance" measurements have not been made so far, as a meaning-

ful and realistic data set with attachments is needed first. Although, first performance

comparisons with the existing cluster-based cmgrid-prototype by using the enron dataset,
showed that the service-oriented prototype performs comparably.

95

7 Conclusions and Further Lines of
Investigation

To cope with the rapidly growing challenges of Content Management, a number of ac-

tions must be taken to create a competing new Content Management System. A service-

oriented, automated design poses various challenges for the underlying infrastructure.

For this thesis, the requirements were layered into three categories. The service runtime
has to provide basic SOA and manageability functionalities. For the non-trivial Content

Management services, classical stateless Web Services are not sufficient. Stateful services

with life cycle capabilities are needed to manage scalability and fine-grained optimization

tasks. The category of Resource Management (RM) combines requirements which focus on

the handling of resource-based functionalities. Key features of a required RM system

are resource allocation and resource provisioning. By providing customized access to a

resource model, customers, administrators or computer programs can get an overview

of currently used resources or services. The provisioning service allows to install, con-

figure and start arbitrary applications on newly allocated resources. Together with a

broad range of monitoring data, the RM system offers a main piece of system knowl-

edge, which is needed for the requirements category stated as System Automation. This

category concentrates on the combination of offered information by the service runtime

and RM system to form a knowledge base for a kind of autonomic manager. This au-

tonomic manager has to be configured with detailed service policies, which control the

system behaviour. System automation is the field were a lot of research has to be done,

as SLAs have to be transformed into service policies automatically. To create effective

service policies, the effects of possible configuration actions like the provisioning of new

resources to a running EAM system are needed.

For this thesis the grid-related standards WSRF and WSDM, in addition to their open

source implementations along with the commercial solutions IBM Dynamic Infrastructure
(IDI) and IBM WebSphere Extended Deployment (WXD), were evaluated against the pre-

sented requirements.

With the Web Services Resource Framework (WSRF) and the Web Services Distributed Manage-
ment (WSDM), two powerful specifications exist that can offer the functionalities needed

for a service runtime. By taking WSRF as a requirement, the Globus Tookit 4 and Apache
Muse were compared and evaluated. With Apache Muse, a lightweight implementa-

tion was chosen, which offers a flexible way to create different service granularities.

With being runnable in standardized J2EE containers, the advantages of robust and well-

known application servers like the IBM WebSphere Application Server can be used. By

using WSDM features like metrics or relationships, the base for a manageable EAM sys-

96 7 Conclusions and Further Lines of Investigation

tem needed for later system automation is given. The implementation of a prototype by

using Apache Muse has proven that for management and orchestrating functionalities

WSRF / WSDM-based Web Services are a practical and comfortable way. Compared to

the previous cluster-based prototype, the new SOA-based implementation competes re-

garding performance and scalability, while offering extended features for configuration

and manageability.

IBM Dynamic Infrastructure (IDI) and IBM WebSphere XD (WXD) can cover a lot of the

remaining requirements for resource management and system automation. By having a

central point of control with the IDI management console, all administrative tasks start-

ing with offering an EAM service to customers, over initiating a customized EAM in-

stance based on a customer’s subscription, to manual management tasks during runtime

and the final service termination can be handled. A detailed resource model can be cre-

ated, to manage resource allocations and metering tasks.

WXD provides a powerful runtime environment for the CM services. By combining all

application servers allocated for an EAM instance to a dynamic cluster (see section 5.2),

management tasks like application installation and configuration can be processed at a

central point. The feature of vertical stacking can improve the overall resource utilization

and can be configured to run automatically. With its integrated monitoring capabilities,

WXD provides a lot of the needed monitoring functionalities. As a first step to system

automation the optimization features by the On Demand Router (ODR) could be used. Al-

though to handle the required high-level service level objectives for EAM, a lot of work

has to be done to adapt the features for the EAM system.

Figure 7.1 shows a possible composition of the infrastructure for the EAM system out

of the evaluated software systems. The WebSphere Application Server (under control of

WXD) builds the basis for the service runtime. Apache Muse, with its WSRF and WSDM

conform Web Service stack, provides a comfortable solution for the service runtime. The

monitoring aspect of resource management is not completely covered by the evaluated

products. Application-based monitoring can be implemented with Muse, although the

scalability aspect of WSDM-based monitoring has to be examined. WXD offers low-level

monitoring functionalities for the WebSphere servers. None of the products can combine

the application and system-based monitoring data into one data stream. IDI covers most

of the other necessary resource management functionalities. Exemplarily the parts Re-
source Model and Provisioning Service are illustrated in figure 7.1. Most functionalities are

missing in the automation category. SLA management is only partly covered by IDI and

WXD. IDI offers event-based metering and accounting capabilities. The SLA functionali-

ties of WXD may be expandable to meet the EAM requirements. The same applies for the

policy-based optimization rules of WXD. Nevertheless, a lot of research has to be done

regarding system automation.

97

Figure 7.1: Possible composition of the EAM infrastructure

Further Lines of Investigation

This thesis has shown that with existing products most of the stated requirements can

be covered. The implemented prototype has proven the usability and manageability of a

WSDM based service runtime. Figure 7.1 indicates a growing ability of autonomy when

traversing the functionality stack from the service runtime up to system automation. As

system automation depends on a functional resource management system, the further

research and implementation steps should follow this "stack of requirements".

Following this approach, the next steps for the CMaaS team in Hamburg would be to

analyze how IDI can be used with the existing prototype. Which exact actions must be

taken by an initial order? How can the actual provisioning tasks be realized? As men-

tioned in section 3.3.2, to enable system automation, an integrated view of application

and low-level monitoring data must be provided. The monitoring and discovery service of

GT4 (section 4.4.8) or the WSDM data collector engine for Tivoli Monitoring (see section

4.4.8) might be a way for the necessary integration.

Further steps include the management of Service Level Agreements. Both IDI and WXD

offer some functionalities to support SLAs. Standards like WS-Agreement [ACD+06] or

WSLA [KL03] should be examined as an alternative.

The most challenging task for further research will be to handle automated system opti-

mization. For this step all necessary system information has to be integrated and acces-

sible as the knowledge base for a system-wide autonomic manager. Before being able to

write practical system policies, the effects of system modifications like provisioning tasks

on system behaviour have to be examined by experiment.

98 7 Conclusions and Further Lines of Investigation

List of Abbreviations 99

List of Abbreviations

API Application Programming Interface

ASP Application Service Provider

B2B Business-to-Business

CMaaS Content Management as a Service

CMS Content Management System

EAM Email Archiving and Management

EAMS Email Archiving and Management System

ECM Enterprise Content Management

ECMS Enterprise Content Management System

EPR Endpoint Reference

ESB Enterprise Service Bus

GDPdU Grundsätze zum Datenzugriff

und zur Prüfbarkeit digitaler Unterlagen

GT4 Globus Toolkit 4

IDI IBM Dynamic Infrastructure

J2EE Java 2 Enterprise Edition

J2ME Java 2 Platform, Micro Edition

JNDI Java Naming and Directory Interface

MOWS Management of Web Services

MUWS Management using Web Services

OASIS Organization for the Advancement

of Structured Information Standards

ODR On Demand Router

ODS On Demand Service

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

OSGi Open Service Gateway initiative

PAI Parsing, Archiving, Indexing

QoS Quality of Service

RDBMS Relational Database Management System

RMS Resource Management System

SaaS Software as a Service

SAX Simple API for XML

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP An obsolute name since version 1.2 of the SOAP standard

SOX Sarbanes-Oxley Act

100 List of Abbreviations

StAX Streaming API for XML

WAR Web Application Archive

WSDL Web Services Description Language

WSDM Web Services Management Framework

WSRF Web Services Resource Framework

WXD IBM WebSphere Extended Deployment

XML Extensible Markup Language

XPath XML Path Language

101

List of Figures

1.1 Simplified architecture of the cmgrid prototype 4

2.1 Evolution of Enterprise IT Architecture [FT05] 9

2.2 Roles in a service-oriented architecture . 11

2.3 Popular message exchange patterns in SOA designs 12

2.4 The OGSA conceptual view . 15

2.5 How OGSA fits in the middleware stack . 16

2.6 The ShoppingCartService . 18

2.7 The implied resource pattern . 20

2.8 ServiceGroup . 22

2.9 The concept of a manageable resource in WSDM 23

2.10 Composability (from [TC06b]) . 24

2.11 MAPE-loop . 29

2.12 System state transitions . 29

3.1 Comparison of business objects for the dedicated server and EAM service

business models. 32

3.2 The life cycle phases of an EAM service . 32

3.3 A service-oriented design for the EAM system 36

3.4 Structure of an EAM service . 37

3.5 Resource allocation by the data center manager 38

3.6 Use Case 1 - System scale-out . 40

3.7 Use Case 2 - System scale-in . 41

3.8 Autonomic email archiving infrastructure concept 42

3.9 Service based system reconfiguration . 43

3.10 The three perspectives of resource management 45

3.11 Classification of QoS metrics . 46

3.12 Dependencies of application-wide availability on the internal resources . . 48

3.13 Autonomic computing reference architecture 49

3.14 Hierarchical autonomic architecture of the EAM service 50

4.1 The WS-Resource Factory Pattern message flow 55

4.2 State diagram for the operational state of a resource 59

4.3 Simplified resource model . 61

4.4 Globus Toolkit 4 architecture overview . 63

4.5 Globus Toolkit 4 programming model . 66

4.6 Apache Muse Programming Model . 67

102 List of Figures

4.7 Comparison of GT4 and Apache Muse . 72

5.1 Offering and subscription in the concept of an on demand service 73

5.2 The IBM DI Resource Model . 75

5.3 The life cycle of an ODS in IDI . 76

5.4 Recommended topology for an WXD operational environment 79

5.5 Resource sharing with IBM WebSphere XD 81

5.6 Request classification and prioritization in WebSphere XD 83

6.1 Implementation architecture . 86

6.2 Email processing workflow of the prototype 87

6.3 Basic capabilities of a resource in the EAM prototype 88

6.4 Concurrency of the existing and the intended prototype 90

6.5 Simple delegating Registry . 92

6.6 Message exchange during job processing (default implementation) 93

6.7 Message exchange during job processing (advanced implementation) . . . 93

7.1 Possible composition of the EAM infrastructure 97

103

Listings

2.1 Porttypes and operation for the CartService with standard Web Services . 18

2.2 WSCreateCartRequest with a non-WSRF service 19

2.3 Corresponding “WSCreateCartResponse" to listing 2.2 19

2.4 WSRF SOAP-Message . 20

2.5 Content of a shopping cart realized as ResourceProperties 21

2.6 Referencing a metadata descriptor for a specific portType 22

2.7 Declaration of the property printedPages as a metric by the addition of

metadata . 25

4.1 Representing state in WSRF . 54

4.2 Destroying a WS-Resource through a wsrl-destroy message 55

4.3 MembershipContentRule which restricts the registry to WS-Resources with

the OperationalStatus property . 56

4.4 Subscription message for resource changes. 57

4.5 Sample resource change notification for a subscription as in listing 4.4 . . 58

4.6 Construction of a state taxonomy . 59

4.7 The use of the WSDM MUWS RelationshipType to create a resource model 60

4.8 "Pseudo-code” for a possible usage of the composability concept to realize

different service granularities . 67

4.9 A sample WSDD file for a WS-Resource in GT4 68

4.10 A JNDI deployment file for a simple WS-Resource 69

4.11 A sample Apache Muse deployment descriptor for a WS-Resource 70

6.1 Access to the CmGridCapability within other capabilities 89

6.2 XPath-query used by the Dispatcher, to get all available PAI services. . . . 91

104 Listings

105

Bibliography

[ACD+06] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,

Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.

Web Services Agreement Specification. https://forge.gridforum.org, 9 2006.

Draft document.

[ALR01] A. Avizienis, J. Laprie, and B. Randell. Fundamental Concepts of Depend-

ability. Research Report N01145, LAAS-CNRS, April 2001., 4 2001.

[Ban06] Tim Banks. Web Services Resource Framework (WSRF) - Primer v1.2. Inter-

net, 5 2006. Committee Draft 02 - 23 May 2006.

[BCC+04] Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey

Frey, Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad

Lovering, Steve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham,

David Orchard, John Shewchuk, Eugène Sindambiwe, Tony Storey, San-

jiva Weerawarana, and Steve Winkler. Web Services Addressing (WS-

Addressing). Technical report, The World Wide Web Consortium (W3C),

2004. W3C Member Submission 10 August 2004.

[BDP+03] T. Banks, A. Djaoui, S. Parastatids, A. Mani, S. Tuecke, K. Czajkowski, I. Fos-

ter, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, D. Snelling,

and P. Vanderbilt. Open Grid Services Infrastructure (OGSI) Version 1.0.

http://www.ggf.org/documents/GFD.15.pdf, 6 2003.

[BEF+] Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin Gudgin,

Canyang Kevin Liu, Mark Nottingham, and Prasad Yendluri. Basic Profile

Version 1.1. http://www.ws-i.org.

[Biß07] Malte Biß. Componentization and Orchestration of Content Management

Services. Master’s thesis, Universität Hamburg, 2007.

[BJM+05] Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano

Leonardi, Aad P. A. van Moorsel, and Maarten van Steen, editors. Self-star
Properties in Complex Information Systems, Conceptual and Practical Foundations
[the book is a result of a workshop at Bertinoro, Italy, Summer 2004], volume 3460

of Lecture Notes in Computer Science. Springer, 2005.

[Bre07] Gerd Breiter. Utility Computing als integraler Bestandteil der serviceorientierten
Architektur, chapter 3.3, pages 78–100. In Kircher [KKP+07], 2007.

106 Bibliography

[CBC+05] Catherine H. Crawford, G. Paul Bate, Luba Cherbakov, Kerrie Holley, and

Charles Tsocanos. Toward an on demand service-oriented architecture. IBM
Systems Journal, 44(1):81–108, 2005.

[CFF+04] Karl Czajkowski, Donald F Ferguson, Ian Foster, Jeffrey Frey, Steve Graham,

Igor Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. The

WS-Resource Framework - Version 1.0, 3 2004. Initial draft release from

03/05/2004.

[CGB02] Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. Investi-

gating the Limits of SOAP Performance for Scientific Computing. In HPDC,

pages 246–254. IEEE Computer Society, 2002.

[Coh06] Frank Cohen. FastSOA: The way to use native XML technology to achieve Ser-
vice Oriented Architecture governance, scalability, and performance (The Morgan
Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2006.

[CYZ+06] Shiping Chen, Bo Yan, John Zic, Ren Liu, and Alex Ng. Evaluation and

Modeling of Web Services Performance. icws, 0:437–444, 2006.

[FK99] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1999.

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physi-

ology of the Grid: An Open Grid Services Architecture for Distributed Sys-

tems Integration, 2002.

[FKS+05] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,

F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The

Open Grid Services Architecture, Version 1.0, 1 2005.

[FKS+06] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn, F. Maciel,

F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The Open Grid

Services Architecture, Version 1.5. Technical report, Global Grid Forum, 7

2006.

[FKT01] Ian T. Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid

- Enabling Scalable Virtual Organizations. International J. Supercomputer Ap-
plications, 15(3), cs.AR/0103025, 2001.

[FMS06] Ian T. Foster, T. Maguire, and D. Snelling. OGSA WSRF Basic Profile 1.0.

http://www.ggf.org/documents/GFD.72.pdf, 5 2006.

[Fos02] Ian T. Foster. What is the Grid? A Three Point Checklist. GRIDToday, 7 2002.

Bibliography 107

[Fos05] Ian T. Foster. A Globus Primer Or, Everything You Wanted to Know about

Globus, but Were Afraid To Ask Describing Globus Toolkit Version 4, 5 2005.

[FT05] Ian T. Foster and Steven Tuecke. Describing the elephant: The different faces

of IT as service. ACM Queue, 3(6):26–29, 2005.

[GC03] Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic com-

puting era. IBM Systems Journal, 42(1):5–18, 2003.

[GHM06] Steve Graham, David Hull, and Bryan Murray. Web Services Base Notifica-

tion 1.3 (WS-BaseNotification), 10 2006. OASIS Standard, 1 October 2006.

[Gro05] The Radicati Group. Taming the Growth of Email - An ROI Analysis.

http://www.radicati.com, 3 2005. White Paper by The Radicati Group, Inc.

[GSC+04] Madhusudhan Govindaraju, Aleksander Slominski, Kenneth Chiu, Pu Liu,

Robert van Engelen, and Michael J. Lewis. Toward Characterizing the Per-

formance of SOAP Toolkits. In Rajkumar Buyya, editor, GRID, pages 365–

372. IEEE Computer Society, 2004.

[GSM+01] Klaus Götzer, Udo Schneiderath, Berthold Maier, Wolfgang Boehmelt, and

Torsten Komke. Dokumenten-Management : Informationen im Unternehmen
effizient nutzen. dpunkt.verlag GmbH, 2001.

[HGS+05] Michael R. Head, Madhusudhan Govindaraju, Aleksander Slominski,

Pu Liu, Nayef Abu-Ghazaleh, Robert van Engelen, Kenneth Chiu, and

Michael J. Lewis. A Benchmark Suite for SOAP-based Communication in

Grid Web Services. In SC, page 19. IEEE Computer Society, 2005.

[HGvEZ06] Michael R. Head, Madhusudhan Govindaraju, Robert van Engelen, and Wei

Zhang. Benchmarking XML processors for applications in grid web services.

In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,

page 121, New York, NY, USA, 2006. ACM Press.

[HKC+06] Salim Hariri, Bithika Khargharia, Huoping Chen, Jingmei Yang, Yeliang

Zhang, Manish Parashar, and Hua Liu. The Autonomic Computing

Paradigm. Cluster Computing, 9(1):5–17, 2006.

[IBM06] IBM. An architectural blueprint for autonomic computing. http://www-

03.ibm.com/autonomic/, 6 2006. Fourth Edition.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Comput-

ing. IEEE Computer, 36(1):41–50, 2003.

[KD07] Jeffrey O. Kephart and Rajarshi Das. Achieving Self-Management via Utility

Functions. IEEE Internet Computing, 11(1):40–48, 2007.

108 Bibliography

[KKP+07] Dieter König, Matthias Kloppmann, Gerhard Pfau, Michael Scheible,

Werner Ederer, Gerd Breiter, Boas Betzler, Jürgen Schneider, and Oliver Au-

genstein. IT - Technologien, Lösungen, Innovationen. Springer Berlin Heidel-

berg, 2007.

[KL03] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying

and Monitoring Service Level Agreements for Web Services. Technical Re-

port 1, 2003.

[KW04] Jeffrey O. Kephart and William E. Walsh. An Artificial Intelligence Perspec-

tive on Autonomic Computing Policies. In POLICY, pages 3–12. IEEE Com-

puter Society, 2004.

[KY04] Bryan Klimt and Yiming Yang. Introducing the Enron Corpus. In CEAS,

2004.

[LB05] Maozhen Li and Mark Baker. The grid core technologies. John Wiley & Sons,

2005.

[MSB06] Tom Maguire, David Snelling, and Tim Banks. Web Services Service Group

1.2, 4 2006. OASIS Standard, 1 April 2006.

[MWE06] Bryan Murray, Kirk Wilson, and Mark Ellison. Web Services Distributed

Management: MUWS Primer. http://www.oasis-open.org, 2 2006. Com-

mittee Draft, February 24, 2006.

[MWM05] Cataldo Mega, Frank Wagner, and Bernhard Mitschang. From Content Man-

agement to Enterprise Content Management. In Gottfried Vossen, Frank

Leymann, Peter C. Lockemann, and Wolffried Stucky, editors, BTW, vol-

ume 65 of LNI, pages 596–613. GI, 2005.

[NL04] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services.

Independent Technology Guides. Addison-Wesley Professional, 2004.

[OAS] Organization for the Advancement of Structured Information Standards.

http://www.oasis-open.org. visited on 02/08/2007.

[OAS06a] OASIS Group. OASIS Web Services Notification Standard 1.3.

http://www.oasis-open.org/, October 2006. Set of the follwing Speci-

fications: WS-BaseNotification 1.3, WS-BrokeredNotification 1.3,WS-Topics

1.3.

[OAS06b] OASIS Group. OASIS Web Services Resource Framework Standard

1.2, 2006. Set of the following specifications: WS-Resource, WS-

ResourceProperties (WSRF-RP), WS-ResourceLifetime (WSRF-RL), WS-

ServiceGroup (WSRF-SG), WS-BaseFaults (WSRF-BF).

Bibliography 109

[PHE+06] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka, Ajith

Ranabahu, Deepal Jayasinghe, Sanjiva Weerawarana, and Glen Daniels.

Axis2, Middleware for Next Generation Web Services. In ICWS, pages 833–

840. IEEE Computer Society, 2006.

[PW05] Pawel Plaszczak and Richard Wellner. Grid Computing: The Savvy Manager’s
Guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[REF+06] Birgit Roehm, Thomas Erker, Carrie Finneran, Vijay Mann, Kwan-Ming

Wan, and Peter Wiedeking. Using WebSphere Extended Deployment V6.0 To
Build an On Demand Production Environment. IBM Redbooks, 2006.

[SB06] Latha Srinivasan and Tim Banks. Web Services Resource Lifetime 1.2 (WS-

ResourceLifetime), 4 2006. OASIS Standard, 1 April 2006.

[SCD+97] Bikash Sabata, Saurav Chatterjee, Michael Davis, Jaroslaw J. Sydir, and

Thomas F. Lawrence. Taxonomy for QoS specifications. In Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS). IEEE Computer So-

ciety, 1997.

[Sch06] Sergej Schütz. Indexierung von E-Mail-Archiven mit hohem Nachrichte-

naufkommen. Diplomarbeit, Universität Stuttgart - Institut für parallele

und verteilte Systeme, 6 2006.

[SDt06] of The Open Group SOA Definition team, of the SOA Working Group. Def-

inition of SOA, 6 2006. Version 1.1.

[SG05] Akhil Sahai and Sven Graupner. Web Services in the Enterprise. Concepts, Stan-
dards, Solutions, and Management. Springer-Verlag GmbH, 2005.

[Sot] Borja Sotomayor. The Globus Toolkit 4 Programmer’s Tutorial. University of

Chicago Department of Computer Science.

[Str04] John C. Strassner. Policy-Based Network Management Sulutions for the Next
Generation. Morgan Kaufmann Publishers, 2004.

[TC06a] OASIS Web Services Distributed Management TC. Web Services Distributed

Management: Management of Web Services (WSDM-MOWS) 1.1, 10 2006.

OASIS Standard, 01 August 2006.

[TC06b] OASIS Web Services Distributed Management TC. Web Services Distributed

Management: Management Using Web Services (MUWS 1.1) Part 1, 8 2006.

OASIS Standard, 01 August 2006.

[TC06c] OASIS Web Services Distributed Management TC. Web Services Distributed

Management: Management Using Web Services (MUWS 1.1) Part 2, 8 2006.

OASIS Standard, 01 August 2006.

110 Bibliography

[TC06d] OASIS Web Services Resource Framework TC. Web Services Resource Meta-

data 1.0 (WS-ResourceMetadataDescriptor), 6 2006. Public Review Draft 01,

June 27, 2006.

[TSF06] Hong-Linh Truong, Robert Samborski, and Thomas Fahringer. Towards a

Framework for Monitoring and Analyzing QoS Metrics of Grid Services. e-
science, 0:65, 2006.

[VG65] F. J. Corbató Vyssotsky, V. A. and R. M. Graham. Structure of the Multics

Supervisor. Fall Joint Computer Conference, 1965.

[VOI05] VOI. Dokumenten-Management - Vom Archiv zum Enterprise-Content-
Management. Code Of Practice. VOI - Verband Organusation und Informa-

tionssysteme e.V., Bonn, 2005.

[WHW+04] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jef-

frey O. Kephart. An Architectural Approach to Autonomic Computing. In

ICAC, pages 2–9. IEEE Computer Society, 2004.

[WM06] Katy Warr and Roger Menday. WSRF Application Notes - OASIS Committee

Draft 02, 25 March 2006, 5 2006. Committee Draft 02, 25 March 2006.

[WMM+07] Frank Wagner, Bernhard Mitschang, Cataldo Mega, Kathleen Krebs, and

Norbert Ritter. A Service-Oriented Approach to Email Archive and Com-

pliance Discovery Solutions. Paper submitted for the Proceedings of the

CIKM 2007. Lisboa, Portugal, November 2007, 2007.

Trademarks 111

Trademarks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States, other countries, or both:

AIX, IBM, DB2, DB2 Universal Database,

Domino, Lotus Notes, WebSphere, Tivoli

The following terms are trademarks or registered trademarks of Sun Microsystems,

Inc. in the United States and other countries:

Sun, Sun Microsystems, Java, J2EE, J2SE, J2ME

"OASIS", “WSRF”, “WSDM” are trademarks of OASIS, the open standards consor-

tium where the specifications are owned and developed.

Apache is a trademark of The Apache Software Foundation.

Oracle is a registered trademark of Oracle Corporation.

Other company, product, or service names may be trademarks or service marks of

others.

112 Trademarks

Affidavit

I hereby declare that I created this thesis myself, without any outside help and without

using other means of research than listed in the attached bibliography. All quotes - both

literal and according to their meaning - from other publications have been marked ac-

cordingly.

I agree to the public display of this thesis in the department’s library.

Hamburg, Signature:

	Introduction
	Content Management Challenges
	Content Management as a Service (CMaaS)
	Email Archiving and Management (EAM)
	Business Use Cases
	Preliminary Work
	CMaaS Fields of Responsibility
	Next Steps - Applying Service Orientation and Automation

	Thesis Objectives
	Thesis Structure

	Technological Prerequisites
	Content Management
	Enterprise Content Management (ECM)
	Email Archiving and Management

	Trends in Enterprise IT Architectures
	Service Orientation Concepts
	The Service-Oriented Architecture (SOA)
	SOA Roles

	Grid Computing
	The Idea Behind Grid Computing
	Open Grid Services Architecture - OGSA

	Web Services Resource Framework - WSRF
	Sample Scenario
	Keeping State - The concept of a WS-Resource
	WS-ServiceGroup (WSRF-SG)
	WS-BaseNotification (WS-BN)
	Web Services Resource Metadata (WS-ResourceMetadataDescriptor)

	Web Services Distributed Management (WSDM)
	WSDM-MUWS - Management Using Web Services

	Grid Computing in the IT Industry
	Utility Computing / Software as a Service / On-demand Computing
	Service Level Agreements

	Autonomic Computing
	Properties of an Autonomic Computing System

	Requirement Specifications
	Scenario
	Feature Requests for the EAM Service Solution

	The CMaaS Approach
	Applying Service-Orientation to the EAM System
	Achieving System Manageability through Automation
	Applying Autonomic Computing Concepts
	The Vision of an Autonomic, Service-Oriented Email Archiving System

	The Building Blocks of the EAMS Infrastructure
	Service Runtime
	Resource Management
	System Automation

	Summary

	Service Runtime Evaluation
	The WSRF Basic Profile Specification
	XML Processing in the Enterprise

	Evaluation of the WSRF Basic Profile (WSRF-BP)
	Handling State with WSRF
	Registry Service
	Resource State Monitoring
	Summary

	The Use of WSDM to Achieve Manageability
	Metrics and Metadata
	A WSDM-based Resource Model
	Summary

	Evaluation of WSRF Implementations
	Existing WSRF Implementations
	Globus Toolkit 4 (GT4)
	Apache Muse
	Performance Comparison
	Programming Model
	Code Generation and Data Binding
	Deployment
	Additional Features
	Summary

	IBM Dynamic Infrastructure and WebSphere XD
	IBM Dynamic Infrastructure (IDI)
	On Demand Service
	The IBM DI Resource Model (DIRM)
	Order Processing
	The Life Cycle of an On Demand Service
	Service Life Cycle Management
	Tooling
	Summary

	IBM WebSphere Extended Deployment V6.0 (WXD)
	On Demand Router
	Resource Sharing
	Service Policies
	Work Classes
	Creation of Service Policies and Work classes
	Summary

	Implementation
	Infrastructure
	Development Infrastructure
	Target infrastructure
	Testing Data

	Implementation Architecture
	Email Processing Workflow
	Common Capabilities

	Implementation Details
	PAI Service
	ResourceFactory (Factory)
	Dispatcher
	Advanced Registry
	The Web Client

	Summary

	Conclusions and Further Lines of Investigation
	List of Abbreviations
	List of Figures
	Listings
	Bibliography
	Trademarks
	Affidavit

