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Planning

and

the Belief-Desire-Intention Model of Agency

Andrzej Walczak

University of Hamburg, 2005

Artificial intelligence researches the field of planning as a process able to provide
agents with a course of action guiding them towards their aims. Agents incorporat-
ing the belief-desire-intention model of agency are generally equipped with a library
of plans, avoiding the burden of planning at runtime. Nevertheless, there is a need
for planning techniques within BDI agents, in order to cope with problems, for
which it is difficult to create generic plans in advance.

It needs to be investigated in theory and practice, what techniques are appropri-
ate for this purpose. How to integrate planning with the BDI model of agency and
how well does planning perform in multi-agent environments. It is also interesting
if a successful planner could be implemented with means of Javatm. The planning
community has developed many concepts with respect to this topic. Simple state
space approaches, hierarchical task networks, partial order and deductive planning
techniques can be used for the purpose of this diploma thesis. To integrate a plan-
ner with a BDI system an approach may be pursued where the planner controls the
underlying BDI system or it uses BDI goals and plans to compose them into new
plans in a dynamic way. On the other hand, the BDI engine could also trigger the
planner, to create plans composed of specially crafted operators.

The aim of this diploma thesis project is to implement a planner in Javatm

language that uses Javatm as its representation for planning concepts and to adapt
and integrate this planner into the Jadex BDI reasoning engine. The applicability
of modern planning techniques to multi-agent systems should also be proved. The
planning techniques are investigated on planners used in the practice. They are
compared to each other on the basis of efficiency, methods used and features sup-
ported. Most successful concepts are taken to design and implement a planner that
would fit into a BDI agent architecture, in particular into the Jadex BDI agent
system. The overall approach is evaluated on small examples.

iii



iv



Contents

Acknowledgments ii

Abstract iii

List of Figures viii

Statement x

Chapter 1 Introduction 1

1.1 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Concepts and Methods of Planning 5

2.1 Primary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Planning Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Domain Properties . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Example Domains . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Planning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Goal Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Non-linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Deductive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Online Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Plan Monitoring and Replanning . . . . . . . . . . . . . . . . 26

2.4.2 Continuous Planning . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3 Planners 29

3.1 Classical Problem Solvers . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Partial Order Planners . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.3 Hierarchical Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Sipe-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 O-Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Shop, JShop, Shop2 . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Planning Graph Planners . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 GraphPlan . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 IPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 BlackBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Fast-Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5 LPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Knowledge Based Planners . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 TLPlan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 TALPlanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 SOaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 Prodigy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 The Belief-Desire-Intention Model of Agency 55

4.1 The BDI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 BDI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 IRMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 PRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Jadex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Operational Model . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 BDI Systems with a Planner . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 InterRRaP . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Cypress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Retsina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.4 Decaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.5 Propice-Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5 Design 77

5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 First Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Representation of Concepts . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Symbolic Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



5.6.1 Term Representation . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.2 Java Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.4 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Domain Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Integration with Jadex . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6 Evaluation 103

6.1 The Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Loader Dock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 7 Conclusion 113

7.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117

Appendix A Code Samples 125

A.1 Unification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Worker Move Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



List of Figures

2.1 Interval Algebra Relations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Convex Constraints of IA . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Abstraction of Action . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Blind Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Strips Notation vs. ADL. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Partial Order Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 HTN Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Plan Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 O-Plan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Shop2 Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Planning Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Planning Graph with Conditional Edges . . . . . . . . . . . . . . . . 39

3.5 FF’s Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 LPG’s Action Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 TALPlanner’s Search Space . . . . . . . . . . . . . . . . . . . . . . 47

3.8 SOaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Prodigy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 IRMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 PRS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Jadex Hierarchical Plan Decomposition. . . . . . . . . . . . . . . . . 63

4.4 Jadex Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 InterRRaP Architecture . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Cypress Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Retsina Agent Architecture . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Decaf Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Propice-Plan Module Overview . . . . . . . . . . . . . . . . . . . . 74

5.1 A Dynamic Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Planner Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Example of Control Knowledge . . . . . . . . . . . . . . . . . . . . . 89

5.4 Term Processors and Transformers . . . . . . . . . . . . . . . . . . . 93

5.5 Planner, Search and Strategies . . . . . . . . . . . . . . . . . . . . . 94

5.6 Activation Change Process . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Expansion of States . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



5.8 ADF Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Planner Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Blocks-World GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Control Knowledge for Pickup($block) . . . . . . . . . . . . . . . . 105

6.3 Control Knowledge for PutDown($at) . . . . . . . . . . . . . . . . . 106

6.4 Storehouse GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 The Pickup Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



Statement

I would like to assert hereby that the thesis work has been done by myself to the full

length and content. All means and sources used therefore are explicitly mentioned

here.

Andrzej Walczak

University of Hamburg

April 2005

x



Chapter 1

Introduction

This chapter introduces the subject of planning and agency. Related question will

be posed in respect to the combination of artificial intelligence (AI) planning and the

belief-desire-intention (BDI) model of agency. At last, the intention of the diploma

thesis project will be stated and the approach taken sketched.

1.1 Topics

Both fields of planning and agency in computer science and AI have long research

tradition. The notion of planning is central to the agent concept, especially from

the viewpoint of AI. First agent architectures have been based on the techniques of

deductive problem solving and reasoning. Planning was one of the main problem

solving techniques investigated at that time.

Planning can be viewed from different perspectives, depicted by the following

definitions. There are psychologically motivated definitions, which emphasize the

mental process of planning, and there are definitions concerning the representation

of plans being the determining factor for embedding process.

Wilensky (1983, p. 1) gives a relative wide definition of planning and processes

occurring during plan execution.

”Planning concerns the process by which people select a course of action

– deciding what they want, formulating and revise plans, dealing with

problems and adversity, making choices, and eventually performing some

action.”

Hayes-Roth & Hayes-Roth (1979, pp. 275). put the planning as a part of two stages

process they call planning and control.

”We define planning as the predetermination of a course of action aimed

at achieving some goal. It is the first stage of a two-stage problem-

solving process. The second stage entails monitoring and guiding the

execution of a plan to a useful conclusion.”

1



The perspective on planning taken in this paper borrows from the definition

given in the area of AI. The classical view on planning is to understand it as a

process of building a sequence of actions that will achieve a stated goal (Russell &

Norvig 2003). The sequence transforms a given initial state into some state that

meets the goal description. The notion of a state is given by the following definition:

”The classical definition of the planning problem assumes a state-based

representation of the world. This means that the world is represented

by taking a ’snapshot’ of it at one particular time and describing the

world as it appears in this snapshot [...]” (Wilkins 1988, p. 4).

The classical view is settled in domains that are: static - as changes are implied by

the plan actions only, deterministic, observable - making the process of planning

fully informed, discrete (in time, actions, objects and effects) and finite (Russell &

Norvig 2003). An expanded view is given in the following chapter.

Agents act. An Agent is to be understood here as a computing item. It is a

paradigm melting the view of computer science - providing approved techniques

for development of strong reliable software and hardware - with the view of AI

- promising advanced features of being rational, self-sufficient, autonomous and

flexible. Wooldridge (1997) characterizes an agent to be:

• an autonomous system, making decisions based on its internal

state,

• situated in an environment and being able to perceive it in order

to react to the changes,

• able to take the initiative and exhibit goal–directed behavior,

• able to interact with other agents and to cooperate.

An agent, being an autonomous system, has control over its internal state and its

actions. It can be distinguished and is fully separable from its embedding environ-

ment, having clearly defined interfaces. It is designed to fulfill specific goals and

it pursues its goals by exhibiting reactive behavior as a timely response to changes

in the environment and proactive behavior as a response to internal processing,

possibly in anticipation of future environmental states (Jennings 1999).

An agent acts rational if it chooses – based on its knowledge and resources

available – actions promising the best expected outcome. What is the best outcome

is defined by a function called performance measure, evaluating agent behavior in

an environment. This leads to the following definition of a rational agent :

”For each possible percept sequence, a rational agent should select an

action that is expected to maximize its performance measure, given

the evidence provided by the percept sequence and whatever build-in

knowledge the agent has” (Russell & Norvig 2003).

Russell & Norvig (2003) give the definition for four types of agents. The simple

reflex agent determines its actions solely through reactions based on condition-

action rules. If the word percept fulfills a condition rule, it becomes active. The

2



agent chooses then an active rule and performs the associated action. This type of

an agent has the desirable property of being simple, but it scales poorly to complex

problems requiring more than one action and envisioning forthcoming states of the

environment. Learning in this model of agency is done easily by creating new

associations at runtime.

The model-based agent maintains a state of the world updated by its sensory

inputs and by functions describing changes over time including the effects of own

actions. This approach softens the requirements of fully observable environment

posed by the former reactive agent. The structure underlying the reasoning is the

representation of the environment encapsulated in agent’s internal state.

Goal-based agents comprise goals, i.e. descriptions of desirable states used to

guide their behavior. As their goals can change or be pursued by different means,

goal-based agents are more flexible in the application. The choice of an action is

determined by the environment, agent’s internal state and by the set of goals the

agent is currently pursuing. Planning and search is used if there are goals that

cannot be achieved by a single action or procedure. The Jadex – architecture

allows for creating goal-based agents.

Many successful agent architectures are based on the belief-desire-model of

agency that may be seen as an extension to the goal-based agent type described

above. It has been devised by Bratman (1987) as philosophical means to explain

human intentional behavior and will be described further in Chapter 4.

Fourth agent type determines its actions on the basis of a utility function that

sums up the desirability of agent goals together with the cost of achieving them,

weighted by the probability of success. The function provides more than a sim-

ple binary decision to aid the choice of actions and helps agents to behave more

adequately or even rationally in the sense stated above (Russell & Norvig 2003).

1.2 Motivation

Planning, an approach central to AI research, is substantial for rational agent be-

havior. It is a method that aids agents in solving complex problems in synthetic

and natural environments. Although planning systems are devised for means-end

reasoning and are capable to find actions that achieve goals, they are less useful

to decide, which goals to pursue (Shut & Wooldridge 2001). BDI systems, on the

other hand, are build upon two central ideas. One of them is the reactive planning,

comparable with hierarchical planning systems (de Silva & Padgham 2004), the

other is goal-deliberation.

It seams reasonable and interesting to combine the strength of flexible means-

end reasoning given by AI planners with the timely reactivity and goal deliberation

capabilities carried by BDI systems. It is also interesting to analyze suitability of

the AI planning approach to BDI agents in real world applications.

The distribution of control and reasoning found in multi-agent systems requires

some means for coordination, which may be aided by the planning process. This

motivates to treat plans and intentions explicitly, using a representation that may

be communicated with other agents. Such representations have been provided by

3



the planning research field for the purpose of reasoning, manipulation and plan

comparison.

This thesis concerns with adaptation of planning techniques to an agent system

based on the BDI model of agency. In particular, it describes the approach taken

for integration of an AI planner into the Jadex(Pokahr, Braubach & Lamersdorf

2003)1 architecture developed by the Distributed and Information Systems Division

at the University of Hamburg. Jadex incorporates many ideas from foregoing BDI-

systems, like PRS, Jacktm or JAM2 and constitutes a Jade agent platform add-on.

Jadex has been developed in the Javatm programming language.

Further this thesis provides a survey of planning systems and agent systems

incorporating planners. Another motivation for this work was to examine the us-

ability of object-oriented descriptions for planning and reasoning. Thus, the diploma

project provides a planner that is capable of processing Javatm-like language con-

taining types, classes, instances, methods and attributes as primary concepts for

knowledge representation.

1.3 Approach and Outline

The following chapter introduces basic formalisms concerning AI planning. Among

others, a formal definition of planning problems is given. Languages describing the

problems are presented together with common planning domains and their proper-

ties. The remaining part of the chapter addresses techniques of planning. Partial

order planning, hierarchical task networks and deductive planning techniques are

presented. Supported by theoretical results with respect to partial order planning,

a planner based on these techniques has been designed and implemented. The poor

performance of this approach (cf. sec. 5.2) moved the thesis work towards investi-

gation of more practical solutions.

Chapter 3 illustrates the use of planning techniques within concrete systems. In

particular, this chapter seeks to investigate recent planning approaches and come

behind the secrets of their successful application. Chapter 4 introduces one of

the most successful models of agency based on the Theory of Practical Reasoning

by Bratman. It concludes with a survey of example BDI systems with Jadex –

the basis system for the thesis project. The chapter continues with BDI systems

that include an AI planner. The goal of this survey is to examine, what previous

approaches have been taken in joining both fields and to investigated if any of these

approaches are applicable to Jadex.

Chapter 5 presents the design of the planner and of the way it should be in-

tegrated into a BDI system. It accentuates the decisions taken and justifies the

choice of planning techniques. The integration with Jadex are described at last.

In Chapter 6 two simple planning domains illustrate the use of the planner. The

thesis concludes with a summary and outlook in Chapter 7.

1http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
2PRS – Procedural Reasoning System (Georgeff & Lansky 1987); Jack – Jack Intelligent

Agentstm (Busetta, Ronnquist, Hodgson & Lucas 1999); JAM – A BDI-theoretic Mobile Agent
Architecture (Huber 1999).
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Chapter 2

Concepts and Methods of

Planning

In order to investigate the strengths and weaknesses of planning methods that could

be used in agent systems and applied to multi-agent domains, this chapter intro-

duces fundamental concepts of planning. The applications of planning are presented

and formalized under the term of a planning domain. Based on these concepts and

the understanding of the planning problem, different planning techniques are de-

scribed and differentiated from other techniques found in this research field. The

section about online planning describes methods applied to problems that must be

handled at runtime.

2.1 Primary Concepts

The basis for planning is the representation of the planning problem. This section

reviews forms of this representation used mainly for classical planning. Given the

representation and the description of a domain, upon which the problem was posed,

the planner can use some forms of abstraction to focus the processes of planning

on important details. Again, one of the central methods for classical planning is

search described in this section because of its importance. Deduction is yet another

method described in one of the following sections. Constraint Satisfaction Problem

(CSP) techniques - used for non classical planning - are left unconcerned by this

thesis. The last techniques are used mostly for scheduling problems and planning

with time constraints. The underling scientific results in respect to CSP are mainly

of theoretical nature and thus yield little for the coming chapter, in which direct

practical applications are used to further delimit and investigate the appropriate

techniques interesting for this thesis.
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2.1.1 Planning Problem

The following characterization of the planning problem is based on Ghallab, Nau

& P.Traverso (2004)1. In order to represent a planning problem one needs at least

means to describe states of the world and how these states may change due to agents

actions. In a restricted view this can be given by a model of a state-transition

system Σ = (S,A, γ) where S is the set of states, A – the set of actions and

γ : S × A → S ∪ {⊥} is the transition function mapping a state and action to

another state. ⊥ is the illegal state being the result of an action not applicable to

a foregoing state. The planning problem is given by a triple P = (Σ, s0, g) where

s0 ∈ S is the initial state and g is the description of a goal state inducing the set

Sg := {s ∈ S | s satisfies g}.

There are at least two representations for planning problems. The first de-

scribed here is called ”classical representation” (Ghallab et al. 2004). It is based

on a first-order language L without function symbols. The states are represented

as a set of ground atoms from L. A set of literals g is satisfied in S if there is a

substitution σ and every positive and no negative literal from σ(g) is in S.

The actions are ground instances of operators defined as a triple o = (ς,Π,∆)

where ς is a signature of this operator containing its name and parameter variables.

Π is the set of preconditions required by this operator to be applicable and ∆ is

the set of effects of this operator. Pi and ∆ are sets of literals. Π−
a is the set of

negative preconditions required to be absent from a state if a should be applicable.

Π+
a are the ”positive” preconditions required in a state. ∆−

a are the negative effects2

of action a, deleting the specified atoms from a state if applied. ∆+
a are positive

effects that add atoms to a state.

If action a is applicable in state s, i.e. Π+
a ⊆ s ∧ Π−

a ∩ s = ∅, the transition

function is defined to be:

γ(s, a) = (s−∆−
a ) ∪∆+

a

γ maps to an illegal state ⊥ in the other case. Goals are specified as a set of ground

literals.

If problem P has to be stated to a finite problem solver, care must be taken

not to enumerate the states from S as its cardinality grows exponentially with the

number of ground atoms in L. The set of all actions A is polynomial in size with

respect to the same number of ground atoms. The statement of P can be noted as

P = (O, s0, g) (Ghallab et al. 2004), with O being the set of all operators.

State-variable representation, which uses a functional notation for states, is the

second way (mentioned here) to describe a planning problem. A state is represented

using state variables of the form x(v1, v2, . . . , vk) ∈ X where x is the name of the

variable and vi are objects or variables taking value of an object. For every state

1The symbolic notation used here has been simplified and provides a more concise form of
expression.

2Negative effects are also called the delete list and positive effects are called the add list
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variable there is a corresponding function

x : D1 × . . . Dk × S → Dx

where Di ⊆ D are sub domains of this function, being a union of one or more object

classes from the whole domain D. Variables denoting predicates can be mapped to

a boolean domain, i.e. p : . . .→ B. There is no necessity to state functional axioms

with this notation as it would be in case of the classical representation.

An operator is a triple o = (ς,Π,∆) like in the classical representation except for

Π being a set of expressions on the state variables and ∆ being a set of assignments

to state variables. The planning domain is defined as a state-transition system

Σ = (S,A, γ), where:

• S is the set of states defined as assignments s = {x 7→ c | x ∈ X ∧ c ∈ Dx}.

• A is the set of all ground instances of operators.

• γ(s, a) = {x 7→ c | x ∈ X} where c is specified by the assignment (x← c) ∈ ∆a

or by the previous state s if not concerned by action a.

Ghallab et al. (2004) describe the statement of a planning problem to be a tuple

P =< O,R, s0, g > where O is the set of operators. R is the set of static relations

that do not change with actions. s0 is the initial state and g is a goal expression on

the state variables.

Time representation. Time is the most important resource that should be ac-

counted for while planning. State-transition systems contain a notion of implicit

time where actions are related to each other using causal relations based on precon-

ditions and effects. Actions spanning over time are barely concerned by classical

planning. Extended models of actions contain delayed effects, invariants that should

prevail over time intervals and joint effects of more than one action performed at

the same time. Long-lasting actions spanning over a time interval may overlap and

the domain may be modeled with explicit events occurring on specified times, giving

the praise to internal dynamics of the domain. The goals themselves can be stated

with dead lines to be kept in a valid solution.

Time can be handled qualitatively for synchronization purposes between actions

of agents and the environment, and time is required quantitatively as a resource.

The structure of time, given by an ordering relation, can be discrete or continuous,

totally ordered or branching. The Point Algebra and the Interval Algebra are two

means to represent time in a planning system.

Point Algebra works with instants (time points), which are related to each other

using a set of primitive relations P = {<,=, >} inducing the set of qualitative

constraints R = 2P over them. Except for default set operations like ∪ and ∩ there

is a composition relation defined for the set R. Time points and the corresponding

relations constitute a PA network, which is a directed graph G = (X,C) with X

being the set of instants and C a set of arcs labeled with a constraint from R.
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Figure 2.1: The primitive relations of Allan’s interval algebra: before, meets, over-
laps, starts, during, finishes and equal. The other six relations are pictured by
mirroring this ones.

Interval Algebra, due to Allen (1991), works with cohesive time intervals, which

are related using thirteen primitive relations (cf. fig. 2.1): before (<), meets (m),

overlaps (o), starts (s), during (d), finishes (f), after (>), met-by (m′), overlapped-

by (o′), started-by (s′), includes (d′), finished-by (f ′), and equals (=). There are

213 qualitative constraints between two intervals, elements of the set R = 2P where

P = {<,m, o, s, d, f,=, >,m′, o′, s′, d′, f ′}. As for Point Algebra, ∪, ∩ and the

composition relation are defined for R. An IA network is defined as a directed

graph G = (X,C) where X is the set of intervals and C is a set of arcs labeled with

an element of R. The consistency check for an IA network is np-complete as for a

general Constraint Satisfaction Problem.

The graph GIA (cf. fig. 2.2) is defined by the thirteen primitive relations con-

nected with an edge, only if one of the relation can be mutated into another one by

moving just the starting or ending point of the related intervals. A set of relations

from GAI is called convex if for any two elements of this set, all other relations on

the path between them are also included. All convex sets define the Convex Inter-

val Algebra IAc with only 82 qualitative constraints. The consistency problem for

IAc is tractable in polynomial time. Other tractable subsets of IA exists, e.g. IAp

- an Interval Algebra, which includes only constraints that can be expressed as a

conjunction of {<,=, >,<=, >=, 6=} over the starting and ending points of related

intervals.

Temporal Constraint Networks are means to handle time quantitatively. A

Temporal Constraint Network is defined as T =< V,C > where V is a set of

real valued variables denoting time points and C is a set of unary and binary

constraints posed over the variables. Simple constraints have the form ai ≤ ti ≤ bi

or aij ≤ tj−ti ≤ bij respectively, with ai, bi, aij , bij ∈ R. Generalized constraints are

disjunction of the unary and binary ones. On the general constraints set operations

and the composition can be defined. For r = {I1, . . . , Ih}, q = {J1, . . . , Jl}:

• r ∪ q = {I1, . . . , Ih, J1, . . . , Jl}.

• r ∩ q = {K | K = Ii ∩ Jj 6= ∅} for Ii ∈ r and Jj ∈ q.

• Composition: r • q = {K | K = Ii • Jj}.
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Figure 2.2: A graph GAI showing the neighborhood of primitive relations of interval
algebra. Convex constraints contain all relations on the path between two relations
included.

With intersection for binary constraints defined by:

rij ∩ r′ij = [max(aij , a
′
ij),min(bij , b

′
ij)]

and composition by:

[aik, bik] = [aij , bij ] • [ajk, bjk] = [aij + ajk, bij + bjk]

.

Temporal Constraints Networks are mainly used for scheduling and resource

planning in domains beyond classical planning using constraint satisfaction algo-

rithms.

2.1.2 Abstraction

One key to cope with complexity in the world is the ability to abstract from its

details. Solving problems in real world, humans intuitively use many forms of ab-

straction. For planning problems there are at least three concepts where abstraction

can be applied.

The first concerns with descriptions of the world. Propositional abstraction is

one way to handle many details in the world by combining them into a single propo-

sition. It is easily achieved by an intensional statement of a predicate describing a

fragment of the world state. Another way to abstract from the details is to assign

an importance measure to propositions. The planner would plan about its future

actions, but regards only propositions above a specified level of importance. With

each lower level it would descend in the world abstraction hierarchy using results

from the higher level.

Abstraction over the set of available actions reduces the complexity of planning

by merging many tasks into one under a common name. An abstract action can be

acquired by learning out of good action sequences and generalizing these sequences
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move(block, from, to)

putdown(b, to)

move(from,to)

pickup(b, from)

Figure 2.3: The abstract action move(block, from, to) spans over three concrete
actions.

to wider problems or it may be prepared by someone else in form of recipes or

scripts in advance.

Figure 2.3 shows a part of a script where an object b has to be moved between

from and to. This task requires picking up the object b, moving to location specified

by to, and dropping that object here. If this is a common task in an environment the

agent would be advised not to reason about every single action, but to describe the

whole task with one symbol. move(block, from, to) summarizes the task of moving

block and spares the agent reasoning about underling actions, while he constructs

his plans.

Another way to abstract from the details of actions is to describe the process

that takes place while actions are executed. This may be simply represented us-

ing safety and liveness conditions over the loosely composed sequences of actions

involved in the process. Informally safety conditions state what states and actions

should be avoided where liveness conditions assure what actions or states have to

occur in the process again and again. This process abstraction may specify meta

knowledge about the domain that cannot be related directly to a single action.

2.1.3 Search

Search is one of the fundamental techniques used in artificial intelligence for solving

problems. A search algorithm works over a domain called search space. At the

beginning a single object from this space is taken as a start. Then using a neigh-

borhood relation on the objects in the space it partially enumerates them, forming

a sequence. The search terminates when the sequence - called search solution -

includes an object determined to be the goal. Any agent using means end analysis

will perform a more or less formalized search in order to achieve its goals and any

planning algorithm uses a form of search.

There are several factors determining the choice of a search algorithm. Most

important of them is the branching factor – b – describing the quantity of objects

in the neighborhood relation for a given space and is most important to the space

and time complexity of a search problem. Many spaces have an implicit notion of

order, i.e they may be searched in forward or backward direction. This fact has to

be considered for every search problem as the branching factor may differ greatly

between those two directions.

Algorithms that do not use any additional knowledge about the search space
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Algorithm Time Space

Breadth search evaluates every node at a given dis-
tance before going to next level. Useless for larger
problems.

O(bd) O(bd)

Uniform cost search is like breadth search, but the
distance between neighbors (cost of transformation)
may differ.

O(bdC
∗/εe) O(bdC

∗/εe)

Depth search always takes the first neighbor it finds
to proceed. Useless in most spaces.

O(bm) O(bm)

Bounded depth search is like depth search, but fails
if no solution can be found under given limit. Very
slow for larger problems.

O(bl) O(bl)

Iterative depth search is like bounded depth, but
slower. Yields optimal solutions if any.

O(bd) O(bd)

Islands search uses breadth search or iterative depth
search to simultaneously analyse the search space from
many locations, probably obtained by search in an
abstracted space. The paths produced are joined to-
gether. Yields performance improvements over the un-
derlying search algorithm.

O(bd/i) O(bd/i)
or
O(bd/i)

Figure 2.4: Blind search algorithms. b – is the branching factor. d – is the depth of
first solution found. C∗ – is the cost (sum of distances) of the best solution. ε – is
the minimal distance. m – is the width of the space. l – the limit of bounded depth
algorithm to search for a solution. i – number of islands. (cf. Russell & Norvig
(2003, pp. 73–81)).

are called blind - or uninformed search algorithms. A selection is given in Figure 2.4.

Solving planning problem, most spaces applicable for search are infinite and blind

search has to evaluate an exponential number of solutions (in respect to the size of

a valid one) before it will finish. This is why depth search will not even terminate

and breadth search will run out of space most of the time.

The informed search algorithms contrast with blind search algorithms, as they

utilize a heuristic functions in order to guide their search.

Search control. Using a heuristic function is one possibility to control where the

search goes. The heuristic search determines its choices on the basis of an evaluation

function:

f(p, n, γ) := g(p) + h(n, γ)

This function evaluates the partial solution p created up to this point and adds the

assumed cost of completing it with the new node n. g(p) is the cost of the current
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partial solution p and h(n, γ) the heuristic estimate of a solution from node n to

the goal γ.

Heuristic functions can be derived from a relaxed problem. It is a subproblem

of the original one, constructed by removing some constraints. Given a simple

subproblem the algorithm solving it can record the distance of every node to the

goal in a database. The main search reads this precomputed distance from the

database, or if it has not been computed yet, it invokes a relaxed sub-search on this

node. For search problems that can be decomposed into many subproblems, this

can be done for every subproblem successively, linearly combining the heuristic cost

from each.

Greedy best-first search uses the first node with the best (minimal) value given

by the function f(n, γ) := h(n, γ). If it does not find any solution in a given

subspace, it backtracks to a former node in the solution. Its search cost in time and

space is minimal with good heuristic, but it is not optimal and also incomplete as

it gets lost in infinite spaces with rare solutions.

A∗ search uses the evaluation function given by f(ς, n, γ) := g(ς, n) + h(n, γ)

where g(ς, n) is the cost of the computed solution to the object n and h(n, γ)

the estimated cost of the path from the node to the goal. The search keeps all

evaluated nodes in an agenda sorted by the computed cost. The node with lowest

cost is expanded next. If A∗ finds a second path to a node on its agenda, the longer

path will be replaced with the shorter one and the cost updated respectively.

The star of A∗ suggests that it is optimal given h(n, γ) is an admissible heuristic,

i.e. a heuristic that never overestimates the cost of a solution. It is also optimally

efficient as no other algorithm evaluating less nodes is guaranteed to find an optimal

solution. On the other hand, for most heuristics, the number of nodes that are

evaluated by A∗ is exponential in length of the best solution. Practically A∗ is

incomplete for larger problems as the size of the agenda grows exponentially. Making

the agenda limited in size and removing worst cost candidate solutions, as the free

memory gets low, makes the algorithm incomplete, but it is a simple alternative to

cope with memory problems of A∗.

Knowledge-based control of search is another possibility to reduce the effective

branching factor in order to speed up the search process. It uses search rules, which

depend heavily on the problem domain, even more than the heuristic search control.

Modeling this knowledge can take more effort than developing domain heuristics,

but it speeds the search greatly as it provides more effective control thereupon.

One possibility to state domain knowledge is to encode it as a set of rules

acting on the current state of the search algorithm. Forward-chaining rules, similar

to expert systems, may aid the search by interfering with its internal state. Systems

utilizing this technique are for example SOaR3, Prodigy and the planner Ucpop,

described in Chapter 3.

The use of control rules has been seen to be problematic as the user encoding

the domain knowledge has to take the workings of the underling search or planning

system into account. The rules have been judged to be quite unintuitive (Bacchus

3Stands historically for State, Operator And Result (Laird, Newell & Rosenbloom 1987).
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& Kabanza 2000). The addition of new rules is difficult as it is the case in many

expert systems, so this approach cannot scale well.

Another way to include domain knowledge is to encode it as predicates over

partial solution sequences used to prune useless solutions right away. This promising

approach using a model checker is described in Section 3.5 together with the TLPlan

algorithm.

The space of planning. The search techniques discussed above have to be ap-

plied to a certain search space that must fulfill at least some basic conditions. First,

the given space should be discrete or allow to take a discrete snapshot reassembling

a specific point in it. There should be a procedure defined on the space points,

judging them to be a solution to the search problem, called the goal function. For

every point in the search space there should be a function mapping it to a finite set

of neighbors, called the neighborhood function.

For planning problems, the easiest search space is the state space corresponding

to the classical problem representation using a state-transition system. The search

applied to this space is called forward search, as it chooses its way through the

state-transition graph in a direction similar to the causal or time line. The sim-

plest forward search planning algorithm would take a planning problem statement

P = (O, so, g) and work its way from the initial state s0 to a state satisfying the

goal g. On its way it would test the preconditions of actions and choose one among

some applicable options using a sort of search control. Planning in the state space

resembles a controlled simulation. It bears a simple advantage of having at every

step almost complete information about the state that can be used to guide the

search ahead and apply powerful search control procedures. On the other hand,

every search step takes the overhead of copying some or even all of the world rep-

resentation.

The problem space can be used for search if the world cannot be represented

succinctly. Planning in this space uses the backward search, working in the direction

opposite to the time arrow. Given a problem statement P = (O, so, g), the goal

g describes only a, hopefully small, part of the desired world. This is the initial

problem to the search algorithm that works by choosing one of all actions relevant

for current goal (i.e. achieving a part of goal requirements) and prepends it to the

plan. A new goal is created by composition of the current one and the preconditions

of the chosen action:

g′ ← γ−1(g, a) = (g −∆+
a ) ∪Πa

where γ−1 is called the regression function giving this planning approach the name

of regression planning. The search is continued until the initial state of the planner

fulfills the last goal created by the search.

A problem can be decomposed into many subproblems giving rise to different

plans, everyone being a partial solution. The idea of combining these plans into a

complete solution brings up a new space called the plan space. It is different from

the previous two, as the points in this space do not describe characteristics of a

world, but are partial solutions to the planning problem itself. Every step of the
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search is a form of plan refinement, modifying the original plan by removing some

sort of plan flaws. The representation of these partial plans is more elaborate than

a simple action sequence and provides this way many possibilities for plan improve-

ment. Such representations are Task Networks or Partial Order Plans described in

Section 2.3.2. Compared to the state space, plan space planners do not plan with

full knowledge of states and have the drawback of not being able to use as powerful

search control strategies as in other planning spaces. Summing up, even on classi-

cal planning problems, plan-space planners seem to be not competitive enough with

state space planners (Ghallab et al. 2004)

2.2 Planning Domains

The environment where each agent acts and which must be considered in the plan-

ning process is called planning domain. To plan their actions, agents need and re-

quire some representation of these domains. Every representation is devised as a sort

of abstracting projection taken from the real environment. This section describes

the properties of planning domains and corresponding planning problems. The list

of attributes here is based on Russell & Norvig (2003) and Ghallab et al. (2004).

The rest of this section compares some of the languages used to describe planning

domains and problems, and gives some examples commonly used to demonstrate

the workings of a planner.

2.2.1 Domain Properties

The properties of a planning domain influence directly the form of modeling used

to present the domain to the planner. Each property designates a different aspect

of a domain that impact the performance of planning and the choice of possible

domain abstractions. Most planners are restricted in the choice of properties a

domain model can mirror.

• Observability: Domains can be fully observable. In this case the agent is

presented with all information about the domain, it needs to know in order

to reason about. If the domain is partially observable, due to limited, noisy

or incorrect input, the agent must come up to the lack of his knowledge and

possibly incorrect information.

• Contingency: The laws governing changes in the environment can be deter-

ministic. In this case the agent can compute future states, given it knows the

current one. In a large domain, with plenty outcomes and limited visibility,

the agent is advised to build up a stochastic model of its environment where

events are given probabilities in respect to their occurrence. Most classical

planning takes an abstract view of a deterministic world.

• Dynamics: The environment of an agent can be static, i.e. the world would

wait until the agent finishes its deliberation, or the environment can be dy-

namic – changing, while the time passes. Environments not only change
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with time, but also pose concrete deadlines to the agent, demanding timely

responses and emphasis on plans with a strict defined time horizon. Soft dead-

lines degrade the benefit of an agent while it wastes its time with planning.

• Cardinality: The domains can be divided into finite and infinite domains,

having finite or infinite number of states respectively. Continuous domains,

in respect to time or object attributes (like speed or weight), are infinite.

Classical models for planning assume a finite number of objects and discrete

or implicit time.

• Concurrency: The changes caused by an agent and its counterparts includ-

ing the environment and other agents are perceived to be happening concur-

rently. The sequential abstraction of those changes, requiring them to follow

each other step by step directly impacts the planning algorithm and the way

plans are represented. Clearly dynamic domains require model of concurrent

changes.

• Agent Counterparts: The number and the kind of agents in the environment

determines the way an agent must reason in order to present rational behavior.

The domain can be cooperative giving place for multi-agent planning and

joint actions, or the domain may be competitive with other agents acting as

adversaries. In the last case deterministic models of agency are of less use,

because predictability of behavior is a negative factor in the fitness function

of an agent. Concurrency issues arise in multi-agent environments requiring

for means of synchronization including perception and communication that

should be explicitly handled in agent plans.

2.2.2 Languages

STRIPS. The Strips notation used in the Stanford Research Institute Problem

Solver (Fikes & Nilsson 1971) can be seen as the grand parent of most planning

problem description languages. In Strips notation an operator is defined by its

signature and by its preconditions and effects. The effects can be divided into add

effects and delete effects, as the former add propositions to the successive state and

the latter remove them. It is Strips assumption that all other propositions, not

mentioned in the effect list, remain unchanged after the execution of an operator.

This assumption is a solution to the frame problem described below.

Planning with the Strips notation is PSPACE-complete and even the relaxed

problem including only positive effects is NP-hard (Bylander 1992, Bylander 1994).

ADL. The Action Description Language was designed by Pednault (1989) as an

extension to the Strips notation. In ADL the constants and objects from the

domain and variables in action definitions can be typed. This has the benefit of

having the planner to investigate less ground instances of actions, as they may only

be instantiated with arguments corresponding to the type of parameters. ADL al-

lows for disjunctive and quantified preconditions and conditional effects for actions.
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Disjunctive and quantified preconditions are syntactic sugar that can be recompiled

into basic Strips, given the domain is finite. Universally quantified conditional ef-

fects for action can also be recompiled back to Strips notation, but generally with

exponential space explosion. The closed world assumption on state representation

is fallen in ADL. Goals may be quantified and expressions may use a predefined

equality predicate.

Strips ADL

Positive literals in states:
at(b, l1) ∧ clear(b).

Positive and negative literals:
¬at(b, l2) ∧ ¬on(a, b).

Closed World Assumption. Open World Assumption.

The effect P ∧ ¬Q deletes Literal Q
in the successive state and adds P .

P and ¬Q are added, ¬P and Q are
deleted.

Effects are conjunctions. Conditional and universally quantified
effects are allowed:
∀x : (in(x, b)⇒ (¬at(x, l1) ∧ at(x, l2)).

Untyped, requires type predicates:
Box(x).

Objects may have types:
x : Box.

Goals are conjunctions of positive
literals.

Goals may be quantified, include nega-
tive literals and disjunctions.

Figure 2.5: Strips Notation vs. ADL.

PDDL. The Planning Domain Definition Language is based on ADL and was

adapted from the language used for the Ucpop planner for the purpose of the first

Planning Competition4 by a team of researchers under the chair of McDermott &

AIPS’98 Commitee (1998). The first version was influenced by notations taken

from systems like Sipe-2, Prodigy, Ucpop and UMCP5 and looks like the LISP

programming language due to the list notation with prefix operators. UMCP pro-

vided PDDL with a formalism for representing hierarchical actions with expansion,

which was not used in any of the competitions due to large differences between hi-

erarchical planners and was not included in following versions. The PDDL original

version had prerequisites for domain axioms called later derived predicates, safety

conditions defined over the domain and ”true” negation6 for evaluation of formulas

under the open world assumption.

4First International Planning Competition at the Artificial Intelligence Planning and Scheduling
Conference 1998: http://www-2.cs.cmu.edu/∼aips98/planning-competition.html

5Erol, Hendler & Nau (1994)
6A formula of the form !P is said to be true if it is explicitly said that !P . This is opposed to

negation by failure where !P is true if there is no statement that P .
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The PDDL version 2.17, used for the Third Planning Competition, included

means for representing domains with durative actions, resources and continuous

change. The language was divided into 5 levels of expressive power:

1. Strips

2. Numeric with constraints and resources.

3. Durative actions with discrete models.

4. Actions with continuous models of change.

5. Dynamic models of domain and inherent processes.

Only levels 1 to 3 could be handled by planners in the competition. Numeric

expressions have been used in preconditions and effects of actions and are specified

in prefix notation. Discrete durative actions can have conditions that hold at the

beginning, invariants that hold while executing given action and conditions to be

kept at the end. The effects can be applied at the beginning and the end of an

action. Also, with PDDL 2.1 came the notion of plan quality metrics, specified

using numeric expressions.

PDDL 2.2 is the last version used for the Fourth International Planning Com-

petition. Edelkamp & Hoffmann (2004) kept the first three levels from PDDL 2.1

and supplemented the language with derived predicates and timed initial intervals.

The first extension is taken over directly from the first version of PDDL and allows

to define predicates over the domain description that cannot be modified by the

effects of an action, but their value can be derived from basic predicates inherent to

the domain. The second extension is a restricted form of modeling dynamic changes

in the environment. It allows to induce effects on specified instants in the time.

2.2.3 Example Domains

The domains presented here are taken from the International Planning competition

20028. They have been used to test the planners at the competition and are therefore

typical planning domains. Further extensions to these domains exist. I.e. the

Settlers of Catan game scenario has been used to illustrate reasoning and planning

by Seegert (2004) in a multi-agent domain.

Depots is a domain build on top of the blocks-world domain and the logistic

domain. Crates (blocks) are driven with trucks from a palette to an another one.

They are stacked using some hoists. In the numeric version the trucks and hoist

consume energy. Trucks have a maximum load capacity and crates have weights. In

the timed version durations depend on distances between locations and the speed of

trucks. Loading and unloading times depend on the weight of crates and the power

of hoists.

7Fox & Long (2001)
8http://planning.cis.strath.ac.uk/competition/
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Zeno-Travel concerns transporting people using planes where each plane can

move slow or fast (if the number of transported people is less than a threshold).

Depending from the mode of transportation planes consume less or more energy

and the flight takes more or less time.

Satellite domain. The domain includes an observation task that requires to

coordinate multiple satellites to perform observation on different moving objects.

The satellites have a restrained energy source where energy is consumed with each

action. There is a limited data storage for each satellite, so the number of obser-

vations performed by one satellite is finite. The times taking to adjust an satellite

for an observation and to calibrate its instruments differ from target to target and

from satellite to satellite. The interesting point is that this domain does not have

declarative goals and the plans have to be created on the basis of a performance

metric.

Settlers This is a domain used to demonstrate planning with resources. Different

resources are present in the domain. To mine or harvest the resources it is required

to build tools, vehicles and buildings that aid in this process. All of this artifacts

take time, labor and use up resources so they can be produced. This is an interesting

domain with respect to planning as it grows in number of objects that must be taken

into account by the planner.

2.3 Planning Approaches

Former sections concerned planning domains and problems. This section and the

following will give an outline over the methods used for planning. Beginning with the

goal stack, a very simple approach used to solve problems will be shown. Further

some elaborated methods will be presented, which have been developed by the

planning research community.

2.3.1 Goal Stack

As the name implies the planning problem is posed by pushing goals on the stack.

The planner proceeds by taking one goal from the top of stack and trying any

actions solving this goal. If the action selected has preconditions not fulfilled by

the current state, they are added to the top of the stack and the algorithm restarts

with new goals first. Typical planners using this approach are GPS9 and Strips10

described in Section 3.1.

Goal stack planning has the advantage that goals can be easily added and

removed from the stack at runtime and plans are represented in a simple linear

order. This method is an efficient option for an agent system to implement an

online planning algorithm. Multiple stacks can take care of multiple independent

goals, with a scheduler arbitrating in between. The limitations of goal stack lie

9General Problem Solver (Newell & Simon 1963).
10STanford Research Institute Problem Solver (Fikes & Nilsson 1971).
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Figure 2.6: A simple partial order plan for breakfast.

in its incapability of handling multiple conjunctive goals in an effective way. To

illustrate this, lets take a goal of A ∧ B. The stack, represented as a linked list, is

shown below:

⊥← A← B

Where ⊥ indicates the bottom of the stack. Now the planner chooses an action,

which achieves B and soon after this action has been performed the stack becomes:

⊥← A

At this point the planner has forgotten that it ever had pursued B. Any means

of achieving A with side effects making proposition B false will be contrary to the

previous conjunctive goal. So after achieving A it is not necessary true that A∧B.

Additionally, because of the fixed order of goals on the stack, the plans and effects

of these planners are very sensitive to the order of goals stated in the problem

description.

2.3.2 Non-linear

The term non-linear planning refers here to the underling representation of plans.

As opposed to most state space approaches non-linear planners use partially ordered

plans and work in plan search space. This section will concern planning using

partially ordered plans also called task networks. Interesting is the fact that task

networks aroused together with the HTN planning paradigm (cf. sec. 2.3.3) and

represent only a simplified or introductory version of it.

Figure 2.6 depicts a simple partial order plan for having breakfast. It consist of

five actions that are partially ordered like in the case of toast and butter. The plan

has open preconditions requiring to have a bread, bacon, eggs, stove and a toaster

too. There would be a causal link between actions of frying eggs and eating them

because the former provides fried eggs that can be consumed during the latter.

A partial order plan is a tuple φ = (A,O,C,Π), with A being the set of action

instances. O defines the partial orderings over elements from A. C is the set of

causal links between actions, each being a triple cij = (ai, p, aj). Causal links

represent direct dependence between two action instances (ai
p
−→ aj) and state the

reason for the dependence in form of a proposition p, which truth is assured by the

execution of ai and is required by the action aj . The last element of φ is the set of

open preconditions Π containing all preconditions of actions from the partial plan,

not covered yet by the initial state or other actions. In a valid complete plan Π is
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empty.

The planning starts with an empty plan, containing no other actions, but the

fictive ones called start, providing all propositions true in the initial state, and finish

containing preconditions that must be valid in the final state for the plan to achieve

its goal. The planner proceeds to complete the plan by removing flaws. It uses

resolver procedures performing refinement operations. The refinements, used to

complete or repair current imperfect solution, do not pursue particular goals, one

at a time – like in goal stack planning or some of the state space approaches, but

are chosen in order to find a solution satisfying all of the goals. The planner can

choose some of following plan refinement operations:

• Actions may be added to resolve open preconditions.

• Ordering constraints may be put over the structure of actions so the number

of conflicts between actions can be lowered.

• Causal links may also be added to provide support of open preconditions from

actions already present in the plan.

• Variables may be bound to constants in order to ground expressions.

The partial order representation gives this way a search space with much more

degrees of freedom. The number of ways, in which plans could be modified or

repaired is the branching factor in this search and it is almost ever much higher

than in other approaches. Without proper control knowledge or effective heuristics,

partial order planners are much more prone to fail due to the search space explosion.

Despite the very flexible representation of plans in respect to their execution

and the fact of heaving explicit notion of causality, the best partial order planners

like Ucpop could not compete with simple state space planning approaches due

to the difficulty to adopt useful search control procedures. The following section

mentions hierarchical task networks, being an extended version of partial order

plans allowing for more successful way to plan in the plan space.

2.3.3 Hierarchical

Hierarchical planning uses action abstraction in order to reduce the complexity

of the planning process. Approximation hierarchies, introduced first by Sacerdoti

(1974) in the AbStrips planner, are build by abstracting one domain representation

into a sequence containing more and more details. The idea of AbStrips was to

plan first ignoring most of the precondition and successively refine them.

On the other hand action hierarchies allow to describe complex tasks consisting

out of many ones. Abstract actions describe a task in the plan space, bridging over

many actions and situations. Their value in search for a valid plan is to inform the

planner about a possible sub solution described in this abstract way. The planner

does not need to force its way in the search space using small steps and does

not need to consider any preconditions and effects of underlying actions first. The

search can span over large chunk of search space right away (cf. fig. 2.3). It is similar
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Figure 2.7: The primary high level action Build house is decomposed successively
into more concrete ones.

to isle search where the islands appear in the search space at the joints between

decomposed sub actions. This gives great advantages in search speed because almost

every search space grows exponentially in the number of action steps.

HTN. Hierarchical Task Networks arouse from the idea of nonlinear planning

combined with abstraction hierarchies of actions. A HTN planner works by process-

ing actions on a higher level into a set of actions on a lower level. For every ab-

stract action there is a number of decompositions, which applied, result in partially

ordered set of descending actions that have to be integrated into the plan. An ab-

stract action from the current plan stands for different decompositions, represented

by partially ordered HTNs with their own open preconditions and effects. The de-

compositions are commonly stored in a plan library indexed by the abstract action.

They differ from inside by the choice of interior actions and from outside by addi-

tional preconditions and effects. Figure 2.7 shows a decomposition of an abstract

action buildhouse with preconditions being a piece of land and the desired effect.

It is replaced in the plan by a task network composed of actions like Construction

or paybuilder. The consequence of using this decomposition comes in form of an

additional precondition, describing the financial resources needed to actually pay

the builder. The action construction is further decomposed into actions responsi-

ble for constructing the house. All the preconditions of the last decomposition are
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satisfied by the actions surrounding construction at higher level, so there are no

new ones, the planner would have to take care of.

HTN hide information from the planner in many ways. The additional precon-

ditions and effects of a decomposition are ignored until the plan is refined. The

information, when particular preconditions are required in the decomposition, and

where given effects originate are also hidden at the higher level. The preconditions

and effects inside the decomposition, together with causal links between the inner

actions are also hidden until an action fails and the plan has to be repaired by an

online planner.

Many successful planners use HTN techniques for planning. The power of

abstraction and elegance in stating additional domain knowledge above the level

of operators and prepositions allow HTN planners to compete and win with other

planning approaches and even target industrial planning problems. This paper

describes in Section 3.3 among others the Shop planning family, the Sipe-2 and

the O-Plan planners using HTN.

Planning using action decomposition is similar to reasoning with the use of

forward chaining rules like: Cause ⇒ Response, where Cause is the abstract ac-

tion to be decomposed and the Response is the actual decomposition. This aspect

of hierarchical planning is particularly interesting for reactive online planners like

the Procedural Reasoning System from Georgeff & Lansky (1987) described in Sec-

tion 4.2.

2.3.4 Deductive

Deductive planning is based on propositional satisfiability algorithms. The planning

domain and problem are transformed into a first order logic formula that is fed

into a resolver or other theorem proving algorithm. This yields a model, which

is consequently decoded into a sequence of actions. Planning using satisfiability

techniques is a type of search in the space of proofs. It has been put into focus by

Kautz & Selman (1992)

They propose an encoding of a planning problem P = (Σ, so, g) to a propo-

sitional formula φ = E(P , n) where n is the assumed length of a valid plan. The

initial state is fully specified as conjunction of positive and negative literals:

∧

f∈s0

f0 ∧
∧

f /∈s0

¬f0

The goal also is denoted by a conjunction:

∧

f∈g+

fn ∧
∧

f∈g−

¬fn

The actions take place at a given step. E.g. move(b, f, t, 1) encodes the action

of moving b from f to t at step 1. The preconditions and effects of such an action
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are noted by the generic schema:

∀τ . aτ ⇒
(

∧

p∈Πa

pτ ∧
∧

e∈∆a

eτ+1

)

In order to produce sequential plans the complete exclusion axiom for actions must

be stated:

∀τ . aτ ∧ bτ ⇒ a = b

For the satisfiability algorithm to succeed, there is a need not only to model

what changes with an action, but also what remains unchanged by it. This concern

is famous under the name of frame problem being of two kinds. First, for every

fluent (a proposition that changes with time) and every action the representational

frame problem requires to state in form of an axiom if the fluent is affected by

the action or not. In classical representation there is an axiom for each fluent and

action pair describing the transition of this fluent under the action’s occurrence.

This representation requires generally O(|F | · |A|) axioms where F is the set of

fluents and A the set of ground actions. In the explanatory version of the encoding

there is an axiom ascribing every change of a fluent to a disjunction of actions

actually having an effect on it:

∀τ . ¬fτ ∧ fτ+1 ⇒
(

∨

a∈A|fτ∈∆+
a

aτ

)

∧

fτ ∧ ¬fτ+1 ⇒
(

∨

a∈A|fτ∈∆−

a
aτ

)

Second, the planner must have full representation of all fluents in every state it

examines on the way to a solution. The transitional frame problem asks how to

represent the change. Should only changed fluents be annotated at a new state or

should all information be copied.

It is generally impossible to state all of the preconditions for an action. This is

called the qualification problem and was stressed particularly in context of deductive

planning. It may be illustrated with the simple example of moving a block from a

position to another. It is required that the block must be unobstructed and must

be located at the start position and the destination has to be free. Additionally

the block must be small in size and weight for the agent to pick it up. The agent

must be able to use its gripper and have enough power to perform the action. The

places must not be separated by an obstacle that would prevent the agent to reach

the destination ...

There is another problem dealing with the aspect of implicit effects of an action.

It is called ramification problem and is best illustrated in the briefcase scenario.

When an agent moves a briefcase from one location, all artifacts contained in there

must also change their location. The last is an implicit effect as it would not

generally be included in the representation of move. The location change of these

artifacts must therefore be deduced from the effects explicitly stated by the action.

23



The Situations Calculus. One of the first logical representations used for plan-

ning purposes was the situation calculus introduced by McCarthy (1963). Later

it was equipped with a full axiom system by McCarthy & Hayes (1969). There is

no explicit occurrence of time, which has been replaced by the notion of a situa-

tion. The calculus is based on first order logic, with theory spanning over the whole

course of actions. The initial situation is called S0 and all subsequent situation get

the name do(a, s) combining the previous situation s and the action a applied to it.

All fluents contain the name of the situation where they are assigned a truth value.

Actions are represented in the same language as situations using a possibility

axiom: preconditions ⇒ Poss(a, s) and an effect axiom: Poss(a, s) ⇒ effects.

Having first order formulas in preconditions and effects, situation calculus allows

for more expressive action descriptions than Strips or PDDL. Additional to these

two axioms situation calculus requires the specification of frame axioms or so called

successor state axioms:

Poss(a, s)⇒
(

f(.., do(a, s))⇔ f ∈ ∆+
a ∨ (f(.., s) ∧ f /∈ ∆a)

)

The drawbacks of situation calculus are its slight limitation to problems with a

single source of change in the world (presumably the agent itself) and the discrete,

instantaneous and implicitly serialized notion of actions.

Planners transforming planning problems to propositional formulas and using

satisfaction algorithms to derive a plan are for example SATPlan and BlackBox.

The latter employed the first stage of GraphPlan planner to derive propositional

encoding of the planning problem and solved it using satisfiability techniques (Kautz

& Selman 1999).

2.3.5 Scheduling

”Scheduling addresses the problem of how to perform a given set of

actions using a limited number of resources in a limited amount of time.”

(Ghallab et al. 2004)

Scheduling is not a form of planning, but in most approaches it is a second phase in

a decomposed approach to both. The pure planning takes over the role of producing

a structure of actions to be performed with explicit causal relations, whereas the

schedule phase projects these actions onto the time axis respecting time and resource

constraints. Scheduling is for itself a discipline much older than planning and it is

rooted in operations research. It can only be briskly mentioned here in respect to

domains involving planning.

A scheduling problem is defined by:

• the number and kind of resources,

• a set of actions annotated with time and other resources needed,

• the constraints defined on the resources and

• a utility or cost function the schedule has to optimize.
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Contrary to a planning problem there is no explicit initial state and the goal de-

scription has been replaced by a cost function. The constants and objects bound

in a planning problem to variables in an absolute way are replaced by resources

being changed relatively to their previous value. The causal dependencies and pre-

conditions have been replaced by constraints over the structure of actions and the

resources. In the solutions to planning problems actions are assumed to be per-

formed in a continuous and non preemptive way, whereas scheduling allows action

that can be split over many time periods. Resources may be discrete and continu-

ous. They can be reusable or consumable and actions may be able to refill certain

resources up to a given maximum level if specified.

Resources are an answer to the problem of planning in domains with a variable

number of objects. In classical planning this problem is evaded by defining many

potential objects with the drawback of having many hypothetical ground actions

being symmetric in their kind, i.e. the choice of a potential object of the same kind

does not make a difference in a solution. On the other hand, one can represent such

objects as resources, making each one anonymous and getting rid of the redundancy

in the reasoning.

The scheduling problems are generally solved by encoding it as a constraint

network and solving using generic CSP techniques. The constraints posed on the

resources are generally quantitative in their type (cf. sec. 2.1.1) and specify dead-

lines, availability, durations and latency between actions. Scheduling with resource

constraints constitutes an np-hard problem.

Actual planners considering time and resource constrains on the other hand

do not use the time-oriented view, as most scheduling techniques, but they revert

to the classical state-oriented representation. Although there is much work on

planning with time and resources in the plan space, which seems a natural way for

this type of planning, the state space approach benefits from the recent advances in

this field (Ghallab et al. 2004). Planners using state space approach and integrating

time and resource planning capabilities are for example TLPlan and TALPlanner

(cf. sec. 3.5). HTN planners like O-Plan, Sipe-2 and Shop2 use time windows

and resource constraints in their planning process.

2.4 Online Planning

The techniques described earlier apply to offline planning, i.e. the part of agent

reasoning that can be performed while the agent is separated temporally from the

environment where the plans have to be executed. The particular task of construct-

ing a plan while running in the area of plan application is called online planning.

There are multiple needs being addressed by online planning. First, under an un-

certain environment with intrinsic dynamics there is no guarantee that an offline

created plan will succeed. The agent is advised to monitor the success of execution

of its plans and on failure it must find alternative means of achieving its goals,

presumably by creating a new plan. The other approach takes into account the fact

that most agents are already situated and have to act timely to a changing envi-

ronment. The agents pursue not only declarative goals, but more elaborate forms
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of desires present during their whole time line of existence. This sort of persis-

tent life-time goals requires an agent design closely coupling the reasoning system,

containing and manipulating its plans, with the execution module. The design,

allowing for smooth change in goals and plans of an agent, is described under the

term of continuous planning agent and is based on partial order plan representation.

2.4.1 Plan Monitoring and Replanning

At every moment of its operation the monitoring agent checks the environment and

estimates the success of outstanding goals and plans it has left to execute. This

is done, in order to react to changes in the environment, which could prevent the

agent from achieving its goals. The tests performed by the agent can range from

simply checking the preconditions of the next action to be performed, which is

called action monitoring to more elaborate techniques evaluating the course of the

whole outstanding plan in order to prove its success (Russell & Norvig 2003). This

is facilitated by annotating every plan step with preconditions needed for the given

step and for the actions following as well.

When the test reports that the prerequisites required by the following action or

whole plan are no longer fulfilled to the expected degree, the agent has the option

to create a new plan or to repair the existing one for reuse. The latter works by

choosing a hypothetical state in the course of the present but flawed plan, one that

most closely resembles the current situation. The plan is truncated up to this state

and a new plan constituting a prefix from current state to the hypothetical one is

appended in front of the remaining part.

a

repair

continuation
c

optimum
gb

Figure 2.8: A plan repair process constructed an alternative plan in reaction to
changed environment. a and b are states, from which the planning process starts
and g is some goal state.

The process of repairing a plan can be somewhat costly as the agent is required

to find the place where to snip the old one and it works well only if assumptions

are taken about the kind of changes in the environment. The repair process for

sequential plans can only optimize over the part from current state to the point

of cut. Figure 2.8 illustrates this thought. The monitoring module discovered a

change in the environment from the assumed state a to the reported by sensors b.

The old plan ranging from a to the goal g is not applicable anymore so the agent

attempts to repair the plan using a portion called repair going from b to a most

promising piece c in the original plan. The remaining part of the original plan is

called continuation. Using the repair process left out the possibility for the agent

to find a better plan going directly from b to g.
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The replanning technique overlooks the possibility of an agent having wrong

assumptions about its own actions and their effects. Possibly due to the qualifica-

tion problem some actions may fail to provide desired effects in a given environment

driving the agent into repeated replanning and redoing the failed action again and

again. The same is true in a competitive domain where an adversary would pur-

posely manipulate the environment in order to let agent’s plans fail. To address

such problem a nondeterministic planning algorithm could be applied and the agent

could be made aware of changing cause-effect relations by a more elaborate proba-

bilistic model of its actions amenable to the process of learning.

2.4.2 Continuous Planning

Continuous planning is based on partial order planning. It works with a partial order

plan representation, containing at least two pseudo actions. The current action is

a placeholder for the current state, which is updated by the percepts of the agent.

The effects of current are the propositions true in the perceived environment of

the agent and the action has no preconditions. The finish action is an infinitely

persistent action containing all goals of the agent as preconditions. The continuous

planning algorithm enhances the original partial order plan by refinement or flaw

repair procedures11:

• Open preconditions are repaired by adding causal links to an existing or a

new action.

• Conflicts between causal links (ai
p
−→ aj) and actions with effect ¬p are

repaired by adding ordering constraints, placing the conflicting action before

ai or after aj .

• Unsupported preconditions are identified by removing all causal links of the

form current
p
−→ ai if a given precondition p does not hold anymore in the

situation depicted by percepts.

• Redundant causal link can be removed from a path taken from current to an

action if current can provide the precondition of this action and the precon-

dition is not made false on this path.

• Redundant actions are removed if they become irrelevant, i.e. they provide

no more causal links.

The execution module of the agent with a continuous planner has the capability to

start or stop the planning module. It adds or removes goals, updates the effects of

current. It schedules an action if all its preconditions are satisfied and the action is

ordered before all other actions in the partial plan the planner is working on.

11Based on Russell & Norvig (2003)
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2.5 Summary

This chapter presented the fundamental principles of AI planning. The purpose was

to introduce the reader to this research field and prepare for the coming chapter

describing the actual planning systems. The formal definition of planning problems

was given on the basis of classical and state-variable representation. Concrete prop-

erties of planning domains where delimited and illustrated with common planning

application examples. The choice of domain description language determines the

complexity of problems that may be stated in this language and the number of

features the planner should support in order to handle it.

With the section on planning approaches, some methods have been described

that are or have been utilized by planning systems. It has been mentioned that

earlier approaches (like the goal stack) may not be effective for even simple problems.

Partial Order Planning methods, which occupied the research field for long time,

have been dismissed by former much easier state space planning techniques. This is

mainly due to the complexity of partial order data structures, reflecting the plans

that must be kept and processed yielding complex and less flexible algorithms.

Hierarchical planning is one of most promising planning approaches, mainly in

the simple form employed i.e. in the Shop family of planners and by reactive sys-

tems that use hierarchical representation to store their procedural knowledge. The

direct application of the HTN representation and planning techniques to procedural

reasoning systems may be seen in the Cypress architecture that uses a common

representation for the HTN planner and the reactive PRS (cf. sec. 4.2.2) component.

The Retsina system takes this thought further. It builds upon a hierarchical plan-

ner and modifies it towards a reactive eager commitments strategy (cf. sec. 4.4.3).

Deductive planning and scheduling have been introduced here to complete the

chapter and delineate the techniques of planing used in this thesis. Online plan-

ning, required by every situated planning system, is presented with two common

methods here. Plan monitoring and replanning yields advantages only if planning

is more costly then replanning. Continuous planning, in the form given above, has

the disadvantage of using partially ordered representation and poor performance.

Systems being capable of online planning are Sipe-2 and O-Plan (cf. ch. 3).
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Chapter 3

Planners

This chapter will address the question, what planner technologies are effective

enough to be used in the practice. Building on the fundamental concepts and

results from the previous chapter, this chapter will cover the techniques on the ba-

sis of actually implemented systems that were tested and inspected in various fields

of planning.

With the section on classical problem solvers, not only a historical view will be

provided, but also first steps taken in the state space and regression planning will

be shown. Partial order planners are presented in the section following. Ucpop –

one of the most prominent partial order planners – is introduced as a representative

for this planning technique. Hierarchical planners illustrate the efficiency and ex-

pressiveness of the HTN representation. In particular, the Shop family of planners

utilize a simple but effective approach. Planning graph planners revitalized the field

of planning and showed that state space search allows for very competitive planners.

This approach will be investigated in various forms. To perform planning efficiently

control knowledge may be used. This is investigated by means of the TLPlan and

TALPlanner. At last, two artificial intelligence platforms are presented that have

been used to investigate planning in a wider context. It is interesting how plan-

ning techniques have been composed into these systems and what general view on

planning they propose.

3.1 Classical Problem Solvers

Classical problem solvers have been devised as models of reasoning of an unskilled

human coming across a new problem. This view required these solvers to be as

general as possible and be close to human problem solving techniques. Since then,

many classical planners pursued the holy grail of generality even if they lost the

ambition to explain the power and efficiency of humans at planning.

GPS. The General Problem Solver stands for a theory of human problem solving

implemented in various ways as a simulation program (Newell & Simon 1963).

It was one of the first approaches to develop a domain independent means-end

reasoner. GPS included as one of the first the idea of cognitive modeling of mental
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processes using states and transformation rules. The domains examined with GPS

were among others: logic, geometry and chess. Domain models included named

operators (as transformations) and objects (e.g logical formulas) for operators to

work with. Differences between objects and states have been modeled explicitly

as functions and were weighted by the programmer for their difficulty in advance.

There were achieve and perform goals (”transform formula A into formula B”) and

multiple means to pursue them called schemes or methods. The search for a valid

solution was performed in the problem space and it proceeded in a greedy fashion

trying to decompose the main problem into essentially easier subproblems, rejecting

all sub-goals more difficult than the original one. The difficulty of goals has been

rated by the difference functions. The depth of the goal agenda (realized as goal

stack) was limited. The work on GPS was continued by Allen Newell under the

SOaR architecture described later.

STRIPS. The Standford Research Institute Problem Solver has been developed

as a control algorithm for the Shakey robot at SRI. It used Green’s QA31 theorem

prover and replaced the situation calculus notation with the Strips notation. The

solver run at that time on a 64kb machine and was able to aid the robot in planning,

path finding and object manipulation (Fikes & Nilsson 1971). The algorithm worked

in problem space using a goal stack. The approach made Strips consider only goals

that were immediately preconditions of the last action added to the plan, with an

advantage in reducing the search space. Eager commitment to actions with fulfilled

preconditions and without a test for validity of the embedding plan also reduced the

search space substantially but, similar to the goal stack approach, it made Strips

incomplete.

The assumption, that all things not mentioned in the change list of an operator

remain unchanged, was a simple but very important solution to the frame problem,

called since than the Strips assumption. But the problem solver was handicapped

by its incompleteness that prevented it to find solutions for simple problems like

swapping the values of two registers (Ghallab et al. 2004). Due to its limitations

the Strips algorithm had much less impact on AI planning than the action repre-

sentation formalism it introduced.

3.2 Partial Order Planners

UCPOP. It is the first partial order planner for a subset of Action Description

Language that was proved to be sound and complete (Penberthy & Weld 1992). It

was devised to solve the Yale Stacking Problem2 and could stack up to six blocks

in the standard blocks-world domain. This was a good result in 1991.

The algorithm of the planner was a nondeterministic partial order planner as

described earlier (cf. sec. 2.3.2). It worked with lifted (not ground) instances of

operators and goals, so it had the possibility to resolve threats on causal links not

1A deductive planner using frame axioms (Green 1969).
2A modification of the Sussman Anomaly told to be never solved by a partial order planner

(McDermott 1991).
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only by ordering the threatening action before (called promotion) or after (called

demotion) the actions constituting the causal link, but also to choose binding con-

straints on the variables (called separation), which would prevent the threat to

become effective. Due to the performance concerns of the authors, admitting that

planning with Ucpop was not tractable, the algorithm was extended to make use

of rule-based search control similar to the Prodigy design. The control rules have

been applied on all nondeterministic choice points in the algorithm.

Further versions of the planner included dynamic object universes, domain ax-

ioms and safety constraints, but Ucpop was superseded by the Sensory Graph

Plan (Sgp), a lisp implementation based on GraphPlan (Weld, Anderson &

Smith 1998) praised to be faster, ”much, much faster”3.

RePOP. Revived-POP was designed to show that partial order planning can

be made competitive with state space planners. Nguyen & Kambhampati (2001)

applied ideas from state space planners, like effective control knowledge, reachability

analysis and disjunctive constraints to make a variant of Ucpop algorithm run as

fast as GraphPlan.

The RePOP algorithm is based on two steps in a loop. The flaw selection

and flaw repair parts introduce nondeterministic decision points like in an ordinary

POP algorithm. Successive plans produced by the flaw repair step are ranked

and chosen by the means of a distance-based heuristic estimate derived from a

planning graph. The actions are ordered with the help of disjunctions like Sj <

Si ∨ Sk < Sj , which prevents Sj from destroying the causal link between Si and

Sk. If new ordering constraints are posed over a partial solution, a constraint

propagation algorithm prunes all inconsistent orderings and backtracks in case of

failure. An additional analysis of indirect conflicts uses two cut-sets for an action

Sk enumerating literals that must eventually become true in a state immediately

before or after the execution of Sk. A conflict, being a threat on a causal link

Si
p
→ Sk is detected if p is mutually exclusive with both cut-sets described above.

3.3 Hierarchical Planners

The main idea of hierarchical planning is to use abstraction in order to create plans

on successive detailed levels. With this view most planners including the earliest

General Plan Solver may be seen to be hierarchical in nature. Two approaches

may be taken to pursue this idea. First one can define importance measures on the

propositions in the domain and start to plan ignoring most effects and propositions

as described in Section 2.1. This introduces a hierarchy of planning domains and

operators, descending from the most abstract ones. The use of these approximation

hierarchies was first demonstrated in the AbStrips planer by Sacerdoti (1974).

The second hierarchical planning approach utilizes operator abstraction hier-

archies. Abstract operators are implemented using different decomposition methods

as described in Section 2.3.3. Most planners rely on the planning domain designer

3http://www.cs.washington.edu/ai/ucpop.html
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to provide the knowledge for the methods, which makes hierarchical planners of

this type dependent on the domain knowledge. As in case of AbStrips it was

again Sacerdoti (1975) who introduced nonlinear planning and hierarchies of task

networks in his NOAH (Nets of Action Hierarchies) planner.

3.3.1 Sipe-2

The System for Interactive Planning and Execution is the most advanced planner

at the SRI International (Wilkins 1999). It was devised as an interactive system

for generating, executing and monitoring plans, with efficiency of planning on real

world application in focus. The planner can plan automatically or under a guid-

ance of a human expert via a graphical application. The version 2 of the system

extended the original system with the capability to specify and use partially ordered

decompositions of sub-plans (methods), what allowed Sipe-2 to generate optimal

solutions for all possible three blocks problems.

Using domain depended heuristics and planning advises, made the planner ap-

plicable to several realistic problems. Among others: construction, production line

scheduling, controlling mobile robots, military campaigns and propositional puz-

zles4. Sipe-2 constitutes the planning component of the Cypress agent platform

and other multi-agent architectures at SRI International.

The algorithm applied in this planner differs from standard partial order or

HTN ones. It consists of several modules that can be applied on arbitrary time

points in the planning process:

• Plan critics are devised to find flaws and constraint violations in the plan.

• Solvers are chosen by critics in order to repair the plan. They are not mere

flow repair procedures, but can trigger the replanning of actions in the plan

or they can remove invalid or conflicting sub-plans from the current one.

• Interpreter is called after a new action has been added in order to update the

goals and conditions stored in the plan.

• Monitoring and replanning is a module that supervises the execution of a plan

and reacts to unexpected events in the world.

• Causal theory is specified by the designer of the planning domain and describes

in a separate way the effects of operators and of external events that may occur

at the time of execution. This module is used by the interpreter and by the

monitoring and replanning module to insert deduced effects into the plan.

All of the modules can be specified or extended by the user of the system. The plans

are generated at different levels of abstraction and the planner maintains a tree of

such plans. The replanning process simply changes the world representation and

goals of the planner and restarts planning with old plans still stored in the planner.

Sipe-2 is implemented in Common Lisp and supports the ACT5 formalism for the

specification of operators as described in Section 3.6.

4http://www.ai.sri.com/∼sipe/ – for more Sipe-2 applications.
5Myers & Wilkins (1997)
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3.3.2 O-Plan

O-Plan is an AI planner architecture extended in a modular way with capabilities

to command, control and schedule activities. It aroused from NONLIN, one of

the first hierarchical planners and extended the previous approach in various ways

to make the planner plan and act in its environment. One central difference to

previous planning systems was an agenda of issues to collect all to-do actions for

other components called Knowledge Sources. O-Plan can be viewed not only as

a planning system but as an agent architecture for situated agents. The version 2

extended O-Plan with a multi-agent approach to planning, scheduling and control

where several agents were responsible for processing tasks at progressively detailed

levels.

PlanWorld

Viewers

Constraint ManagersAssociator

Constraint

Interface

Manager

KS

Platform(s)
Controller

Knowledge Sources

Domain LibraryData Base Manager

Requirements

ReportsReports

Requirements

Plan Entities
Detailed Constraints

Plan State:
Plan Agenda

Figure 3.1: O-Plan agent architecture (Tate, Trabble & Dalton 1996, fig. 2)

Figure 3.1 illustrates O-Plan architecture. It is devised to be modular and eas-

ily adaptable to new areas of application. Tate et al. (1996) describe the individual

modules as follows:

• Interface Manager is responsible for communication with the environments

and other agents. It collects external events and posts them to the agenda.

• Controller assigns issues to responsible Knowledge Sources for processing.

• KS Platforms are used to run the Knowledge Sources.

• Data Base Manager provides services to other components of the system and

keeps the internal state of the agent.

• Constraint Associator is an interface to Constraint Managers and provides

services to them in respect to the Plan State.

• Plan State is the internal state of the agent containing all issues, plans and

intended actions of the agent. In principle it is a set of (temporal, variable or

resource) constraints maintained by the DB Manager. The issues are pending

constraints stored in the plan agenda. The plan entities are sets of constraints

on actions of the planner. Other constraints include orderings, variable con-

straints, pre- and postconditions, resources, authority- and spatial constraints.

33



The customization of an O-Plan agent is done in Common Lisp and O-Plan Task

Formalism by extending the architecture with domain dependent modules hooked

into interfaces present in the system for this purpose:

• Viewers are responsible for depicting the situation of an agent and for pre-

senting it to the user controlling the agent. There are plan viewers illustrating

the plans constructed and world viewers showing the world in graphical form

(e.g. as a land map).

• Knowledge Sources are responsible as described earlier for the resolution of

planning issues and make heavy use of the domain knowledge for heuristic

purpose.

• The Domain Library contains a static model of the planning domain and

operators available to the planner.

• Constraint Managers are used to manage the constraints in the plan and are

responsible for making the plans useful for problems in the planning domain.

O-Plan has been applied to many fields of planning including domains of

construction, satellite missions, military campaigns or logistic. It was used for

production scheduling at Hitachi involving over 300 products, 35 assembly lines

and more than 2000 operations. It could construct 30-day schedules with more

than a million of individual actions. OptimumAIV is a planning and scheduling

system based on O-Plan applied by the European Space Agency (ESA) in order to

aid assembly, integration and verification task concerning the production of Ariane

IV rocket’s equipment bays (Arentoft, Fuchs, Parrod, Gasquet, Stader, Stokes &

Vadon 1992).

3.3.3 Shop, JShop, Shop2

Shop stands for Simple Ordered Hierarchical Planner and as the name reveals it is

based on a simple domain independent planning algorithm, which uses hierarchical

tasks representation to encode the domain dependent knowledge. Nau, Cao, Lotem

& Muñoz-Avila (1999) implemented a total order forward search strategy guided

by ordered task decomposition and obtained a quite competitive planner (Long &

Fox 2002) useful for real world applications (Nau et al. 2004).

The ordered decomposition of tasks reduces the interferences among actions to

be resolved. It also gives to the planner the ability to plan with a full state represen-

tation at each planning step, allowing for a richer representation of operators and

methods, i.e. using numeric expressions over the state or even access to external

sources of information (Nau et al. 1999).

The domain knowledge representation for a Shop planner consists of axioms,

methods and operators. The following axiom, represented as a horn clause coded in

Lisp specific notation, says that for a taxi the agent needs at least 1.5$+distance∗

1 $
km .
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Figure 3.2: A hierarchical decomposition for the task (transport-two p1 p2)

(Nau et al. 2003, fig. 2). The arrows represent partial orderings between branches.

(:- (has-cash4taxi ?d)

((has-cash ?c)

(eval (>= ?c (+ 1.5 ?d)))))

An operator, similar to the Strips operator, is an expression of the form

(:operator H D A), where H – the head is a primitive task described in Lisp,

D is the delete list of propositions, and A is the add list. For example the operator

below, taken from the blocks-world domain, puts a block on table after the agent

was holding it in a hand.

(:operator (!putdown ?block)

((holding ?block))

((ontable ?block) (handempty)))

At last the methods represent task decompositions. A method description has

the form (:method H C1 T1 · · · Cn Tn). With H as the method head, denoting

the abstract action for which this decomposition applies. The terms Ci denote

the conditions to be true for a specific decomposition Ti. If Cj fires all following

decompositions (> j) will not be considered. The two methods below describe a

way of making a block ?y clear.
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(:method (make-clear ?y) ((clear ?y)) nil)

(:method (make-clear ?y)

((on ?x ?y))

((make-clear ?x)

(!unstack ?x ?y)

(!put-down ?x)))

Whereas JShop is an implementation of Shop in the Javatm language, Shop2

extends it with several features. First Shop2 plans with partially ordered subtasks,

which allows for more intuitive domain knowledge representation (Nau et al. 2003).

Other features concern the extension to ADL and PDDL, and to temporal planning

domains.

To represent partially ordered subtasks Shop2 introduces the :unordered key-

word in the method representation, as shown for the method transport-two.

(:method (transport-two ?x ?y)

(and (package ?x) (package ?y))

(:unordered

(transport ?x)

(transport ?y)))

(:method (transport ?p)

(and (at ?p ?x)

(destination ?p ?d)

(available-truck ?t))

(:ordered

(dispatch ?t ?x)

(load ?t ?p)

(move ?t ?x ?y)

(return ?t ?x)))

The planner inserts no ordering constraints for the two transport tasks (and

between actions corresponding to them) into the plan. Figure 3.2 shows a repre-

sentation of a plan created by the Shop2 planner for the task of transporting two

packages. The planner used the methods transport-two and transport for the

decomposition. A combination of nested :ordered and unordered keywords allow

for specification of more advanced partial orderings. However it is not sufficient for

arbitrary partial orderings.

3.4 Planning Graph Planners

All the planners in this section use a partial representation for the (collapsed) search

space in the form of a direct leveled graph called planning graph. This structure is

very useful to provide heuristics and analysis of reachable states. It was applied in

many form and complemented with different other techniques.
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3.4.1 GraphPlan

GraphPlan has been developed by Blum & Furst (1997). Their motivation was to

provide a new way of solving planning problems that was somewhat more efficient

than the state of art planners like Ucpop (see above) or Prodigy (cf. sec. 3.6.2).

Using ideas from dynamic programming and a structure called planning graph they

managed to increase the speed of planning substantially (Blum & Furst 1997).

The original algorithm is confined to Strips planning domains only. It has a

sound, complete algorithm that guarantees to find the shortest plan possible for

the planning problem and terminates on unsolvable problems.

The planning graph is a directed, leveled graph. It is created in forward manner,

step by step, starting from the initial conditions and it guides letter the search for a

valid plan. Although it is created in the state space, using discrete time steps, the

planning graph is not a state graph, as it collapses the computed states at a given

step into one propositional level, which contains all at this level achievable proposi-

tions. The diversity of valid propositional sets at a given time point is encoded by

mutual exclusion (mutex) links between propositions, which have been determined

to be exclusive. This exclusion relation is of a binary nature and introduces only

simple cuts to the power set of all propositions. So it cannot catch all constraints

posed on the planning problem, but can be used as a relative good heuristic.

The propositional levels are interleaved with action levels. An action level

describes all possible actions at this time point and all incoming (precondition) links

are from the preceding propositional level, whereas all outgoing (effect) links go to

the succeeding propositional level. The effect links divide into add links and remove

links reflecting the Strips notation. The interference between actions is expressed

by exclusion links. Two actions interfere if their effects cannot be achieved at the

same time – e.g. action A deletes a proposition, while action B tries to achieve it – or

one of the actions deletes the precondition of another. Also, two actions exclude each

other if their required preconditions are marked mutually exclusive. The exclusivity

relation propagates forward in the graph level by level. Two propositions are marked

exclusive if all means of achieving first one are exclusive to all means of achieving

the other.

Figure 3.3 illustrates a part of the planing graph created for a rocket domain

problem. The first level describes the initial state. Its successor is a level of ac-

tions. Straight lines represent preconditions and add effects, dashed lines are delete

effects and dots are empty actions (NoOps). Given a problem description, including

objects o, initial propositions p, actions a with at most k parameters and at most l

propositions in the add list, the size of a planning graph is of O(tp+ talok) for time

step t. Since k is constant the size is polynomial in a, l, o, p, t. (Blum & Furst 1997).

Despite this optimistic result many problems become unsolvable by Graphplan if

the number of objects in the domain becomes large and there are many irrelevant

object properties and operators.

When the graph building procedure finds a propositional level, including all

goal propositions in non-exclusive relation, a backtracking search over the states

is performed from the last level to the initial one. The result of this search is a
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Figure 3.3: Planning graph for a rocket domain. Dashed lines represent delete
effect. Black dots represent empty operations (Blum & Furst 1997, fig. 2).

valid plan. If it fails to find one, the algorithm continues with building the planning

graph. To achieve given set of propositions Graphplan chooses a minimal set of non

exclusive actions to achieve it and moves to a preceding propositional level where

preconditions of these chosen actions become the goals. If a set of goals cannot be

proved achievable at a time point, it is ”memoized” together with the time point.

Successive backtracking steps coming over this set of goals will fail right away for

any time point less or equal.

The Graphplan terminates after the created planning graph has leveled of i.e.

no new prepositions are added at a new propositional level and the exclusivity rela-

tion remains equal. Additionally the sets of goals memorized as being unachievable

do not change.

3.4.2 IPP

Interference Progression Planner has been developed as an extension of the Graph-

plan algorithm to planning domains contained in a subset of ADL (cf. sec. 2.2.2). It

is augmented by the RIFO-algorithm to find the set of relevant propositions and op-

erator to a given planning problem. And it uses the UBTree-algorithm to aid ”mem-

oization” of goal sets proved unsolvable. The subset of ADL implemented in IPP

allows it to handle conditional and universal effects and more complex preconditions

of actions as opposed to the original Graphplan (Koehler, Nebel & Hoffmann 1997).

The operator move–briefcase is shown below:

signature: move-briefcase(Briefcase b, Location l1, Location l2)

precond.: at(b, l1)

effects: ¬at(b, l1), at(b, l2), ∀x : (in(x, b)⇒ (¬at(x, l1) ∧ at(x, l2))

It contains a universal and conditional effect. Transforming this operator to the

Strips notation would require to create one operator for every set of objects that
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could be carried within the briefcase resulting in an exponential number of opera-

tors.

F

O

F
N  (1)

N  (0)

N  (0)

Op1 Op2 Op3

d1 x d2 y d3 z

a d1 b d2 x c y

Figure 3.4: Planning Graph with conditional edges represented by arcs (Koehler
et al. 1997, fig. 3). NF (0) is the zeroth level of fluents. NO(0) is the zeroth level of
operators.

The planning graph of IPP is basically the same as in Graphplan, but addi-

tionally includes conditional effect edges (cf. fig. 3.4). These edges are augmented

by a reference to the set of facts, making the condition of operator’s effect true.

There can be more than one conditional effect edges joining an operator and a fact,

as there can be many conditions allowing for such an effect. A conditional effect

is asserted into the graph, when there are facts in the previous propositional level

not mutually exclusive that fulfill the condition of this effect. Additionally it is

required that facts supporting a conditional effect are not mutually exclusive with

facts supporting the particular action.

The plan search algorithm works backwards like in Graphplan, but must cope

with conditional effects. The search is performed using two sets of goals Gn and Cn

for a given propositional level n. Gn are goals to be fulfilled at the given level like

in Graphplan being basically preconditions of following actions. Cn are goals that

should not be fulfilled because they would activate conditions in following actions

having effects conflicting with the plan up to this point (looking backward).

To process an action level IPPchooses a set of add edges fulfilling the goals Gn.

This differs from Graphplan where a minimal set of actions is chosen, as in IPP an

effect may be achieved by an action in many different ways depending on conditions.

The corresponding action is added to the set 4n−1 of used actions. The actions

used for Gn are not mutually exclusive, nor do they (unconditionally) delete a goal

from Gn or any conditions for the add edges, nor (unconditionally) add a conflict

from the set Cn.

A new set of goals Gn−1 is created from the preconditions of used actions

conditions for effects included in the set of add edges mentioned above. If the set

4n−1 is minimal (as determined on the basis of required propositions Gn−1) IPP

calculates the set of conflicting goals Cn−1. It includes all propositions from the

set Cn if they are not explicitly made false by the effects of 4n−1. Also includes
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all conditions of conditional effects from 4n−1 that would cause interference or add

propositions from Cn. If there are propositions mutually exclusive with any goals

of Gn−1 they can be removed from Cn−1. A valid linearization of the set 4n−1

should not add a condition from Cn−1 before the action including this precondition

(Koehler et al. 1997).

3.4.3 BlackBox

The planner joins the best features of Graphplan and SATPLAN6. As the front-end

it uses the Graphplan planning-graph creation algorithm and replaces the backward

search by a bunch of more powerful satisfiability procedures. The plan extraction

phase is done by a problem solver in propositional logic after the planning graph

has been transformed to a conjunctive normal form (Kautz & Selman 1999).

3.4.4 Fast-Forward

FF is a winner of the AIPS-007 planning competition in the fully automated cate-

gory and has been designed by Jörg Hoffmann and Bernhard Nebel with the goal

to solve common planning benchmarks in an efficient way. One of the ideas in FF –

taken from the HSP system (Bonet, Loerincs & Geffner 1997) – is to use state space

heuristics ignoring the delete list of operators, in order to compute an estimate of

the solution length counted in the number of actions (Hoffmann & Nebel 2001).

Enforced Hill-climbing

Relaxed GRAPHPLAN

Task Specification Solution  /  "Fail"

State

Goal Distance

Helpful Actions

Figure 3.5: FF’s architecture with the use of Relaxed GRAPHPLAN exempli-
fied (Hoffmann & Nebel 2001, fig. 1).

For a given search state S, FF computes the solution length heuristic by apply-

ing the first stage of the graphplan algorithm to build the planning graph. Then it

searches backwards through the planning graph for a relaxed solution, while ignor-

ing the delete effects and conflicts among actions (cf. fig. 3.5). This search chooses

NoOps first (as in Graphplan), taking actions less ”difficult” than others and lineariz-

ing actions at a given level in order to come with less preconditions at the earlier

level. The difficulty of an action is defined using the minimum precondition level

6A satisfaction planner working with logical deduction (Kautz & Selman 1992)
7The Fifth International Conference on Artificial Intelligence Planning & Scheduling
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heuristic (Nf
l is the propositional level at time point l):

hdif (o) :=
∑

p∈prec(o)

min{l | p ∈ Nf
l }

The size of this relaxed solution O = {o1, o2, . . . , on} is used as an estimate

for the solution length (being the distance to the goal). To reduce the number of

times when relaxed GRAPHPLAN is called to evaluate a state, FF uses enforced

hill-climbing. This technique assumes the search space to be simple in its structure.

When the search comes into a state where no other successor state is better it

performs an exhaustive breadth first search until it finds one. This form of search

performs well, when the plateaus and local minima are small. As the algorithm is

greedy in nature, it becomes uncomplete when the planning problem includes dead

ends. In this case FF switches to a ”complete” greedy best-first8 search algorithm.

FF uses the helpful actions heuristic to compute successive states for its search.

It is extracted from the relaxed planning graph and defined by following:

H(S) := {o | prec(o) ⊆ S, add(o) ∩G1(S) 6= ∅}

as the set of operators applicable to S, which add goals to a successive state.

The states are pruned by another heuristic called added goal deletion heuristics.

If a state S′ has been generated from the current state by an action o adding a goal

g and there is a relaxed planning graph that includes an action p, which deletes

this goal (g ∈ del(p)) then ignore state S′ in the search. Both (helpful actions and

added goal deletion) heuristics make enforced hill-climbing incomplete even on tasks

without dead-ends (Hoffmann & Nebel 2001).

3.4.5 LPG

Local search for Planning Graphs has been designed by Gerevini and Serina moti-

vated by the search algorithm Walksat used in the Blackbox planner. LPG has won

at the IPC-20029 in the fully automated category.

LPG works by manipulating a subgraph of the planning graph called action

graph trying to come up with a version without unsupported goals and mutex

relations. It is a form of local search that starts at random initial action graph or

an initial graph containing mutual exclusions but no unsupported preconditions.

This initial graph is extracted from the planning graph built up to the level where

all goal facts appear at the first time. Given an action graph A, it chooses at random

a flaw f , then calculates the neighborhood N(A, f) of A by applying flaw repair

procedures. From the neighborhood the best candidate is chosen on a heuristic

basis. The first flaw type is an unsupported precondition, which can be eliminated

by adding a new action with effect supporting this precondition or removing the

8Russel and Norvig point out that greedy best-first search is neither optimal nor complete(Russell
& Norvig 2003, sec. 4.1, p. 97).

9The 3rd International Planning Competition 2002 hosted at the Artificial Intelligence Planning
and Scheduling Conference (AIPS-02); http://planning.cis.strath.ac.uk/competition/
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action that requires this precondition. The second flaw type is a mutex relation,

which can be eliminated by removing an action in this mutex relation or by shifting

the nodes by one level apart, while expanding the planning graph.

The method from Walksat used to aid the search, is similar to the Lagrange

multipliers method for solving discrete problems and it uses two heuristics. The

first heuristic hi(a,A) gives the cost of adding an action to an action graph:

hi(a,A) := λa
p · MAX

f∈pre(a)
C(f,A) + λa

m ·me(a,A)

where λa
p is the dynamic coefficient for each action a from the planning graph that

weights the maximum of estimated costs C(f,A) of the preconditions of A. λa
m, on

the other hand, weights the number of mutual exclusions me(a,A) for this action.

In order to compute the cost of supporting a precondition f ∈ pre(a), an action af

is chosen from the planning graph G using the formula below:

af := ARGMIN
a′∈{a′′|f∈eff(a′′)}

{λa′

p · pre(a′, A) + λa′

m ·me(a′, A)}

The cost C(f,A) of a precondition f ∈ pre(a) is: 0 if it is already supported or

C(f ′, A) if af is NoOp and f ′ is the corresponding precondition of af . Otherwise it

is defined by:

C(f,A) := MAX
f ′∈pre(af )

C(f ′, A) + me(af , A) + 1

The second heuristic hr(a,A) gives the cost of removing an action from the action

graph:

hr(a,A) := MAX
f∈pre(a′)

λa′

p · C(f,A/[a])

It is the maximum cost of preconditions f (of any a′) that become unsupported,

weighted by the corresponding coefficient λa′

p .

The λ coefficients are updated whenever the search reaches a local minimum

by a small amount of δ+ or δ−. If the action a has unsupported preconditions, λa
p is

updated by δ+ ·pre(a,A). If it is mutually exclusive to other actions, λa
m is updated

by δ+ ·me(a,A). If the action does not violate any constraints the coefficients are

decreased by δ−. In this way the search keeps a memory of actions and violations

being hard to solve and guided by this information, it pursues successive problems

that seem to be easier.

When, in the course of local search, the flaw chosen to be repaired is a mutex

(cf. fig. 3.6(a)), one of the mutual exclusive actions can be postponed (cf. fig. 3.6(b))

or anticipated. If this is not possible due to emerging mutual exclusions or absence

of helpful NoOps, LPG tries to postpone or anticipate this action in combination with

graph expansion. The underlying planning graph is expanded by one level and the

action graph by inserting a level of NoOps in front of the mutually exclusive actions

or behind them. Then one of the actions is moved to the NoOp level (cf. fig. 3.6(c)).

If this is not possible the action graph is modified by removing one of the conflicting

actions.

LPG has provisions for any time planning, allowing for constructing valid plans
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Figure 3.6: Action graph: (a) A constraint violation given by the mutual exclusion
of actions a1 and a2. (b) A simple modification done by postponing action a1 to level
i + 1. (c) Postponing a1 combined with graph expansion. (Gerevini & Serina 2002,
fig. 1).

and refining them successively. For this purpose the heuristics described above are

enhanced by a weighted term describing plan quality. Every time the search comes

up with a valid plan, it can be used for a new search after introducing inconsistencies

to it by removing some of its actions (Gerevini & Serina 2002).

3.5 Knowledge Based Planners

In this section two planners are presented that use domain knowledge to control

the planning process. The knowledge used by both is state in formulas using tem-

poral logic. These planners are interesting, because they show, how simple search

algorithms combined with domain knowledge yield powerful results.

3.5.1 TLPlan

Temporal logic (TL) planner has been developed by Bacchus & Kabanza (2000)

and it is a planner utilizing domain knowledge to make the search for valid plans

faster. It was the winner of the hand tailored category at the IPC-2002, solving

894 planning problems from the Strips, numeric, time, and complex domains. It

achieved this with great efficiency being magnitudes faster than competitors in most
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cases.

The domain knowledge is encoded in temporal logic (TL) formulas describing

good plan sequences. It is used by the search algorithm to prune in advance many

useless plans before their course could be further explored. This differs from the

heuristic and other knowledge approaches, which evaluate only the current state of

the planning process.

The following example taken from (Bacchus & Kabanza 2000) shows rules spec-

ifying good plans within the blocks domain.

goodtower(x) = (ontable(x) ∧ ¬∃[y : GOAL(on(x, y))])

∨ ∃[y : on(x, y)]¬GOAL(ontable(x))

∧ ¬GOAL(clear(y))

∧ goodtower(y)

The predicate goodtower(x) gives the planner an abstracted view on some block

structures on the table. Every stack of blocks being in the final goal position is a

goodtower. The predicate GOAL is a second grade predicate viewed as a modality.

It judges atomic propositions and says what goals does the planning algorithm have.

This state abstraction can be directly used in the TL formula:

�

(

∀[x : clear(x)]goodtower(x) ⇒#

(

goodtower(x)
))

(3.1)

stating that it is always the case (�) for every good tower x, that it will stay

good tower in the next state (#). The expression ∀[x : clear(x)] is a bounded

quantification over all x without blocks on them, as they are the only ones considered

for the move action.

One of the advantages of this approach is the scalability achieved by simply

adding new formulas in order to prune useless sequences. The next equation states

that good towers can only be expanded to good towers:

�

(

∀[x : clear(x)]goodtower(x) ⇒

#

(

(∃[y : clear(y)]on(y, x))⇒ goodtower(y)
))

(3.2)

TLPlan uses a model checker for TL under the assumption the the world idles

after the prefix end. This assumption is required because models to TL are generally

infinite. Other components of TLPlan’s architecture - apart from the model checker

- are:

• Search engine a simple forward-chaining search algorithm for the state space,

• State expander realizes the neighborhood relation,

• Goal tester checks if given goals have been reached,

• Formula evaluator used by all other components to evaluate time independent

formulas.
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The remaining architecture is relative simple as it uses forward chaining search in

the state space that is easy to control. Utilizing domain knowledge by encoding it

in TL formulas seams to be strong enough to help TLPlan to cope with large and

difficult problems.

3.5.2 TALPlanner

TALPlanner is a planning system built on ideas from TLPlan. It is a forward-

chaining planner that relies on domain specific knowledge to prune the search space

from invalid or useless solutions. The control knowledge is stated in a Temporal

Action Language (TAL) being the ”... narrative-based non-monotonic linear discrete

metric time logic for reasoning about action and change” (Kvarnström & Magnusson

2003). Contrary to most languages used for planning, TAL allows to state not only

static and declarative goals in form of propositions about the final state, but also

to describe safety constraints and maintain goals that must hold through plan

execution.

The input to the TALPlanner is given in a meta-level macro language L(ND)

that is translated to a base level language L(FL). The initial conditions are stated in

form of observations at time point 0: #obs [0] on(block-a, block-b). For goals

there is a simple goal directive: #goal on(block-b, block-a). The operators take

a form similar to the the one in Strips notation10:

#operator move(from, to) :at t

:precond [t ] at(agent, from)

:effects [t+3] at(agent, from) := false

[t+3] at(agent, to) := true

This is the internal representation of the TALPlanner. In the macro language

L(ND) it is represented in the following way:

acs [t, t′] move(from, to) 

t′ = t + 3 ∧

([t]at(agent, from)→

R([t + 3]at(agent, from) = false) ∧

R([t + 3]at(agent, to) = true)

This translated to the base language L(FL) gives:

10Example taken from (Doherty & Kvarnström 2001)
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∀t, t′, from, to.Occurs(move(from, to))→

t′ = t + 3 ∧

(Holds(t, at(agent, from), true)→

Holds(t + 3, at(agent, from), false) ∧

Occlude(t + 3, at(agent, from)) ∧

Holds(t + 3, at(agent, to), true) ∧

Occlude(t + 3, at(agent, to)))

Where Holds states at what time point a proposition is true or false and Occlude

says what propositions are exempt from the inertia and persistence assumptions

dealing with the frame problem11.

TALPlanner has an explicit notion of resources being represented like fluents,

i.e. propositions that change with time. Resources have a numeric value and can be

consumed, produced, borrowed (exclusively or not). Resources can have a minimum

and maximum amount allowed.

Search control rules are stated in the L(ND) language and are domain dependent

as described above. For example the TLPlan control rule 3.1 can be written in

L(ND) this way:

∀t, x[t ] clear(x) ∧ goodtower(x)→

[t + 1] goodtower(x)
(3.3)

which is represented internally in a Scolem form by:

#control :name ”keep good towers”

[t ] clear(x) ∧ goodtower(x)→

[t+1] goodtower(x)

Before fed into the model checker, the rules are preprocessed and optimized for every

operator given in the domain resulting in control rules for every operator acting

as a form of precondition. TALPlanner searches the state space using simple

progressive depth first search. It differs from TLPlan as it allows for concurrent

actions. Given a discrete time line, it inserts as many actions into the plan as

possible at a given time point (cf. fig. 3.7), before proceeding to the next point.

Contrary to many forward-chaining state space planners, the nodes in the search

space are viewed as sequences being a partial logical model for the underlying

domain theory. This feature allows to compact plans by the approximated factor

of 10 actions to 1 time step - depending on the domain (Kvarnström & Magnusson

2003).

11For more precise description of the TAL logic please refer to the TAL Specification and Tutorial
(Doherty, Gustafsson, Karlsson & Kvarnström 1998)
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Figure 3.7: Progressive search using (a) sequential, and (b) concurrent actions
(Kvarnström & Magnusson 2003, fig. 2).

3.6 Platforms

In this section two architectures for artificial intelligence will be presented. The

choice on SOaR and Prodigy comes from their focus on planning and problem

solving. The platforms here are not devised with the theory of agency in mind and

do not constitute models directly applied to it. In contrast to the planners described

above both try to integrate a broad field of AI techniques into one system.

3.6.1 SOaR

SOaR has been developed since 1983 in mind to research a unified theory of cog-

nition with means of artificial intelligence. It is based on a production system

(formerly OPS-5) utilizing the RETE algorithm. Goals of the project were to pro-

vide one architecture for systems that exhibit intelligent behavior on a wide range of

problems, employ procedural, declarative and episodic knowledge and learn about

all aspects of the environment and themselves. The design of SOaR is directed

by architectural simplicity. As may be seen in Figure 3.8, there is one source of

static long-term knowledge, represented by production memory, one source of dy-

namic short-term knowledge stored in working memory and a single mechanism for

learning called chunking (Laird et al. 1987).

The underlying production system matches conditions of a production rule on

the basis of working memory. The rule fires and asserts some new knowledge into the

working memory. Given that a rule is no more supported by the working knowledge,

its effects may be retracted. Chunking watches the rules and their application and

constructs more general rules saving them back into the production memory.

SOaR itself utilizes this subsystem to implement a goal driven problem solver

working on the basis of problem space hypothesis. The main element of the working

memory is a state to which objects with attributes are connected. The state is

manipulated using operators. Because operators are defined by production rules as

all static knowledge and there may be many operators applicable to a given state,

SOaR employs a working cycle consisting of the stages: perceptual input, operator

proposal, operator comparison, selection, application and output.
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Figure 3.8: SOaR – A simplified modular view. Productions come from the pro-
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In the operator comparison phase SOaR uses a preference memory, being a

set of productions, in order to rank the operators so only one of them may be

selected. The preferences state if an operator is acceptable, better or worse than

any other. They may specify if it is required or prohibited in the current state. But

the proposal, comparison or selection phases may not be complete (no-operator)

or there may still be some operators to choose among (tie). This is called impasse

and leads to generation of a sub-state (subgoal). There are other impasses arising if

operator A is rated before B and v. v. (conflict impasse) or there are two operators

required (constraint-failure impasse). If an operator asserts no additional knowledge

into working memory there is a no-change impasse.

The sub-state created has a reference to the super-state and is annotated with

the reason of its creation. The SOaR cycle continues to work on the new state. If

the impasse can be resolved, the result of this sub-problem is integrated back into

the super-state. For example, if there is a tie impasse, a sub-state is created for

each of the operators in choice in order to determine, which one is the best. This

may be seen as a form of state space search using forward chaining rules as search

control.

As with most production systems the overhead grows polynomial with the

amount of knowledge stored in the working memory. This makes SOaR appli-

cations not very scalable, especially because the rule matcher considers all states

and sub-states at the same time. Additional the automatic subgoaling hypothesis

employed by SOaR and its implementation using a kind of goal-stack approach does

not allow SOaR system to react flexible towards problems emerging from different

contexts. There is no mechanism to deliberate about goals and problems arise if

goals stay in conflict to each other.

3.6.2 Prodigy

The Prodigy platform was created as a general purpose planning architecture for

testing different learning techniques and their usefulness to aid the performance of
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Figure 3.9: Prodigy partial solution representation (Veloso et al. 1995, fig. 4).

the planning process itself (Carbonell, Knoblock & Minton 1991). The implemen-

tation language is Common Lisp, but the planner accepts a reasonable subset of

the Action Description Language for the purpose of domain modeling.

The planning by the system is performed on a plan structure presented in

Figure 3.9. It consists of a head part representing a course of action from the

initial state of planning (an abstraction of the environment) to the state called

current representing the last state reached in the forward directed simulation. The

other part, called tail plan, is used by a backward chaining planner to reason about

causal dependencies among instantiated operators. The general algorithm calls the

back chaining part to expand the tail towards the current state. It chooses an

open precondition l of an action in the tail that is not yet satisfied by the current

state or any other action in the tail preceding this one. It chooses a new operator

that achieves l and instantiates it fully before appending it in front of the action

mentioned earlier.

Alternatively to the expansion, one of the operators dangling at the tail may

be moved to the head. It will be applied to the current state in order to produce a

new resulting situation. The choice among this two processes (expansion or applica-

tion) may be guided by domain dependent control rules. This allows for a forward

planning or backward planning alone and for different mixes of the two approaches.

Given that the operators are applied only to states with preconditions fulfilled, the

algorithm terminates when the head reaches a state that satisfies the goal. Provided

that the actions are modeled right this makes for a sound algorithm on account of

the forward part only.

The control rules, used by the planner at all of the choice points mentioned

above, have the form: if condition then advice. Where condition is a conjunction

of propositions about current state, goal, operator, candidate goals or other infor-

mation describing the state of search. The advice is of threefold kind. The select

rules are used first to choose among options. The default, in the absence of other

rules, is to select all options. Thereafter reject rules are applied to prune the set of

selected options. At the end the choices are ranked as specified by prefer rules.

Extended learning capabilities have been provided as modules and may be ap-

plied to learn control knowledge in order to improve the efficiency of the planning

process and the quality of plans generated:

• EBL is an explanation-based learning module collecting control knowledge

from traces of valid and correct plans.

• STATIC analyzes a problem in advance and generates control rules.
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• DYNAMIC combines virtues of the EBL and STATIC module.

• ALPINE produces several levels of abstraction of the original planning prob-

lem and tries to solve it in a hierarchical way.

• ANALOGY is a case-based approach to guide the planning process.

• EXPERIMENT refines the domain models using learning by experimentation.

• OBSERVE generates new operators from action traces and refines successive

their description.

• QUALITY module compares a solution of the planner with a better solution

as specified by an expert. The result is a set of rules that should help the

planner to output better quality plans.

• HAMLET uses a set of training problems and a quality measure to produce

control knowledge that would allow for plans with better quality and for less

planning failures.

3.7 Summary

Table 3.1 is a comparison of planners put together from many sources12. Among

others, there are planners that took part in planning competitions. The classifi-

cation system is an extension of the one presented by Wah & Chen (2003). To

clarify their meaning, the table includes following categories describing the internal

mechanisms applied by planners and the domains they are able to handle:

• Heuristic refers to the heuristic knowledge used by the planners (cf. sec. 2.1.3).

• Knowledge Based refers to domain knowledge applied by the planning algo-

rithm in order to ease the search for a solution.

• Hierarchical describes the task decomposition approach used by the planner

(cf. sec. 2.3.3).

• Systematic specifies that the planner performs an almost exhaustive search in

its space of planning.

• Local Search is complementary to the systematic approach. The planner uses

techniques reducing the scope of planning space it has to visit. This includes

greedy or depth first searches.

• Transforming planners convert the problem representation into one for which

there are known solution procedures. This includes for example transforming

ADL into first order logic.

12Long & Fox (2002), Edelkamp, Hoffmann, Littman & Younes (2004), Wah & Chen (2003),
Planning Database: http://scom.hud.ac.uk/planet/repository/
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• Fully Automated says that the planner is capable to plan without any domain

dependent knowledge.

• Strips is the basic capability of every planner to handle Strips domains.

• Numeric domains include variables ranging over integral or real numbers.

• Time says that the planner can handle durative actions.

• Continuous Time domains include time intervals and points described by real

numbers.

• Mixed States include sets of discrete and continuous items.

• Contingent planning regards probabilistic quantities describing actions and

the domain.

• Online planning is done by systems directly coupled with the environment

(cf. sec. 2.4).

• Anytime algorithms produce a less valuable solution at first and are able to

improve it over the time.

The table contains a graphical summary of the chapter. It exemplifies the

reference of methods used to the features of planners presented. It may be seen as

an almost chronological path through the development of planning systems. Taken

at first, there are simple systematic search planners, which can only handle simple

domains. Due to the growing complexity of numeric and temporal domains, almost

all new generations of planners employ heuristics and domain knowledge. The

explosive size of planning spaces force the designer to go away from systematic

exhaustive approaches and concentrate on local solution improvements.

Again, in this table it is clearly shown that approaches as simple as state space

search can easily handle domains with continuous time and other quantities. On

the other hand, partial order planners give up the simplicity for more degrees of

freedom at the planning time. This results in greater complexity of algorithms,

less flexibility and, in effect, quite poor results in respect to efficiency of planning,

because of inherent planning space explosion.

The choice of a planner for an agent system should be guided by the agent

application environment and its properties (cf. sec. 2.2.1). Taking into account that

even simplest agent domains become very complex, the choice should fall on planners

from the lower part of the table. In particular, planners with online planning and

anytime capabilities are interesting for agent systems. Sipe-2 and O-Plan are

already full blown systems with agent-oriented aspects, so their integration into

other systems would require to strip a lot out of them. They are useful for agents

written in high level languages like LISP, as do LPG and MIPS planners.

In respect to BDI systems described later, the use of a planner to control the

course of actions is somewhat contradictory. BDI systems have been designed as

an answer to the incapability of former decision theoretic and deductive planning

systems to control agents in real time. As described further, it was the outstanding
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reactivity and performance that made BDI so successful. Introducing a planner into

a BDI system, would only make sense in order to leverage the shortcomings of BDI

in respect to reasoning about their actions and future changes of the environment

in response to these actions. It should not be made, when the benefits of BDI would

be sacrificed. The topic will be further pursued in Section 5.3, concerning with the

choice and design of a planner for the Jadex BDI system.
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methods features

Ucpop S A S

GraphPlan S A S

IPP S A S

System-Ra
K S A S

HSPb
H L A S N

FF H L A S N

AltAltc
H L A S N

GRTd
H L A S N

Prodigy H K L A S N

SATPlan L T A S N

BlackBox H S L T A S N

Sipe-2 H K H S S N T X O

O-Plan H K H S S N T X O

Shop2 H S N T C X

LPG H S L A S N T C X A

MIPSe
H S A S N T C X A

TLPlan K L S N T C X

TALPlanner K L S N T C X C

Table 3.1: Classification of planning systems.

a A Strips-like planner in Prolog. (Lin 2001)
b Heuristic Search Planner (2.0) (Bonet & Geffner 2001)
c ”A little of this, and A little of that” (Nguyen, Kambhampati & Nigenda 2002)
d Greedy Regression Table (Refanidis & Vlahavas 2001)
e Intelligent Model checking and Planning System (Edelkamp & Helmert 2000)
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Chapter 4

The Belief-Desire-Intention

Model of Agency

In this chapter the theoretical model of agency based on the Theory of Practical

Reasoning by Bratman (1987) will be presented. Various interpretations of the BDI

model in the computer science will be used to illustrate it further. The chapter

continues with special respect to the Jadex system as the primary target of this

diploma thesis and with BDI systems that already integrated a planner in their

architecture.

4.1 The BDI Model

The philosophical BDI model for a general type of an agent was developed by

Bratman (1987).His work concerned with practical reasoning and the incapability

of former belief-desire models to explain human notion of building plans and sticking

to them. On the basis of his observations he concluded that plans are formalized

intentions, which aid humans in their reasoning about the future by constraining the

choice of their options. This conduct spares humans from inefficiently reconsidering

all possible alternatives any time the world changes and it is opposed, this way, to

decision theoretic models of rationality.

Whereas desires and beliefs are able to provide a reason for agent actions, they

are not enough to explain the stability and efficiency of human reasoning. Bratman

claims that both pro-attitudes including desires and intentions influence our con-

duct, but only intentions are responsible for its control. Intentions are not reducible

to beliefs and desires, and must be understood as distinctive states of mind. Brat-

man points out two aspects of intention, the first being of volitional nature. It says

that intentions are more than desires and provide more than a motivation to do

something. Actually, intentions provide support for future actions and control their

conduct. Contrary to agent desires, intentions should not contradict each other or

the agent would be accused of irrationality.

The second is reasoning-oriented. It says that former intentions control the

commitment to future intentions and restrict the amount of reasoning. This aspect

cannot be reflected by a belief. It provides support for the expectation that an
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agent will do something, but it does not entail the agent to fully believe it will

succeed nor that it will fail. Bratman allows an agent to have intentions that stay

in conflict with its beliefs.

In the view of Bratman, plans are not mere abstract parametrized scripts,

but a form of mental states. As he says: ”Plans [..] are mental states involving

an appropriate sort of commitment to action” (Bratman 1987). The aspect of

commitment makes plans more complex and structured intentions, build up from

simpler smaller ones. This intentional structure is necessary incomplete as the agent

is not required to commit to all options in advance. It is also hierarchical.

The theory of practical reasoning embedding Bratman’s Claim found rather less

implementations. One of such abstract true BDI system is the Intelligent Resource-

bounded Machine Architecture described later. The main impact of BDI was on

theoretical models of agency and rationality. Cohen & Levesque (1990) extended

it to the domain of artificial agents and provided a formal model in modal logic

facilitating this way its computational realization. There were other adaptations of

this theory, mainly towards existing systems.

Georgeff & Lansky (1987) explained their Procedural Reasoning System in

terms of the BDI theory and reduced the concepts to computational means1. ”Be-

liefs are just some way of representing the state of the world ...”. The world could

be represented in this view using entities as simple as variables, relational databases

or symbolic propositions.

But the notion of belief bears more than mere representation of information.

Beliefs are distinct from objective truths as they belong to an agent. This subjective

rationality of beliefs seeks the explanation of their emergence and dismissal. A fine

representation of this structure can be given by forward-chaining networks with the

prominent example in the SOAR system. The degree of belief, its importance to

the agent and restricted inertia in the face of bounded resources must not leave the

understanding of this concept. It is fairly easy to model the degree using multivalued

logics (true, false, unknown), or use fuzzy logic to give it a sense of a mental state.

Still, there is a problem in the view of a belief as a variable. Agents provided with

an enormous number of facts cannot refer to each with a name and not every belief

is prone to reification. Even the database approach reduces beliefs to the level of

information. It simply requires the agent to know the structure and form of its

beliefs in advance.

Desires have been reduced to a more concrete notion of goals represented by a

variable or a symbolic proposition. Goal-oriented programming techniques are con-

fronted with task-oriented ones. Conventional programs are task-oriented. They

execute, what has been set at the time of program compilation. Goals allow agents

not only to have the knowledge what to do, but also to include the reason for the

execution of certain tasks (Georgeff et al. 1998). Further, goal-oriented behavior

allows for more flexible failure recovery strategies in the light of unforeseen occur-

rences conflicting with current execution.

The need of goal orientation led in conventional programs to the emergence

1In a panel contribution on BDI (Georgeff, Pell, Pollack, Tambe & Wooldrige 1998).
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of some programming patterns. This may be seen on the basis of the Chain Of

Responsibility Pattern2, Communication Filter Chains, and at last, event based

processing commonly found in object-oriented programs. All of them include an

object, message or event that must be processed by procedures not specified in ad-

vance. The assignment of it to the procedure is done at runtime. After a procedure

has handled the object, event or message, it is marked as processed, changed or

handed over to the next procedure. This has a strong notion of goal-oriented pro-

gramming, as the object or event provides the reason for the execution and there

are many procedures capable of handling it that need not succeed at their task.

Contrary to the meaning attributed by Bratman to plans, Georgeff sees plans

as procedures or a ”... generic, parametrized [...] special kind of Belief ...” that is

carefully separated from other beliefs and stored for its use in the future. In his

view, a plan becomes an intention if the agent commits to its execution. Intentions

may be realized simply as ”... a set of executing threads ...” embedded into the

agent process. This does not depart from the understanding of intentions being

partial and hierarchical as illustrated by the PRS system.

4.2 BDI Systems

There is a wide discrepancy on the question – what constitutes a BDI system? It is

certainly the case, that due to the popularity of this topic and the metaphorical mi-

gration between the theory of human practical reasoning towards a computationally

founded theory of agency, many different interpretations of these concepts emerged.

In order to clarify the field a wide view of BDI systems by Martha Pollack will be

adopted here. She divides BDI systems in three categories, depending on the model

of agency they employ3:

• The Intelligent Resource-bounded Machine Architecture and other models

adhering to Bratman’s Claim in respect to practical reasoning;

• Architectures owning to the Procedural Reasoning System that is best ex-

plained using BDI terms;

• Models including beliefs, desires and intentions implemented on the basis of

common understanding (”folk-psychology”).

The following part of this chapter will present a survey of systems from all of these

categories. It will start with typical BDI systems and continue with selected ones

implementing AI planning techniques.

4.2.1 IRMA

The Intelligent Resource-bounded Machine Architecture has been sketched by Brat-

man, Israel & Pollack (1988). It presents a system implementing the BDI model

and puts emphasis on the two processes responsible for means-end reasoning and

2Gamma, Helm, Johnson & Vlissides (1995)
3In a panel contribution on BDI (Georgeff et al. 1998)
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Figure 4.1: Intelligent Resource-Bounded Machine Architecture (Based on Bratman
et al. (1988, fig. 1)).

weighting of solution alternatives. There is an assumption taken here about the de-

liberative process, responsible for choosing among options that may become agent

intentions. This process is thought to be very time consuming, so IRMA includes

a filter taking new options and proving their compatibility with existing agent in-

tentions. This filter may be seen as the first stage of the deliberation process.

Figure 4.1 illustrates the architecture. An agent conforming with IRMA has

beliefs, which are used by other components to guide their work. The beliefs are

feed by perception and updated by a reasoner. The opportunity analyzer acts like a

reactive component. It is influenced by desires and analyzes the state of the world

as rendered by agent’s current beliefs. Any time the analyzer finds a new promising

option that would allow the agent to come closer to the fulfillment of its desires, it

hands it over to the compatibility filter.

The filter, by itself, includes an override mechanism that allows important op-

tions to pass by and become available for deliberation. This override mechanism

must be fine-tuned to the needs of the agent’s application domain. Whenever such

incompatible option passes the filter, the deliberation process must reconsider ex-

isting intentions and weight the costs and benefits of old intentions versus the new

option. The purpose of this process is to assure that intentions structured into plans

have no inherent conflicts dooming the plans to be irrational and provoke failures.

The last component of this architecture to be mentioned is the means-end

reasoner. Its function is to work with the set of intentions, analyze their structure

and propose options that would complete partial plans. The result of means-end

reasoning is handed over to the compatibility filter and undergoes the same filtering
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and deliberation process that was applied to options proposed by the opportunity

analyzer.

4.2.2 PRS

Procedural Reasoning System is one of the best-known agent architectures mainly

due to its pioneering role as a first practically applicable BDI-based system(Georgeff

& Lansky 1986). The name of PRS derives from the term Procedural Knowledge

defining agent abilities to act by invoking stored or learned procedures, as opposed to

Declarative Knowledge describing facts about the world. PRS was devised to build

systems for real-time applications that are non-stop situated in their environment

and must exhibit intelligent behavior and use procedural knowledge as specified by

domain experts.

Principally, it is a type of a hierarchical planner with well defined methods

called here plans. It is bounded in its search as it works online and must commit

to a plan as soon as possible. This type of planning decisions can be seen as eager

commitment and is opposed to the term least commitment strategy conceived with

non-linear planners. It is reactive as it does not anticipate future states in its

basic algorithm and the deliberation must be done by specially provided meta-level

procedures (meta-ACTs described later).

The architecture consist of a database where facts about the real world are

represented by first order logic formulas constituting agent beliefs. The desires of

an PRS agent do not represent classical declarative goals, but rather specify directly

desired system behaviors and thus can be called to-do goals. This notion includes

achievement, maintenance and query goals stated in form of temporal conditions

over the future states of the agent and environment.

Like in most BDI systems, plans of a PRS agent are stored in a plan library.

They were originally called Knowledge Areas (KA) and have been extended and

renamed to ACT s – a common representation formalism for procedural knowledge

used in the Cypress architecture described later. In fact the input ACT rep-

resentation is being directly translated to the KA representation so the old PRS

structure can use them internally. Knowledge areas are associated with an invoca-

tion condition that may be triggered by to-do goals, or by changes to the facts in

the beliefbase. To-do allow for a sort of goal regression planning and hierarchical

abstraction to be utilized by knowledge areas. Conditions on the beliefs resemble

a reactive rule based agent architecture. By default, to keep the system reactive,

no deduction or reasoning is used to activate the KA areas. The to-do goals are

matched against an invocation conditions using unification. The other part of a

knowledge area is its body, a plan schema, consisting of partially ordered sub-goals

for the system. After being activated the KA’s are stored on a to-do agenda of the

PRS system and represent intentions of the agent. The agenda itself is partially

ordered – owning to the partial order representation of KAs – forming an intention

graph including suspended, delayed or deactivated intentions. Before an activated

knowledge area can be chosen for execution, it must wait for preceding ones to be

executed or dropped. Meta-level ACT’s can manipulate this agenda by removing
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or adding knowledge areas and changing the order.

Figure 4.2 depicts a simplified view on the architecture of a PRS agent with

components mentioned above. Additionally, it depicts the interface to the user

controlling the agent and the domain of agent application. The PRS interpreter

plays a central role as it communicates with, controls and manipulates the other

modules and is responsible for changing beliefs, running KAs and executing actions

in the environment.

The Procedural Reasoning System was successful in application domains in-

cluding space shuttle diagnosis4, network management, control of mobile robots5

and joint military operations. The system has inspired many of the following agent

architectures, especially architectures based on the BDI model of agency. Systems

that claim direct descent are dMars6, and Jack, which will be described later.

4.2.3 Jack

Jack stands for JACK Intelligent Agentstm by Agent Oriented Software (AOS)

and is a lightweight platform and framework for agent development. It provides in

form of plugins different reasoning models. Among them the BDI and SimpleTeam

4As Reaction Control System for the NASA space shuttle (Georgeff & Ingrand 1990).
5PRS-Lite controlled the Flakey autonomous robot at SRI International (Georgeff & Lansky

1987).
6distributed Multi-Agent Reasoning System – a C++ implementation of PRS (d’Inverno, Kinny,

Luck & Wooldridge 1997).
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reasoning models are present. The former is responsible for modeling agents to-

wards reactive and goal-oriented behavior, the latter allows models of agents act-

ing in teams. The pragmatic engineering concerns had brought within the Jack

framework a new concept to agent-oriented programming. Capabilities term the

new approach to modularize agents and facilitate software reuse (Busetta, Howden,

Rönnquist & Hodgson 2000).

The framework is thought to be easily extensible and integrable into large legacy

systems. In respect to these concerns, all agents can be viewed as a Javatm object

and accessed by method calls from within an application. On the other hand, the

communication paradigm of message passing – as used generally by agents – is

not bound to a particular mechanism or language. Indeed, AOS claims that their

agents – once devised to communicate with CORBA, HLA, DIS, PVM7 or their

home made fast message exchange infrastructure – are capable to use KQML and

FIPA ACL protocols as well (Busetta et al. 1999).

In order to facilitate agent-oriented programming Jack does to Javatm what

C++ did to C. The language is expanded by the following conceptual entities:

• Events are the cause for agent actions and reactive behavior.

• Plans are compiled procedures used to process events.

• Belief-Sets have been devised to come up for the shortcomings of Javatm in

respect to knowledge representation abilities. They comprise a simple rela-

tional database approach to information storage and retrieval calling it belief

in order to commit to the agent terminology.

• Views are defined over belief-sets and common object models and are used to

retrieve information.

• Capabilities define reusable software components for agents.

• Agents itself include all of the above and represent a single execution entity

in the system.

A precompiler uses files specified by the listed entities and produces Javatm output

that is compiled into classes ready to be run on a Jack platform.

In the design of an agent the central role is played by its plans. Every plan

handles one event – being a goal in the BDI terminology – and includes relevance and

context functions. The former checks if the plan is relevant for a particular event,

the latter evaluates the current situation and tests the preconditions. The body

of a plan is made of Javatm boolean statements connected with an and operator.

If one of the statements fails, the chain fails and the plan is recognized as failure.

Meta-level reasoning is realized by prominence – the order listed in the agent file, or

by precedence – the priority given to the plan by a programmer. If there are plans

7CORBA R© – stands for Common Object Request Broker Architecture, HLA – High Level
Architecture (IEEE 1516), DIS – Distributed Interactive Simulation (IEEE 1278), PVM – Parallel
Virtual Machine.
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with the same precedence, the case can be handled by a meta-level plan invoked by

a PlanChoice event (AOS 2004).

Agent Oriented Software Group affirms Jack a wide basis of applications in

military, industry and research. This includes applications in following domains:

telecommunications, manufacturing, finance, air traffic management, aerospace, e-

commerce, customer management, defense simulation and decision support, govern-

ment services, education, product support. They claim their system to be excellent

at modeling humans and interacting with them.

4.3 Jadex

Jadex (Pokahr et al. 2003) emerged from the MedPAge project – an agent-oriented

application for treatment scheduling in hospitals. It was used for research, teach-

ing and for specific purposes in different domains including agent-based simulation,

multi-agent scheduling of business processes and mobile applications. There are

demonstration examples including blocks-world, puzzles and other interesting agent

domains. The mobile applications included a personal task planner and an intel-

ligent travel assistant. Jadex was proved to be inter-operable with other agent

platforms utilizing Agent Communication Language and FIPA8 standards. In a

hunter-prey scenario it was demonstrated to interact with agents on the CAPA

platform (Duvigneau, Moldt & Rölke 2003).

The project team started with the Jade (Bellifemine, Poggi & Rimassa 1999)

agent platform, one of the wide known agent frameworks providing FIPA compliant

communication services and a rudimentary support for active objects. It became

obvious that more elaborate models of agency where needed than the simple task

model provided.

The extension to Jade provides a full blown model of agency with explicit

goal representation, support for sets of beliefs, named beliefs and object-oriented

representation of agent plans. The active attitudes of an agent are represented

by events, which are created by incoming messages, thrown by executing plans

and emerge from conditions posed over agent beliefs. They play a central role in

controlling the work of an agent and glue all parts of the system together without

forcing a tight coupling of the components.

Goals. Similar to events, goals are the motivational attitudes of an agent. They

may be dispatched from plans, activated by create conditions. Goals give rise to

goal events, handled by plans. Drop conditions describe, when the agent should

stop pursuing a goal. Context conditions, specified over the beliefs are responsible

for suspending a goal in certain situations.

There are four kinds of goals that may be given to the agent, as identified in the

Jadex system. The achieve goals carry a target condition, which should be fulfilled

if the agent succeeds on that goal. The query goals are similar to the achieve ones.

Their purpose is to collect information. The maintain goal is the most complex

8Foundation for Intelligent Physical Agents.
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Figure 4.3: Jadex hierarchical plan decomposition. The plans are represented as a
horizontal oblong and goals as a circle (TG – top goal, SG – sub-goal). The arrows
show causal dependency among goals and plans, and illustrate the flow of control.

type. It is activated, whenever its maintain condition is violated, but stays idle

after its target condition has been achieved. The last, but not least is the perform

goal type. It simply motivates the agent to execute one or more plans (Braubach,

Pokahr, Moldt & Lamersdorf 2004).

Goal deliberation. Contrary to former BDI systems, the goals, represented in

Jadex explicitly, allow for a way to deliberate on them. Using constraints on

goals, it can be chosen, which ones stay in the active state and which will be

suspended. This, in other turn, elevates goals to the level of Bratman’s desires

and justifies the existence of conflicting goals in the system. This is unlike the

Procedural Reasoning System and descendants where goals approximated desires,

but were actually contained directly in the intentional structure of an agent. The

latter required the designer to assure that no conflicting goals will be pursued.

Means-end reasoning. The approach to means-end reasoning is very similar

to the one found in the PRS. Jadex uses eager commitment and plans with lazy

decomposition. It is a sort of hierarchical task networks planning (cf. fig. 4.3),

but without the look into future that would anticipate forthcoming events and the

interplay of intentions and executed actions. This approach has the advantage of

creating plans on the basis of full information that may be available to the agent.

The plans act as quite flexible decompositions and may include highly aligned

domain knowledge, guiding agent intentions into right direction. The full power

of the Javatm programming language may produce task networks that dynamically
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adapt to the situation at hand and it gives the programmer a far more superior

control over execution than the direct acyclic graph representation commonly used

in the description of task decompositions.

As seen in Figure 4.3 the plans and sub-goals form the intentional structure

of Jadex agents. The structure is decomposed in a hierarchy of sub-goals by the

plans (procedures). As said above this plans may include all sorts of control state-

ments and knowledge. As the plans are decomposed at runtime, they may directly

influence the world model of the agent as stored in beliefs and they may take direct

action towards the environment. This may include presenting new information to

the user via graphical interface or communicating with other agents in order to

influence them or query for information. Both goals and plans are tightly bound

to their execution context by a set of conditions that control various aspects of the

intentional structure. Goals may be dropped and plans aborted. Both may end

with success or failure. The dynamic nature of this structure allows goals to be

pursued by many plans in sequence or concurrently. The plans may dispatch many

new sub-goals and wait for them or let them be fulfilled or fail unattended.

The disadvantage of this reactive reasoning model based on hierarchical de-

composition comes from backtracking on plan failure and lack of anticipation ca-

pabilities. This shortcoming, inherited from the PRS system, is mainly due to the

inability to project the world model towards the future and evaluate its various as-

pects over the time in advance. On the other hand, problem solving in hierarchies of

goals reassembles the way humans usually try to cope with their own assignments.

4.3.1 Programming Model

To aid flexible and reusable software design Jadex agents are specified using an

Agent Description File (ADF) and a number of Javatm classes determining the dy-

namic properties. This agent modeling approach is further enhanced with additional

levels of abstraction. The developer may specify whole agent societies using deploy-

ment specifications similar to the ADF. These society files describe, which agents

are necessary for the application and what are their interdependencies (Braubach,

Pokahr, Krempels & Lamersdorf 2004).

ADF. The Agent Description File specifies the type of an agent. It mentions all

elements of an agent explicitly, including beliefs, goals, plans and events. All of the

elements are strongly typed to aid a clean software engineering approach. The file

itself is written in an XML-based language defined by a schema. This bears the nice

feature that a wide range of XML development tools may be used to write ADFs

and check their syntax. The dynamic part of ADF is specified using a subset of

Javatm language. This subset contains all right hand assignment expressions, plus

some shortcuts to access array or vector data by index and bean properties by their

name. Additionally, the user may resort to the Object Query Language (OQL) to

access all sorts of beliefs and data in a systematic way.

Besides the basic elements, the programmer may specify other elements. This

includes services and agent descriptions, ontologies and languages – all concerned
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with the communication aspect of the underlying FIPA compliant Jade framework.

For configuration purposes the ADF allows to specify agent properties. Import

statements in the header allow for a concise description of Javatm expressions and

OQL queries may be specified, so the agent loader will compile them in advance.

Capabilities. On the other side of abstraction scale, researches identified the need

of modular design for agents. The concept of capabilities has been delineated and

first described by Busetta et al. (2000). Capabilities in Jadex may be specified using

XML in the same description file format like ADF. They include a clean interface

facilitating the ability to compose the capabilities into agents in a hierarchy of

dependencies (Braubach, Pokahr & Lamersdorf 2004).

Tools. The project is not only responsible for the core BDI reasoning system,

but provides a number of tools to aid design, implementation and debug phases

in the agent development process. Alone the underling Jade framework provides

tools like the communication monitor - Sniffer, the Dummy Agent and the Remote

Monitoring Agent. The Jadex projects extends this palette with BDI Viewer,

Jadex Introspector, Logger Agent, Ontology plug-in for the Protégé Ontology editor

and the Jadex BDI Tracer. Jadexdoc may be used to produce Javatm API-like

documentation describing all elements constituting an agent as stated in the ADF.

4.3.2 Operational Model

After the Agent Description File has been loaded, the agent is represented by model

elements describing the static properties. From this templates runtime elements are

generated. The relation between model and runtime elements may be seen as one

between a concept and an instance of it. For each concept there may be plenty

of elements created at runtime. This aspects of Jadex builds directly on object-

oriented design techniques.

Messages. Figure 4.4 illustrates that Jadex is a communication-oriented archi-

tecture. The messages coming from left in the figure are first assigned to a running

conversation, provided they carry a conversation id. In the other case the Message

Receiver Behavior matches them against event templates stored in the different ca-

pabilities of an agent. Thereafter a message event is generated and dispatched to

the corresponding agent capability.

The reaction and deliberation modules are responsible for finding plans (from

plan library or running) and to handing over the event to them. The deliberation

module will choose from adopted goals and activate or suspend them accordingly

to the deliberation policy. The reaction module evaluates the state of an agent,

generates goals, processes events or instantiates plans.

The running plans are stored in a ready list from where they are selected for

execution by a scheduler. As shown, plans may influence the agent subsystem

by dispatching sub-goals or generating internal events. Plans are responsible for
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Figure 4.4: Jadex architecture (Braubach, Pokahr & Lamersdorf 2004, fig. 1).

reaction, domain specific reasoning, communication and access to legacy systems

using Javatm API.

The belief base plays an active role in the Jadex architecture. It is responsible

for generating events concerned with beliefs and conditions. Running plans may

query the belief base using OQL. They may add, remove and modify facts stored

there.

4.4 BDI Systems with a Planner

Several BDI systems have been extended or designed with the notion of artificial

intelligence planning. This section will list few important examples.

4.4.1 InterRRaP

The InterRRaP architecture is a successor of the Reactive Action Package (Firby

1989) system that was used to control large scale real-time applications. Contrary

to the latter one, InterRRaP was designed in the notion of the BDI terminology

and extends the RAP system by introducing a layered design. There are three

layers employed. The first one called Behavior Based Layer (BBL) is responsible

for reactive behavior to situations in the environment that require immediate action

from the agent. The second layer is named Local Planning Layer and is responsible

for agent reasoning about future actions that should be taken in response to goals
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posed by the environment and the BBL. The last layer concerns agent attitudes and

intentions in respect to other agents in the environment and is called Cooperative

Planning Layer.

In Figure 4.5 the layered approach is exemplified. At the bottom there is a

layer dealing with the surrounding world and communication with other agents.

All interaction starts at this layer in form of events referring to messages or fact

changes. The events are propagated layer for layer in the upward direction through

the knowledge base. At every layer they are matched against first order formulas and

produce situations, which principally describe a part of the environment or agent

internal state. The situations are mapped again to goals building a situation+goal

tuple < S, γ >. The process of situation recognition and goal formulation is done

by a unit annotated with SG in the figure.

The situation+goal tuples are forwarded to the planning, scheduling and ex-

ecution component (PS) at each layer. Each PS is equipped with a competence

function to decide if it can handle the situation. Provided, the layer is competent of

this situation, a course of action will be devised by this component and the layer will

commit to this actions. It will forward them as intentions to a layer below, so they

can be integrated into the intention structure. In the other case, the < S, γ > pair

must be handed over to the layer above with the hope it will be processed there and

produce results. Intention structure is generally represented as a partially ordered

set of actions that are executed by the BBL.

The Behavior Based Layer includes hardwired links between situation-goal de-

scriptions and actions to be performed, called Patterns of Behavior. Processes at

this level are in accordance with the Markov property requiring that any action at

the time point ti depends only on the state of the world at ti−1. The layer may

be implemented using the RETE algorithm, a fast forward chaining approach that
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allows the agent to remain as reactive as possible.

The Local Planning Layer includes a single domain dependent planner to solve

the goals. This may comprise a plan library approach with many plans capable of

solving given goals and a deliberation algorithm choosing among the plans. Other

scenarios include a hierarchical decomposition planner. The Cooperative Planning

Layer is devised to cope with issues concerning multi-agent systems and acting in

multi-agent environments and is an answer to the shortcomings of the BDI model

that fails to cover this topics in its theory.

The Knowledge Base of the agent is layered as well. This lowest level accessible

only by the BBL contains a model of the environment including static declarative

propositions and dynamic descriptions of physical processes. The mental model

includes agent beliefs about itself. Especially the particular abilities and resources

available to the agent are represented here. This knowledge level as well as the

world model can be accessed by the Local Planning Level. The social model is the

last level of agent knowledge. Facts about other agents are represented here. The

goals, intentions and capabilities of other agents are stored here together with joint

plans the agents might have agreed thereupon. The Cooperative Planning Level

may access the social model and all underlying levels of knowledge representation.

The function of InterRRaP could be demonstrated in an automated loading

dock domain. This application consisted of simulated and real miniature robots

with the task of loading or unloading a truck. The main problem of this domain

was the conflict avoidance among singular robots each of them controlled by a

single InterRRaP agent. The resolution mechanism situated in the CPL showed

particular feasibility for this domain (Fischer et al. 1994).

4.4.2 Cypress

The Cypress agent architecture and integrated planning environment is named

after two main components Sipe-2 + PRS. It was the first system claiming to inte-

grate (re-)planning, control and uncertainty reasoning capabilities (Wilkins, Myers

& Wesley 1994). This is achieved by incorporating mature technologies for planning,

reacting and reasoning into the system and gluing them together with an interlin-

gua, a form of representation, called The ACT Formalism (Myers & Wilkins 1997).

The system has been applied to many problems including military operations and

fault-diagnostic.

The components are depicted in Figure 4.6. The Sipe-2 propositional planning

system is responsible for generating plans in form of ACTs that are transferred

to the PRS module for execution. PRS is responsible for acting and reacting in

the agent environments. It does so by executing plans generated by the planner

or prepared by the domain writer, who is aided by an ACT-Editor in the process

of domain modeling. Both systems are capable of handling the ACT formalism as

their input language. Before use, Sipe-2 transforms ACTs into its internal operator

representation and PRS transforms them into knowledge areas.

PRS is responsible for monitoring the environment and responding to the

changes. If in the course of execution some sort of unexpected events or impasses
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Figure 4.6: The architecture of a Cypress agent.

arise preventing the system from proceeding with current plans, the execution of

such problematic plan is halted and the problem is turned over to the Sipe-2 plan-

ner for replanning. While new plans are generated PRS continues with execution of

plans unaffected by the event or impasse. When Sipe-2 has finished its replanning

process it must compile its new plans into ACTs and transfer them back to PRS

where the ACTs are merged with plans on the current intention stack.

The task of planning and executing is divided by an interface defined on a

specified abstraction level. Goals, as described by ACTs, are placed on different

levels of abstraction, demonstrated by their appearance on different levels in plans.

There is a fixed number of the abstraction levels (e.g. nine levels for a military

operation scenario). Goals on higher level are handled by Sipe-2, which generates

plans composed of goals only from levels below the interface. PRS is devised to

handle only lower ACTs and goals.

Cypress has been extended with the ability to plan and react under uncer-

tainty. Both main modules, PRS and Sipe-2, resort to the Grister-CL module

that utilizes the Dempster-Shafer9 and Bayesian probabilistic models in order to

provide a suite for evidential reasoning. It is able to draw conclusions from multiple

sources on the basis of evidential information. Possibilistic models, including propo-

sitional and fuzzy logic, are also integrated into the system through this module.

4.4.3 Retsina

Reusable Environment for Task-Structured Intelligent Networked Agents is a multi-

agent infrastructure developed at CMU in the Software Agents Lab. The system

consist of agents – concentrated on message processing – composed into an extended

model-view-controller (MVC) pattern.

Retsina multi-agent systems include:

9A Mathematical Theory of Evidence. (Shafer 1976)
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• interface agents to interact with users,

• task agents providing services like information processing, planning and prob-

lem solving,

• information agents storing and retrieving information relevant for the task

agents from data bases and legacy systems,

• middle agents provide the glue between the other types of agents.

The last type of agents represent the dynamic extension to the MVC pattern and is

a result of system’s agent-oriented aspects (Sycara, Paolucci, Velsen & Giampapa

2003).

A single agent consists of (cf. fig. 4.7) a communicator receiving messages from

other agents, a hierarchical planner using a plan library, a scheduler and an exe-

cution and monitoring module. The communicator introduces objectives into the

system on the basis of received communications. It is also responsible for sending

messages if instructed so by the actions. The planner takes the objectives, kept in

a priority queue, as its goals and uses an HTN approach in order to find a solution

by decomposing abstract tasks into primitive ones. The output from the planner

is posted onto a task agenda, which is used by a scheduler to compose them into a

timed action sequence. The heading actions become activated by placing them into

an active pool where they are executed and monitored by the last module. The

effects of these actions may include manipulating the belief base, changes to the

schedule, tasks and objectives as well as sending messages to other agents.

A planning domain for the planner is defined by a tuple < A,C,R > where

A are primitive tasks, C are complex tasks and R are reductions describing how

to recursively decompose elements of C into elements of A. A planning problem is

stated by < B,O, T >, with B constituting the set of beliefs, O describing the goals

to be accounted for and T being a set of task structures representing partial plans.
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The planner proceeds by matching an objective with task decompositions from R,

contributing to the set T of initial plans. It then repeatedly chooses an element of

T and removes flaws from within, producing new refinements that are added to T .

If the plan chosen contains no flaws it is returned by the planner and the primitive

tasks become actions presented to the scheduler.

Partial plans contain three kinds of flaws:

1. Task reduction flaws represent complex tasks, for which no reduction has been

found yet.

2. Suspension flaws are introduced into a plan if a given reduction cannot be

performed because a provision, required for a task from within the reduction,

is not available yet.

3. Execution flaws represent causal dependencies between suspended reductions

and active actions being monitored.

Both suspension and execution flaws are responsible for the capability of Retsina

agents to interleave planning and execution. Provisions, mentioned above, are data

required by the planner to evaluate the effects of a task, its outcomes and constraints

posed upon it. The planning may continue with portions of the plan independent

of actions querying for the missing information. The Retsina planner can be seen,

this way, as a successful compromise between eager commitment reactive systems

and least commitment offline planners.

The agent uses special cyclic actions called monitors to check the validity of

plan constraints. If the plan under consideration is still a partial solution, it is

removed from the set of valid plans. If a constraint of a scheduled action is violated,

the corresponding plan is replaced with a new one. Active actions with violated

constraints are permitted to finish their execution and return success or failure. The

last case would consequently make the relevant plan invalid and stop its execution

(Paolucci, Shehory, Sycara, Kalp & Pannu 2000).

The Retsina system and the multi-agent infrastructure was applied to numer-

ous domains. This includes portfolio management, content management, auctions,

logistic, military operations and mobile communication. It was shown to be inter-

operable with other infrastructures on different types of communicating platforms

(Sycara et al. 2003) including grid and p2p networks.

4.4.4 Decaf

The Distributed, Environment-Centered Agent Framework10 has been devised to

develop multi-agent systems written in Javatm. The authors claim following capa-

bilities provided by the agent architecture: ”.. communication, planning, schedul-

ing, execution monitoring, coordination, and eventually learning and self-diagnosis

..” (Graham & Decker 2000). The perceive-plan-execute cycle and the planning

component is very similar to the one situated in Retsina agents.

10A framework from the University of Delaware.
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The agents in Decaf are defined by a plan file specified using a visual tool

called PlanEditor. The file contains task and action definitions referencing Javatm

classes and their methods. Each action is defined as a method and each task is

a class file containing many actions. The plan file does not specify any goals nor

beliefs of the agent.

Dispatcher Goals

Executor

Tasks

Planner

Scheduler

Belief Base

Plan Library

KQML

KQML

Agenda

IN

OUT
Results

............

.............
File
Plan

Pending

Active Action

Figure 4.8: The architecture of a Decaf agent (based on Graham & Decker (2000,
fig. 2)).

After being initialized, the agent possesses a number of task templates and a

set of beliefs modeled by Javatm data structures. The objectives (goals) of the agent

are posed by incoming KQML messages. As shown in Figure 4.8, the Dispatcher

is responsible to process the messages, decide if they concern pending actions or

otherwise create a new goal and put it into the queue of objectives.

The Planner takes the objectives out of the queue, matches them against task

templates and instantiates the ones, for which there are enough provisions. Pro-

visions are given by the KQML message and by the results of actions executed.

Instantiated task templates go onto the task queue where they are taken over by

the Scheduler. There is no global task structure, holding the agent’s intentions as a

composed task network that is processed by the planner. The work of the planner

does not go beyond estimating preconditions, selecting task templates and instan-

tiating them. This makes Decaf a reactive eager commitment system without

inherent ability to dynamically anticipate future events.

The job of the Scheduler is to prune the tasks out of irrelevant actions and

to determine, which of the relevant ones may be executed right now. If there are

enough provisions for an action, it is placed onto the Action Agenda. Otherwise, the

Scheduler waits until a result is returned by an executing action. The Executor calls
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the methods denoted by actions on the agenda and returns their results back to the

Scheduler. The actions access beliefs of an agent and may send KQML messages.

The Decaf architecture was devised to provide an operating system level for

third party agent applications and as a research platform. It has been applied by

following projects (Graham, Decker & Mersic 2003):

• Virtual Food Court – small economy simulation,

• Generalized Partial Global Planning – a centralized approach to planning and

coordination in multi-agent systems,

• GeneAgent – an information retrieval system based on biological databases

from over the internet.

4.4.5 Propice-Plan

Propice-Plan is an agent architecture based on a procedural reasoning framework

called Propice. Propice – a descendant of PRS – is a commercially used prod-

uct written in C programming language. Propice-Plan extends the underlying

reactive system with two capabilities. At first, it introduces a planning component

capable of plan synthesis. The second extension is responsible for anticipation plan-

ning, a forward space search used to envision future situations and estimate best

actions to do.

The central role in the extended system plays a common representation for

operational plans (OP). All components use a textual description of plans similar

to the one used by PRS extended by an additional field representing declaratively

the effects. A simple procedure for moving a block would be written like below:

(defop |Move Block|

:invocation (achieve (on $block $destination))

:call (Move-Block-S $block:Block $destination:Surface)

:context ((test (on $block $below))

(achieve (clear $destination)

(achieve (clear $block))

:effects ((add (clear $below))

(del (clear $destination))

:body ((call $block.move_to($destination)))

Invocation describes the main effect of an OP. There may be many OPs with the

same invocation and the body part of a hierarchical OP includes invocations to

other ones. Context includes filter expressions (denoted by test), preconditions

(that may be achieved by another OP) and invariants stated over the course of

a plan. The call field is used to identify an OP, to bind its variables and to in-

stantiate it. Effects imitate the PDDL representation and include add, delete and

conditional effects. This field is required by the planner. The body may include lists

of OP invocations, conditional invocations, concurrent invocations, loops and calls

to predefined procedures.
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Figure 4.9: The interplay of execution, planning and anticipation modules in a
Propice-Plan application (Despouys & Ingrand 1999, fig. 1).

As shown in Figure 4.9 the legacy system consists of an execution module Em,

a plan library and a data base. The choice of options – presented to Em by the plan

library in response to an external event or a goal – is guided by the anticipation

module AM . The latter simulates different executions of plans, estimates their

effects and future requirements, prevents death ends and creates advices to be used

for the former.

The different simulation traces are kept in a tree-like anticipation structure,

with branches corresponding to different choices of plans and unknown results of

sensing actions. Over the course of simulation optimality criteria can be applied

and safety conditions preserved. The Am module uses the data base to create and

store dynamically the evaluated future states and links them with the anticipation

structure. On the other hand the Em is responsible for informing the Am, which

choices have been taken and which structure branches may be pruned.

Whenever the Em faces a goal, for which there are no applicable plans in the

specific situation, it must ask the planning module to produce a new plan out of

present procedures. The planner used for the purpose is attached by an interface

using the ADL action semantics. In particular Propice-Plan delegates the plan

synthesis task to the IPP planner described earlier. There are slight modifications

to the algorithm in order to preserve domain dependent safety conditions while

planning (Despouys & Ingrand 1999).

Obviously Propice-Plan composes reactive procedural reasoning techniques

with offline planning algorithms in a clean separate way, with plan library and OP

notation defining the interface. The approach has been criticized, mainly due to the

separation of planning from execution, and the anticipation module claimed to be

an overhead (de Silva & Padgham 2004). But in the domain of application (furnace
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control) it did not turn out as a handicap for Propice-Plan agents, as there was

plenty of time to plan and anticipate between the actions executed. On the other

hand, the agent had to react timely in seconds to occurrences from the controlled

machinery and could use well the advice prepared in advance by Am .

4.5 Summary

The Theory of Practical Reasoning by Bratman (1987) provides computer science

with an application adequate model of agency. It is explained on the basis of

the Intelligent Resource-bounded Machine Architecture. The BDI model offers

reactivity and efficiency of reasoning that was not given by former deductive and

deliberative architectures. The success of this model prevails up to this time in

many new implementations. Especially the Procedural Reasoning System and its

descendants use the BDI model and advance it further. Most recent systems include

Jacktm agent development framework and the Jadex BDI reasoning engine.

The architectures InterRRaP, Cypress, Retsina and Propice-Plan de-

scribed above included a planner at different points in their agent operational model.

They all had in common a declarative representation of goals, inherited from the

PRS and as simple as (test ?block clear) or (achieve ?a on ?b). This declar-

ative structured representation has the advantage of being easily processed with

standard means like unification.

InterRRaP is a layered architecture where the local planning layer may in-

clude a symbolic planner, but no details have been given in literature as to the

integration of such a planner, beside the situation-goal control cycle. Cypress fol-

lows another approach. It defines a common language that must be understood by

the PRS and Sipe-2 system. It is a top-down approach where the planner controls

the reactive system.

Propice-Plan uses an another approach where Propice (a PRS-like system)

asks a planner to create plans out of simple methods. For this purpose, the declar-

ative representation of a method is extended by a single field describing its effects.

Propice-Plan stores created plans in the plan library.

Retsina agent architecture has been devised with the notion of artificial plan-

ning as its fundamental concept. In fact, this design does not differentiate between

the PRS-like execution mechanism and the planner posed as a central component.

Both are one and the same. The representation used for plans and goals is the one

of an artificial intelligence hierarchical planner.

Decaf system claims to be very similar to the Retsina architecture. Unfortu-

nately, the author failed to find any evidence of a symbolic planner in the literature

and code of the Decaf framework. No results can be derived from this system for

the further course of this thesis.
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Chapter 5

Design

The choice of planning techniques and integration issues will be justified in this

chapter. Some aspects of the implementation are used to substantiate the view.

The chapter includes a resume on a partial order prototype that was created at the

design stage and failed the purpose of this thesis project. On the other hand, it

influenced further design and implementation and deserves a short presentation.

The questions regarding building a planner are: What it will plan for? How

states and changes will be represented and how do the goals will look like? Sec-

tion 5.5 presents answers based on ideas that fairly extend the representation applied

by planning languages like PDDL and allow to state most of the planning concepts

in Javatm.

The design of fundamental things like term representation has been done at

the very beginning of this project, as its structure was not known yet and it was

unclear how to represent and process symbolic information in the Javatm language.

Therefore, it was performed in a prototypic process.

The representation of Jadex terms, the unification algorithm and interpreter

are kept as general as possible and may be used for different kinds of reasoners.

This symbolic manipulation kernel has been divided in two packages:

• jadex.planning.common collects all common manipulation routines that are

language independent.

• jadex.planning.java contains routines and an interpreter capable to handle

the Javatm expression language.

The design of a search algorithm and a state space planner is built atop of

this symbolic manipulation kernel. The last section describes the ideas and design

choices taken in respect to the integration process of the planner and the Jadex

reasoning engine.

5.1 Related Works

Most agents including a planner have been designed and implemented with the

notion of planning in mind from the very beginning. Most architectures with strong
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emphasis on artificial intelligence include a planning component as their central

part. Such a design forces the system to use a representation of procedures, actions

and beliefs required by the planner to be stated in a declarative way. This allows to

access their description using standard artificial intelligence tools like unification.

Such an example is the InterRRaP system (Fischer et al. 1994) described in

Section 4.2. It has the notion of BDI and includes a local planning layer built upon

an hierarchical planner. The representation of procedures and goals follows that of

an HTN planner and has a declarative form aligned with planning.

Reactive systems, such as PRS, have been developed in response to the unac-

ceptable lack of efficiency presented by planners at that time. It was more practical

to write the plans by programmers and augment them with domain specific con-

trol knowledge. Nevertheless systems have been built that joined both paradigms.

This proved especially useful in domains featuring enough time for planning, like

in the example of Propice-Plan. It extends the PRS-like dMars system with a

state based planner IPP. The composition was particularly successful, because both

systems are implemented in the C programming language and the declarative PRS

notation for goals and procedures needs only to be slightly extended in order to fit

into IPP (Despouys & Ingrand 1999).

The Cypress system constitutes a marriage of a hierarchical planner Sipe-2

and the PRS system, both implemented in common lisp. Although both use fully

declarative representations of goals, methods or procedures a new common language

(called The ACT Formalism) had to be devised above both systems, gluing them

together.

There are many planners implemented in high-level languages allowing for func-

tional or declarative abstraction and easy definitions of meta interpreters. These

languages already feature most tools needed to represent knowledge and reason

about. Some of the recent planners have been implemented in imperative lan-

guages like C and most of the time showed high performance increases, mainly

because they have been compiled to machine level and are not interpreted.

There are few planners implemented in Javatm. One of them is the hierarchical

planner JShop. It is a reimplementation of Shop, which in turn is based on Lisp.

The input language is in form of HTNs notated in a declarative way and gathered

in a domain file. There is no interface between the language processing part and the

planner itself. JShop does not reflect the planning information in data structures,

but works on the underlying textual representation in a symbolic way. Using JShop

means writing all procedures in a Lisp-like manner and providing them as a domain

file. A planner compilation technique has been developed for the Shop2 system

that converts problem description from the domain file into Javatm domain specific

planners. This approach promises to yield very efficient planners, yet it restricts the

user again to state the domain in JShop specific language (Ilghami & Nau 2003).

There is a work comparing the aspects of planning in JShop and the BDI-like

Jacktm system. de Silva & Padgham (2004) found a way to recode, presumably by

hand, the blocks-world examples from JShop into Jacktm plans written in Javatm

and compared the performance in time of both systems. It was concluded that Jack

agents are faster and require less memory, even if JShop was forced to reassemble
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the BDI execution mechanism with respect to eager commitment.

The TALPlanner, a system based on the ideas of TLPlan1, has been im-

plemented in Javatm. The input language has a declarative form and the planner

requires control knowledge stated in TAL – a temporal logic language. This planner

has been written around a simple search algorithm (Kvarnström & Magnusson 2003)

and most of its internal processing actually concerns the temporal knowledge about

the domain. The sources are not available for insight to a wider audience yet.

There is a rather theoretical work concerning the mapping of BDI internal men-

tal states to a Strips-like notation and back (Meneguzzi, Zorzo & da Costa Móra

2004). This is done on an abstract BDI interpreter called X-BDI (Móra, Lopes, Vic-

cari & Coelho 1999) implemented in prolog and augmented with the GraphPlan

algorithm written in C++. The representation of mental states of an X-BDI agent

is fully declarative. The mapping is a structure transformation of beliefs, desires

and intentions into a propositional notation that is used by the planner so the beliefs

and actions must comply with the Strips domain representation.

5.2 First Approach

At the beginning the diploma project aimed at the development of a full symbolic

planner, based on the partial order hierarchical representation. This proceeding

was supported by modern textbooks on planning2. The idea was to use the planner

and reason about BDI goals and plans and provide compound plans out of this

basic components. In particular, all Jadex goals include the context and drop

conditions and – what is more interesting – achieved goals may carry a target

condition. Augmented with preconditions taken from plans referring to these goals,

an abstract strips operator could be created as a tuple < g, p > consisting of the

goal and the referring plan, for each of two. This representation could be fed into

the planner in order to create chains of these abstract operators.

Chaining of methods with help of preconditions and effect conditions may be

seen in the PropPlan system. The developers of PropPlan had the advantage

of provided propositional representation for goals and plans, given by the PRS

representation of procedures. The goals in PRS have the form of a proposition

as simple as (achieve clear x) and conditions are simple conjunctions of such

propositions. The domain of furnace control provided the planner with enough

time to create its plans. The planning component could use about eight hours for

this purpose (Despouys & Ingrand 1999), so optimum planning speed was not a

concern here.

Some problems arose by the application of this approach to Jadex architecture.

First, almost no example of Jadex application domains used a precondition for the

plans, so this approach would not scale backwards. Second, the expressions used

in goal target conditions, have been far more complex than expected and a simple

attribute variable state representation commonly used by planners would not suffice

1A winner of the International Planning Competition 2002.
2Russell & Norvig (2003).
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to reason about it. The target conditions would have to be stored in a planning

database – one for each planning step – in their original form, as structures prone

to unification. Additionally, a meta interpreter had to be implemented to handle a

lot of cases like

battery == 1.0 =⇒ battery <= 0.5

in a generic way. This proved to be difficult in language like Javatm and not efficient

at all. The means and tools for this type of symbolic reasoning have been provided

in the early stage of the diploma project and are partly used by the new design.

Third, many of the condition expressions heavily used calls to functions imple-

mented in Javatm and compiled to Javatm byte code, which representation was not

accessible to the planner and certainly not open for efficient reasoning with. Al-

though, there is an implementation of a Javatm interpreter provided by the diploma

project, it was surely not the concern here to provide a new Javatm virtual machine.

This negative result is also due to the complexity of partial order planning and

due to the complexity of reasoning with full blown Javatm language like structures,

which required the use of costly unification and reflection at many points of the

planning process. After testing this first approach the author deleted most of the

sources because of the poor performance. The project continued with investigation

of more successful recent techniques in use.

5.3 Rationale

Due to the affinity with the BDI model of practical reasoning, PRS-like systems work

with the eager commitment principle using ordered decomposition and replanning

on failure. On the other hand HTN planners work using the least commitment

strategy because of the partial order representation. The former ones work well

in domains with retractable sequences of actions or where knowledge about best

practice can be well encoded in plans by the agent designer. In domains where

effects of actions cannot be easily retrieved or the agent must limit its try and error

behavior, the best sequence of actions should be known in advance. The limited

capability of foresight given to a BDI agent and the impossibility to provide all

plans needed for the future at the point of creation compels the agent designer to

revert to means-end reasoning techniques.

The planner implemented into the Jadex system has been guided by the recent

development in the planning community. The idea was to take leading planners

demonstrated at scientific planning competitions like the International Planning

Competition and construct a planning kernel based on the ideas that allowed them

for the accomplishments. This approach had particular advantages:

• The planners have been practically tested on standardized planning examples.

• It may be assumed that extraordinary performance indicates the right choice

of planning algorithms.

• Only planners that are easily expandable and adaptable to new domains can
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participate and face new challenges posed at all times to planner developers

by successive competitions.

The argument for a knowledge controlled planner is quite intuitive one. The

most successful problem solvers known up to date do not possess a universal ca-

pability to solve any problems from the very beginning, but must acquire lots of

domain knowledge in a long process of learning. Again, taking under the scope

static plans used in PRS-like systems are all very domain dependent and contain in

their principle procedural knowledge, which is directly coupled with the domain of

execution. It is assumed that providing control knowledge for the planning domain

is only slightly more costly than stating it in the procedures or BDI plans.

Currently there are two successful approaches to planning that strongly build

up on the domain knowledge. HTN planners include – beside the operator precon-

ditions common in every planning representation – also a lot of knowledge stored

in the methods guiding the decomposition of higher level actions. Forward search

state space planners like TLPlan use domain knowledge in their control rules posed

over the course of actions that may be aligned in the plans created.

The system implemented uses the second approach, as it has proved to be easier

to implement. Additionally, the state space approach seams to be more intuitive

for the type of imperative languages, because it works directly with the concept of

state and concerns its manipulation in a way similar to the imperative programming

paradigm. Also this choice derives from the fact that Jadex – as most other PRS-

like systems – already includes a very simplified hierarchical planner. This thesis

seeks to extend the system with a planner and not to reinvent the PRS algorithm

at stake.

The approach taken in Retsina felt out of the thesis scope, due to the same

concern. In Retsina a complete HTN planner has been taken as one of the cen-

tral components from the very beginning and modified to provide more reactive

behavior, without the loss of foresight and the capability to create dynamic plans

in advance.

The solution presented here is quite the converse of the one in the Cypress

system. Cypress has an upper planning layer handled by the Sipe-2 planner and

a lower layer providing reactive and execution capabilities handled by the PRS sys-

tem. From the view of a programmer, there must be knowledge provided in form

of decompositions for the planner and for the PRS system. The plans created by

Sipe-2 are simply viewed as a chain of top level goals in the PRS. The declara-

tive ACT Formalism is a simple convenience wrapper for the programmer, so both

underlying formalisms from Sipe-2 and PRS do not need to be considered and

learned.

The approach here cannot take an advantage of common declarative represen-

tation for procedural and planning knowledge as most of this knowledge is compiled

into Javatm byte code. To use a hierarchical planner like JShop above the reactive

PRS reasoning algorithm would require the user to write method decompositions

in Lisp-like code, which conflicts with aims of this project. On the other hand, the

planner developed here may be applied at any level in the goal execution hierar-
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Figure 5.1: The dynamic plan created at runtime from planning operators (op) can
be instantiated by a subgoal (sg).

chy. Most notably it may create plans that directly manipulate the beliefs at the

lowest level of execution or it may create plans that spawn sub-goals and evoke a

hierarchical execution process.

As described earlier, the method chosen here is based on a simple state space

search augmented with domain knowledge. This approach is quite intuitive for a do-

main modeler operating with imperative languages. The states, to which operators

are applied are always fully specified with respect to object attributes and variable

bindings. Further, this method has been thought to function as a supplement to

the hierarchical goal-oriented execution model presented in PRS-like systems. The

high efficiency of this method allows to use the planner at the lowest operational

level directly induced by sub-goals created from static plans and procedures. This

approach is illustrated in Figure 5.1. The name dynamic plan derives from the fact

that the operators do not form a precompiled sequence in advance, but are aligned

at runtime to achieve the goal posed.

Contrary to the idea taken by Propice-Plan where plans created by the plan-

ner are stored in the plan library, the approach here does not preserve dynamically

created plans to use them in the future. This may be supported by the fact that

the plans are crafted for a special situation and target and it is difficult to adapt

them to new planning problems. The other argument is of pragmatic nature. If a

problem and solutions to it are of general nature and the plans may be reused, the

agent programmer is certainly more capable to write a static plan and store it in

the plan library. With dynamic plans for infinite domains the plan library would be
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over flooded by plans created for every possible planning problem, most of which

would never be used again.

The planner implemented here provides planning, scheduling and simulation

capabilities to the Jadex system without loss of performance and effectivity. It

works supplementary to the reactive and goal-oriented capabilities of the surround-

ing BDI system. On the other hand, the choices taken here commit to the truth that

there are no homogeneous AI planing systems in practice and theory – known to

the author – that would be capable of handling long term and strategical planning

in dynamic environments.

5.4 Overview

The design of the planning component is centered around the concept of the domain

description and the planning algorithm itself. Figure 5.2 shows a static UML model

of the component and its relation to Jadex.

The domain description is created out of the attributes and parameters speci-

fied in the ADF MPlan element. This is only done if the corresponding plan is of

the dynamic type. The description contains all static information needed by the

planner. This includes the operators, objects, heuristics, operator instances (ac-

tions) and attribute specifications for the objects. The information is extended,

every time a new planning process is started.

The operators and object attributes are introduced to the description as a

character string. They are stored in form of terms and term instances and used

to create actions and retrieve the attribute values from objects at runtime. For

this purpose, the description resorts to the symbolic manipulation kernel JNPU. It

provides a Javatm parser and interpreter. In order to prevent multiple occurrences

of attribute specifications and operators, the unification and structure comparison

procedures are used.

The planning algorithm extends the abstract concept of search and provides it

with the goal function (isSolution()) and the neighborhood relation (expand()).

It works on a state structure specified in the concept of a planning Step, which

derives from IndexState and HashScope implementing the attribute-value and

variable-value mapping functions.

The initial step is created out of the description and the current object-level

model. Each following step has a parent, an action, a heuristic estimate and sibling

steps associated with. An explicit time attribute spares a variable for time concerned

domains. Each step has a goal stack, with the active goal on top. The stack is

initialized at the start of the planning process and is modified by the planner and

actions.

At runtime the DynamicPlan takes the role of extending the domain description

with data from dynamic domains and creating a planner instance. It provides the

planner with the initial state. Plans extending DynamicPlan should implement at

least the setupPlanner() method and create the initial goal stack. Other methods

are used to monitor the progress of the planner and plan execution.
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Figure 5.2: Overview: design and integration of the planner. Plan and MPlan are
the runtime and model classes from Jadex.
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Operators, heuristics and planning goals require a setup method. It is called

after the instantiation, with domain description as an argument. The method can

customize the instance with respect to the domain and perform changes to the

description. It may also throw an exception in order to inform that the instance is

invalid and should be removed.

5.5 Representation of Concepts

For the purpose of planning the application designer has to devise an additional

level beyond the knowledge level containing models of objects and processes of the

domain. The planner needs a simulation model derived from the objects available for

planning. The meta-level model includes relevant object attributes and an abstract

description of changes done by processes.

5.5.1 States

There have been several requirements posed on the representation of planning ob-

jects state. The planner must evaluate an immense number of possible solutions.

In the worst case, this number is exponential in the length of plans created, with

the power factor determined by the branching factor of the planning process in the

domain. On its way, the number of states is multiplied again by the length of a

given solution. The last factor cannot be reduced by control knowledge constraints.

These virtual states, called since now meta-level states, need to be easily copied or

derived from the predecessor. This poses requirements on the speed of state copy

operations and the space a single state can take. Every state can be seen as a simple

data base storing variable and object-attribute assignments.

Due to the fact that the planner has to plan with generic, not special crafted

objects created by the agent designer in order to hold agent beliefs, it is not possible

to work directly with the data modeled within. The planner holds many different

and slightly modified views (meta states) in its partial solution agenda. It would

be fatal if the views were composed from the original objects contained in agent

beliefs. The notion of a meta state aids this problem by copying the state of each

object into a meta model that is separated in each view and allows manipulation

without conflicts.

The idea of cloning each object in every meta state for the merit of preserving

the attributes of the original one would constrain the domain modeler to provide

only lightweight objects containing attributes interesting to the planning domain

and implement a clone function in each of them. It is not always possible and

desired and that is why the planning component provides and works with a generic

solution to this problem provided by IndexState3, which is in principle an indexed

mapping of object-attribute pairs to corresponding values using hash tables.

In common planning systems based on symbolic representations objects are

referred by simple names (i.e. block107) and do not carry any information within.

To access objects from IndexState object references as provided by the Javatm

3jadex.planning.db.IndexState
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virtual machine may be used. This spares programmer from a solution with virtual

IDs. Unfortunately, there is no simple reference mechanism in respect to object

attributes, beyond the inefficient java.reflection API. The idea presented here

allows to access individual attributes by an attribute index number that must be

registered at domain creation (cf. sec. 5.8).

The primary meta state used as the start point of the planning process is

automatically generated from the beliefs of an agent as stated in the dynamic plan’s

<domain> elements in the ADF. Apart from object attributes, the state also contains

the belief name to belief value bindings taken from the belief base.

Each step of the planning process includes a goal stack. The idea here is

used in a new genuine way. Instead of one stack of goals that is processed by a

planner, every branch of the planning process includes its own goal stack. In this

way, the planner is able to simulate the hierarchical decomposition process or aid

the planning search with an island approach reducing the planning complexity. A

simple ordered hierarchical planner may be simulated by reflecting decompositions

as lists of goals and pushing them onto the stack. After a subgoal is fulfilled it is

automatically popped up from the stack by the planner and the search may continue

towards the next subgoal on the stack. The search finishes, when the goal stack is

empty.

5.5.2 Goals

The classical representation of goals assumes a goal to be a set of propositions that

must or must not be true in the goal state. Thus goals are simple conjunctions

of propositions like at(robot, position11). This is insufficient if the domain con-

tains continuous dimensions and the goal requires the state to fulfill constraints

being functions of factors stated upon these dimensions. Again, the goal may be

achieved in many ways, mirroring its quite disjunctive nature. At last, there are

goals that may require conditions being kept over the whole course of actions and

states occurring in the plan.

IndexGoal4 provides an easy facility to implement conjunctive goals represent-

ing conditions stated over the attribute-value representation. It is based on the

same idea as the meta-level state used for simulation and it is indexed by objects

and their attributes.

On the other hand, it is easy to implement all kinds of goals mentioned above,

as the code testing for satisfiability is pure Javatm and has access to all actions and

states included in a plan. This facilitates complex temporal conditions to be stated

as goals and the use of full expressive power given by the Javatm programming

language.

The view of a goal as a function yielding a boolean value reflecting if the goal

has been reached or not, is held here to be insufficient. Humans generally use a

measure of achievement to guide their actions that is tied down to the goals. This

measure may be given by the distance to a particular goal or number of sub-goals

to be achieved. It is important to measure the progress of own conduct. In AI

4jadex.planning.IndexGoal
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planning this measure is commonly referred to as heuristic. This thesis introduces

an object-oriented view of a goal where the heuristic, being an achievement measure

of the goal, is directly provided as one of its methods.

In Jadex goals do not possess an explicit measure of achievement. In achieve

goals the target condition describes a boolean function, stating the matter based

on agent’s beliefs that the goal has been achieved or not. To compare it to the

classical planning representation above, an achieve goal is given in the Jadex ADF

notation by:

<achievegoal name="Go">

<parameter name="position" class="Point"/>

<targetcondition>

$beliefbase.position.distance($goal.position)&lt;5.0

</targetcondition>

</achievegoal>

Jadex allows to state conditions that include continuous factors and functions,

but there is no provision to state temporal properties of plans executed for the goal

nor is there a way to provide a measure of goal’s achievement.

The jadex.planning.PlanningGoal permits the domain modeler to encapsu-

late all this knowledge including the measure of achievement, into the goal. The

following code taken from GoGoal5 illustrates the way it is done:

public double getEstimate(Step step) {

if (step.getTime()>deadline) return Double.MAX_VALUE;

Point spos=(Point)step.get(POS);

double dx=gpos.getX()-spos.getX();

double dy=gpos.getY()-spos.getY();

if (dx<0.0) dx=-dx;

if (dy<0.0) dy=-dy;

if (dx+dy<=3.0) return 0.0; // almost there

return UNIT * (dx+dy);

}

The returned measure is the Manhattan distance between goal position gpos

and current planning state position spos. There are two absolute values with special

meaning returned by the measure function. 0.0 signals that a given goal has been

achieved in the current planning state and corresponds to the true value returned

by classical and Jadex goal predicates. In the example, it is the case when both

points – the destination and current one – are not separated by more than 3 pixels

in Manhattan distance.

The Double.MAX VALUE constant is returned if the goal cannot be achieved

with the specified plan prefix and the planner should abandon this planning trace

5jadex.examples.storehouse.robot.GoGoal
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at this point. The code above returns this value if the plan prefix extends beyond

a specified deadline as stated in the goal. One obvious dilemma with a distance

measure is that the values returned by goals and heuristics in a given planning

domain must carry the same unit dimension in order to stay comparable.

The reason for melting the heuristic function6 with the goal predicate lies in

the observation that most of the time both rely on the same computation. Thus

one function prevents the duplication of code used to model the planning domain.

Apart from the properties described above, modeling goals in an object-oriented

way has at least two advantages. First, the goal may not only include attributes

describing its properties, like destination or deadline, but it also may contain aux-

iliary data used by the domain knowledge to store data controlling the search in

the planning process. Second advantage is of software engineering type. The goals

modeled as class instances can directly derive from each other inheriting attributes

and code. Additionally, operators written to cope with one class of goals may be

applied to all subclasses of this goal. Further, it is easy for the programmer to

create new types of goals assumed necessary for the application. The agents are

not restricted to only a bunch of parametrized types provided by the system.

5.5.3 Changes

Changes in the world are modeled as parts of actions. Object-oriented representa-

tion uses the concept of method to communicate a change request to the object of

concern. This has an advantage for the modeling of processes, because changes de-

noted by method calls are always local and encapsulate the recipient within the call.

Thus, a simple method call is described by an instance of action class belonging to

the meta language spanned over the domain model represented by objects and their

relations. This allows to provide additional information for the reasoner including

abstracted preconditions and postconditions of the given methods. It may include

control knowledge used to estimate the applicability of the method in simulated

meta states as well.

The change is represented by an operator in the same way as it is done in

classical planning. The operator is divided into three parts. The first one is a

setup code invoked on every operator so it may register its properties and object

attributes it works on. This is done by every instance of the operator. The second

part operates on the meta state. It tests the applicability of the operator using

control knowledge provided by the domain designer and applies the changes to the

meta state. The third part is a direct invocation of the operator on the beliefs of

an agent that is done during plan execution.

The code in Figure 5.3 is taken form the Move operator of the Blocks–World

domain. It represents the control knowledge together with the application code.

The first line tests if the goal pursued in the given meta state7 is of the class

RestackGoal. Following lines test if the block will be moved to the same location

where it is placed. If the block is barred by something else and if the block already

6A measure of achievement or distance to the goal.
7Named here Step because it constitutes a step in a plan.
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public boolean applyTo(Step st) {

if (!(st.getGoal() instanceof RestackGoal)) return false;

RestackGoal goal = (RestackGoal)st.getGoal();

Block from = (Block) st.get(DOWN, block);

// control knowledge

if(from == to

|| !st.isTrue(CLEAR, block)

|| good_tower(st, goal, block)) return false;

if(to != null && // the block will be stacked atop another

(!st.isTrue(CLEAR, to)

|| !to.equals(goal.get(block).down)

|| !good_tower(st, goal, to))) return false;

// application

st.set(DOWN, block, to);

if(from != null) st.setTrue(CLEAR, from);

if(to != null) st.setFalse(CLEAR, to);

return true;

}

Figure 5.3: The control knowledge of the Move($block, $to) operator.

constitutes a good tower, so it is not wise to unstack it. In any of these cases the

operator will not be applied. Further if the destination is not a table (to!=null),

it must be tested that the destination is clear, that it is the same as required by

the goal and the destination must be a good tower that will not be dismantled in

the future.

This code obviously interleaves common preconditions found in planning oper-

ators with the control knowledge – seen here as an advanced form of a precondition.

Such a notion of precondition control knowledge is described by Bacchus & Ady

(1999). In the planners controlled by temporal knowledge it must first be analyzed

and transformed into precondition control in order to be applied in an efficient

way (Doherty & Kvarnström 2001). The solution presented here is more intuitive,

because the knowledge is directly provided in the precondition part of an operator.

The application code illustrates two conditional effects. Generally, an opera-

tor may contain any type of effects, including conditional and quantified effects,

functional temporal relations and even goal manipulation.

In planning systems operators may be stored in form of lifted, not instantiated

expressions or they may be partially bound or fully grounded in form of actions.

Taken the fact that Javatm does not allow any partially instantiated objects, the

operators may be stored as a class reference, a string describing their constructor

or as an instance of this class. The last solution is used here. There are several

advantages to have all operators fully instantiated.

First, the constructor may signal that the variable binding presented to it do not

make sense by throwing an exception and prevent a creation of an action. Second,
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the planner knows the number of available actions in advance and does not need to

access the interpreter to instantiate new operators at the simulation and planning

time. Third, all actions may be referred by Javatm technical reference, which offers

a better performance.

On the other hand, the number of parameters or variables an operator can be

bound to is limited. The number of actions that must be created and tested at the

domain initialization phase, is of O(o · ip) where o is the number of operators, i –

the number of objects in the domain and p – the maximum number of parameters

for an operator.

Special care must be taken not to equip operators with too many parameters.

I.e. the operator Move($b, $from, $to) can also be modeled as Move($b, $to),

because in the forward state space search it is always known where the block $b is

placed on. One could also split the operator into Pickup($b) and PutDown($at)

in order to further reduce the number of actions.

5.6 Symbolic Processing

This section describes the design of term processing tools used for symbol manipula-

tion and reasoning by the planner. It describes the basic fundamental representation

of terms, the parser transforming Javatm expressions into such terms and a bunch

of other tools used to compare and reason with them.

5.6.1 Term Representation

The terms used to represent expressions from the processed language are stored

in tree structures. There are different kinds of nodes representing these structure

elements. Every Node has an interface requiring it to have a type and optional child

nodes.

The type attribute is used as a form of run time type identification. It bypasses

Javatm‘s own type system i.e. the type of a node is different from its Javatm class.

Using an explicit type attribute greatly speeds up the node processing allowing

the use of switch constructs. This solution is responsible for less than 10 classes

implementing the Node interface.

Most terms created by the parser and other term processors do have a final,

not mutable character. This allows to store a fixed number of child nodes in their

parent node. The convenient way to store these child nodes is to put them into an

array. Leaf nodes representing final nodes in a tree do not allocate such an array

at all.

The term constructors are placed, away from the node representation, into a

separate NodeFactory containing a factory method for every node type. Any other

term sub-processor implements some functionality separate from the actual node

representation. This design diverges from the object-oriented programing paradigm

in favor of flexibility, clarity and scalability.
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5.6.2 Java Parser

The parser for right hand expressions of Javatm and the OQL-like language has

been developed using JavaCCtm – a Java Compiler Compiler8. JavaCCtm is a

generator for top down LL(1) parsers. The ability to include token, syntactic and

semantic lookaheads allows to extend the languages available for parsing to the

LL(k) language family. At the input of language grammar and lexical pattern

specification JavaCCtm generates Javatm code output including the parser and a

lexical analyzer.

In order to build up syntactic trees like the term structures described above, the

programmer has to interleave the grammar with semantic actions being in principle

Javatm code that creates the trees. There are at least two tools for JavaCCtm to

do this automatically. JJTree comes with the compiler compiler and has been

used to produce syntax trees for the general Jadex system. Unfortunately, the tree

structures produced by Jadex parser were not designed for the purpose of symbolic

manipulation including unification and structure transformation, which is required

in the process of reasoning. Jadex structures include code, both for a precompiler

and for an interpreter used by the Jadex system and therefore they bear much

more weight than the term representation described above.

JTB9 is a separate solution that creates syntax trees using the Visitor Pattern

for manipulation. Although this tree generator tool seams to provide an elegant

solution, after some time experimenting with it, the author turned to a much simpler

own approach. The Visitor Pattern used by JTB has two disadvantages. First, with

the growth of processing functions, predicates and procedures that may be applied

to the tree nodes, the node interface grows – requiring an entry for each type of

processor and number of arguments. On the other side, with each node type all

visitors and their interfaces must be enhanced by procedures handling this node.

Second, it is quite inefficient to use this visitor pattern, as it requires at least two

virtual calls – one to the node and one back to the visitor – that cannot be well

optimized by a compiler and generally take hundreds of times longer than a simple

switch construct.

The code generating term structures is directly placed among the grammar

rules provided to JavaCCtm. This code heavily uses help classes like ParserUtil10

and a node factory in order to reduce the size of the grammar file and keep grammar

rules clean. The lexical analyzer Tokens are capable of parsing long, hexadecimal

and octal numbers as well as unicode escape characters.

This approach yields quite lightweight syntax tree structures that are used

by components like precompiler, interpreter, unificator, normal form transformer,

substitution and structure comparison.

8https://javacc.dev.java.net/
9Java Tree Builder: http://compilers.cs.ucla.edu/jtb/

10jadex.planning.java.parser.ParserUtil
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5.6.3 Unification

Unification is a basic operation working on a set of terms. Speaking informal two

terms unify if they are similar in their structure and their variable bindings corre-

spond to each other. Unification may be used i.a. for theorem proving or pattern

matching.

The unification algorithm used here owes greatly to the linear unification al-

gorithm by Henckel (1993). The data structure manipulated by it is an array of

VarBindings containing the variable binding for every variable of a given term. The

variables of a term can be bound to a term instance being basically an aggregate of

a term and the related binding. It can be bound to a chain of variables where all

the variables are unified, or it can be bound to a Javatm Object, which is a shortcut

saving a node wrapper around this Object.

Given two term instances defined by term roots and variable bindings the algo-

rithm returns true if the term instances unify or false in the other case. As a side

effect this algorithm changes the variable bindings of both term instances. Please

see Appendix A.1 for the corresponding pseudo code.

5.6.4 Interpreter

The Javatm interpreter SEvaluator11 derives from a simple node processor. It

extends the processor with the ability to evaluate terms with variable bindings and

within a scope of evaluation. The last provides bindings for variables that are

unbound in a given term instance.

The processor contains a simple aggregate value A called accumulator. The

code working on this accumulator is a simple switch construct that takes the input

term structures and creates in a bottom up manner a value. It is guided by the

types of term nodes. The code below illustrates this approach:

protected void process(Node node) {

[....]

switch(node.type()) {

case CHOICE:

process(n[0]);

if (A.isTrue()) process(n[1]);

else process(n[2]);

break;

case NOT:

process(n[0]);

A.negate();

break;

[....]

}

The CHOICE command corresponds to the Javatm expression a?b:c. If a is true

return the result of b and in the other case c. The NOT command corresponds to

11jadex.planning.java.npu.SEvaluator
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Figure 5.4: Term processors and transformers and their relation to each other.

boolean negation. The interpreter simply asks the accumulator to negate its value.

The children of a term node are stored in an array accessed by their index. The

CHOICE node has three children, the NOT node only one. The use of a single value as

an accumulator has the advantage that the fundamental process of evaluation does

not produce new objects for each operation and thus, stays less memory intensive.

In case of some variable being undefined or if an expression does not make any

sense, the VoidValueException will be thrown in any part of the interpreter code

to indicate to the structures above that a sub-expression below yields no value.

The VOID value represents no value, like returned by a void function. Normally, a

Javatm programmer does not need to care about something nonexistent, but in an

interpreted program it is useful to handle and reason with undefined entities in an

appropriate way.

Most of the other procedures and predicates defined over term structures use

a kind of processor to evaluate and compare parts of this structures. This is il-

lustrated in Figure 5.4. The Accumulator is a modifiable Value that holds float

and integer basic registers to operate on them. The Processor operates on a sin-

gle Accumulator. RProcessor is a processor that may access Javatm objects using

reflection. The Evaluator possesses the ability to use values bound to variables of

a term and SEvaluator lookups the values of variables in a scope in the case they

are not bound in the term instance.

The Transformer is a basic super class of all node transforming utilities. It
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Figure 5.5: The search algorithm and its relation to search strategies and the state
space planner.

uses a processor to retrieve the value of a sub-term, an equality predicate to com-

pare terms based on their structure and a node factory to produce new nodes.

Replace is a simple substitution on variables given by bindings defined in a scope.

RPrecompiler analyzes the term structures and produces simplified ones. It uses

Javatm reflection to access object values. DNFTransformer produces a disjunctive

normal form of Javatm expressions if it is possible.

All of the tools working with term structures and instances including a parser

and a pretty printer are composed into a single unit called NPU12. It owns to the

Facade Pattern13 and presents a simple functional interface to all of the tools men-

tioned. For the Javatm language subset supported here, the instance in use is of the

type JNPU.

5.7 Search Algorithm

The search is a functional wrapper around the search strategies. It allows to se-

lect and setup the strategies and includes common code performing the search.

Search14 is an abstract class thought to be extended. A single method called

step() should be called repeatedly until it returns a solution. To determine if an

object is a solution, the deriving sub-class needs to implement the virtual method

isSolution(Object obj). The search must also be given the neighborhood rela-

tion defined over the object of the search domain. This is done with the virtual

method expand(Object obj), which returns all neighbors corresponding to a given

object.

12An acronym for Node Processing Unit.
13Gamma et al. (1995)
14jadex.planning.search.Search
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Figure 5.5 illustrates the relation of Search to the strategies. Any search can be

performed using the Greedy, Global, Depth and Breadth strategy. The difference

among them is exemplified by the number of partial solutions considered and the

order they are chosen to be expanded. Greedy search only considers one object at

a time. Depth and Breadth store the objects in a double linked list that is accessed

at the beginning or the end. Global search stores objects in a set implemented

using a balanced tree. The objects are sorted with help of a comparator.

The search algorithm asks the strategy for the best partial solution so far. Then

it tests if the specified object is a solution. In this case it will be returned. Further,

the neighborhood of this partial solution is presented to the strategy and the search

may be continued. If there is no object left to be expanded, the step() method

throws an exception. The code for this function is given below:

protected Object step() throws SearchException {

if (strategy.hasNext()) {

Object head = strategy.next();

if (isSolution(head)) return head;

Object[] neighbours = expand(head);

strategy.addAll(neighbours);

return null;

}

throw new SearchException("Search reached a dead-end.");

}

In its basic form the search may be given a set of taboo states. It is common

to use a taboo list or visited state list by search algorithms to prevent cycles in the

search space. With an abstract concept of a taboo set the user may specify any

regions of the search space that should be avoided. This set is expanded in the

process of search by states visited. Again, the user may choose what to do with

new visited states added to the taboo set.

5.8 Domain Description

Any planning process needs a description of the environment where the plans will

be executed. It includes a number of objects in the domain and actions used to

manipulate them. The choice of a heuristic planner allows to state in the domain

descriptions any heuristics that would help the planning process. These generic

heuristics may be seen in the context of this thesis as optimization criteria posed

over the planning problem. Heuristics may also be used as safety and liveness

conditions to be enforced over the plans generated.

The operators are presented to the domain description as a string indicating

the constructor of the operator class. The invocation includes variables denoted by

$ that may be bound to any object. Every time a new operator is added to the

domain description, actions are instantiated using the constructor and specification

of variables, which are bound to any object already present in the domain including
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the null value. On the other hand if objects are introduced into the domain

description, they are tried as arguments to the constructors and used to create

new actions.

Activation of actions. The domain contains a mapping from objects and vari-

ables to a lists of actions used further by the planner to optimize the choice of

operators at each planning step. Actions subscribe to objects and variables they

are interested in and are activated whenever object attributes change or the variable

is bound to another value. By default an action should subscribe to all objects and

variables it uses in its preconditions. Actions can also explicitly inform the search

that conditions regarding an object or variable have been changed. An action can

also request to be always activated, independent of the conditions in the domain.

The activation change cycle is illustrated in Figure 5.6. The actions are acti-

vated by changes to objects and variables where they subscribed to. In the next

step the preconditions and domain knowledge are applied to filter out actions not

applicable in the current state of simulation. Thereafter a new simulation step

is created and effects of actions are applied to it. Every step has annotated the

changed objects and variables in order to activate actions in following steps.

Static vs. dynamic domains. The number of operators and heuristics may

be stated in advance and remains constant through the time line of the domain

description, which is the life time of an agent. On the other hand, there are domains

where objects do not retain their original state and where the number of objects

varies with time. It is a natural application for a planner to operate in domains

where object attributes change. If objects would not change, a plan could be devised

to suit the domain all the time.

Most planners start with a description of a domain that is static and generate

a plan for it. The term dynamic domain refers to the ability of planners to reason

with changing number of objects generated or destroyed at the planning time. Con-

sidering this convention, the domain descriptions presented here may only contain

semi-dynamic sub-domains. The feature to handle changing numbers of objects at

the planning time can be simulated using variables in the same efficient way like

the use of changing resources.
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The term dynamic domain refers here to the fact that the planner needs to

create plans again and again while its beliefs change. Therefore, the domain de-

scription may contain subsets of objects that change each time the planner is asked

to create a new plan. For each of such subsets the domain description is regener-

ated. This is done by cloning all static parts of the domain description and inserting

objects from dynamic parts. Clearly if all object subsets are marked static, there is

no need to instantiate new operators and update activation lists (described above),

which yields a performance advantage.

5.9 Planner

As can be seen in Figure 5.5, the planner derives directly from the Search and

reflects in this way the fact that it is a form of search. The only special method

is the state expansion procedure. All other functions are simple wrappers around

the methods of the search. In the setup method the planner does not provide the

search with a taboo set. This is done intentionally, as for most planning spaces it

is difficult to define a generic notion of equality15. In the plan method the solution

is returned in form of a reversed order vector containing all steps of the plan.

The expansion procedure is illustrated in Figure 5.7. The initial planning state

(initial step) is created out of descriptions of sub-domains and the current variable

binding. The planner expands the first step trying all actions for their applicability.

The next step is expanded in a more elaborate manner. First, all actions are tried

that have been successful in the previous state. This actions created sibling states

and it is assumed that their preconditions and control knowledge will still render

them applicable in the current one. For this purpose every state – after an action

15”On those stepping into rivers staying the same other and other waters flow.” (Heraclitus,
600BCE)
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has been applied to it – is augmented by an array of states created in the same

expansion phase. After this array has accomplished its duty, it is erased in order

to reduce the inter-linkage of object references in the search space and improve

garbage collection. Second, actions are tried that registered their interests in object

or variables changed in the previous state. The planner simply asks the domain

description element for this activation relation, which is stored there in an explicit

manner. Third, there are actions, which are always activated. They are tried at

last.

A new step is added to the planning search agenda after an action is successfully

applied to the previous one. However, before they are included into further search,

heuristics are used to rate the new step. If a step fulfills a goal, as indicated by the

goal achievement measure, this goal is removed from the goal stack of that step. All

new steps that survived this expansion process, are collected in an array of siblings

that is later referenced by each of these steps.

5.10 Integration with Jadex

The planner is integrated into Jadex in a bottom-up approach using the moni-

toring and replanning approach. It follows the ideas and argumentation presented

above and motivates an integration design, in which the planner takes over the do-

main specific reasoning part and the BDI system performs control, monitoring and

reactive tasks.

The integration requires an extension to the model and runtime parts of the

Jadex core system. In order to reduce interference only the MPlan16 element of the

model is modified. The runtime features of this extension are placed in a sub-class

of Plan17 called DynamicPlan to reflect its dynamic nature.

5.10.1 Model

The Agent Description File allows for flexible definition of agents and their prop-

erties. This advantage can be used for the specification of planning domains and

problems. The XML representation of a dynamic plan is an extension to the Jadex

representation of static plans stored in the model. Figure 5.8 illustrates this con-

duct. The model element for static plans is augmented by the sub-elements: domain,

heuristic and operator.

With the domain element the user may specify several sub-domains of objects

used by the planner. This objects may come from beliefs, goal parameters or plan

variable bindings. They are used in the domain description element to instantiate

actions. With the static attribute set to true in the ADF element it is stated that

objects in this sub-domain do not change in attributes and number in a degree that

would require to regenerate actions concerning these objects.

The heuristic element specifies any heuristics that may be used to aid the search.

The content is a string that describes the constructor. Heuristics are instantiated

16jadex.model.MPlan
17jadex.runtime.Plan
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Figure 5.8: The plan concept form the Agent Description File notation is extended
by the features: domain, heuristic and operator.

the first time a dynamic plan of this kind has been created and are used further for

any successive dynamic plans.

With the operator element any operators are specified that should be used

by dynamic plans. The content describes the constructor of the operator as a

lifted expression. Actions in domains, which contain dynamic sub-domains, are

instantiated every time the dynamic plan instance is created.

Options. There are three options controlling the simple search algorithm of the

planner (cf. fig. 5.9). These options are reflected in the extended attributes of the

ADF plan element.

The choice of search strategy determines directly the trade-off between speed

and plan quality. Only two of the four strategies are interesting for the planner.

The depth first search places emphasis on the speed of planning and is useful for

problems like the blocks-world domain with many acceptable solutions. The agenda

limit determines the backtracking memory for the planner and may be chosen to be

arbitrary large, as it only determines the space requirements of the algorithm, but

not the speed. For complex problems with few solutions the agenda limit parameter
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determines the completeness factor of the depth first algorithm.

The global search strategy is different from local strategies like depth first

search. This fairly flexible strategy allows to control the trade-off between speed

and optimality using the size of agenda. The speed seems to be proportional in the

size of agenda for domains like blocks-world.

strategy

greedy Uses a form of depth first search, but without an
agenda and backtracking.

depth Appends the nodes from the current neighborhood to
the end of agenda after sorting them in the order based
on their heuristic cost.

breadth Like above, but the nodes are perpended.

global The nodes are inserted into the agenda in the ascend-
ing order based on their heuristic cost.

agenda 1–N agenda is the list of states that are remembered by the
search to be expanded when they become interesting.
The list is limited by the memory constraints of the
system. The nodes at the end are pushed out of the
agenda if the limit is reached. Setting this to 1 forces
greedy search.

time-limit 0–N specifies the limit of milliseconds that should be used
for planning. If this limit is reached, the planner fails
to find a plan.

Figure 5.9: Planner Options

The model embodies a planning domain description constructed out of the

elements and parameters given in the ADF. This domain description is created the

first time a dynamic plan instance requests it. The description contains all operators

and static domains. All actions instantiated from operators using objects contained

in static domains are also included. The heuristics are handled as static elements

and instantiated only once.

5.10.2 Runtime

In order to come into favor of planning, the plans stated in ADF must derive

their body form the class DynamicPlan. The dynamic plan has been designed as a

normal Jadex plan going through two phases. The first being the planning phase,

the second being the execution phase.

At runtime a clone of the domain description is generated and populated with

objects from the dynamic sub-domains, if any. Then an instance of the planning

processes is created. This new planner requires a setup code where, among others,

the goals and timing constraints may be stated.
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The initial state is created each time and appended to the planning agenda.

The variable binding of the initial state is a direct projection from the beliefs of

an agent. The names of beliefs and belief-sets become variable names in the initial

state. The values of beliefs are directly mapped to the values bound to variables.

Belief-sets are represented as object arrays.

At this point the planning is started to produce a new dynamic plan in form

of a sequence of actions. The success of this phase is signaled by the method

planReady(), the failure by the method planNotFound(). The second phase exe-

cutes the sequence step by step by calling the perform() method of actions con-

tained in the plan created. If any of these actions signals a failure by throwing

an exception or returning false as result, the plan is regarded a failure and the

method planFailed is called. The method planPassed() signals the success of the

execution phase.

Replanning. The Jadex system extends the PRS paradigm and inherits good

characteristics in respect to reactivity and control of autonomous systems. This

allows to see the planner as a mere extension to the architecture. In this notion,

the Jadex system is given the responsibility to monitor the execution of a dynamic

plan and activate replanning on failure.

The dynamic plan may be seen as a set of many or even countless number of

plans that may be created by the planner. To achieve replanning the Jadex system

must not exclude the dynamic plan every time it passes. This is easily done with

the BDI flag exclude="never".

Regrettably, there is no way for a plan to modify its proprietary goal. The

system lets every plan to work on a new instance of ProcessGoal and prevents

intentionally any conflicting changes to the original one. This way no plan can save

state information regarding the goal anywhere else but in the belief base. Also, there

is no other way for a plan to state that it is not applicable for a goal apart from the

mechanism provided in the ADF using <precondition> and <contextcondition>.

The dilemma occurs, when there is no possible plan for the goal that can

be constructed by the planner. To ensure that the planner is not asked again

and again for an impossible thing, one must state exclude="when failed" and

let the DynamicPlan fail. This still allows for replanning. Taking the notion of

DynamicPlan as a set of plans that are generated at runtime, it only fails if such a

set becomes empty at any point of the time. In the other case, when an element of

this set simply does not achieve the requirements of the pursued goal, the planner

will be called again for the same purpose.

5.11 Summary

This chapter justified and presented a design of a state space planner the has been

integrated into a BDI system. The approach taken here abandons the long tradition

in artificial intelligence to incorporate the planner in an agent system as a central

component influencing the whole architecture. This result is mainly due to the fact
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that this thesis started with a complete BDI system and the only reasonable way

to attach the planner was to compose it into Jadex as an extension.

Other systems followed this way, but this thesis is the first one known to the

author to incorporate a state space planner based on recent results showing benefits

of planning using control knowledge. Again, the planner designed goes even further

applying the knowledge in form of precondition control. Also, it is only one planner

known to the author that is able to fully utilize the Javatm representation for actions

and goals and that reasons with Javatm objects as primary concepts of the planning

domain.

It has been shown that it is easy to extend Jadex with AI planning concepts

and – to speak generally – with any reasoning and problem solving mechanisms. The

hybrid approach presented here benefits from both: the symbolic manipulation and

envisioning capabilities of the AI planner, and reactive, goal-oriented and effective

procedural reasoning techniques of the BDI system.
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Chapter 6

Evaluation

The design and evaluation of the planner component was guided by the blocks-

world domain. For further evaluation a dynamic planning domain was created in

the shape of the Dock Worker domain. Both domains are described here and results

regarding the performance and usability of the planner component under the control

of the Jadex system are presented.

6.1 The Blocks

The blocks-world domain is a standard testing domain for all planners. It was one

of the first problems investigated with planners and from the beginning it posed a

challenge as the problem is clearly exponential.

The first prototype of a partial order planner was able to stack more than

three blocks, what was assumed in the beginning of this diploma project to be a

good result corresponding to same achievements of other partial order planners.

Inspecting the space of plans produced, it was immediately clear that this approach

is too complicated in the design and workings, and there surely exist techniques

able to solve such problems in a better way.

Based on the control knowledge borrowed from the TALPlanner and adapted

to the Javatm notation, this state space planner is able to stack as many as 500

blocks. Using global search with an agenda of 10, it requires about 10 seconds on

an i586 400MHz machine to stack 100 of blocks and about 30 seconds for more than

200 blocks. Using depth first search and agenda size of 100, it stacks 500 blocks in

5 minutes on the same machine.

The speed of planning could be increased further. A pure domain specific

planner, spilling last drops of generality, should be ”much, much more faster”,

but for this design the result is quite comparable, because the planner copes in a

run using 500 blocks with about 250000 grounded action instances. This quantity

could be reduced by splicing the Move($b, $to) operator into Pickup($block)

and PutDown($at) operators.

GUI. The user interface to the program is kept simple. There are two views, one

of the current situation and one of the target situation. There are three buttons.
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Figure 6.1: Blocks-world GUI. In this view the planner just coped with a problem
containing about 500 blocks.

The first is used to pose the restack goal. The second to add a single block of chosen

color and the third to add ten random blocks (cf. fig. 6.1). The last button was

added after the planner has been successfully tested with 50 of blocks, but the user

is able to add more blocks at once by making a double, triple or quadruple click

onto the canvas. The number of blocks added is a square of the number of clicks.

In order to manage the situations, blocks in the current and target view may be

moved with a mouse and dropped onto stacks and different positions on the table.

Domain. The domain is modeled as a simple list of Block objects having two

attributes. The CLEAR attribute says that there is no block above the one in focus.

The DOWN attribute gives a reference to a block below or null if the block lies on

the table in the current simulation state.

The goal has an array of blocks that must be considered. It signals with estimate

value of 0.0 that all blocks are placed on their destination positions. In the other

case, it returns the number of blocks that will certainly have to be moved. This is

done using the bad tower heuristic yielding the number of bad blocks in a tower

by simply counting all blocks from the top of each tower that do not fulfill the

requirements of the goal.

There are two settings. In the first one only the operator Move($block, $to)
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public boolean applyTo(Step st) {

if (st.get(LOAD)!=null) return false;

if (!(st.getGoal() instanceof RestackGoal)) return false;

if(!st.isTrue(CLEAR, block)) return false;

if(good_tower(st, st.getGoal(), block)) return false;

st.set(LOAD, block);

st.set(DOWN, block, GRIPPER);

Block from = (Block)st.get(DOWN, block);

if(from != null) st.setTrue(CLEAR, from);

return true;

}

Figure 6.2: Control Knowledge for Pickup($block)

is used. This operator is activated whenever the $block changed its position or

something happened to the destination. This activation on change reduces the

number of actions tested against a simulation step to a logarithmic quantity. Given

100000 action instances only about 60 will be activated. The control knowledge of

this operator has been described in the chapter before (cf. fig. 5.3).

The optimization heuristic used is PlanLengthHeuristic1 that might accept a

weight argument. This weight factor is used to make the search to perform goal-

and speed-oriented (<<1.0) or to focus on quality (=1.0). The heuristic may be

seen as a form of optimization metrics.

The planner is activated by a dynamic plan called RestackPlan2. The only

function of it is to take over the Jadex goal and instantiate the RestackGoal used

by the planner.

The whole design is described in the ADF by the following XML code:

<plan name="restack" strategy="depth" agenda="100">

<body>new RestackPlan()</body>

<trigger><goal ref="restack"/></trigger>

<domain>$beliefbase.current</domain>

<heuristic>PlanLengthHeuristic(0.5)</heuristic>

<operator>new Move($block, $to)</operator>

</plan>

Here the planner is asked to use depth first strategy with a backtracking mem-

ory of 100. The Jadex goal is called ”restack” and has as parameter the target

configuration of the table. The domain includes all blocks from a belief describing

the current situation, which is marked as dynamic sub-domain by default.

The second setting uses two operators. The Pickup($block) operator is de-

1jadex.planning.PlanLengthHeuristic
2jadex.examples.bw2.RestackPlan
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public boolean applyTo(Step st) {

Block block=(Block)st.get(LOAD);

if (block==null) return false;

if (!(st.getGoal() instanceof RestackGoal)) return false;

if(at == null) { // table

Step prev=st.getPrevious();

while(prev!=null) {

if (prev.get(DOWN, block)==null) return false;

prev = prev.getPrevious();

}

} else { // other block

if (!st.isTrue(CLEAR, at) ||

!at.equals(goal.get(block).down) ||

!good_tower(st, st.getGoal(), at)) return false;

}

st.set(DOWN, block, at);

st.set(LOAD, null);

if(at != null) st.setFalse(CLEAR, at);

return true;

}

Figure 6.3: Control Knowledge for PutDown($at)

rived from the first part of the move operator. It picks up the block and puts it

into a gripper. Then it modifies the LOAD belief of the planner agent stating to

what the agent is holding. In order for this operator to succeed, the agent should

not carry any block at that time. The block to be lifted must be clear and the

agent should not dismantle any towers of blocks, which are already in the goal

configuration (cf. fig. 6.2).

The PutDown($at) operator places the block loaded by the agent at the speci-

fied position and sets the LOAD belief to null in order to indicate that the agent

is no more holding a block. For success of this operator it is required that there

is actually a load that may be placed anywhere. If the block is going to the ta-

ble, it should be assured, it is only done once3. Otherwise, the destination block

should be clear, reflect the expected goal situation and it must be on top of a good

tower (cf. fig. 6.3).

The last setting suffers from performance losses when compared to the first one.

The split in two operators causes the branching factor to multiply for each of the

operators spreading the search space far more than expected. The second cause

of this negative effect is due to the fact that the activation-change process cannot

be used in such an effective way like in the first setting. The activation for the

block picked up and the block freed extinguishes after the put-down operator has

been applied, and cannot be used for pickup operators. This requires all operators

3This is a nice example of using a temporal safety condition in form of a Java
tm while loop.
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to be activated at any time of the planning process. It is an unsatisfactory result

as it shows that the efficiency of this planner concept is sensitive in the choice of

operators and control knowledge used to solve the problems.

6.2 Loader Dock

The Loader Dock example domain consists of two kinds of agents. There is a

single store agent responsible for initializing the graphical presentation, simulation

of storehouse processes and initialization of other agents. Worker agents, on the

other hand, take over the planning and are responsible for carrying packets around

the store. The story is following: in a storehouse there are several workers wandering

around and carrying packets between incoming trucks and shelves. Their job is to

unload packets from trucks coming in with load, or to deliver packets to trucks

arriving with no load at the store. The store itself contains several shelves where

packets can be temporally placed. The shelves are separated by corridor ways,

which are used by workers to transport the packets.

This particular domain has the specific properties4 of being:

• Fully observable in respect to a certain update interval of mutual beliefs that

is performed by the store agent.

• Almost deterministic. The agents cannot be sure if the plans created will be

timely executed as they have predicted.

• Dynamic. The environment changes due to other agents and processes simu-

lated by the store agent. This includes trucks coming in and going at various

time intervals.

• Continuous. Most quantities like packets, trucks, robots and places are finite,

but the attributes of these objects like speed, direction, arrival or departure

time are real valued.

• Concurrent. There are many processes and agents acting in this domain

concurrently.

• Cooperative. Agents do have common goals to handle the job at the store-

house, but must share resources like time and corridor space.

Storehouse model. The storehouse depicted in Figure 6.4 is modeled using a

discrete grid of points connected with each other through pathways. Each point

can have many types. There are obstacle, junction, store, load and start points. To

prevent robots from driving above shelves, walls and dock areas, obstacles in form

of rectangles are defined for each such object. The positions and widths of objects

are stated in real values.

The model includes three dock areas with six load points each. These dock

areas are used by trucks coming in with packets or taking packets out. There are

4Cf. the list in Section 2.2.
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Figure 6.4: Storehouse floor plan overlaid with the way point reticle. The points
and pathways are marked red (black). The obstacles are marked as yellow (white)
rectangles.

seven shelves with six store points each, used to place packets for temporal storage.

A robot park area is present where the robots take their starting positions after

being initialized by the store agent. The repair and load stations are reserved for

further domain extensions.

The example domain may include up to six worker robots. Each robot is rep-

resented by a sprite made of 64 left and 64 right images depicting it in different

angles and steps for animation purposes. The same is true for the packets that

additionally have a color marker atop. Trucks are illustrated as simple rectangles

that may carry loaded packets. The robots and packets can be positioned anywhere

in the store and include a real valued direction attribute reflecting their azimuth

from the north heading.

Moving around. Most plans and goals of a worker involve movements around

the store. The GoGoal is a superclass of many other goals like go away, pickup or

put-down goals. It contains as an attribute the position where the agent should go

and the deadline, by which the agent should arrive there. For the aid of control

knowledge the goal also stores a mapping of points to the fastest way connecting

them to the start position. This mapping prevents the planner to consider paths

that are certainly worse than already tried.
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The operator applied in this planning problem is Move($to)5. It registers its

interest in all points surrounding the destination specified by the $to argument

to the constructor. It will be activated any time the robot stands near such a

point. The control knowledge is more complicated than in the case of blocks-world

operators. First, it must be assured that there is no static obstacle between the

start position and destination. Second, the operator needs to compute the distance

to move over and the change in the heading of the robot if it needs to turn. Based

on this values the time needed for this action to be performed is computed. Given

the starting point and end point, starting time and finish time, the operator checks

this data against a dynamic model of the domain to prove that there is no other

moving object in the way. This is done using interpolation techniques.

On success the position of the robot (in the simulated state) is updated and

all actions for the destination point are activated. Together with the simulated

position the control knowledge is updated. This includes the total time the robot

spent moving and the best time achieved reaching the destination for the current

goal.

The same operator may be used for other goals. For example, the GoAway

goal simply requires the robot to move to a position that is not occupied by other

robots and will not intersect their paths of movement. In combination with a slight

variation of the move operator, which ignores idle robots standing in the way, it

results in the mutual behavior where robots move away from the path of another

robot if it requests the right to pass by.

It was observed that the planning takes very little time for this small domain.

The approximate time of path planning on an i686 3GHz machine is from 1ms to

10ms. This is a merit of the fact that the way point sub-domain is mainly static in

its nature and all actions can be precomputed in advance. The operators can also

take the advantage of the activation-change mechanism described above.

Foreign intentions. For coordination purposes, when a robot makes an intention

to move somewhere, it communicates this intention to other robots. The trajectory

of the movement, described by its points and exact time values, is sent to each robot

so it can update its dynamic models of the domain. This information is stored in

the TimeModel in the robot controller and used to estimate the positions of robots

through the time. This valuable information guides the planning process of each

robot so none of them intersects paths of the other.

Apart from the specific information sent by robots when they commit to a

path, the dynamic model may be updated by the store. Failures6 can also be used

to update the time model. The store agent sends updates at defined time interval

describing the situation at the storehouse in form of a snapshot. This information

includes all robots and packets inclusive their positions, and all trucks coming in

and going out.

5The code of Move($to) is provided in Appendix A.2.
6Communicated by other robots when they must drop a plan, because it cannot be pursued

anymore.
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Figure 6.5: The Pickup Protocol used by Store and Workers to handle out plans for
unloading a truck is based directly on the FIPA Contract Net Interaction Protocol.

Allocation of goals. The store agent simulates the trucks, which are handled by

workers. It is also responsible for distributing goals like picking up a packet from

the truck or delivering a packet of specified color to the truck. This is performed

using a protocol based on the FIPA Contract Net Interaction Protocol depicted in

Figure 6.5.

Whenever a truck arrives with packets to be unloaded, for example, the store

agent sends in timely delayed intervals calls for proposal to worker agents for each

packet. The PickupPacketC agent action sent by the store contains the name and

position of a packet, as well as a deadline to be kept. It initiates the planner in

each worker agent. If an agent has found a plan to pickup the packet, it sends a

PickuPacketP proposal back to the store, or it sends a reject in the other case.

The store chooses the plan promising to pickup the packet as early as possible and

sends an accept proposal response to the winner. All other agents are quitted with

an reject proposal message.

The agent responsible for the goal informs others about its intention and moves

to the packet position, picks it up and places it anywhere in the store. At the

time of planning and acting the agents do not accept any other goals or calls for

proposals, as they can only hold one packet at the time.
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6.3 Summary

Both domains presented in this chapter demonstrate a successful use of the planner

concept implemented in the diploma thesis project. It gives comparable results in

simple propositional domains like blocks-world and is capable of expressing planning

knowledge using full programming language like Javatm in an object-oriented way.

It showed remarkable performance in both domains of application.

The second example proves the usability of this concept for multi-agent do-

mains including timing constraints and real valued attributes. The planner was

successfully applied to aid the coordination among virtual robots in a simple two

dimensional domain like the storehouse. This result also shows that the planner

is a felicitous extension to the Jadex system and supplements it with reasonable

operational capabilities.
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Chapter 7

Conclusion

Planning – from the viewpoint of artificial intelligence – is one of the most impor-

tant problem solving techniques. Classical planning was applied mostly to problem

domains having the form of a propositional puzzle. The research field presents a

wide landscape of planning techniques used to solve such problems in more or less

efficient manner.

The concept of agency joins the views of artificial intelligence and computer

science to envision reliable, efficient, flexible and autonomous software architectures

capable to deal with information at semantic levels. The new research field proposes

a wide range of systems ranging from simple reflex based agents to deliberative

architectures claiming to be adequate – in respect to the Unified Theory of Cognition

– to model human reasoning. One of the most successful architectures is based on

the Procedural Reasoning System explained by the BDI model of the Theory of

Practical Reasoning.

This thesis aimed towards merging the symbolic planning power of artificial

intelligence planning techniques with the reactive and goal-oriented procedural rea-

soning capabilities offered by the BDI system of concern – Jadex. In respect to

this main goal, the questions have been investigated, what planning techniques are

adequate for the use in BDI systems in theory and practice, and how to define plan-

ning problems using Javatm language and process them efficiently with the help of

a planner implemented in Javatm.

7.1 Synopsis

A planner needs a representation of the planning problem, including the represen-

tation of states and changes, as well as goals. Different planning techniques can be

applied to different domains. Chapter 2 presented goal stack, partial order, hierar-

chical and deductive planning techniques. Simple state-space based techniques have

been mentioned together with the description of planning spaces. It was concluded

that goal stack based techniques are not effective to cope with a general class of

planning problems. Also partial order planners suffer performance losses due to the

complexity of their representation and plan space explosions difficult to subdue.

Deductive and transforming planners felt out of this project scope due to the lack
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of efficient interpreters of declarative languages available for Javatm and the need to

provide additional knowledge in form of frame axioms. The remaining techniques

using hierarchical and state-space planning with domain specific control knowledge

showed to be promising with respect to the application in BDI systems.

The results concerning planning concepts and methods have been verified in

Chapter 3 on the basis of existing planning systems used in practice and introduced

in different planning competitions. Particular emphasis was posed onto planners

claiming generality and using planning graph techniques to achieve remarkable per-

formance. A simpler and equally effective approach has been identified on the basis

of state-space planners applying domain specific control knowledge. Another class

of effective planners using domain specific knowledge are planners using hierarchical

task networks formalism. The planners investigated use and work with declarative

representation of planning problems like the PDDL. Because one of the aims of this

thesis project was to provide a planner able to process Javatm language represen-

tation of goals, domains and operators, it has been concluded to use the simpler

state-space based approach and design and implement such a planner.

The Theory of Practical Reasoning was mentioned in Chapter 4 together with

the BDI model of agency based thereupon. Some theoretical and practical inter-

pretations of this theory followed. BDI based agent architectures with and with-

out a planner have been investigated. Several ways of merging the concept of AI

planning with BDI systems have been identified. There are planner centered BDI

architectures like Retsina and there are composed systems like Propice-Plan or

Cypress. Other systems also describe ways to integrate a planner, but do not reveal

details of such an implementation. The thesis project has chosen the composition

based approach, mainly because the BDI system already existed.

With Chapter 5 a design of a planner has been shown that is capable to plan

using an object-oriented language and representation of planning concepts. The

planner utilizes domain control knowledge specified in operators and goals. It works

on a meta-level representation of objects and their states that can be directly derived

from agent beliefs. It is a reasonable extension to the Jadex BDI engine and aids

agents in operational tasks that require symbolic manipulation and simulation of

future states and changes.

Unfortunately, a direct relationship between AI planning concepts and BDI

mental attitudes could not be established here. This is due to the highly advanced

representation of goals and plans1 used in Jadex, and due to the need to include

domain specific control knowledge in operators as well as achievement metrics in

goals.

Two example domains have been presented in the Chapter 6 that benefit from

the planning component. Blocks-world is a standard domain used to evaluate plan-

ners and despite its simplicity, it is a challenge not to be underestimated. The

planner performed quite well in this domain, crafting plans for problems including

more than 500 blocks. The Loader Dock domain presents a multi-agent cooperative

setting. The planner has been shown to help agents coordinate their activities. Also

1In relation to the simple symbolic representation used by PRS and Propice.
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a distributed goal solving scenario has been investigated.

Shortcomings. The control knowledge used by the operators has the negative

side effect that operators cannot be applied to a problem domain orthogonally. It

was observed, that adding new operators requires modifying control knowledge of

other ones.

Because the domain description is created dynamically, the predicates used

by operators need access to attribute indexes as registered by the operator. This

reduces the reusability of predicates, because of the tight coupling to the operators.

The activation-change mechanism introduced in the planner is a weak form of

forward chaining networks. It does not suffice for all purposes, because the activa-

tion is only bound to an object or variable and cannot be bound to an expression.

The activation ceases in the following steps and must be renewed in some way,

causing further dependencies among operators.

On the other hand, putting a full blown activation mechanism using a forward

chaining approach with a generic way of representing expressions as explicit sets

of objects, would not be feasible because of space problems. There is a question

emerging here in respect to the transitional frame problem and to the representation

of states using such an approach.

7.2 Outlook

The planner provides some capability for hierarchical plan decomposition and, thus,

may be used to perform a simple kind of hierarchical planning. There are many

other concepts that have been investigated with hierarchical planners. There was

no simple solution – known to the author – that would offer a practically usable

hierarchical planner working with Javatm representation. This thesis work had

no time to create a complex full blown hierarchical planner using partially lifted

representations and unordered decomposition. It is assumed here that it would be

more complex – compared to the simple (one goal at a time) approach taken here

– to apply heuristics and control knowledge to HTN.

The design of Jadex has been guided by more practical concerns than a pro-

vision of a frame work for testing artificial intelligence concepts. A full synthesis

system of the BDI agency model and the hierarchical planning approach – in the

sense of the planning component from Retsina – that is fully based on an object-

oriented representation and augmented with control knowledge and heuristic meth-

ods is certainly also as interesting to investigate as the composition approach taken

here.

Systems based on the Procedural Reasoning System have a neat property that

goals can always be given up, whenever all plans applicable for this goal fail. The

Theory of Practical Reasoning foresees the process of giving up intentions only if

new conflicting intensions have been adopted in the process of deliberation. When

the architecture is extended with a symbolic AI planner, the number of plans is no

more bounded. A simple BDI agent provided with unlimited number of plans would
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do Sisyphus work always assuming the goal can be achieved in some new way. The

notion of goal failure must be reconsidered in such a case.

The implementation of the planner, example domains and additional utilities

contains about 24000 lines of code. It is surely a prototypic work making about

10% of Jadex, so there is certainly room for improvements in respect to this size.

Especially a common parser and term representation of Javatm expressions in the

main project would contribute to this concern.

MAS Planning. The thesis includes an evaluation of a problem solved in a dis-

tributed way. In respect to this, some questions arise regarding mutual represen-

tation of goals, plans and intentions. How to formalize and communicate mutual

attitudes? Also intentions are entities with high degree of commitment. BDI mod-

els do not regard options and hypotheses as their primary concepts. The aspect

of sharing such virtual notions of mind among agents would certainly help solving

distributed planning problems.

Search. It is interesting, how other relatively fast and successful search strategies

could be adapted for the problem space. The questions is, how to define knowledge

based control and heuristic rules for the backward search regression algorithm. The

backward search would have a rudimentary presence of online planning capability

to its advantage and much space requirements for domains with large state models

and with many attributes.

The global search keeps the most promising partial solutions in its limited

agenda. The choice of solutions on the agenda is determined by the heuristics of

the domain; this biases it towards a fairly homogeneous collection. There should be

means that allow to investigate interference between these partial solutions. The

interference could be used to spread the collection to many points in the search

space and keep only representatives on the agenda. To use such feature one should

define similarity metrics on partial solutions.

Tools. There is a requirement for tools supporting the development of a planning

domain. A domain designer would certainly appreciate a tool with graphical input

and Javatm code output. State descriptions could be generated that are easily

copied and manipulated without side effects. This would replace the troublesome

generic representation of the IndexedState and spare the operator programmer

from registering attributes. The only question to be answered here is, how to solve

the problem of technical reference – also known as direct object association – among

Javatm objects in a cloned state. It is similar to the problem of serializing objects

with cyclic dependencies. The thesis sidesteps this problem with help of virtual

references and hash maps on the meta-level.

The development of effective control knowledge is time consuming and should

be supported by a tool debugging the planning process. Such a tool would have the

capability to view the whole hypothesis space created by the planner, so ineffective

branches of the search space may be identified in its structure.
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Appendix A

Code Samples

A.1 Unification Algorithm

BOOL unify(n1, v1, n2, v2)

IF n1 and n2 are variables

IF n1 and n2 are unbound

Bind the variable with the shorter

chain to the variable with the longer chain

by appending the latter to the first.

RETURN TRUE

ELSE

IF n1 is unbound in v1

Bind n1 to n2 by appending the latter to the first.

RETURN TRUE

ELSE

IF n2 is unbound in v2

Bind n2 to n1 by appending the latter to the first.

RETURN TRUE

ELSE

IF n1 and n2 are bound to an Object

RETURN object of n1 equals object of n2

ELSE

IF n1 is bound to an Object

RETURN unify(n1, v1, the term instance bound to n2)

ELSE

IF n2 is bound to an Object

RETURN unify(the term instance bound to n1, n2, v2)

ELSE // both are bound to term instances

RETURN unify(the term instance of n1, the term instance of n2)

ELSE

IF n1 is a variable

IF n1 is unbound

Bind it to the term instance defined by n2 and v2

RETURN TRUE

ELSE

IF n1 is bound to an object

IF n2 is a Value node

RETURN the object of n1 equals to the value of n2

ELSE
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RETURN FALSE

ELSE // n1 is bound to a term instance

RETURN unify(the term instance of n1, n2, v2)

ELSE

IF n2 is a variable

... // symmetric to the case above

ELSE

// both are not variables

IF type of n1 != type of n2

RETURN FALSE

ELSE

IF n1 and n2 are Symbols

RETURN n1 == n2

ELSE

IF the number of children is equal for n1 and n2

// unify child nodes

FOR_EACH child node c1 of n1

IF NOT unify(c1, v1, corresponding child node of n2, v2)

RETURN FALSE

END_FOR

RETURN TRUE

ELSE

RETURN FALSE

END // of unify

A.2 Worker Move Operator

public class Move implements Operator {

/** used to store total time of movement */

public static final Var MOVE_TIME=new Var("move_time");

/** the destination */

protected final Point to;

/** the robot controller */

protected RobotController ctrl;

/** Constructor: <code>Move</code>.

* @param to is the destination of this move operator

*/

public Move(Point to) {

if (to==null || to.hasType(Point.TYPE_OBSTACLE)) {

throw new IllegalArgumentException("Illegal point");

}

this.to = to;

}

/** The setup method used to initialize the operator.

* @param dd the domain description used by the setup

*/

public void setup(Description dd){

ctrl=(RobotController)dd.get(Robot.CTRL);

126



Point[] ps=ctrl.getHouseModel()

.getNeighbours(to.getX(),

to.getY(),

0.1,

FloorPlan.GRID_DISTANCE);

int i=ps.length;

if (i==0) {

throw new IllegalArgumentException("Cannot move here");

}

while(i-->0) {

dd.activateOnChange(this, ps[i]);

}

}

/** The application method including preconditions,

* control knowledge and effects.

* @param st the step to apply the changes to

*/

public boolean applyTo(Step st) {

if (!(st.getGoal() instanceof GoGoal)) return false;

GoGoal go=(GoGoal)st.getGoal();

if (!validPath(st)) return false;

Point cur=(Point)st.get(Robot.POS);

if (ctrl.getHouseModel()

.hasObstacle(cur.getX(),

cur.getY(),

to.getX(),

to.getY())) {

return false;

}

// compute the distance

double dx=to.getX()-cur.getX();

double dy=to.getY()-cur.getY();

double ds=Math.sqrt(dx*dx+dy*dy);

if (ds<5.0 || ds>FloorPlan.GRID_DISTANCE) return false;

// compute the heading adjustment

double cd=((Double)st.get(Robot.DIR)).doubleValue();

double nd=Math.atan2(dx, -dy);

double da=Robot.norm(nd-cd);

da*=1.2; // overdrive

if (da>Math.PI*.5 || da<-Math.PI*.5) {

// move backwards

da = Robot.norm(nd-cd+Math.PI)*1.2;

}

nd = Robot.norm(da+cd);

if (da<0.0) da=-da; // absolute value
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// compute the time this action will be finished

double move_time=ds*Robot.LOAD_FACTOR/Robot.SPEED +

da/Robot.TURN_SPEED+Robot.BUFFER;

double fin_time=st.getTime()+move_time;

double total_mtime=st.getDouble(MOVE_TIME);

// access control knowledge in the goal

Double tD=(Double)go.p2t.get(to);

if (tD!=null && total_mtime>tD.doubleValue()) return false;

if (!colision(cur, st.getTime()-Robot.BUFFER,

fin_time+Robot.BUFFER)) {

// update control knowledge

total_mtime+=move_time;

go.p2t.put(to, new Double(total_mtime));

st.set(MOVE_TIME, new Double(total_mtime));

// apply changes

st.set(Robot.DIR, new Double(nd));

st.set(Robot.POS, to);

st.setTime(fin_time);

st.activateActionsFor(to);

return true;

}

return false;

}

/** Tests for collision using the dynamic domain model.

* @param cur

* @param t1

* @param t2

* @return true if there is a collision on the way

*/

protected boolean colision(Point cur, double t1, double t2) {

return

ctrl.getTimeModel().conflictsIdle(cur, to, t1, t2) ||

ctrl.getTimeModel().hasObstacle(cur, to, t1, t2);

}

/** Tests if the plan prefix is a valid one.

* @param st

* @return false if there was a position equal to this one.

*/

protected boolean validPath(Step st) {

while(st!=null) {

Point prev=(Point)st.get(Robot.POS);

if (to.distance(prev)<5.0) return false;

st = st.getPrevious();

}

return true;
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}

/** Performs this action in the real environment.

* @return true if the movement succeeded

*/

public boolean perform(Object arg, double deadline) {

Plan plan=(Plan)arg;

return ctrl.performMove(plan, to, deadline);

}

}
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