
A Rule Management Framework for Negotiating Mobile Agents

M.T. Tu, C. Kunze, W. Lamersdorf
�

Distributed Systems Group, Computer Science Department
University of Hamburg, Germany

Vogt–Kölln–Str. 30, 22527 Hamburg, Germany�
tu,3kunze,lamersd � @informatik.uni-hamburg.de

Abstract

This paper proposes an application framework for mo-
bile agents which provides rule-based generic services to
support the three phases of a market transaction (infor-
mation phase, contracting phase and settlement phase). It
is described within the four views of an electronic market
which describe organizational as well as technological as-
pects. The focus of this paper is on the technological as-
pects of the contracting phase in which the participating
agents carry out an automated negotiation process to deter-
mine the terms of contract.

Keywords: rule management, negotiation, mobile agents,
middleware, E-Commerce.

1. Introduction

Using software agents to automate commercial transac-
tions in electronic markets is a very appealing idea, since
automation could reduce the transaction costs considerably.
Furthermore, due to the computational power available to-
day, even better results could be achieved if the agents im-
plement appropriate “intelligent” trading capabilities, e.g.
to carry out a negotiation about complex contract terms that
might yield too many options for a human user to survey
completely. This potential has been recognized by many au-
thors like [4, 3]. Some technical frameworks to embed ne-
gotiation capabilities into agents have also been proposed,
e.g. in [7]. However, an important question regarding this
kind of automation is how to control the behavior of the
agents, especially how to impose user-defined rules on the
logic – especially the negotiation logic – implemented by
the agent. This paper suggests a concrete answer to this
question by introducing an application framework that pro-
vides rule-based support for agents to carry out a commer-
cial transaction which is considered under technological as

* This work is supported, in part, by grant no. La1061/1-2 from the
German Research Council (Deutsche Forschungsgemeinschaft, DFG).

well as organizational aspects, although the focus is put on
the technological ones. Moreover, mobility as an important
technical feature is also supported by the framework, mean-
ing that the agents can flexibly roam through the network
while performing their tasks, thus possibly saving band-
width and freeing (resources on) the user’s machine.

The basic idea of the framework described in this paper
is to provide rule-based generic services to support the three
phases of a market transaction:

information phase Market participants look for potential
negotiation partners. They do this usually by using a
broker which matches potential participants.

contracting phase After the market participants have been
matched using the broker, electronic contracting ser-
vices can be used to support an automated negotia-
tion. The contracting phase usually results in a contract
which the participating parties have to sign to show
their agreement.

settlement phase To automate the exchange of services
and goods which are part of the contract, workflow
systems can be used to automate and control the set-
tlement.

This description of the phases of a market transaction
also shows that well-defined interfaces between the services
involved in different phases are needed to support a com-
plete, integrated electronic market. With these services as
atomic building blocks, different business scenarios can be
supported. The rules can be used to influence the outcom-
ing results of the different phases of a market transaction.
In the information phase, rules to describe the requirements
a potential partner must fit can be used to influence the bro-
ker’s behavior. These requirements can change from time to
time, so that a reconfiguration of the agent by dynamically
changing the rules should be possible. In the contracting
phase, rules can be used to restrict the order of the possible
actions of an agent, e.g. how offers are exchanged. This can



be regarded as a rule-based support for the enforcement of
a negotiation protocol. Agents as well can follow different
negotiation strategies which determine how to achieve their
goal. Rules can be used as a meta-strategy to control the
strategy’s logic. By changing rules on a strategy, the same
strategy can be used to achieve the goal in a different way or
to achieve a different goal. This paper will mainly focus on
the contracting phase. A contract resulting from this phase
can then be used as the basis to fulfill the transaction in the
settlement phase in which rules can be used to control the
settlement and to detect violations caused by the contract
parties.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the basic rule concepts and the four views
of the ec-framework upon which the framework presented
here is based. Then, the rule management framework and
its functionality is presented in detail in Section 3. The im-
plementation is briefly described in Section 4 and a short
outlook on subsequent work is given in Section 5.

2. Rule Management for Negotiating Agents

The rule system used by this framework is an extension
and application of the rule system described in [8]. Basi-
cally, a rule consists of three parts: a condition, represented
by a well-formed logical formula, a trigger list which con-
tains the types of events which trigger the rule and an ac-
tivation, which describes what to do if the rule has been
triggered. The condition part is based on interaction poli-
cies (s. [6, 8]) which can be matched with each other (using
a logical function called unification) to determine the great-
est common denominator as a common interaction basis for
different communication partners.

A rule needs to be hosted by a rule container which de-
fines its application context. In this container, also proper-
ties are defined, on which the condition is formed and which
can be modified by the activation of rules. Four rule types
have been classified by their activation semantics. The re-
quirement rule describes a condition which must evaluate
to true when the rule is activated. The state transition rule
describes two additional states as pre- and postcondition.
If the condition is true and the precondition is the current
state, it is switched to the postcondition. The action rule
describes an action in form of a method call which takes
place if the condition evaluates to true. The policy rule de-
scribes a generic action that will be performed, if the condi-
tion (meant as a goal) evaluates to false, to let the condition
become true.

In addition to the rule types, four different modes are de-
fined which describe the location or context of activation.
The internal mode describes that the activation takes place
where the rule is located. A copy of a rule in oneway mode
is sent to the communication partner and is unified with a

rule in filer mode, before it is activated at the remote loca-
tion. If the conditions cannot be unified, a rule exception is
thrown, which stops the program flow. The callback mode
is an enhancement of the oneway mode. The values of the
properties which are part of the unified condition are sent
back and are activated locally too. This ensures exactly the
same setting on both sides.

To generate rule events which trigger the rules, the RS-
DII (Rule-Sensitive Dynamic Invocation Interface) is used.
This can be thought of as a dynamic method wrapper which
produces rule events before and after a method invocation.
A rule object can register itself for an event type by putting
it as an entry into the trigger list.

The framework of electronic markets described in [5]
and [2] is chosen to describe the electronic market with
rule-enabled services. In the following, this framework is
referred to as ec-framework. The ec-framework is based on
the three phases of a market transaction which are regarded
from four views. These four views cover organizational as
well as technological aspects of an electronic market. The
ec-framework is chosen because of its comprehensive top-
down description and because of its applicability as a meta-
model. The focus of this paper lies on the technological
aspects of the views on an electronic market. Neverthe-
less, a generic description of the organizational aspects is
also given to define the scope of the framework. The four
views of the ec-framework and their intended use for our
rule management framework are:

business view This view consists of business models
which are the basis of an electronic market. A busi-
ness model describes aspects such as if the market is
open (to every participant) or closed (only specific cat-
egories can participate). It describes the added value
to the mere transaction service. The potential market
participants as well as their intentions, possible actions
and their general policies are described. The trans-
action view described next is used to substantiate the
rules and policies of the business view.

The framework described in this paper comprises a
generic business model which can be used to adapt
business models of different organizations (Section
3.1).

transaction view The identification of business processes
takes place in the transaction view. The description of
the business processes is done by business scenarios.
A business scenario is a formal description of a busi-
ness process. The participants as well as the exchanged
information objects are described. An information ob-
ject is a formal description of the semantic content of
the information exchanged. The flow control which
is required for the business view is modeled by the
business scenarios. Atomic transactions are identified



which can be supported by the services view described
next.

The goal of the framework presented here is to provide
rule-sensitive generic services. Therefore, instead of
prescribing specific business scenarios, the framework
describes scenarios which can directly be mapped to
generic services of the services view. The scenarios
are used to describe the applicability of different rules
for the generic services of each transaction phase. In
this paper, rule-based scenarios are mainly limited to
the contracting phase (Section 3.2).

services view Each phase of a market transaction is sup-
ported by specific services. These services are generic
with respect to the organizational aspects. The generic
services for each phase make up the content of the ser-
vices view.

The main technological aspects of supporting the
generic services by rules are described in the applica-
tion of this view to the rule management framework
(Section 3.3).

infrastructure view The infrastructure view describes the
communication, transaction and transport infrastruc-
ture. The services of the services view are imple-
mented with the help of this view.

The framework presented in this paper describes in the
infrastructure view a rule-sensitive middleware which
is an enhanced middleware providing a transparent
mechanism to trigger, activate and manage rules in ap-
plications (Section 3.4).

3. Architecture and Functionality of the
Framework

In this section, the architecture and functionality of the
rule management framework is described within the four
views of the ec-framework. The business view (3.1) and the
transaction view (3.2) describe the organizational aspects.
The services view (3.3) and the infrastructure view (3.4) de-
scribe the technological aspects.

3.1. Business View

The market participants are modeled as agents which can
play the role of a buyer or the role of a seller. There is no
restriction on the amount of agents participating in the mar-
ket. A market consists of multiple marketplaces each of
which defines a specific negotiation protocol. Deploying
this negotiation-centric view of marketplaces means that an
agent can always find out which protocol to use on a spe-
cific marketplace, so that he can switch to the right one for

negotiation. The mediation or matching of participants is
supported by a broker which always has knowledge of all
buyers and sellers in the marketplace. If the contracting
phase leads to a valid contract, the settlement is controlled
by a notary.

In this paper, a marketplace which is called bazaar is dis-
cussed which allows negotiations in the style of a real-life
bazaar: A buyer as well as a seller can look for a negotiation
party. Content of the negotiation is the exchange of offers
for the specific product searched by or offered by one of the
market participants. Every market participant searches or
offers only one product at a time (like in [1]).

Figure 1 depicts the overall agent architecture of this
framework. Agents are mobile, so that they can roam
through different marketplaces. Like it is described in the
DynamiCS framework [7], agents have a communication
part (the language), a strategy part (what to do with the lan-
guage to achieve a given goal) and a protocol part (which
elements of the language are allowed at a time). The agents
of this framework have an additional feature: They are rule-
sensitive which means that their behavior can be influenced
and controlled by rules. Each agent has its own rule con-
tainer which allows for adding and removing rules at run-
time through a well-defined interface. The rules in such a
container can be divided into different categories in a hier-
archical form, so that rules which semantically belong to-
gether can form a rule set. To provide a mechanism which
transparently triggers and activates rules, all communica-
tion between the agent must use the rule-sensitive middle-
ware.

Rule-sensitive Middleware


Agent B


Rules


Communication


Strategy
 Protocol


Agent A


Rules


Communication


Strategy
 Protocol

event


Figure 1. Agent architecture

A marketplace is represented by a marketplace instance.
Every agent who wants to take part in transactions on this
marketplace has to register with this component. The mar-
ketplace defines the market language as well as the nego-
tiation protocol. At registration time, the agents can be
checked if they speak the right market language and use
the right protocol. Because the marketplace instance has
knowledge about all registered agents, it can serve as the
broker. If some market participants decide to negotiate, it
should not be allowed that their negotiation be disturbed by
another agent. The marketplace instance therefore manages
negotiation rooms which must be entered by the negotiation
parties. During the negotiation process, the participating



agents are not visible to the rest of the market community
until they have left their negotiation room.

In this paper, the marketplace language, which all agents
must be able to understand, consists of five signatures which
are described in table 1. The content of an offer is modeled
by a condition object. The condition object can be used to
express different requirements as a formula over properties
which is expressed in first-order logic. Properties can be for
example price, amount, etc. All market participants must
share a common understanding of the semantics and syntax
of these properties.

Table 1. Interface of the market language

Signatures
String item()
boolean isCustomer()
void offer(Condition offer, String agentAlias)
void accept(String agentAlias)
void abort(String agentAlias)

3.2. Transaction View

The market participants, the roles they can play and the
rules they must follow to participate in a marketplace of
this framework have been described in the generic business
model of the business view in subsection 3.1. In the transac-
tion view, a selection of simple scenarios and their support
with rules is given. The focus of the rule support mecha-
nisms in this paper lies on the contracting phase and covers
the protocol bazaar. Therefore, only scenarios concerning
the bazaar are described here.

The Bazaar Scenario A seller as well as a buyer have a
certain price range in which they can negotiate. If an
offer is made, the respective market participant checks
if it lies within his range. If it does, he accepts, if it does
not, he reacts with a counter offer. This can occur as
often as the participants want to exchange offers until
either both accept or one aborts the negotiation.

On the one hand, rules can be used to control the order
in which offers, counter offers or aborts can be exchanged
between the participants (which can be considered a simple
negotiation protocol), and on the other hand, the strategy of
the buyer as well as the seller can be modified by rules. The
rules for keeping the negotiation conforming to a protocol
are a combination of state transition rules with requirement
rules as shown in detail in subsection 3.3. A buyer and a
seller mostly have different strategies and different ranges
of the price they would accept. A requirement rule can be

used to prohibit prices which are out of range. An example
is given for the buyer in table 2 and for the seller in table 3.

Table 2. Simple requirement rule for buyer

Rule-Type: Requirement
Condition: price � 500.

Table 3. Simple requirement rule for seller

Rule-Type: Requirement
Condition: price � 300.

If, for example, a strategy increases or decreases the of-
fer for a specific amount in each negotiation round, a rule
can be used to modify the amount (of change). E.g., after
five negotiation rounds, the amount to increase the offer is
reduced from 4 to 2 units. Table 4 shows a state transition
rule which effects such a strategy modification.

Table 4. State transition rule to modify offer
strategy

Rule-Type: StateTransition
Condition: rounds = 5
Precondition: step = 4
Postcondition: step = 2

Regarding the use of different rule types, requirement
rules are best suited for enforcing invariants, because if the
condition does not hold, an exception is thrown. In the ex-
ception handling, certain actions can be performed, such as
generating a counter offer, etc. State transition rules as well
as policy rules (policy rules are not mentioned in the exam-
ples) are best suited to effect property changes, because they
are the only rules which are able to modify properties. Ac-
tion rules are best suited to perform actions in the settlement
phase (like paying or delivering) which is not discussed in
this paper.

3.3. Services View

Within the transaction view, scenarios for the contract-
ing phase have been introduced, which should be supported
by a generic service. A rule-enabled contracting tool pro-
viding such a service is described in this subsection. It con-
sists of two parts. The first one controls the allowed order
of method invocations on the agent according to a property



the values of which denote different states. Before the in-
vocation of a certain method takes place, a requirement rule
checks the value of the state property to determine if this
invocation is allowed. After the method invocation is fin-
ished, a state transition rule switches the state property to
the follow state. Using this concept, different protocols (i.e.
different allowed orders of method invocations) can be real-
ized by different rule configurations. The second part con-
trols the strategy by rules which are used as meta-strategies.
These two main functions are now elaborated by means of
two agents using the protocol bazaar. It is assumed that the
information phase is finished, so that the agents just start to
negotiate. In figure 2, the state diagram (in UML) of the ac-
tive agent (the one who makes the first offer) and in figure
3, the state diagram of the passive agent is shown.

Deciding


do/decide

(1)


Waiting


(2)


Preparing


do/prepare

contract


(4)


Starting


(0)

/offer


offer


[decision offer]/offer

[decision accept]/accept


[decision abort/abort

Aborting


do/clean up

(3)


accept


abort


Figure 2. State diagram (UML) of active agent

Deciding


do/decide

(1)


Waiting


(2)


Preparing


do/prepare

contract


(4)


Starting


(0)

offer


offer


[decision offer]/offer


[decision accept]/accept


[decision abort/abort

Aborting


do/clean up

(3)


accept


abort


Figure 3. State diagram (UML) of passive
agent

The activities are marked with numbers in brackets.
These numbers describe the value of the state property
and refer to a certain activity of the strategy. A notifica-
tion mechanism informs the agent if the state property has
changed, so that he can invoke the corresponding activity
of the strategy. The mapping of the numbers to the activ-
ities of the strategy build the hard-coded part of the agent.
The strategy, which calculates counter offers and evaluates

offers, must know which language elements (methods) it is
allowed to use. This is done by defining an interface which
has a different signature for every possible combination of
language elements. This interface is shown in table 5.

Table 5. Strategy interface

Signatures
void decide(Condition offer, String agentAlias)
void firstOffer(String agentAlias)
void counterOffer(Condition offer, String agentAlias)
void acceptOffer(Condition offer, String agentAlias)
void abortOffer(Condition offer, String agentAlias)
void counterOfferOrAccept(Condition offer, String
agentAlias)
void counterOfferOrAbort(Condition offer, String
agentAlias)
void acceptOrAbortOffer(Condition offer, String
agentAlias)

The mode of each rule which controls the order of
method invocation is the internal mode. The reason for this
is that the agent should be autonomous in its actions, so he
needs no rule interaction with other agents. Each agent has
the number of requirement rules and state transition rules
that are needed to describe the behavior shown in both state
diagrams. This amount of rules can be titled as the protocol
set which is loaded into the corresponding rule set of the
agent.

A rule can be configured to be triggered before and/or
after a certain method is called. To illustrate a rule config-
uration, a petri-net, which shows an invocation of a rule-
sensitive method, is used. The petri-net is enhanced with
roles which are shown as added ovals on the transitions. All
attributes of the rule events can be seen from the illustra-
tion. For example, in Figure 4, Agent B sends a message to
Agent A. So the context id of the sender of the message is
Agent B and the target id of the recipient is Agent A. Agent
A has two rules configured, one before and one after the
method name offer(). The rule type and its settings are de-
scribed in the transitions for the rule. (The parts which are
not necessary for the rule configuration could be ignored,
such as committing or rolling back the transaction as result
of a rule exception). In the following, the rule configuration
from the perspective of Agent A is described.

Figure 4 shows the rules which are configured before and
after the call of method offer() on Agent A. If Agent B calls
the method offer() rule-sensitively on Agent A, the require-
ment rule checks if the agent is in the starting state (0) or in
the waiting state (2). After the method call, a state transition
rule changes the state in accordance with the precondition
(0 or 2) to the deciding state (1). This triggers the activity



decide() of the strategy.

Requirement

state = 0 or


state = 2

offer()


State Transition

state = 0 or

state = 2 =>


state = 1


Agent A
Agent A
 Agent A


Agent B


Figure 4. Rule configuration of bazaar (1)

If the strategy decides to make a counter offer, then the
method offer() is called rule-sensitively at Agent B. Figure
5 shows the state transition rule which effects that Agent A
changes from the deciding state (1) to the waiting state (2).
If Agent A makes the first offer, the same state transition
rule changes from the starting state (0) into the waiting state.

State Transition

state = 1 or

state = 0 =>


state = 2


offer()


Agent B
Agent A


Agent A


Figure 5. Rule configuration of bazaar (2)

Figure 6 describes the rules which are called before and
after the invocation of method accept(). Before the method
call, a requirement rule checks if the agent is in the wait-
ing state (2) and after the method call, a state transition rule
changes from the waiting state (2) into the preparing state
(4). If the Agent A calls the method accept() at Agent B
rule-sensitively, then the state of Agent A is changed from
the deciding state (1) into the preparing state (4). This sit-
uation can occur as the consequence of an action which is
performed within the activity decide(). Figure 7 shows this
rule configuration.

Requirement

state = 2
 accept()


State Transition

state = 2 =>


state = 4


Agent A
Agent A
 Agent A


Agent B


Figure 6. Rule configuration of bazaar (3)

Figure 8 shows the rules that must be configured before
and after the invocation of method abort() on Agent A. Be-
fore the method call, a requirement rule checks if the agent

State Transition

state = 1 =>


state = 4

accept()


Agent B
Agent A


Agent A


Figure 7. Rule configuration of bazaar (4)

is in the waiting state (2) and after the method call, a state
transition rule changes from the waiting state (2) into the
aborting state (3). If Agent A calls the method abort() on
Agent B, the deciding state (1) is changed into the aborting
state (3). This configuration is shown in Figure 9.

Requirement

state = 2
 abort()


State Transition

state = 2 =>


state = 3


Agent A
 Agent A
Agent A


Agent B


Figure 8. Rule configuration of bazaar (5)

State Transition

state = 1 =>


state = 3

abort()


Agent B
Agent A


Agent A


Figure 9. Rule configuration of bazaar (6)

Since the bazaar protocol is symmetric, the rule config-
uration for Agent B can be designed by only exchanging
the roles of the agents (passive and active agent), denoted
here by A and B. The rules can be configured with the help
of wild-cards, so that the id of the counterpart must not be
known. Instead, each agent must only know its own con-
text id for the rule configuration and can use the same rule
configuration for negotiation with different agents.

As mentioned, the properties of the rule set must be mod-
ified to control a strategy with rules. For this purpose, an-
other rule set is defined, the strategy set. These properties
define the count of negotiation rounds, the amount used to
increase or decrease the next counter offer, etc. The agent
must implement an interface specifying the configuration
points of the strategy which are methods that are used to



cause rule triggering events. This interface should be imple-
mented with empty method bodies since the only usage of
these methods is to configure the agents by rules before and
after their invocations (this is also why this name was cho-
sen). A rule-sensitive strategy is then implemented by call-
ing these configuration points rule-sensitively at the same
agent. This can be regarded as a hook where rules can mod-
ify or control the behavior of the strategy. It is distinguished
between configuration points which check the consistency
of some properties and configuration points which modify
properties. The difference is that the strategy has to catch
rule exceptions with the first type while ignoring them with
the second one.

The result of a successful negotiation is saved in the
contract set which provides the interface to the settlement
phase. The following example should illustrate the concept
described above. A strategy interface contains two con-
figuration points: checkConsistency() and modifyStrategy().
The method checkConsistency() is defined to configure re-
quirement rules to check an offer. The method modifyS-
trategy() is defined to configure rules with property writing
behavior, such as state transition rule or policy rule. This
configuration point is called by the strategy before making
a new offer, so that it directly influences the next offer.

Figure 10 shows the complete rule support for the con-
tracting phase. Two agents A and B are illustrated, who
communicate over the rule-sensitive middleware. A private
event mechanism is chosen for the rule support of the strat-
egy because of the autonomy of the agents. For the rule sup-
port of the protocol, a shared communication mechanism
is needed, which is illustrated as a shared event channel.
Agent A starts the communication by sending the message
offer() to Agent B (1). The parameter of the message is a
condition which can contain a fixed number of properties
which should be negotiated. The RS-DII (used to perform
rule-sensivitive method invocations) generates a rule event
before the method call, which is distributed over the shared
event channel (2,3a,3b). If it is not allowed to send the mes-
sage offer() in the current state, a rule exception is thrown,
which stops the communication. If it is allowed to send the
message offer(), then the message is sent to Agent B with
the help of the ORB (Object Request Broker) (4). Agent B
saves the offer into a rule set. After the method call, the RS-
DII distributes a rule event again over the shared event chan-
nel (5,3a,3b). This event triggers the state transition rule
of Agent B and eventually of Agent A to change the state
property. Because a call over the RS-DII is transactional,
the change of the state property will be visible only after
finishing the call. Now the invocation of the method offer()
through the RS-DII is finished. The rule set of Agent B no-
tifies the change of the state property (6), the value of which
indicates that a new offer has been received. The agent logic
invokes the corresponding activity of the agent (7). The task

R
S

-M
iddlew

are


E
vent C

hanel (shared)


R
S

-D
II + O

R
B




E
vent C

hanel (private)


R
S

-D
II + O

R
B




R
S

-A
gent A




R
oot (R

ule-S
et)


Interface

(Language)


S
trategy


A
gent Logic


P
rotocol


(R
ule S

et)


P
roperties


R
ules


M
eta S

trategy

(R

ule S
et)


P
roperties


R
ules


C
onfiguration


P
oints


E
vent C

hanel (private)


R
S

-D
II + O

R
B




R
S

-A
gent B




R
oot (R

ule-S
et)


Interface

(Language)


S
trategy


A
gent Logic


P
rotocol


(R
ule S

et)


P
roperties


R
ules


M
eta S

trategy

(R

ule S
et)


P
roperties


R
ules


C
onfiguration


P
oints


1
2


3a

3b


4


5


6


7


8


9


10


12


11


Figure 10. Negotiation of rule-sensitive
agents (RS-Agents)

of the strategy is now to check the offer, to make a counter
offer or to abort the negotiation. The strategy checks the
offer by calling a configuration point (checkConsistency())
at Agent B (8). The RS-DII distributes before the method
call a rule event to Agent B over the private event channel
(9,10). This triggers a requirement rule at Agent B, which
throws a rule exception if its condition does not hold. If no
rule exception is thrown, the RS-DII invokes the configura-
tion point (11) and distributes a rule event after the method
call. The call of the first configuration point is now finished.
The second configuration point (modifyStrategy()) is called
before Agent B makes the next counter offer. The flow of
execution is similar to the one described before. If Agent B
does not accept the offer of Agent A, he now sends the new



message offer() to Agent A and a similar flow of execution
continues at Agent A. This process can repeat until either
an offer is accepted or the negotiation is aborted.

3.4. Infrastructure View

The services view described above requires an infrastruc-
ture to implement the generic services. The rule-sensitive
middleware described in this subsection serves as the in-
frastructure for this framework. Figure 11 shows its com-
ponents.

ORB


Event-Service
 Transaction-

Service


Domain/Name-

Service


RS-DII


Rule-sensitive Applications


Figure 11. Rule-sensitive middleware

A common interface, the RS-DII (Rule-Sensitive Dy-
namic Invocation Interface), is used to make the rule ex-
ecution model transparent to the application developer. A
transaction service is used to make each call transactional
which means to apply the ACID properties to the properties
in the rule sets. To distribute the rule events which can trig-
ger the rules, an event service is used. Each rule-sensitive
agent must register with the domain/name service. This is
because the rule event protocol depends on a static amount
of rules in the system for each method call. So the do-
main/name service can be used to retrieve the current num-
ber of rules in the system and can wait for the right time to
register or deregister an agent. Additionally, the uniqueness
of context id’s of the agents is checked by the domain/name
service at registration time.

4. Implementation

For portability reasons, Java was chosen to implement
the rule-sensitive middleware and, on top of it, a market-
place with agents. The Voyager framework, a powerful Java
development tool which supports object migration, is cho-
sen as the ORB (object request broker). As event and trans-
action service, the CORBA services of the VisiBroker prod-
uct are used. The domain/name service uses the alias names
of Voyager as context id’s and is itself implemented as a
CORBA object. Figure 12 shows the package dependencies
of the implementation.

The packages are divided into packages which belong
to the rule-sensitive middleware (infrastructure view) and

Marketplace


Rule-sensitive Middleware


env


modes
 rules


services


rsdii


mobility
 events


persistence


agent
 market


Figure 12. Package dependencies

packages which belong to the organizational aspects of the
framework (business view and transaction view). The rule
configurations described in the services view and applied to
the agents are implemented in form of a sample marketplace
with the bazaar protocol. To provide a short description of
the content of the packages of the rule-sensitive middleware
followed by the packages market and agent:

� Package service: Implements a special domain/name
service.

� Package env: Everything necessary for the usage of
rules on the application level, like rule sets (rule con-
tainer) and the interface RuleSensitive which all rule-
sensitive applications have to implement, is provided
in this package.

� Package rules: An implementation of the different rule
types including action rule, policy rule, state transition
rule and requirement rule is provided by this package.

� Package modes: The different rule activation modes –
internal, filter, oneway and callback – are implemented
in this package.

� Package mobility: The rules themselves are mobile
objects implemented in this package.

� Package events: This package provides the imple-
mentation of the rule events which are communicated
through the event channel.

� Package rsdii: This package provides an implementa-
tion of the RS-DII.

� Package persistence: An implementation to persist
rule configurations in an XML format is provided by
this package.

� Package market: An implementation of a marketplace
for the business view is given in this package.



� Package agent: An implementation of rule-sensitive
agents which act as market participants is given in this
package. Also a simple strategy is provided which im-
plements the behavior described in the examples of the
services view.

The rules of a rule-sensitive application can be modified
by an editor with a graphical user interface has also been
implemented. The editor makes the specification of rules
and rule configurations more comfortable.

5. Summary and Outlook

The focus of this paper is how to support software agents,
especially mobile agents, to carry out a negotiation pro-
cess by rule-based mechanisms. Therefore, the technologi-
cal aspects, particularly generic services supporting rule ca-
pabilities, were primarily described within the four views
of the ec-framework. The business view introduced basic
concepts of a negotiation-centric agent architecture. Within
the transaction and services view, mechanisms of a rule-
enabled marketplace, which allow for the control of negoti-
ation protocols and strategies by specific rule objects, were
explained. To illustrate the functionality of these mech-
anisms, concrete rule configurations were defined for the
negotiation protocol of a bazaar and configuration points
were introduced as hooks to modify a strategy. Within the
infrastructure view and in the implementation section, it
was briefly described how components of a rule-sensitive
middleware providing the functionality of the services view
were implemented.

Early experiments with the prototype of this rule-
sensitive middleware have revealed some weaknesses w.r.t.
the system runtime behavior which are mainly due to the
overhead of triggering rules on every rule-sensitive method
invocation. This might be improved by using more efficient
basic middleware services, especially a better event man-
agement, in the implementation and is subject of current
research. The application of rules to agents has the main
benefit that the agents’ behavior can be flexibly controlled
and modified at runtime. On the other hand, the system
becomes more complex and above all more dynamic since
every additional rule can influence the whole rule system.
This makes the availability of tools necessary which sup-
port the (semantical) development of rule configurations.
One of the first tools in this direction is the rule editor im-
plemented within the context of this framework which sim-
plifies the creation, modification and storage of rules. This
rule editor can still be seen as a “low-level” tool because it
does not provide support to prevent the developer of apply-
ing rules which do not provide the desired behavior. Thus,
for the different phases of a market transaction including the
very important settlement phase, which could not be treated

within the limited scope of this paper at all, different sup-
porting tools and more efficient generic services still need to
be developed and/or integrated into the rule-sensitive mid-
dleware.

References

[1] A. Chavez and P. Maes. Kasbah: An Agent Marketplace for
Buying and Selling Goods. In Proceedings of the 1. Intl. Con-
ference on the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM’96), London, UK, 1996.

[2] M. Lindemann and A. Runge. Electronic Contracting within
the Reference Model for Electronic Markets. In Proceed-
ings of the 6th European Conference on Information Systems
(ECIS’98), Aix-en-Provence, France, June 1998.

[3] J. R. Oliver. On Artificial Agents for Negotiation in Electronic
Commerce. PhD thesis, The Wharton School, University of
Pennsylvania, 1996.

[4] J. Rosenschein and G. Zlotkin. Rules of Encounter: Design-
ing Conventions for Automated Negotiations among Comput-
ers. MIT Press, 1994.

[5] B. Schmid and M. Lindemann. Elements of a Reference
Model for Electronic Markets. In Proceedings of the 31.
Annual Hawaii International Conference on System Sciences
(HICSS), IV, Jan. 1998.

[6] M. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Generic Pol-
icy Management for Open Service Markets. In H. König
and K. Geihs, editors, Proc. of the Int. Working Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS’97), Cottbus, Germany. Chapman & Hall, Sept. 1997.

[7] M. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A Plug-In
Architecture Providing Dynamic Negotiation Capabilities for
Mobile Agents. In K. Rothermel and F. Hohl, editors, Proc. 2.
Intl. Workshop on Mobile Agents, MA’98, Stuttgart, Lecture
Notes in Computer Science. Springer-Verlag, 1998.

[8] M. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Interaction-
Oriented Rule Management for Mobile Agent Applications.
In L. Kutvonen, H. König, and M. Tienari, editors, Proc.
of the Second Int. Working Conference on Distributed Appli-
cations and Interoperable Systems (DAIS’99), Helsinky, Fin-
land. Kluwer Academic Publisher, June 1999.


