
On Models in Object-Oriented Methods -
Critique and a new Approach to Reversibility

Marko Boger, Hans-Werner Gellersen
Telecooperation Office (TecO), University of Karlsruhe

Vincenz-Priesnitz-Str. 1, 76131 Karlsruhe, Germany
Ph. [+49] (721) 6902-49, Fax [+49] (721) 6902-16

boger@teco.uni-karlsruhe.de
hwg@teco.uni-karlsruhe.de

Abstract

In this paper object-oriented methods are exam-
ined, problems are pointed out and a new method is
presented. In object-oriented analysis and design
methods two types of models can be identified. On
one hand, static architecture models are quite
similar in all methods and can be considered as
very elaborate. For dynamic models, on the other
hand, a number of problems are encountered.
They are not expressive enough, they are not re-
versible and dynamic models do not support a
seamless development process.

We have developed the MODERN method. It re-
uses known static architecture models. For the
dynamic model, though, a new approach is pre-
sented: In a task oriented model a delegation rela-
tion is examined. This model is fully reversible,
strictly object-oriented and highly expressive. In
MODERN the entire development process is re-
versible and seamless.

1 Introduction
There exists a wide range of object-oriented analy-
sis and design methods. Each method introduces a
set of different models. In most methods their
models can be grouped into static architecture
models and dynamic models.

In the static architecture models, classes, their
interface and the relationships between them are
described. It is widely agreed upon, that these

relationships comprise inheritance, association and
aggregation. Also the interface of a class is mostly
described in a similar way. So, the static archi-
tecture models are, besides notational details, usu-
ally very much alike.

In the other group of models, dynamic or func-
tional behavior, special scenarios, behavior in time,
states or system behavior are described. To distin-
guish these models clearly from the static models,
we will here refer to them as dynamic models.
These dynamic models serve to better understand
the system and identify requirements for the static
architecture.

While the static architecture models are very
elaborate and widely agreed upon, the dynamic
models still show many weaknesses. Their devel-
opment costs a lot of time and thus money. The
information gained from these models is little and
not sufficiently compact. The given information is
too coarse to truly specify the software compo-
nents. Dynamic models can not be reconstructed
from the final program and do not support a
seamless development process.

In this paper, we propose a new method called
MODERN. It contains only two models, a static
architecture model and a task oriented model. The
static architecture model makes wide re-use of
known, well proven static models. The other, the
task oriented model, represents a new approach. It
is a dynamic model in the sense introduced above.
With this model we address the problems encoun-
tered in today's dynamic models and we try to
eliminate their major disadvantages. The two
models of MODERN are simple and compact, they
raise expressiveness, support a seamless develop-
ment process and are fully reversible.

First, we shortly discuss two methods to outline the
problems and disadvantages in today's models. We
chose to present OMT by Rumbaugh and BON by
Waldén and Nerson. Both methods are discussed
following certain criteria, stated at the beginning of
section 2. In section 3, 4 and 5 we present our new
method. The static model is shortly presented.
Then the task oriented model is introduced and
thoroughly discussed. It is demonstrated with a
simple example. Our models are discussed and
compared with other models. Finally the current
status of our work and a conclusion are given.

2 On existing methods and their models
In this section, existing object-oriented analysis
and design methods and their models are discussed.
We have studied a wide range of methods, includ-
ing OOA/OOD [Coad/Yourdon 91a, Coad/ Your-
don 91b], the Booch-method [Booch 94], Fusion
[Coleman 94] and OOSE [Jacobson 92]. For sake
of space we restrict our discussion to OMT [Rum-
baugh 91], for it is one of the most expressive and
widely known, and BON [Waldén/Nerson 95], for
it is a new and very proper, modern approach.
Nevertheless, the conclusions drawn here are rep-
resentative for all above mentioned methods.

For a proper foundation of our arguments, we start
by defining criteria to judge the models of a
method. Since most methods use several models to
describe a system, it is necessary to not only look
at these models separately, but also as a set.

2.1 Criteria for object-oriented
models
In this section, some criteria to enable a qualitative
discussion and comparison are presented. The
methods examined in this paper will be compared
by these criteria. For readability and comparabil-
ity, the criteria will also be presented in form of a
table. In each of these tables, each model of a
method as well as the set of models together are
presented. The criteria are grouped into three
classes: Criteria for the expressiveness of the
modeling concepts, criteria for the modernity of
the development process induced by the model and
criteria for the usability in practice.

Under the keyword expressiveness we summarize a
number of concepts a model can express. We are
only looking at object-oriented methods and their
models, so it goes without saying that the concepts

class, object and method are supported in at least
one of the models of a method. This is true also
for static relations between classes, namely in-
heritance, association and aggregation. Neverthe-
less static relations are included in the table to
indicate, in which model they are expressed. Fur-
thermore, we look for the following criteria, most
taken from [Berard 92].

Delegation: Another relation is the delegation
relation. It describes the message passing or dele-
gation call between methods. It will be introduced
in more detail in section 4. Can delegation be ex-
pressed by the considered model?

Contracting: Is the concept of contracts as intro-
duced in [Meyer 88] supported? Meyer suggests
to define an invariant for a class and pre- and post-
conditions for methods.

Dataflow: In object-orientation only one mecha-
nism to transport data is given, the message pass-
ing or method call. Does the model enable the
expression of flow of data, reffering o this mecha-
nism?

Conditional constraints: Can the order of actions
or behaviors in time be modeled and can it be ex-
pressed that certain actions are only executed un-
der some conditions? Is this done for scenarios or
for the entire system?

Clustering: Software systems can become very
large. Does a model support grouping of classes in
some kind of clusters or modules?

System border: Software systems communicate
with other systems or the user. Can a proper inter-
face between the system and the outside world be
identified?

Systemevents: Can single interactions between the
system and the outside world be described? If the
previous question was answered positively, the
systemevents are the crossings of the system bor-
der.

States: States as defined in [Harel 87] can be a
powerful technique to model behavior. Is the no-
tion of states included explicitly? If not, is it op-
tional?

In the second class of criteria, we want to examine
how well new philosophies in the process of soft-
ware engineering are supported. We are here pri-
marily talking about models, but models and the
development process are closely intertwined. So

here we examine the ability of a model to support a
certain development process. Many methods are
still based on the waterfall lifecycle model. New
lifecycle models have been introduced and dis-
cussed. Taking the waterfall model as a minimum
reference point, more flexibility and more automa-
tion is considered positively. The criteria are in-
spired by [Waldén/Nerson 95]. Under the keyword
modernity we summarize the following points:

Conceptual integrity: We are talking about devo-
tion to the object-oriented paradigm here. A mod-
els integrity is regarded high, if only object-
oriented concepts are used and if these are used
purely and to their full extent.

Seamlessness: We consider a model seamless, if
its development is not bound to one phase, the
analysis phase for example, but rather if more and
more details and insight can easily be added during
the whole process of development. A seamless
model should support early analysis as well as
serve as implementation specification. How well is
seamlessness supported by the model?

Reversibility: During the process of development,
the level of abstraction slowly sinks from abstract
to more detailed until we finally reach program
level. We consider a model reversible if this proc-
ess is not uni-directional: Can the level of ab-
straction be raised from detailed to abstract? And
thus, can the model be regained from the final
code?

In the third class the usability of a model in prac-
tice is looked at: We summarized the following
criteria:

Simplicity: How easily can the model be learned
and used? Is it easy to read also for non-software-
developers?

Scalability: Can the model be used for small as
well as for huge systems?

Effectivity: Some models can be developed very
fast, expressing or help to find much information.
Others are tedious and time consuming and only
deliver little information. How good is the ratio of
time needed to develop a model and the informa-
tion captured in it?

Consistency: We want to examine how well the
different models are related. Two models are con-
sistent if their information is related and if changed
in one, it is also changed in the other. If supported

at all, with which model is the considered model
consistent?

2.2 Discussion of OMT
OMT has been developed by Rumbaugh and his
colleagues from 87 to 91 at General Electric
[Rumbaugh 91]. It has become one of the most
widely spread object-oriented methods. It com-
prises three models, an object model, a dynamic
model and a functional model. Terminology dif-
fers here a little. The object model is a static ar-
chitecture model, while dynamic and functional
model both are dynamic models in our terminol-
ogy. In this subsection we will use the term dy-
namic model in the sense defined by OMT.

In the object model the static architecture is de-
scribed. Rumbaugh introduces a powerful notation
to express the relations inheritance, association and
aggregation with many informative details. This
model has influenced many static architecture
models in other methods. Fusion, for example,
fully adopts this model [Coleman 94]. Only few
points can be criticized in this model. Following
the criteria list given in the last section, only two
week points can be identified (see Table 1). Con-
tracting has not jet been introduced. When work-
ing with a language that supports contracting, like
Eiffel [Meyer 91], this feature is really missing.
But even just for the design phase contracting can
help a lot, for it is a proper specification of what a
software component is to do. Secondly, consis-
tency can not be supported with any other model.
Information changed in this model can not affect
the other models, because they are conceptually too
different. Overall, this model is very good, as can
also be seen in Table 1.

In the dynamic model of OMT the behavior of a
system in time is described. The model is divided
into several submodels. On one hand, the behavior
is described in several scenarios. These scenarios
are presented in an event trace diagram. Then the
event traces from all the inspected scenarios are
combined in the event diagram. In the event dia-
gram, the necessary methods are identified. On the
other hand, the behavior is described in state dia-
grams. For each or for the most important classes
such a state diagram is developed. In the dynamic
model several points are criticized. It suffers
mainly because of two reasons: Lack of concep-
tual integrity and the system is only examined in
examples, the scenarios.

Expressiveness can only be judged middle because
conditional constraints are always only regarded
for scenarios. It is very difficult to cover the be-
havior of an entire system only by looking at ex-
amples.

Modernity must be considered rather low. The
examination of scenarios is done in an object-
oriented manner, but object orientation is not ex-
hausted. States do not directly relate to an object-
oriented concept. Conceptual integrity is thus
middle. The process of development is closely
related to the waterfall model. Different models
are developed in different phases. Thus it can not
be considered very seamless. Reversibility is
spoiled by the scenario concept. Men chosen sce-
narios can not automatically be reconstructed from
program code. Also state diagrams can not be
reconstructed.

Usability we considered only acceptable, mostly
because effectivity is low. Due to the scenarios,
one is never done with trying to get the full picture.

Object
model

Dynamic
model

Function
model

OMT

Expressiveness high middle middle middle

Static Relations yes yes

Delegation no

Contracting no no

Dataflow coarse coarse

Conditional con-
straints

Scenario partial

Clustering yes yes

System border no

Systemevents yes yes

States yes yes

Modernity high low low low

Concept. Integrity high middle low low

Seamlessness high low low low

Reversibility yes no no no

Usability high middle middle middle

Simplicity high high middle middle

Scalability yes yes yes yes

Effectivity high low middle middle

Consistency no with Obj. no no

 Table 1: Discussion of OMT

The functional model describes the data and con-
trolflow within the system. It models the internal
process of a software system. Processes, actor
objects and data store objects are introduced and
connected by arcs. This way a good model of
reality can be built.

It has to be stated, though, that these concepts are
not strictly object-oriented. Conceptual integrity is
spoiled. Because of this, expressiveness stays mid-
dle. Dataflow can be modeled, but this is done in a
rather coarse way. The notion of message passing
is not used.

Modernity is low. A major problem is the lack of
conceptual integrity. In this model new concepts
as processes and actors are introduced. This spoils
reversibility as well as seamlessness.

Usability is considered middle. The lack here is
also conceptual integrity. Since this model can not
directly be translated into object-oriented concepts,
effectivity is lost by some amount. Also changes
made in this model can not be presented in other
models in a consistent way.

Overall the dynamic and functional model of OMT
are fairly good and useful models. There is,
though, some substantial critique. Expressiveness
stays, mainly because of the restriction to scenar-
ios, coarse. Problems are encountered due to the
lack of conceptual integrity. Neither model is re-
versible nor can a seamless development process
be supported.

2.3 Discussion of BON
BON has been developed by Waldén and Nerson in
an ESPRIT program from 1989 until 1994 and
was published in spring 1995 [Waldén/Nerson 95].
The authors take a very modern standpoint. In
their book "Seamless Object-Oriented Software
Architecture" they fight a battle for pure object
orientation, contracting, seamlessness and reversi-
bility. In the preface Bertand Meyer says: "By
ensuring seamlessness and reversibility it is possi-
ble to obtain a continuos software development
process, essential to the quality of the resulting
products". We agree with this standpoint. Never-
theless we claim that the development process of
BON and its models can be substantially im-
proved. Especially the dynamic model needs im-
provement with regard to seamlessness and re-
versibility.

In BON two models are supported. The first is the
static model, the second the dynamic model. In
both, modeling charts are included to gather infor-
mation in the early phase of analysis.

In the static model these charts are the system
chart, the cluster chart and the class chart. The
core of the static model form a static architecture

diagram and several class interface models. In
addition, a class dictionary can be generated auto-
matically. Compared to the object model of OMT,
the introduction of the contracting concept is new.
This information is kept in the class interface
model. The static model is quite similar to the
object model of OMT. Consistency with other
models, as in OMT, can not be kept. They are
conceptually too far apart. Nevertheless this
model is highly elaborate(see Table 2).

In the dynamic model three modeling charts, for
events, scenarios and for creation are kept. The
main part of this model, though, are dynamic dia-
grams, one for each identified scenario. In each
dynamic diagram, the interaction of several classes
relevant for the scenario is modeled. The classes,
if needed instances, are connected by an arrow,
indicating a message relation. The different mes-
sage links are labeled with sequence numbers, to
model time. Each message link is explained in a
scenario box. Conditional control and dataflow
are explicitly excluded.

Static
model

Dynamic
model

BON

Expressiveness high low middle

Static Relations yes yes

Delegation no

Contracting yes yes

Dataflow no

Conditional con-
straints

Scenarios partial

Clustering yes yes

System border no no

Systemevents yes yes

States option.

Modernity high low middle

Concept. Integrity high middle middle

Seamlessness high low middle

Reversibility yes no no

Usability high middle middle

Simplicity high high high

Scalability yes yes yes

Effectivity high low middle

Consistency no no no

Table 2: Discussion of BON

We consider the expressiveness of this model as
very weak. The mentioned message relation is
only inspected for scenarios, which are just exam-
ples, not for the whole system. System events are
only shortly described on a chart card. Conditional
control and dataflow are not modeled at all. A
functional description of a system is never given.

Viewed that BON only has these two models, the
expressiveness has to be considered as too low.

Modernity stays behind the promises of the
authors. Conceptual integrity is kept: only object-
oriented concepts are used. Nevertheless, object
orientation is not exhausted. Important aspects are
left away. Neither is this model seamless nor re-
versible. The chart cards are very useful at the
beginning of development. During later develop-
ment, though, they are more or less useless. They
will usually loose consistency and relevance during
development. The scenarios can help a lot to un-
derstand and simulate a problem. Thus they will
be developed during analysis. They do not help to
design and specify a program. Reversibility is
spoiled by the restriction to scenarios, as in OMT.

2.4 Summary
For these two as well as for all methods mentioned
earlier, the following can be stated:

The static architecture model is usually very ex-
pressive, modern and useful. Nevertheless, the
problem of consistency is not addressed.

Dynamic models are in its entirety more or less
weak. They lack of conceptual integrity; dynamic
models make use of concepts that have no corre-
spondence in object-oriented programming or they
do not model object-oriented concepts exhaus-
tively. Dynamic models can not be considered
seamless. They are restricted to scenarios. They
are only helpful in early phases of development.
They do not model the entire system and do not
help enough to specify software components. In
the group of dynamic models not one was found to
be reversible.

Overall, three things can be pointed out. No
method can support reversibility to its full extent.
No method achieves proper seamlessness for all its
models. Dynamic models have to be revised in its
entirety.

3 A Different Approach: MODERN
We will now present a newly developed object-
oriented method for analysis and design. It is
called MOdeling and DEsign with a Reversible
Notation, short MODERN. We will here present
the models rather than the process of development.

It consists of only two models. The first is a Static
Architecture Model, short SAM, that is very simi-

lar to the static architecture diagram of BON,
mixed with some elements of the object model of
OMT.

In SAM we express static relations between
classes, we group classes to clusters, and we model
the interface of each class. Different from BON,
we do not distinguish between a static architecture
diagram and an interface diagram, but we view
these two aspects, static architecture and interface,
as different zoom depths in the same model. Also
we do not share the notation of the static architec-
ture diagram of BON. Much more we agree with
the notation used in the object model of OMT.
Nevertheless, the notation of the interface of BON
is adopted.

The second model is a Task Oriented Model, short
TOM. This model is different from existing dy-
namic models. It will be presented in detail in the
next section.

3.1 An example
To present our models and our notation, we give a
simple example. We present a small bilingual
dictionary. The dictionary will keep a list of word
pairs, an english word and its german translation.
The user can ask for a translation or enter new,
unknown word pair. We need the following
classes: DICT, our dictionary, some word pairs,
W_PAIR., the general class LIST, its specializa-
tion for word pairs, W_LIST. The W_PAIRs are
associated to the W_LIST, which itself is con-
tained in DICT. The static architecture is shown
in Figure 1. For shortness we only present the
interface of DICT in Figure 2.

DICT W _ L I S T

LIST

W _ P A I R

Figure 1: Static architecture

DICT

wordlist: W_LIST
 -- keep list of word pairs
make
 -- start and main routine
add_pair
 -- get words and add in list
 !new_pair_entered or not_changed
lookup
 -- get word and translate it
present (word: STRING)
 --output a (translated) word
 ?word_not_empty

Invariat

Figure 2: Interface of class DICT

4 A Task Oriented Model

4.1 Solving Problems
The aim of a programmer when writing a program
is to solve a given problem. In fact, programs can
solve a class of related problems. Problems solved
by a program are solved by a sequence of instruc-
tions, including branch and loop instructions. This
sequence is, for readability and re-usability, de-
vised into short segments, in object-oriented pro-
gramming called methods. Each such method
solves a part of the original problem. Large prob-
lems can be broken down to several smaller ones.

And these again can be broken down to jet smaller
problems, until we reach an atomic grain size.

To model the relationship between problems and
subproblems and to support the process of break-
ing down problems, we have created a new model.
It is called the Task Oriented Model, or TOM for
short. In the following paragraphs we will show
that TOM is strictly object-oriented, highly expres-
sive, compact and simple. We especially want to
point out that TOM is fully reversible and can be
kept consistent with SAM.

4.2 The Basic Model
In TOM problems are referred to as tasks. The
instance that performs a task is called a process.
Tasks can have several subtasks. A task delegates
a subproblem to a subtask. The relation between a
task and a subtask is called delegation relation or
just delegation. For each system only one task
oriented model (TOM) is developed. TOM is a
graphical model. It has in general the appearance

of a tree. The nodes of the tree are processes, no-
tated as ovals. To each process exactly one task is
attached, shortly described by a word or a couple
of words.

The general problem that is to be solved is called
the root task. This root task constitutes the root of
the delegation tree. First the root task is devised
into subtasks. Each task delegates subtasks to
other processes, until the grainsize of the task is
atomic. By this method a delegation tree starts
building up. This tree is not necessarily a tree in
the strict definition. Recursion can introduce cy-
cles. It is then a directed connected graph. Nev-
ertheless, the general appearance of a tree remains.

In the following sections, the model, the develop-
ment process and the notation of TOM are intro-
duced by presenting the example introduced in
section 3.1, a simple english-german dictionary.

The root task is called keep_dictionary. The
subtasks that have to be performed to keep a dic-
tionary are to add a new word pair, to look up a
word and to choose which action shall be per-
formed. These tasks can be broken down further,
as shown in Figure 3.

keep
dict ionary

add
word pair

lookup
word

enter
german

word

choose
act ion

enter
engl .
word

store pair
enter
word

search
transl .

present
transl .

Figure 3: The basic model of TOM

4.3 Identifying Methods and
Classes
In object orientation two concepts play a major
role, classes and methods.

A class is a combination of some datastructure and
a collection of methods. Classes are related to
other classes. These relations comprise inheri-
tance, association and aggregation. These rela-
tions define a static architecture on the classes of a
system. These static architectures are well under-
stood and all analysis and design methods contain
a static model to express them.

Methods, on the other hand, are usually not mod-
eled at all. Only their interface, maybe their pre-
and postconditons are expressed. We believe, that
methods deserve more attention. We will explain
why. The concepts of operations (functions and
procedures) in procedural programming and of
methods in object-oriented programming are not
very far apart. Nevertheless, some major differ-
ences are apparent. First, while operations are
general, methods are encapsulated within the con-
text of their class. Secondly, methods are usually
much shorter then operations. This results from a
different programming paradigm in object-oriented
programming. Methods should be rather short,
readable and easy to understand. Complexity is
reduced by delegating subproblems to other meth-
ods. Thus, complexity of methods themselves is
reduced. But the complexity of the relation be-
tween methods, the delegation relation, rises. It is
this complexity that is not paid attention to in to-
day's analysis and design methods. It is in the task
oriented model TOM, that the delegation relation is
modeled. We want to state here, that if a task tree
is modeled properly, each task can be associated to
a method from the SAM model.

As the delegation tree grows, some regions will
become stable, while others still change. In the
more stable regions (or in the final tree), we can
look for a task that a method could take care of.
Doing this, we might re-use known methods from
known classes from the static architecture model,
or we might identify the need for a new method in
a known class. We might also identify the need for
a new class. Once identified, the notation of a
process slightly changes. In the middle we add a
line. On top of this line, the name of the method is
notated, the name of its corresponding class under-
neath (see Figure 4).

Some tasks will not be solved within the system,
but outside of the system. This can be i.e. a task
of external equipment or the user. In the dictionary
example there are several tasks, that the user has to
take care of, namely choose an alternative action
and enter the english and/or german word. These
tasks should not be related to a class. Neverthe-
less, these tasks are marked with a double oval, to
indicate the detection of this insight.

enter
word

m a k e
D I C T

add_pa i r
D I C T

lookup
D I C T

presen t
D I C T

choose
act ion

enter
g e r m a n

word

enter
eng l .
word

search
W _ L I S T

store
W _ L I S T

Figure 4: Identifying methods and classes

4.4 A System Borderline
A software system can interact with other systems.
These can be for example other software systems
or physical measurement equipment, very often
this will be the user. Between the inner system and
outer world we can model a system border. We
notate this border as a line (Figure 5). The mecha-
nism to interact with the outside world again are
methods. Methods interacting with the outside
world should always be leafs of the delegation tree
in TOM.

The tasks identified to be not within the system
itself can be dragged beneath a system border line.
This way a clear system border line is identified.
Especially the border between the system and the
user, the system-user border line, is interesting.
The direction in which the border is crossed, input
or output, can be identified as well. A special
method for interactive systems has been developed,
based on this notation [Gellersen 95].

choose
act ion

enter
word

make
DICT

add_pair
DICT

lookup
DICT

present
DICT

search
W_LIST

store
W_LIST

enter
german

word

enter
engl.
word

Figure 5: System border

4.5 Dataflow
In a proper object-oriented system, data can only
flow by a method call. For this reason, method

calls are also called message passing. Method
calls, or delegations as we call them, can have no
dataflow, dataflow from the caller to the server or
from the server to the caller. The first confirms to
a procedure call, where only the flow of control is
transmitted. The others confirm to procedures
with arguments and functions, respectively.

In the delegation tree of TOM all delegations are
modeled. So all control and dataflows can be ex-
pressed here as well. Dataflow is indicated by an
arrow close to the caller or the server, respectively.
Also the type or the identifier of the transmitted
data can be notated.

In the dictionary example, data flows within the
add-pair process, from the user to the add-pair
method and from add-pair to store, and within
the lookup process as shown in Figure 6.

enter
word

m a k e
D I C T

add_pa i r
D I C T

lookup
D I C T

choose
act ion

enter
g e r m a n

word

enter
eng l .
word

search
W _ L I S T

store
W _ L I S T

presen t
D I C T

STRINGSTRING
W_PAIR

STRING
STRING

Figure 6: Dataflow

4.6 Conditional Constraints
In the basic model a task is related to a number of
subtasks offering their help to solve the given
problem. The set of subtasks of a task indicate all
possible delegations that the task could call on.
Usually though, not all possible delegations are
actually affected. The delegation calls underlie
conditional constraints. We can express this in
TOM. For each task the conditional constraints
for its subtasks is stated. A subtask can be option-
ally called under a condition. A subtask (or more)
can be called repeatedly. Two (or more) subtasks
can be executed alternatively. Two subtasks can
be called in sequence. These conditional con-
straints are expressed in a regular expression. To
each arc representing a delegation relation, a
unique letter is attached. This is only done for
shortness. It is possible to use words or the origi-
nal name of a method as well. The mentioned four
types of constraints are notated as follows. For a

sequence of subtasks, the letters representing them
are separated by a colon. An optional subtask, or
its representing letter is enclosed in two horizontal
lines. Alternative subtasks are separated by an or-
sign. Repeated delegation, finally, is expressed by
a star, for an unknown number of loops, by a plus,
for at least one loop, or a number or a variable
name for a known number of iterations. Of course,
subtasks can be grouped in brackets. These con-
straints clearly correspond to programming con-
structs. Optional and alternative delegation is
realized by an if-, case- or inspect-statement. Re-
peated delegation clearly corresponds to a loop-
construct. The details, though, the exact definition
of the boolean condition for an if-clause for exam-
ple, are left away. For the dictionary example this
is shown in Figure 7.

enter
word

m a k e
D I C T

add_pa i r
D I C T

lookup
D I C T

choose
act ion

enter
g e r m a n

word

enter
eng l .
word

search
W _ L I S T

store
W _ L I S T

presen t
D I C T

((d,e),f)* (g,h, i)*

a b c

d e f g h i

(a,(b c)*)*

Figure 7: Conditional constraints

5 Discussion of MODERN
In this section we want to critically revise our
method MODERN. We hope that the last section
has convinced the reader that our new model TOM
is simple, highly expressive and very compact. In
one single model, we can cautiously analyze and
model our system, identify needed methods and
classes, roughly specify the implementation of
methods, find the system borderline, express da-
taflow and conditional constraints. Nevertheless,
our model is simple, readable, can intuitively be
understood or developed and leaves a high amount
of flexibility to the developer.

In the next sections we want to point out and dis-
cuss three more important features of MODERN
and TOM. We then summarize our presentation
and cheque the criteria introduced at the beginning.
Finally we compare our method MODERN to
OMT and BON.

5.1 Conceptual Integrity: Nothing
but Object Orientation
At the heart of our method lies a principle: All of
object orientation and nothing but object orienta-
tion. In our two models we can express all aspects
of an object-oriented software system. We can
model classes and relations between them. We can
group different parts of a system to a cluster. We
can express the interface of a class and the con-
tracts for it. This had been well understood in
other methods before and has been adopted from
others. But only the specification of a class is not
the whole story. This is the information the user of
a class will need. The developer or implementer of
a class needs a lot more. And the object-oriented
paradigm has more to offer: In our approach we
model methods and the relations between methods
as well. The methods really do the work, it is here
where a problem is solved and it is here, where the
problem has to be understood. It is between meth-
ods that the control- and data flow flows. And it is
within the methods, that the system border is
crossed. The most important relations between
methods is the delegation relation. This is the fun-
damental mechanism of object orientation. By
delegation the thread of control is woven, following
conditional constraints, data is transmitted and the
system border is crossed. These are important
aspects of an object-oriented system and should be
modeled and specified. We do this in our ap-
proach.

5.2 Reversibility
In the waterfall lifecycle model, the development
process was basically uni-directional. A system
was analyzed, then designed and finally imple-
mented. If an error made in an early stage is en-
countered, the whole process is taken back to the
erroneous point and the entire system is redesigned.

In real life though, this model has proven to be too
inflexible. Usually analysis decisions are continu-
ously changed in the design phase and design deci-
sions during implementation. At the end none of
the delivered documents is correct.

We view the development process as a stepwise
refinement of an abstract model to a more and
more detailed model until we finally end up with a
program. If the process of adding details to a
model can be reversed, so that early analysis mod-
els can be regained from a late model or the final
program, we call this model reversible.

The static architecture model of OMT, BON or
other methods is reversible. This has been shown
in several CASE-tools. The dynamic models of
these methods, though, are not reversible. Never-
theless, this is very well possible. The key to re-
versibility in dynamic models lies in strictly stick-
ing to object-oriented concepts and using these to
their full extend.

When looking at a piece of code of an object-
oriented program (we assume a properly object-
oriented language, like Eiffel) there are not very
many concepts. Basic instructions like assign-
ments, branch instructions like if and case instruc-
tions, loops and calls to other methods. In Eiffel
for example, even the addition of two numbers is
implemented as a method call to the routine add.
The key concept in object-oriented programs is the
delegation. The delegation relation is what we
model in our task oriented model TOM.

Due to its conceptual integrity, TOM is reversible.
It can be reconstructed from code. Leaving away
all details of a program, what is left is just the
basic model of TOM introduced in section 4.3.
But also most of the details can be included in
TOM. The parameters of calls represent dataflow
as discussed in section 4.5. The information ex-
pressing in which order and under which condi-
tions which delegations should be affected, the
branch and loop statements, can be directly trans-
lated to regular expressions for conditional con-
straints, introduced in section 4.6. Calls to rou-
tines dealing with the outside world, a read-
statement for example define the system border
from section 4.4. Information, that is too detailed
can be filtered out. The boolean expressions of a
branch or loop and calls to library methods like
add are left away.

Thus TOM is fully reversible. At the same time,
this shows how well TOM serves as a specification
for the program. Once TOM has been fully devel-
oped, only few more details need to be added to
achieve the final program.

5.3 Seamlessness
Waldén and Nerson point out the importance of
seamlessness in a development process in
[Waldén/Nerson 95]. We agree with this but we
have found, that not all models used today support
a seamless development process. Static architec-
ture models, as in OMT or BON can usually be
considered seamless.

Dynamic models, though, have up to date only
served to analyze systems and to encounter infor-
mation needed for the static model. They do not
serve to model details and specify software com-
ponents. They do not help the implementers as
well as needed. They are not seamless.

We have tried to develop a new method that is
seamless in all its parts. All its models should be
seamless, but also the seams between the models
and the program as well as the seams among the
different models should be minimized.

SAM is adopted from other methods, mainly from
BON. It readily inherits the property of seamless-
ness.

The difficulty was to design a seamless dynamic
model. TOM can be used in very early analysis.
It then helps to break down a problem into its sub-
problems. It can be used during design, when de-
tails as dataflow and conditional constraints have
to be modeled. For the implementation phase it
can serve in two ways. It gives a specification of
the software component and it can be generated
from the existing code, to represent the actual state
of the project. Thus, TOM is a seamless dynamic
model.

This way also the gap between model and software
becomes very little. With SAM and TOM very
precise specifications of a program can be devel-
oped. On the other hand SAM and TOM can be
used, grace to reversibility, as views upon the ex-
isting software.

Even the seams among the models of MODERN
disappear. The models SAM and TOM can be
developed hand in hand. Methods from existing
classes in SAM serve as candidates for subtasks in
TOM. In TOM needed methods and classes can
be identified. Also, a task from TOM and a
method from SAM can be attached to each other.
This way there is a semantical link between the
two models. If information is changed in one, it
can consistently be represented in the other.

5.4 Summary
In the last sections, we have presented the MOD-
ERN method and its two model SAM and TOM.
In this section, we want to come back to the crite-
ria for models introduced in section 2.1.

The static architecture model SAM is adopted
from BON. So the criteria are all answered as

positive as for BON. Only for the criteria consis-
tency, where BON had its only encountered weak
spot, we can now point out an improvement. SAM
can, assuming appropriate CASE-tool support, be
kept consistent with TOM; any relevant informa-
tion that is changed in SAM will be shown in
TOM consistently and vice versa.

SAM TOM MODERN

Expressiveness high high high

Static Relation yes yes

Delegation yes yes

Contracting yes yes

Dataflow yes yes

Conditional Con-
straints

yes yes

Clustering yes yes

System border yes yes

Systemevents yes yes

States option.

Modernity high high high

Concept. Integrity high high high

Seamlessness high high high

Reversibility yes yes yes

Usability high high high

Simplicity high high high

Scalability yes yes yes

Effectivity high high high

Consistency with TOM with SAM yes

Table 3: Discussion of MODERN

Our dynamic model TOM has to be discussed in
more detail. Expressiveness can now be regarded
as high. The delegation relation, not modeled in
other dynamic models can now be expressed. Da-
taflow and conditional constraints, excluded in
other dynamic models can be expressed strictly
using object-oriented concepts. A proper system
border and system events can be identified and
modeled. The system is not anymore only exam-
ined for scenarios, but for the entire system. Nev-
ertheless we consider scenarios as very important
and helpful. They should be examined in analysis
to better understand the problem. But one should
not stop here. Information from scenarios can be
collected in TOM. In TOM, then, the entire sys-
tem can be modeled. As in BON we propose to
use state diagrams as extension where needed.

Development process concepts are supported in a
very modern way. Conceptual integrity is ensured.
Only object oriented concepts are used, even used
exhaustively. Our model TOM is truly seamless.
It can be used for very early analysis as well as in
latest design. It can even be reconstructed from

code for maintenance or representation. Different
from all other dynamic models, TOM is reversible.

Usability is high. It is easy to read and easy to
learn. TOM can be scaled from small to huge
problems. A great improvement is achieved in
effectivity (TOM directly serves as implementation
specification) and consistency (SAM and TOM are
semantically linked).

5.5 A Comparison
In this section we will compare the three methods
examined in this paper. Overall MODERN im-
proves the development process in all three classes
of criteria. Expressiveness as well as modernity
and usability are raised. With MODERN all con-
cepts expressed in other methods can be expressed
as well. In addition, the delegation relation can be
expressed, dataflow can be modeled using the ob-
ject-oriented mechanism, message passing, condi-
tional constraints are included at fine grain size
and a proper system border can be identified.

Our approach supports modern development proc-
ess concepts. Compared to other methods con-
ceptual integrity, the strict use of object-oriented
concepts, is maintained in the most proper way.
While OMT introduces concepts not conforming to
the object-oriented paradigm and BON does not
make use of object-orientation exhaustively, in
MODERN all aspects are modeled using object-
oriented concepts. Seamlessness can be improved.
OMT was not considered seamless, due to the
underlying waterfall lifecycle model. In BON only
the static but not the dynamic model was consid-
ered seamless. In MODERN both models support
a seamless development process. In addition, the
seams among the models and towards program
code disappear. Reversibility, in both other meth-
ods as well as in all others, was only possible for
the static model Our method is the first to be re-
versible in all its parts.

Due to the strict use of object-oriented concepts,
effectivity was raised. Everything expressed in our
models can directly be transformed into program
code. Our dynamic model is not restricted to sce-
narios but can model the entire system. Finally,
while other models can not support automatic con-
sistency, this can be fulfilled in our method, grace
to the semantic link between our models.

OMT BON MODERN

Expressiveness middle middle high

Static Relation yes yes yes

Delegation no no yes

Contracting no yes yes

Dataflow coarse no yes

Conditional Con-
straints

partial partial yes

Clustering yes yes yes

System border no no yes

Systemevents yes yes yes

States yes option. option.

Modernity low middle high

Concept. Integrity low middle high

Seamlessness low middle high

Reversibility no no yes

Usability middle middle high

Simplicity middle high high

Scalability yes yes yes

Effectivity middle middle high

Consistency no no yes

Table 4: Comparing OMT, BON and MODERN

6 Current Status
The MODERN method was developed based on
the experience from the DOCASE project [Mühl-
häuser 93] and the VDAB project [Gellersen 95].

We are using MODERN in connection with the
programming language Eiffel. This has several
reasons. First of all, we are dealing with software
engineering. Eiffel seems to be the language most
appropriate for this. Secondly, one of our main
aims is reversibility. For this we need a proper
object-oriented language. With the C-part of C++
we would encounter many problems here. Eiffel
on the other hand fulfills our needs.

On the base of MODERN a specialized method for
interactive systems has been developed, called
MEMFIS. For interactive systems, it is important
to identify the exact interface between the user and
the system. Within the model TOM, a system
border can be identified. The interface between
user and system is a specialization of this system
border. Based on this model, we have developed a
method to build interactive software [Gellersen et
al. 95].

We are constantly validating our method. Cur-
rently, the method is tested in a medium scale proj-
ect in the automobile industry. It is also further
investigated in practical courses at university. Also
a prototype of a CASE-tool is currently been de-
veloped. MODERN is a very appropriate method
for a CASE-tool. Only two models are used.

These two are a very precise specification of the
software system under development. Both models
are fully reversible. Both models can be kept con-
sistent both with each other as well as with the
program. We are developing a development envi-
ronment including a powerful Drag and Drop
mechanism as it is used in Eiffel Bench and Eiffel
Base [Eiffel 95]. In future, we plan to construct a
development method for distributed and concurrent
systems.

7 Conclusion
In this paper we have discussed object-oriented
models. We examined the two methods OMT and
BON and their models representatively for existing
methods. This discussion has shown, that static
models are very elaborate. It has also shown that
dynamic models have severe weaknesses. Major
problems were encountered as lack of reversibility,
lack of consistency between models, restriction to
scenarios and not enough specification of how
methods are to be implemented.

We presented a new approach, the MODERN
method. Its static architecture model SAM is re-
used from other methods. Its dynamic model, the
task oriented model TOM, on the other side, is a
new approach. In TOM the delegation relation is
examined and modeled. TOM is simple, yet highly
expressive. It strictly makes use of object-oriented
concepts and does this exhaustively. It supports a
seamless development process and it is fully re-
versible.

Overall, our approach improves expressiveness
and usability of object-oriented methods. The
development process is entirely seamless. With
our method MOdeling and DEsign can be done
with a fully Reversible Notation - MODERN.

References

Berard 1992. A Comparison of Object-Oriented
Development Methodologies, Gaitherburg, Mary-
land: Berard Software Engineering.

Booch, G 1994, Object-oriented Analysis and
Design with Applications. Redwood City, Cali-
fornia: Benjamin Cummings.

Coad, P. and Yourdon, E 1991a. Object-Oriented
Analysis, 2nd Ed. Englewood Cliffs, New Jersey:
Prentice Hall.

Coad, P. and Yourdon, E 1991b. Object-Oriented
Design, Englewood Cliffs, New Jersey: Prentice
Hall.

Coleman, D et al. 1994. Object Oriented Devel-
opment - The Fusion Method, Englewood Cliffs,
New Jersey: Prentice Hall.

Eiffel 1995. ISE Eiffel: The Environment, ISE
Technical Report TR-EI-39/IE.

Gellersen, H.W. 1995. Support of User Interface
Desing Aspects in a Framework for Distributed
Cooperative Applications. In Taylor, R. (Eds.)
Software Engineering and Human-Computer Inter-
action, Lecture Notes in Computer Science 896,
Springer Verlag, 1995.

Gellersen, H.W., Boger, M. Bonnet, T. and
Hirschmann, M. 1995. A Toolkit and a Method
for Building Modality Abstraction into Interactive
Software, Technical Report. Submitted for publi-
cation.

Harel, D 1987. Statecharts: a visual formalism
for complex systems. Science of Computer Pro-
gramming 8 (1987): pp. 231-274.

Jacobson, I. 1992. Object-Oriented Software
Engineering - A Use Case Driven Approach,
Wokingham, England: Addison-Wesley.

Meyer, B. 1988. Object-Oriented Software Con-
struction. Englewood Cliffs, New Jersey: Prenice
Hall.

Meyer, B 1991. Eiffel: The Language, Englewood
Cliffs, New Jersey: Prentice Hall.

Mühlhäuser, M., Gerteis, W., and Heuser, L.
1993. DOCASE: A Methodic Approach to Dis-
tributed Object-Oriented Programming. CACM
36, 9 (Sept. 1993), pp. 127-138.

Rumbaugh, J. 1991. Object-Oriented Modelling
and Design. Englewood Cliffs, New Jersey: Pren-
tice Hall.

Stein, W. 1994. Objektorientierte Analysemetho-
den: Vergleich, Bewertung, Auswahl. BI Wissen-
schaftsverlag.

Van den Goor, G., Hong, S., Brinkkemper, S.
1992 A Comparison of Six Object-Oriented
Analysis ans Design Methods. Center of Telem-
atics and Information Technology, University of
Twente, Netherlands, and Computer Information

Systems Department, Georgia State University,
Atlanta, USA.

Waldén, K. and Nerson, J.M. 1995. Seamless
Object-Oriented Software Architecture,
Englewood Cliffs, New Jersey: Prentice Hall.

