
Preprint 0 (2000) ?{? 1

DynamiCS: An Actor-based Framework for

Negotiating Mobile Agents

M. T. Tu, C. Seebode, F. Gri�el and W. Lamersdorf �

Distributed Systems Group, Computer Science Department

University of Hamburg, Germany

Vogt{K�olln{Str. 30, 22527 Hamburg, Germany

E-mail: [tu,1seebode,gri�el,lamersd]@informatik.uni-hamburg.de

In this article, a framework to integrate negotiation capabilities { particularly

components implementing a negotiation strategy { into mobile agents is described.

This approach is conceptually based on the notion of an actor system which decom-

poses an application component into autonomously executing subcomponents coop-

erating with each other. Technically, the framework is based on a plug-in mechanism

enabling a dynamic composition of negotiating agents. Additionally, this contribu-

tion describes how interaction-oriented rule mechanisms can be deployed to control

the behavior of strategy actors.

Keywords: negotiation, mobile agent, interaction patterns, rule-sensitive actors,

electronic commerce.

1. Introduction

Deploying agent technology { especially mobile agents { as a basis for build-

ing the information infrastructure of an emerging \Net"-society is one of the most

challenging issues in many research areas. Speaking drastically, one can think of

this kind of research, which is more and more associated with notions like \com-

munity computing" [1], as designing the future society. This is at least true for

the deployment of mobile agents in electronic commerce. Being the central in-

teraction scheme in economic activities, negotiation is one of the main focuses in

the development of software agents to perform online commercial transactions.

The incorporation of electronic commerce capabilities into mobile agents has been

� This work is supported, in part, by grant no. La1061/1-2 from the German Research Council

(Deutsche Forschungsgemeinschaft, DFG)

2

developed under several aspects. However, the integration of intelligent capabili-

ties like those needed for negotiation into mobile agents raises new requirements

leading to a di�erent research path, which focuses on integration issues that can

be dealt with on a general level, i.e. independent of the respective contributing

research areas [2].

This paper presents a component architecture of self-interested negotiating

mobile agents. It is implemented in the context of the DynamiCS (Dynamically

Con�gurable Software) project at the University of Hamburg. This architec-

ture puts a strong emphasis upon the fact that mobility and intelligence are

not opposed, but rather orthogonal to one another. The ability to negotiate

autonomously { e.g. to bid at Internet auctions { can be considered a useful

intelligent capability which is directed to a clear goal, i.e. �nding the best pos-

sible deal according to a given value function. However, even when restricted to

E-Commerce scenarios, the term negotiation can still cover many di�erent types

of processes, during which the participants try to achieve some kind of common

agreement. Therefore, we proposed a generic protocol speci�cation language to

precisely express the semantics of a negotiation type [2,3]. Moreover, it is a cen-

tral feature of the presented architecture that the choice of strategy, protocol

or communication language is not restricted by any technical issues which arise

in the context of integration. In other words, it is an explicit goal to subsume

di�erent kinds of intelligent capabilities into the same architecture and to make

it possible to switch between them dynamically, even in the same negotiation.

Whereas the issues of communication language and protocol compliance are dis-

cussed in the publications cited, this contribution will have a speci�c focus on how

to embed di�erent negotiation strategies into mobile agents by using a dynamic

plug-in mechanism and how to control the behavior of actors and strategies by

using interaction-oriented rule mechanisms. (This article is an extended version

of the contribution to the IAT'99 Workshop on Agents in Electronic Commerce

(WAEC'99) [14] with a new section on rule-sensitive actors.)

Implementation constraints The agent architecture presented here is embedded

into the DynamiCS project at the Distributed Systems Group at University of

Hamburg. For implementation work related to this project, Java was chosen as

the implementation language and Voyager [4] as the basic mechanism for distri-

bution and mobility. However, the aim of this architecture is to study the basic

requirements of a system of self-interested negotiating mobile agents which can

3

be considered independently of any concrete implementation.

The remainder of the paper is organized as follows: Section 2 describes

an actor-based negotiation framework capturing the functional decomposition of

the mental capabilities of a negotiating agent into active objects. In particular,

the structure of this framework, its main properties and a practical application

approach are presented. Section 3 presents a dynamic plug-in mechanism as

the basic composition technique of the framework. Section 4 describes how a

decentralized, interaction-oriented rule mechanism can be deployed to control

the behavior of actors implementing a strategy. Section 5 �nally sums up the

paper by giving an outlook on current work done in the project and some open

issues that need to be investigated further.

2. An actor-based negotiation framework

The development of self-interested negotiating agents requires an under-

standing of the sequence of events in a negotiation. The structuring of the overall

task of a negotiating agent into specialized modules which can be dynamically

plugged into a mobile agent (or agent frame) is the main design rationale be-

hind the construction of the DynamiCS agents. Modules represent the agent's

capability to

communicate in di�erent control languages (e.g., KQML or XML) following

either a stream-oriented communication model or to expose an object-oriented

communication interface that other agents holding a reference can use to post

their messages.

comply with negotiation protocols in order to take di�erent roles in nego-

tiations or to detect protocol incompliant behavior of other participants.

think strategically to maximize the bene�t of the negotiation for the agent.

This modular approach allows for encapsulating the complexity of each task.

Communication and protocol capabilities are enforced by environmental require-

ments whereas the choice of strategy relates to the self-interest of the agent.

The choice of strategy is what decisively contributes to the success of a negotiat-

ing agent. The implementation of a negotiation strategy realizes a more or less

sophisticated model of the agent's intelligence concerning this goal.

4

2.1. Negotiation strategies

A negotiation strategy in general is a mapping between a sequence of nego-

tiation messages (the negotiation history) to a set of possible actions (determined

by the speci�c protocol) taken in response (see [2] for a classi�cation of negotia-

tion strategies). Negotiation in general can be considered under several aspects.

It has been described as a process contributing to con
ict resolution [16], task

allocation [17] and resource allocation [18]. All these aspects contain an element

of behavioral control of the agent. This control is part of the negotiation strategy

and administers the e�ort that the agent is going to spend in order to achieve a

desired outcome. There is always a tradeo� between the best possible action an

agent can compute and the resources that are used.

Building a framework for the development of negotiation strategies means to

explicitly model the requirement of resource control. It will be used to model the

intelligence of the agent and assures responsiveness, liveness and result quality.

A particular strategy models the intelligence by using specialized data structures

and knowledge of the problem domain. A generic framework for the development

of negotiation strategies must not impose any restriction on the domain model

whatsoever. The framework is concerned with the delivering of negotiation mes-

sages to the domain model and converting the evaluation back into actions taken

(the response messages) by the agent.

In consequence, the framework contains all the logic to support an execution

model of the strategy. The execution model has to support the execution of the

desired task and all resource monitoring necessary for the agent's performance

in a dynamic environment. The heterogeneous nature of the possible actions

taken by a negotiating agent is a challenging task for the design of an execution

model. On the one hand, such an agent plays an autonomous, proactive role

by issuing negotiation messages to other agents. This happens for instance in

an auction scenario, where any agent can deliberately posts bids. On the other

hand, the agent plays a reactive role when responding to messages generated by

other agents.

2.2. The Framework model

The execution model of a particular strategy is supported by a number of

active objects. Active objects correspond to the notion of an ACTOR system

[7]. An actor executes in response to message passing and performs atomic in-

5

structions that are executed as a whole and in concurrency to other actors. A

single instruction can be part of an algorithm or a message gateway to another

agent. However, the framework does not prescribe the concrete number of and

relationships between actors, but only requires that they be controlled by means

of a coordinator.

Coordinators are modeled as special actors that control message dispatch to

a group of actors (see Figure 1). Coordinators are responsible for constraining

the execution of their controlled actors by de�ning a set of rules that have to be

evaluated before dispatching messages to a group of actors. This is provided

by Coordination classes that are part of the plug-in mechanism (see Section

3). Furthermore, the Collaboration classes implement methods and constraints

that collaborate within an actor group. Conceptually, they perform part of the

functionality of Synchronizers [8].

Strategy

Actor
invoke

*

Coordinator

1

Message

Protocol Module Strategy Module

Negotiation
Protocol

Message
Negotiation
Evaluate

Negotiation
Protocol

Strategy
Actor

Coordinator

Figure 1. Roles and their distribution in the negotiation framework

The simplest possibility to implement a strategy based on the execution

model of this framework is to combine one coordinator, one actor and one syn-

chronizer. A hierarchical composition of these simple execution units is possible

(see Figure 3). Such a composition could represent di�erent stages of compu-

tation and result quality as in a combination of di�erent progressive processing

units [12].

Another possible example of mapping actors to actions could be to instan-

tiate several di�erent actors to calculate a possible response concurrently. The

6

coordinator calculates the utility of each response delivered by an actor and then

selects the response with the highest utility value for the agent.

2.3. Framework properties

A framework supporting an execution model of dynamic negotiation strate-

gies is able to introduce �ne-grained control of the agent's execution. With the

possibility to execute tasks in parallel by delegating them to the actor system,

there are di�erent kinds of constraints to be considered with respect to the con-

trol of the executable tasks. In the DynamiCS architecture, the execution control

of the actor system is delegated to the coordinator role. The coordinator checks

the validity of execution constraints. Constraints can be classi�ed according to

di�erent levels of execution as follows:

� strategy constraints. Constraints that control the execution of actors that

model an negotiation strategy (i.e. the control structure of the underlying

algorithm).

� agent constraints. Constraints that re
ect the inner state of the agent (i.e.

checking if the agent is preparing to migrate).

� negotiation constraints. Constraints that re
ect the state of a negotiation

(i.e. checking if running evaluations are still consistent with the state of an

negotiation which is determined by the respective negotiation protocol).

All these constraints can be expressed by introducing coordination synchro-

nizers that control the message dispatch to the actors. From the framework's

viewpoint, the negotiation constraints are certainly of highest interest because the

framework can be seen as providing the structure of negotiation-enabled agents.

Since negotiation is in most cases a very dynamic process, during which a partici-

pant has to be able to react to relevant events occurring at any time, such as a new

o�er made by another participant, and since there is generally a trade-o� between

computation time and quality (w.r.t. some utility function) of computed nego-

tiation actions (comparable to many games), it is a very desirable feature that

the algorithms underlying a concrete strategy can be interrupted at any point of

computation and nevertheless delivering some usable result. In this respect, the

execution model proposed here is consistent with the demand for anytime prop-

erties (as proposed by [9]) of the tasks carried out by the agent. Conceptually,

7

this kind of control can be performed by specifying timing constraints between

the actors [19].

2.4. A sample application: applying genetic algorithms to the framework

In this section, in order to demonstrate how the inherent concurrency of the

proposed architecture can be exploited to enhance the performance of existing

negotiation strategies, an approach of integrating genetic algorithms into the

strategy framework is presented. The simple genetic algorithms deployed here

are based on the work described in [6] and basically function as follows:

Strategies are modeled as simple sequential threshold rules made up of o�ers

separated by thresholds which represent the total utility value of an o�er. O�ers

themselves are modeled as tuples of values corresponding to negotiable attributes

(e.g., price, quality, delivery etc.) each of which has a certain utility value (see

Figure 2).

threshold 1 threshold 2
offer 1 offer 2

0.9 1.10 100 p.m. 0.7 1.20 100 p.m. ...

Figure 2. Numerical example of an evolution-based strategy (following [6])

System operation begins with building a population of random strategies

for the agent which successively takes a strategy at a time to take part in a

negotiation and calculates its payo� when the negotiation ends. After such a

population has been tested in this manner, a new one is produced by selecting the

strategies with the best payo�s and applying genetic operators such as mutation

and crossover on them to generate new ones �lling the new population. When

this process is iterated a number of times using di�erent agents to play against

each other, a certain learning e�ect is achieved.

With respect to the presented actor-based framework, this simple method

can be modeled as a strategy module containing the coordinator and only a

single actor which returns the next element of the o�er sequence in each atomic

instruction. However, it can easily be seen that the performance of the overall

genetic algorithm can be improved by using several actors concurrently, even

8

when the coordinator just successively (or randomly) takes one output of the

actors to perform the negotiation. Of course, in the �rst round, everything is the

same as with one single actor since the o�er sequences are generated randomly,

but from the second round on, the learning e�ects of several single strategies are

accumulated.

Moreover, this method can also be enhanced by using more than one level in

the hierarchy of coordinator-actor with each actor on one level being the coordi-

nator on the next level except for the last one. Within each level, the coordinator

can then exploit the available execution time to train the actors by performing

test negotiations (i.e. simulations) until a certain �tness has been reached or the

available time is over. Figure 3 illustrates this technique for two levels.

coordinator
Level 1

actor actor

actor

coordinator
Level 2

real negotiation
environment

simulated negotiation
environment

. . .

Figure 3. Structure of a hierarchical strategy with 2 coordinator-actor levels

Also, with respect to the anytime properties mentioned above, it can easily

be shown that such a hierarchical genetic algorithm has the desired features of

interruptibility (meaning that the algorithm can be stopped at any time providing

some answer), recognizable quality (meaning the quality of an approximate result

can determined at run time) and monotonicity (meaning the quality of the result

is a nondecreasing function of time and input quality).

3. A dynamic plug-in mechanism

This section presents the basic composition technique of the framework. The

modular architecture presented so far decomposes into a hierarchy of di�erent ab-

stractions of what a negotiating agent is supposed to do. On a coarse scale, the

9

agent consists of modules, which are selected and composed dynamically re
ect-

ing the requirements of a constantly evolving environment. On a �ner scale, each

module { especially the strategy module introduced above { decomposes into a

set of tasks, contributing to the module's overall goal, which can be dynamically

assigned to active objects (actors). No matter which abstraction level is consid-

ered, the need for dynamic composition of the participating entities is evident.

So how is this dynamic composition achieved?

3.1. Basic conception of the plug-in mechanism

A very
exible way of dynamic composition is to introduce runtime relations

between components that were not known at compilation time. We call this a

plug-in mechanism, because it emphasizes the notion of a plug having a well-

known coupling interface which establishes the relation. De�ning a general plug-

in mechanism apart from the type of information that
ows through this link is

a powerful concept in dynamically evolving environments. A plug-in mechanism

models a cooperation between components. It allows to declaratively specify two

important concerns of cooperation [11]:

� What is going to cooperate and

� When is it going to cooperate.

Breaking this concept down to the implementation level, cooperation be-

tween object-based software components means to establish a relation between

the method calls of these components. Two dimensions can be identi�ed for spec-

ifying such a relation. They basically describe whether the cooperating methods

execute in parallel or in serial and if the there is an parameter dependency to be

established between the two methods.

Object-based software components expose the information needed for this

relation at the public interface. Our plug-in mechanism is designed to intercept

the message
ow through this interface and to forward it to the cooperating com-

ponent (i.e. the target plug). The plug-in mechanism is responsible for the for-

warding of a message sent from a source component to the target components that

are registered for the corresponding message event. This models an asymmetric

relationship between components, since with respect to the message forwarding

mechanism, there are source components and target components. Even if this

asymmetric relationship between source and target components can be identi�ed

in principle, coding this asymmetric relationship of two components into separate

10

interface is a design time issue. At runtime, however, one component can play

di�erent roles in di�erent cooperation scenarios. Hence, on the technical level,

the plug-in mechanism only de�nes pluggable components which can cooperate in

any direction. Only the cooperation pattern has to be speci�ed explicitly. The

cooperation pattern is a declarative way to specify methods and parameters for

components that cooperate. The plug-in mechanism uses this cooperation pat-

tern for the correct call forwarding and conversion of parameter lists if necessary.

The cooperation pattern contains basically the data needed for the con�guration

of a dynamic invocation interface. Moreover, another requirement for dynam-

ics results from the desire to be able to assign the plug-in capability itself (see

also [2]) to any component, which has not been programmed for this purpose,

at run-time. This requires that the plug-in mechanism not only contains the

logic for noti�cation on message events, but also the possibility to enforce the

consequences of such events.

The plug-in mechanism can be decomposed into three complementary ac-

tions: noti�cation on message invocation, cooperation formation and dynamic

invocation. In order to enforce the runtime relation between method invocations

in cooperating components, the implementation of the plug-in mechanism relies

on two basic services:

� A so-called Message Listening service which is a facility to provide noti�cations

of the method calls destined for a certain component.

� A service to perform dynamic invocations on components with di�erent call

semantics (synchronous, asynchronous).

In our implementation (see also [2]), these services are provided by Ob-

jectSpace's Voyager Framework [4]. The dynamic pluggability of the components

which can be used to assemble a role-speci�c agent is based on the generic con-

cept of a Pluggable which is implemented using the MessageEvent mechanism of

Voyager to delegate method calls to the right target(s). The design of the main

interfaces and classes implementing this plug-in mechanism is depicted in Figure

4.

IPluggable is the interface common to all objects that can act as a plug-in

container by providing the methods plug and unPlug to add a plug-in (called

destination plug) into or remove it from the container object (or source plug).

Pluggable is one implementation of the IPluggable interface using a generic for-

warder, which can be dynamically set by the method setForwarder, to delegate

11

aMethod()

Agent Pluggable

 Signature)

 Signature)

 GenericForwarder)
 Signature)

 Object,Signature)

setCommand(Command)

 MessageEvent)

addTarget(Object,

removeTarget(

plug(IPluggable,

unPlug(IPluggable,

setForwarder(

messageEvent(

MethodSelector

IListenerMessageListenerIPluggable

addSignature(
 Object,Signature)
removeSignature(

removeTarget(
 Object,Signature)
Vector getTargets(
 Object)

 Signature)

Command

abstract execute()
setRef(Object)
setSignature(
 Signature)
setArgs(Object[])

Sync Async Future

execute() execute() execute()

PluggableFactory

Pluggability

makePluggable()

IPluggable of()

Methods

Interfaces

Class Name

GenericForwarder

Figure 4. Class diagram for plug-in mechanism

method calls to their target objects. The GenericForwarder implements Voy-

ager's MessageListener interface, de�nes methods for adding and removing tar-

gets of requests (addTarget and removeTarget), provides the forwarding mech-

anism through the method messageEvent and enables di�erent call semantics

through the method setCommand. To handle the message events, the generic for-

warder makes use of the class MethodSelectorwhich de�nes methods for �ltering

message events based on signatures (methods addSignature, removeSignature,

select) and for determining the targets of the signatures (methods getTargets,

removeTarget). The abstract class Command provides a generic DII mechanism

for executing method calls on targets (through execute) and de�nes methods

for dynamically changing targets, method name and parameters to method calls.

Sync, Async and Future are implementations of Command corresponding to the

call semantics synchronous, asynchronous and future in Voyager, respectively.

The PluggableFactory class provides static factory methods in order to con-

struct plug-ins at run-time. Pluggability provides a static method (of) in

order to add the plug-in capability to an object dynamically. Finally, Agent is

a plain Voyager agent inheriting from Pluggable to serve as a plug-in container

and containing some (application-speci�c) code to administer and manipulate

plug-ins based on the IPluggable interface. For example, such an agent can

have some code to determine if or when the plug-ins should migrate with it (or

when to move somewhere else).

12

The usage of the Pluggability class is illustrated in (see Figure 5). The

Client (i.e. caller of the class methods) is responsible for the correct plugging of

the components. An object reference is made pluggable by passing the reference

to the static of() method of the Pluggability class and obtaining a reference

to a Pluggable object.

Pluggability
1:Plug:=of(:Object):Pluggable 2:Plug:=makePluggable(:Object):Pluggable

:Client :PluggableFactory

Figure 5. Pluggable Construction Collaboration Diagram

The Client requests the metadata for the Cooperation objects from the

components or retrieves them from a persistent repository. After that, holding

two references to Pluggable objects, the Client passes the Destination plug to

the plug() method of the source plug.

The object reference represented by the destination plug registers with the

GenericForwarder for a message event. A message event is posted to the

GenericForwarder in case any method call is made to the object represented

by the source plug.

4*:Cooperation:=getCooperation(curTarget:Object):Cooperation

 setSignature()

}

if(Cooperation.checkConstraints())

:GenericForwarder

:MessageEvent

1:messageEvent(:MessageEvent)

3:Targets:=getTargets(SrcSignature:String):Hashtable

2:SrcSignature :=getSignature():String

:Operation

:CooperationSpace

5*[i:=1..*]

 { setTarget()

 setParams()
 execute()

Figure 6. Message Forwarding Collaboration Diagram

The technical design of the message forwarding mechanism is illustrated by

Figure 6. The signature of the invoked method is used to dispatch the method call

13

to all targets which registered for this event. The GenericForwarder makes use

of Cooperation metadata retrieved from the CooperationSpace for each target

to map the called signature including parameters to the corresponding signature

of the target (which may di�er from the signature used by the caller). A dynamic

invocation is initialized with the directives and data from the Cooperation object

and then the invocation is performed.

3.2. Applying the plug-in mechanism to actor-based strategies

The actors constituting the strategy module are just another example of

object-based components which can be asssembled by means of the plug-in mech-

anism. An actor collection represents a parallel system, every actor that is instan-

tiated inside the module works concurrently to the other actors. The complexity

of designing a parallel actor system can be compared to the complexity of de-

signing parallel algorithms. In order to design actor-based strategies, one has to

decide

� which tasks run in parallel.

� which synchronization constraint apply between the parallel tasks.

The synchronization constraints for the actor-based strategies are concep-

tually represented by the strategy constraints (see Section 2.3). The tasks are

mapped to actors, whereas the synchronicity is achieved by the plug-in mecha-

nism. Actors operate asynchronously. The primitive operation that implements

this asynchronous behavior is the send() method. The results of any computa-

tion done by the actors are communicated asynchronously as well.

As an example let's assume the genetic algorithm mentioned above. The

purpose of this algorithm is to improve strategy quality over time. The data

structure the GA operates on is the strategy or a collection of strategies. The in-

tuitive approach of mapping di�erent GAs to di�erent actors can be implemented

by providing di�erent �tness functions in order to perform di�erent computations

inside the GA. For the sake of simplicity, let's assume an agent starts the GA

every time a new o�er arrives. The task to be performed by one actor consists

of (randomly) selecting a population, running / testing these strategies and gen-

erating a new population of strategies by GA. The iteration of these instructions

should provide better strategies with each cycle. The collection of actors per-

forming the GA is controlled by the coordinator (which is itself an actor) which

14

� creates GA actors

� controls invocation of actor cycles

� collects results

The invocation of a new computational cycle is achieved by each actor by

sending an invocation message to itself. The control of this invocation is done by

the coordinator through the plug-in mechanism. The coordinator is plugged into

the GA actors. This means the coordinator registers for the invocation messages

with the GA actors. These message invocations are forwarded to the coordinator.

The forwarding depends on the evaluation of synchronization constraints held by

the coordinator. These constraints concern computation time or result quality.

The conditional dispatch of these constraints can lead to the stop of computation

or requesting the current result from the GA actor or also the creation of new

actors to improve result quality. The framework provides adapter classes for the

integration of such actor implementations. Currently, the Actor Foundry package

[5] is being integrated.

4. Using rule-sensitive actors to control strategies

One of the most important questions regarding automated strategies for ne-

gotiations is how to control their behavior, especially when some kind of dynamic

and self-adapting strategies such as the genetic algorithms mentioned above is

deployed1. Using a hierarchical architecture consisting of coordinators and sub-

actors as proposed in Section 2.2, a principal answer to this question is already

given: The coordinator is responsible for collecting and evaluating the results

provided by his subactors, thus having the possibility of eliminating results that

violate certain control criteria. However, this answer is still too abstract since

it does not state how the coordinator can formulate control criteria and enforce

them on the subactors. Moreover, it would be much more e�ective if the sub-

actors themselves could be controlled in such a way that rule violating results

cannot be generated or provided to a higher level in the hierarchy. In this section,

we show how a generic rule management mechanism can be used to control the

behavior of actors or the corresponding strategies, respectively.

1 It seems obvious that in open and constantly changing market environments such as the

booming internet auctions, static strategies would not be appropriate.

15

The rule system introduced here has been described in detail in other pub-

lications, most notably [13], and supports the following requirements:

� Interaction support: Rules issued from one party can be enforced as require-

ments on another party. Moreover, rules of di�erent parties can be matched

with each other to provide a common basis the pending interaction. Section

4.1 explains how this feature is supported.

� Decentralization: In order to meet the requirements of mobile agents or soft-

ware components in general as autonomous, encapsulated entities, rules should

not be managed centrally, but rather held directly by the applications which

serve as rule containers.

� Object- and Event-Orientation: Although rules are semantically add-ons for

applications, they should be implemented as �rst-class objects which can ac-

tivate themselves upon occurences of corresponding events, since this enables

an e�cient decentralized rule management. Every rule object directly acts as

an event listener that only reacts to events of types belonging to its trigger

list.

� Mobility: Since rules should be (technically) �rst-class objects that can be

added to mobile agents at run-time, it would be e�cient (and also more ele-

gant) to have rules themselves implemented as mobile objects that can migrate

from one agent to another.

� Transactional activation: In case the activation of a requirement rule or a

policy which happens after some activity, i.e. one or more function calls, has

been carried out in the application, results in false, then it should be possible

to rollback the respective activity so that the violation of rules can be avoided

to a maximal degree. This implies that rule-sensitive activities have to be

carried out as transactions.

4.1. Interaction support

The rule system provides support for interactive behavior on two levels: On

the logical one, a uni�cation function is provided to calculate the common basis

of two rule expressions which is de�ned as the weakest expression that implies

both inputs (see [13] for detail). The following example illustrates this function.

16

Example 1. Given

P1 = ((cost � 50) ^ (speed � 5)) _ ((cost � 100) ^ (speed � 10))

P2 = ((cost � 90) ^ (speed � 20)) _ (speed < 5)

P1' = (cost - 2 * speed � 0)

P2' = (cost - 2 * speed � 0)

Then

unify(P1, P2) = (cost � 90) ^ (speed � 20)

unify(P1', P2') = (cost - 2 * speed = 0)

Secondly, on the activation level, di�erent modes to activate rules are pro-

vided. For example, in a warehouse scenario, a customer should be able to pass

his rule with respect to payment modalities as a requirement to be ful�lled by

the provider, i.e. to be activated on the warehouse side. Therefore, the follow-

ing activation modes are proposed to support such a remote activation concept

besides the local activation.

In general, the activation of a rule can take place in two modes, namely

INTERNAL or EXTERNAL. In the former case, the activation semantics of the

corresponding rule type is applied to the component the rule belongs to. In the

latter case, the rule is applied to an external component, the reference of which

is passed as part of the triggering event. To enable di�erent kinds of interaction

semantics, the EXTERNAL mode is subdivided into the following variants:

� ONEWAY: In this mode, a copy of the rule semantics (i.e. condition, activation

and mode) is created and passed to the external component for activation.

(Thereafter, the copy is deleted.)

� CALLBACK: In addition to the ONEWAY semantics, the external component

returns the allocation of the properties which are referred to in the rule as the

common cooperation basis so that both sides can enforce the exactly same

con�guration with respect to these properties.

� FILTER: In order to maintain the autonomy of application components, the

activation of external rules should not take place directly, but only through the

use of corresponding �lter rules. That means, when an external rule of mode

ONEWAY or CALLBACK is activated, there must exist a corresponding rule

of mode FILTER kept at the target component, with which the �rst one is

uni�ed. The result of the uni�cation, if not empty, is then activated.

17

4.2. Rule activation

In order to enable the integration of rule functionality into the application

level in a transparent way, a rule-sensitive dynamic invocation interface (RS-DII)

is provided which can be used by any application component to carry out method

calls (local or remote) in a rule-safe way, using the usual API very similar to the

DII of CORBA products. However, the RS-DII o�ers two additional features:

� When a method is called, two instances of MethodRuleEvent are generated,

one before and one after the call is performed using an usual DII mechanism.

During the method call, any rule exceptions2 thrown by rule objects are caught

and forwarded to the application object (making the call) and the call is

interrupted.

� A distributed transaction service is employed to roll-back the method in case

a rule exception has been thrown after the method has been carried out.

Two versions of the RS-DII have been developed, the �rst of which { called

Dynamic { is used to make a single call, and the second { called DynamicVector {

is used to perform several calls in a rule-sensitive and transactional manner. The

following �gure illustrates the enforcement of a coordinator's rule on a subactor

by using the CALLBACK mode.

coordinator and actor represent two rule-sensitive actors supporting the

RuleContainer interface. Now, when the coordinator calls a method o�ered

by the actor using the RS-DII (1), this mechanism �rst delays the call and

pushes a MethodRuleEvent into the event channel which delivers it to all rule

objects (implementing the RuleEventListener interface) which are listening for

the corresponding event type and contextID (2). In this case, a rule of the

coordinator in ONEWAY mode is triggered and due to the semantics of this

mode, this rule �rst creates a copy of itself, packs it as a unifyParam into a

FilterRuleEvent and sends this event to the event channel (3), thereupon the

corresponding FILTER rule of actor is triggered. There, both rules are matched

using the unify method, and if the result is non-empty, it is activated on actor's

side. This ensures that certain parameters for the negotiation action { e.g. the

allowed budget for making o�ers { are set correctly. Then, a ReplyRuleEvent is

sent back to the ONEWAY rule of the coordinator signaling that the rule copy

2 Note that rule (violation) exceptions are thrown by means of events of type ReplyRuleEvent

(s. [13]).

18

RS-DII

properties

methodA()
methodB()

properties

methodName
paramList
target

Event Channel

ruleContainerruleContainer

2

3 45

6

rule
CALLBACK FILTER

rule

1

coordinator actor

Figure 7. Invocation of a rule-sensitive call

has been activated successfully at the remote site (4). Upon this, the originating

rule issues another ReplyRuleEvent to the RS-DII component meaning that the

rule has been activated successfully (5) and the method call can now be carried

out in the usual way (6). However, after the method has been performed by

actor, a similar chain of events is generated and in case any rule exception is

thrown, the RS-DII component will enforce the process to roll-back the method.

In this way, it is garanteed that certain negotiation constraints are not violated

if when the method call has completed.

5. Summary and outlook

In this paper, we have presented a framework to integrate negotiation ca-

pabilities, in particular negotiation strategies, into mobile agents dynamically.

First, the framework's conceptual design, which is based on the concept of an ac-

tor system, was described. Then, a corresponding plug-in mechanism providing

the technical basis to ful�ll the requirements of dynamic composition and cooper-

ation between actors was presented. After that, it was shown how a generic rule

management mechanism can be activated between coordinators and subactors to

garantee that certain constraints are not violated before and after the interaction

which is carried out as a transaction.

A di�erent aspect which can also be in
uenced by rule management mech-

19

anisms is the explicit control of plug-ins' mobility. In the presented framework,

this task is delegated to a coordination component monitoring the inner state of

the agent (see 2.3). Since a DynamiCS agent can consist of an arbitrary number

of plug-in components which are only loosely coupled (in the sense that no refer-

ences of each other are held mutually) and therefore are not generally considered

to be moved automatically together with the agent when it migrates to another

place, a dedicated mobility management of an agent's components is necessary.

But it is also obvious that a forced migration of all plug-ins belonging to an agent

might not be the best solution in many cases. Another technical issue in man-

aging agent mobility is that all active objects (actors) are running in their own

thread of control. In Java, migration of threads is not a trivial task. One possible

approach is to synchronize all activities inside a plugged component previous to

migration. We are currently working on
exible rule-based strategies to solve

these problems, which relate to agent management as well as to technical issues,

adequately.

Another important aspect of actors implementing a strategy which cannot

be solved by external rule mechanisms alone is explicit control of computing re-

sources, especially computation time. Although the genetic algorithms we have

proposed (and already implemented within the DynamiCS project) are principally

appropriate for resource-bounded computation, implementing a generic frame-

work to integrate the any-time features mentioned above into strategy actors is

not a simple task which we are currently investigating. [10] provides a good

description of this kind of computation control.

References

[1] T. Ishida, editor. Community Computing { Collaboration over Global Information Net-

works. Wiley, 1998.

[2] M.T. Tu, F. Gri�el, M. Merz, and W. Lamersdorf. A plug-in architecture providing dynamic

negotiation capabilities for mobile agents. In K. Rothermel and F. Hohl, editors, Proc. 2.

Intl. Workshop on Mobile Agents (MA'98), Stuttgart. Springer LNCS, 1998.

[3] M.T. Tu, C. Langmann, F. Gri�el, and W. Lamersdorf. Dynamische Generierung von

Protokollen zur Steuerung automatisierter Verhandlungen. In Proc. 29. Jahrestagung der

Gesellschaft f�ur Informatik (Informatik'99). Springer LNCS, 1999. (In German).

[4] ObjectSpace. Voyager. http://www.objectsapce.com/Voyager.

[5] T.H. Clausen. The actor foundry. http://www-osl.cs.uiuc.edu/foundry/index.html.

[6] Jim R. Oliver. On Arti�cial Agents for Negotiation in Electronic Commerce. PhD thesis,

The Wharton School, University of Pennsylvania, 1996.

20

[7] G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT Press,

1986.

[8] S. Fr�lund. Coordinating Distributed Objects. An Actor-Based Approach to Synchronization.

MIT Press, 1996.

[9] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73{83,

1996.

[10] A.-I. Mouaddib, S. Zilberstein, and V. Danilchenko. New directions in modeling and control

of progressive processing. In Henri Prade, editor, ECAI 98. 13th European Conference on

Arti�cial Intelligence. John Wiley & Sons, Ltd., 1998.

[11] G. Agha. Abstracting interaction patterns: A programming paradigm for open distributed

systems. In E. Najm and J.-B. Stefani, editors, Formal Methods for Open Object-based

Distributed Systems. Chapmann & Hall, 1997.

[12] S. Zilberstein and A. Mouaddib. Reactive Control of Dynamic Progressive Processing.

In Proc. of the 16th International Joint Conference on Arti�cial Intelligence. Stockholm,

Sweden, August 1999.

[13] M.T. Tu, F. Gri�el, M. Merz, and W. Lamersdorf. Interaction-oriented rule management for

mobile agent applications. In Proc. of the Second Int. Working Conference on Distributed

Applications and Interoperable Systems (DAIS'99). Kluwer Academic Publisher, June 1999.

[14] M.T. Tu, C. Seebode, F. Gri�el and W. Lamersdorf. An actor-based framework for mobile

negotiating agents. In Proc. IAT99 Intl. Workshop on Agents in Electronic Commerce

(WAEC'99), Hongkong, 1999.

[15] G. Zlotkin and J.S. Rosenschein. Negotiation and con
ict resolution in non-cooperative

domains. In Proc. of the Eighth natinal Conference on Arti�cial Intelligence, Boston, Mass.,

July 1990.

[16] S.E. Lander and V.R. Lesser. Customizing distributed search among agents with heteroge-

nous knowledge. In Proc. of the First International Conference on Information and Knowl-

edge Management, Baltimore, Maryland, pages 335{344, November 1992.

[17] E.H. Durfee and Thomas A. Montgomery. A hierarchical protocol for coordinating mul-

tiagent behaviours. In Proc. of the Eighth National Conference on Arti�cial Intelligence,

Boston, Mass., pages 86{93, August 1990.

[18] S.E. Conry, K. Kuwabara, V.R. Lesser and R.A. Meyer. Multistage negotiation in dis-

tributed constraint satisfaction. In IEEE Transactions on Systems, Man and Cybernetics.

Special Issue on Distributed Arti�cial Intelligence, January 1992.

[19] S.Ren and G.A. Agha. RTSynchronizer: Language support for Real-Time Speci�cations in

distributed systems. In Proc. of the ACM SIGPLAN Workshop on Languages, Compilers

and Tools for Real-Time Systems, La Jolla, California, June 1995.

