
Genetic Algorithms for Automated Negotiations:
A FSM–Based Application Approach

M.T. Tu, E. Wolff, W. Lamersdorf
�

Distributed Systems Group
Computer Science Department

University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany�
tu � 3wolff � lamersd � @informatik.uni-hamburg.de

Abstract

In this paper, an approach to implement strategies for
automated negotiations in electronic commerce applica-
tions is presented. It is based on genetic algorithms
(GAs) that evolve FSMs (Finite State Machines). Each of
these FSMs represents a negotiation strategy that competes
against other strategies and is modified over time accord-
ing to the outcome of this competition by using GA princi-
ples. The paper gives an overview of negotiating agents and
work related to this paper. Then the application of Genetic
Algorithms to FSMs is presented and relevant details on the
implementation are given.

1 Introduction

Software agents are widely recognized to be the basis
for building the information infrastructure of the emerging
‘Net’ society. This is at least true for the deployment of
mobile agents in electronic commerce. Being the central in-
teraction scheme in economic activities, negotiation is one
of the main focuses in the development of software agents
to perform online commercial transactions. To enable the
development of agents that can negotiate with each other
or with humans, a negotiation framework for mobile agents
was proposed in [5, 6]. But concrete negotiation strategies
need to be developed that can be integrated into this infras-
tructure.

A good strategy should be able to find the optimal out-
come of the negotiation for all partners. This is often not
achieved by human negotiators and thus ‘money is often
left on the table’ due to an suboptimal negotiation outcome,

* This work is supported, in part, by grant no. La1061/1-2 from the
German Research Council (Deutsche Forschungsgemeinschaft, DFG).

especially in complex multi-issue negotiations [4]. Nego-
tiation can be considered a search for an optimal negotia-
tion outcome with respect to the utility functions of each
partner. This function returns a value representing the gain
from a specific negotiation outcome for the partner. Each
negotiation partner has only knowledge of his utility func-
tion, because to let the partner know the utility function
would often be a disadvantage. Another problem is that in
many cases, the search space of all possible negotiation out-
comes has a too high dimension to use analytic optimization
to find the optimal solution. Problems with a large search
space with little information on its structure available are
known to fit well to the use of genetic algorithms. Thus,
it was realized that the implementation of strategies using
genetic algorithms (GA) might be a very fruitful approach
to support automated negotiations. In this paper, we present
the implementation of a GA framework which is based on
Finite State Machines (FSM) and show how it can be ap-
plied to bilateral negotiations. The remainder of the paper
is organized as follows: In Section 2, the basic idea of ap-
plying GAs to negotiations is described including hints to
work presented by other authors. Section 3 describes how
to design GAs which use FSMs as the basic data structures.
Section 4 presents the current implementation of the frame-
work, its application to bilateral negotiations and as well as
relevant results of experiments done. Finally, some open
issues are discussed in Section 5.

2 Genetic Algorithms for Automated Negoti-
ations

GAs are inspired by the evolution taking place in na-
ture. Evolution in nature discloses an unmatched variety
of different species each optimized for its ecological niche.
This is achieved by very simple principles: selection to-
gether with reproduction, crossover and mutation. Selection

means that only the fittest individuals survive. Reproduc-
tion is the ability to breed new individuals and mutations
are deviations during this reproduction process. Crossover
is the ability to take two individuals (parents) to breed one
new individual that shares some attributes with each parent.

In GAs, the basic principles of evolution (reproduction,
mutation and crossover) are used to create objects that are
optimized for a certain function. To carry out this process, a
set of objects (the population) is evaluated at discrete points
in time (between the generations). Each individual has a
certain probability to be taken into the next generation. This
probability depends on its quality (fitness) measured by the
function that should be optimized. The individual can be
propagated into the next generation either unchanged (re-
production), mutated or as resulted from a crossover with
another individual. The evolutionary approach can be used
for the optimization of numerical problems (Genetic Algo-
rithms) as well as for the automatic generation of programs
(Genetic Programming). The main benefit of evolutionary
techniques is that they make few assumptions about the en-
vironment they are applied to. All that is needed is the
definition of the reproduction, mutation and crossover op-
erations for the data structures used and a fitness function.
Thus, evolutionary techniques are very often used success-
fully in environments where little knowledge of their struc-
ture exists.

In the field of electronic commerce, the need for good ne-
gotiation strategies is very obvious. However, there are only
a few concrete trials to apply GAs for negotiation, most no-
tably by Oliver [2]. In Oliver’s experiments, strategies are
modeled as simple sequential rules made up of offers sepa-
rated by thresholds which represent the total utility value of
an offer. Offers themselves are modeled as tuples of values
corresponding to negotiable attributes (e.g., price, quality,
delivery etc.), each of which has a certain utility value (see
Figure 1).

0.9 1.10 100 p.m. 0.7 1.20 100 p.m. ...

threshold1 offer 1 threshold 2 offer 2

Figure 1. Example of an evolution-based stra-
tegy (following [2]).

System operation begins with building a population of
random strategies. Then successively, a strategy at a time
is taken to take part in a negotiation and its payoff is cal-
culated when the negotiation ends. After such a population
has been tested in this manner, a new one is produced by
selecting the strategies with the best pay-offs and applying
genetic operators such as mutation and crossover on them
to generate new ones filling the new population. When this

process is iterated a number of times using different strate-
gies to perform against each other, a certain learning effect
is achieved.

The problem with this model is that it does not even offer
enough expressiveness to model strategies with simple deci-
sion rules such as ‘If my negotiation partner has only made
offers with a small payoff for me so far, I won’t make such
offers myself’. To express such strategies, a model with
branching and some kind of memory is needed. Successful
strategies even in so simple game theoretical experiments
as the iterated prisoners’ dilemma [3] usually make use of
such elements.

3 Using GAs on FSMs

Due to the shortcomings in Oliver’s representation of
strategies, a different representation format was needed. So
it was decided to model negotiation strategies as Finite State
Machines (FSMs) because they offer a notion to model
the branching and memory that are lacking in Oliver’s ap-
proach. Branching can be done by edges leading to different
states and memory can be achieved by using states. Yet, the
model chosen is not as complicated as the trees or linear
genomes usually used by Genetic Programming and thus
the search space is considerably smaller.

Usually, FSMs just accept regular sets. But in order to
be applied to negotiations, they do not need to accept a set
but instead must generate some output (offers and other ne-
gotiation actions) as response to some input (offers from the
negotiation partner). This can be achieved by using FSMs
with output such as Mealy automata.

The Mealy automata used for negotiation strategies have
specific attributes:

One initial state Thus, the start of the strategy is set deter-
ministically.

No final state The end of a negotiation should rather be
modeled by a special output or should be ended by the
negotiation control after a certain number of negotia-
tion steps.

Complete For each state and each input symbol, there must
be at least one edge. Otherwise, it would be possible
that during a negotiation, a FSM stops because it gets
an input symbol that it can not react to.

Deterministic For each state and each input symbol, there
must be at most one edge.

By using one initial state and making the automaton de-
terministic, the payoff of two strategies negotiating with
each other can be calculated deterministically, i.e. every ne-
gotiation between the same two strategies will always have
the same outcome.

Now, the three genetic operators reproduction, mutation
and crossover need to be defined. Reproduction is trivial:
the FSM just needs to be copied. However, the other two
operators are more demanding and are presented in the next
section.

3.1 Mutation and Crossover of FSMs

To mutate an FSM, several different operators can be
chosen from. These include changing the target or source
of an edge, changing the output or input symbol of an edge
and adding or deleting a state or an edge. In the implemen-
tation of the presented work, all the operators defined here
are implemented and the decision which operator to use is
made randomly. To maintain the characteristic of the FSM
(complete and deterministic) when applying one of the op-
erators, additional work must be done by the operators that
is not apparent. So for example, if the source of an edge or
the input of an edge is changed, there are some inputs that
do not have an edge assigned to them any more. Thus, other
edges need to be assigned to these inputs.

The main reason to use crossover as a genetic operator is
to spread good parts of the genome of an individual in the
population: It is the only operator that actually interchanges
parts of the genome of two individuals by creating offspring
from two parents that have parts of the genome of both. For
FSMs, the crossover mechanism was defined as follows:

1. Divide the set of states of both parents in two subsets.

2. States that have an edge leading to a state in the other
subset are called ‘outputs’. States that have an edge
leading to them from a state in the other subset are
called ‘inputs’.

3. Create the set of states of the children by joining the
subset of states including the initial state of one par-
ent with the subset not including the initial state of the
other parent.

4. Connect the inputs and outputs of the two subsets.

The idea behind this algorithm is to separate a part of the
FSM from the rest and put it into a different FSM. This is
inspired by the graph crossover as described in [1], p. 124f.

3.2 Fitness

The fitness function gives a value that indicates how
good an individual satisfies the optimization function. For
the negotiating agents, the fitness value is calculated as fol-
lows: Each agent must have a utility function that provides
his own benefit for each possible negotiation outcome. To
calculate the fitness of the population, each agent undergoes

a certain number of negotiations and the fitness value is cal-
culated as the average of the utility values of the reached ne-
gotiation outcomes. It is important to choose the right num-
ber of negotiations for the calculation of the fitness value.
On the one hand, it should be not to low to give an indica-
tion of how the strategy behaves when facing different other
strategies. On the other hand, it should not be to high so that
no computing power is wasted.

4 Current Implementation

For the prototype implementation, an object-oriented de-
sign approach was chosen and the Java programming lan-
guage was used. However, the goal is to study the basic
techniques described here. These can be considered inde-
pendent of any concrete implementation.

4.1 GA Framework

The first step of the implementation was to create a
generic framework for Genetic Algorithms.

An interface Evolvable was defined that must be im-
plemented by those objects that should be used with the ge-
netic algorithm. It defines the three genetic operators that
can be applied to such objects (Mutation, Crossover and
Reproduction). To offer the developer the possibility to im-
plement these three operators in one class each, the class
AggregateEvolvable was created. Therefore the de-
veloper can choose to implement the data structure includ-
ing all genetic operators in one class or implement each one
in its own class.

The GPEvolver class implements a generic Genetic
Algorithm. The algorithm uses a �����
	�� evolution strategy,
i.e. the generation has a certain size � , and then 	 individ-
uals are created from them �	������ by using the genetic
operators. The parent individuals are chosen with a proba-
bility proportional to their fitness and the operators are cho-
sen randomly. From the new population of size 	 , the �
individuals with the highest fitness are propagated into the
next generation as parents.

To calculate the fitness values, a class implementing the
Fitness interface is used. This interface defines a method
that takes two individuals as input and gives two fitness val-
ues for the two individuals as output.

This description gives only a short overview of the com-
plete framework. However, note that this part of the frame-
work is completely independent of the data structure that
is used. Besides FSMs, it can be used for numerical opti-
mization problems and in fact this was done as a test for
the framework. This enables a separation of concerns: the
generic framework can be extended with new algorithms
and optimizations while the data structures stay the same.

4.2 Integration of FSMs

The main goal of the implementation of the FSMs is to
make them as generic as possible. Thus, a FSM itself only
accepts integers as inputs and also only returns integers as
output. In this way, it is possible to generate FSMs that use
an arbitrary finite set as input and output alphabet without
any change in the FSM class itself. The gained genericity
allows for the application of the conception of GAs working
on FSMs for different purposes such as the optimization of
Protocol Adapters (see [7]) very easily and also al-
lows an easy adaptation of the FSM to different negotiation
scenarios.

To implement the crossover operation, a class FSM-
Crossover was implemented while the mutation as de-
scribed was implemented by the class FSMMutator. The
operators were described in more detail in section 3.1.

The FSMFactory class creates new FSMs with a given
size of the input and output alphabets and a given maxi-
mum number of states. Because the FSMFactory makes
use of the AggregateEvolvable design, each new in-
dividual must have a reference to instances of Crossover
and Mutator. Thus, the FSMFactory also needs to have
these references to create new AggregateEvolvables
including an FSM as data structure.

4.3 Modeling Bilateral Negotiations using FSMs

To use the FSM model proposed above for negotiation
strategies, the input and output alphabet need to be mapped
to offers in the negotiation. Besides, testing scenarios need
to be defined.

For the negotiation strategies, the output alphabet was
chosen to be an encoding of the set of possible offers plus
one additional element to accept the last offer and thus end
the negotiation. The input alphabet was chosen to be an en-
coding of thresholds. This closely resembles the approach
taken by Oliver (see [2]) but instead of just one threshold,
there are multiple thresholds leading to different new offers.
So a counter offer can be a specific response to the last offer.

One example for this encoding of negotiations might be
as follows: the negotiation is about two issues ��� and ��� ,
each can have a value from 0 to 5. Then, the output al-
phabet has 37 elements with 0–35 representing a counter
offer ������������ with ��� = value / 6 and ��� = value mod 6. 36
represts the acceptance of the last offer.

Assume that each agent has a utility function � that as-
signs a value between 0 and 1 to each offer � . Then, a pos-
sible definition of the input alphabet is : 0 �������! #"%$'&�(,
1 �������*),+ "%$'&�(-��"%$'(%+ , 2 ������*).+ "%$'(-��"%$0/�(1+ and 3 ������*)
+ "1$'/�(-�324$ "�5 .

So if a FSM reaches the state shown in the middle of
Figure 2 and gets an offer with ������6 ,"%$'&�(, it returns a

counter offer tuple of (2,4); if it gets an offer with �������7)
+ "1$'/�(-��2�$ "�5 , it accepts and so on. Additional optimizations
must eliminate exceptional situations such as that an agent
makes a counter offer with a lower utility value instead of
accepting the original offer.

0 | 16
=

f(o) < 0.25 | (2, 4)

3 | 36
=

0.75 <= f(o) <=1.0 | accept

1 | 0
=

0.25 <= f(o) < 0.5 | (0,0)

2 | 35
=

0.5<= f(o) < 0.75 | (5,5)

...
...

Figure 2. A part of a concrete FSM that im-
plements a negotiation strategy. Each edge
is labeled with the input and output symbol
separated by 8 and their respective semantic.

To calculate the fitness, a function is implemented that
takes two individuals and initiates a negotiation between
them. For each individual, this function is called with sev-
eral different other individuals by the GA framework. The
resulting payoffs are used to calculate the fitness of each in-
dividual. This is actually the only part of the system where
the integers the FSM operates on are mapped to their se-
mantics.

4.4 Experiments and Results

Using this approach, we have performed comparative
experiments by implementing the bilateral negotiation sce-
narios in the work of Oliver [2] using our FSM-based GA
framework instead of Oliver’s linear genomes. This work
presents the following scenarios:

No Conflict Both agents have identical utility functions,
i.e. for both the optimal outcome of the negotiation
is identical.

Pure Distributive Every advantage for one agent is a dis-
advantage for the other.

Simple Integrative Here, the utility functions are contrary
but the negotiation issues are of different relevance to
each negotiation party. So a compromise needs to be
found that fulfills the preferences of the negotiation
parties as well as possible.

Divorce This resembles the scenario above but is more
complex w.r.t. the number of negotiation outcomes.

For these scenarios, the fitness is defined by a utility
function. So a certain fitness value for a population means
that the agents in the population achieved that value as the
mean value for the utility of the negotiation outcomes.

For the Genetic Algorithm, we used the parameters cho-
sen by Oliver but to get mean values, 100 instead of the 10
runs in Oliver’s work were used. Also the crossover and
mutation probabilities were adjusted to get the best results
possible. Even though Oliver gives values for both the mu-
tation and crossover probabilities, it is not mentioned in his
work why these specific values were chosen. Table 4.4 gives
an overview of the results of the FSM-based experiments
compared to those based on the genomes used in Oliver’s
work.

Scenario FSM FSM Oliver Oliver
Agent1 Agent2 Agent1 Agent2

No Conflict 0.86 0.86 0.88 0.88
P. Distributive 0.51 0.49 0.54 0.46
S. Integrative 0.59 0.57 0.57 0.57
Divorce 0.58 0.55 0.57 0.50

Table 1. Fitness comparison between this
work and the work by Oliver.

These results mean that the following conclusions from
Oliver’s work can be transferred to FSMs: FSMs do better
than random strategies. and FSMs can learn strategies using
Genetic Algorithms. Also, it can be concluded that FSMs
do as good as Oliver’s linear genomes. However, to answer
the question whether FSMs have advantages over Olivers
linear genomes, the size of the input alphabet was modified.
The fitness values given above were achieved using an input
alphabet of size 4. Nevertheless, the values stay the same
when the size of the input alphabet is modified; even if the
input alphabet has a size of 1. But this means that in ev-
ery state, there is one edge leading away from that state and
thus the FSM can not make any decisions depending on the
incoming offer. Thus, regarding Oliver’s scenarios, the de-
cision capabilities of FSMs do not pay off. However, these
results are not very surprising as in Oliver’s scenarios, the
agents are only confronted with one kind of utility function
during the whole evolution. So a data structure such as a
FSM that makes it possible to react to different utility func-
tions is not an advantage here. But if the agents in Oliver’s
scenario are optimized for a specific kind of utility function,
they will reach only suboptimal results in negotiations with
other kinds of utility functions. This also means that the
agents do not learn generic strategies but rather strategies
for a certain kind of utility function. So in more realistic
scenarios, FSMs might very well offer better results than
Oliver’s approach.

5 Summary and Outlook

In this paper, a new approach to enable agents in an elec-
tronic marketplace to learn negotiation strategies was pre-
sented. First, a general introduction to Genetic Algorithms
and the negotiation framework was given. Then, previ-
ous approaches to the problem using Genetic Algorithms
were presented and the shortcomings were described. A
new approach using FSMs as the basic data structure was
proposed, the prototype implementation was described and
first results from experiments with the implementation were
given and discussed.

Although the results achieved with the implementation
are quite promising, we still see chances for improvement:
The results presented here clearly show that FSMs are ca-
pable of reaching good negotiation results. However, one
of our goals is to show that FSMs are really superior to the
data structures used so far. To decide this, more complex
scenarios need to be implemented that can make use of the
decision capabilities of FSMs. Such scenarios should also
focus more on the applications in real world systems.

Another major goal is to integrate the Genetic Algo-
rithm approach as a basic development pattern into a com-
mon mobile agent framework such as that described in [5]
to make it available to a larger community and thus gain
more experience with Genetic Algorithms. The GA ap-
proach could then also be compared to different approaches
to make agents learn negotiation strategies.

References

[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.
Genetic Programming — an Introduction: On the Automatic
Evolution of Computer Programs and its Applications. Mor-
gan Kaufmann Publishers, 1998.

[2] J. R. Oliver. On Artificial Agents for Negotiation in Electronic
Commerce. PhD thesis, The Wharton School, University of
Pennsylvania, 1996.

[3] W. Poundstone. Prisoner’s Dilemma — John von Neumann,
Game Theory, and the Puzzle of the Bomb. Oxford University
Press, 1993.

[4] H. Raiffa. The art and science of negotiation. Harvard Uni-
versity Press, 1982.

[5] M. T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A plug-
in architecture providing dynamic negotiation capabilities for
mobile agents. In K. Rothermel and F. Hohl, editors, Proc. 2.
Intl. Workshop on Mobile Agents, MA’98, Stuttgart. Springer
LNCS, 1998.

[6] M. T. Tu, C. Seebode, F. Griffel, and W. Lamersdorf. A Dy-
namic Negotiation Framework for Mobile Agents. In Proc.
3. Intl. Symposium on Mobile Agents, MA’99, Palm Springs,
California. IEEE, 1999.

[7] D. M. Yellin and R. E. Strom. Collaboration specifications
and component adapters. Technical report, IBM T.J. Watson
Research Center, 1995.

