
On Integrating Mobile Devices into a Workflow Management Scenario

Stefan Müller–Wilken, Frank Wienberg and Winfried Lamersdorf
University of Hamburg, Germany�

smueller,wienberg,lamersd � @informatik.uni-hamburg.de

Abstract

While the desire to gain full access to stationary informa-
tion sources (e.g. the company´s backoffice database) from
abroad is only natural, inherent design limitations such as
a lack of computational power, extremely limited resources
and closedness to modifications, let mobile system integra-
tion be still a difficult issue. In contrast to other approaches
to the field, the “Java Border Service Architecture” intro-
duced in this article does not require modifications to the
mobile device´s system software or the application environ-
ment to be accessed from the mobile system.

1 Introduction

The demand for seamless mobile system integration and
optimum access to existing information systems has been
identified in its relevance to distributed systems in research
and in many application areas several years ago. Various
publications have stated problems (e.g. [3], [5]) and several
approaches on how to integrate mobile devices into existing
system infrastructures have been proposed over time (e.g.
[2], [7], [10]). While approaches differ from one another,
most of them have in common, that they are based on mod-
ifications to the mobile device and/or require special sys-
tem support on the application side. Especially with mobile
systems most frequently being of “closed” design and not
open to any modification to the device itself, such integra-
tion platforms will not suffice as a universal approach to the
problem. They will rather be restricted to just a few device
types open for third party modifications or extensions. In
addition to that, it will not be acceptable for numerous ap-
plication contexts to make use of sometimes very special-
ized software libraries when realizing mobile system inte-
gration. Consequently one will have to offer an integration
platform that will not have such an impact on system design
or the devices to be integrated.

This article introduces the “Java Border Service Ar-
chitecture” (JBSA), a flexible infrastructure to support
integration of arbitrary mobile devices into distributed

system infrastructures. In contrast to other approches to the
problem, the integration platform described here is based
on the introduction of an abstract format used to analyze
and describe an application’s user interface in real time
and its transformation into a concrete representation on the
fly. As the platform uses runtime analysis rather than code
modification, no changes to the application involved will
be necessary.

2 Integration through abstraction

In accordance to a taxonomy proposed by M. Satya-
narayanan ([13], see also [6]), one can classify mobile
system integration strategies with respect to their level of
adaptivity or “application awareness” in a spectrum ranging
from “laissez faire” (integration without any system sup-
port to the application) to one extreme and “application–
transparent” (full integration responsibility at the underly-
ing system with no modification to the application) to the
other. Adding another dimension to this taxonomy and mea-
suring the level of “mobile device awareness”, that is, the
extent of modifications necessary to the mobile device, one
will get the taxonomy as shown in fig. 1. Most existing inte-

Device-transparent
(No changes to devices)

Application-transparent
(No changes to applications)

laissez faire
(No system support)

IV III

I II

Figure 1. A taxonomy for mobile adaption and
integration strategies

gration approaches have in common that they at least partly



rely on modifications to the mobile client. In some cases a
special viewer has to be installed (e.g. a VNC viewer for
the “Virtual Network Computing” environment [12]) to en-
able an interaction from the mobile device to be integrated.
Other approaches are based on design time modification
to the application environment and thus require changes to
the application itself (e.g. UIML [1]). Accordingly, exist-
ing mobile device integration platforms can be assigned to
quadrant one or two of fig. 1.

In contrast to that, one of the main aim of the integra-
tion principle underlying the JBSA was to completely avoid
changes to the mobile device or the application. Conse-
quently, the following aspects were identified as its primary
design goals: Platform indepencency: no restriction to cer-
tain device classes but rather validity for arbitrary devices.
Device transparency: no modifications to the mobile de-
vice but rather to network nodes and within the infrastruc-
ture. Application transparency: no modifications at design
time and avoidance of changes to the application code. With
respect to these goals, the integration principle can be as-
signed to quadrant three of fig. 1.

Applications can generally be subdivided into multiple
layers, each one offering certain functionality to adjacent
ones. Most of the times, a presentation layer will be re-
sponsible for user interaction (data presentation and visuali-
sation, interception of user commands, etc.); an application
logic will be responsible for data creation and processing
and, where applicable, a data storage layer to hold all local
data the application is handling (see [11]). Application logic
and presentation are commonly grouped together to coordi-
nate all access to stored or processed application data.

The principle underlying the JBSA is based on a run-
time analysis of an application’s presentation layer and its
description in an abstract data representation, a specially de-
signed XML dialect. By means of a set of device–dependent
transformation rules expressed in XSL and processed by an
XSLT processor, the abstract description can be transferred
into concrete as required for a proper presentation on the tar-
get device (a technique sometimes described as “rendering”
[9]). In a similar way, interaction on the device is trans-
ferred into an abstract representation, routed to the applica-
tion and retranslated into events as if caused by local user
interaction. All steps are performed in real time and with-
out significant change from a user’s point of view. As part
of the analysis, all user interface primitives (push buttons,
text fields etc.), are identified at an operating system level
by means of GUI object hierarchy inspection. No semantic
analysis is performed and thus no “valence” will be given
to identified elements. Type and unique identifier of each
user interface primitive is derived and registered to allow
for later access to each GUI element. All results of the run-
time analysis are assembled and form a “snapshot” in a well
defined descriptive language.

Abstraction

Application logic

Presentation

Application logic

Presentation

Figure 2. An abstraction layer between pre-
sentation and application logic

The snapshot together with a stylesheet corresponding to
the target platform will then be routed to an XSLT proces-
sor. The processor in turn will translate all elements from
the snapshot to a concrete representation as defined in the
stylesheet. In addition to a basic transformation of user in-
terface elements into a target language (e.g. WML), the
stylesheet can contain rules on how to adapt (or even sub-
stitute) certain GUI elements to the target device where nec-
essary 1. New devices can be introduced at any time by pro-
viding a rule set for their respective device class and map-
ping each GUI element from the source platform to corre-
sponding elements as indicated by their expressional power.

The results of the transformation are finally routed
through a communication adapter and to the target device
itself. As part of this process, necessary adaptions to the
basic communication mechanism can take place (e.g. re-
translation into SMS messages, or even speech synthesis)
as required by the device.

In opposite direction, reactions on the target device will
be intercepted by the communication adapter, translated
into an internal representation and forwarded to an applica-
tion adapter that will “replay” each event to the application
itself. It is an important design feature that the application
will not be able to distinguish between local user interaction
and interaction “remote controlled” through the integration
infrastructure.

3 The Java Border Service Architecture

An infrastructure to support mobile device integration
has been designed that is based on the principle of intro-
ducing an abstraction layer between presentation and appli-
cation logic as depicted in the previous section.

The JBSA realizes a supporting framework to provide
remote access to running Java applications. The JBSA can
continously inspect applications, generate “snapshot” infor-
mation of their user interface in an abstract data represen-
tation and transform this abstract representation into a con-

1Substitution can be necessary with WAP devices, for example, where
horizontal scrolling is not possible and tables sometimes can only be dis-
played when remapping columns of a row to a vertical orientation.

2



crete format as required by the target platform. Generated
information can be presented to the device using any trans-
port as indicated by its communication capabilities. In addi-
tion to mere inspection, analysis, transformation and trans-
port, the JBSA framework will aid the mobile user in lo-
cating optimum applications for her needs, provide session
control for multiple application access and offer user au-
thentication and authorization for enhanced security.

The requirement to realize a complete set of core ser-
vices (e.g. RPC or event queueing) on the mobile device it-
self, as necessary with many other integration architectures,
can be avoided when using the JBSA. As the application it-
self is not relocated to the mobile device but rather accessed
through a remote copy of its presentation layer (i.e. its user
interface), the only requirement arising will be to provide
enough functionality to view that copy — and using the
JBSA´s flexible mechanism of generating an abstract rep-
resentation first, the copy can be presented in a way that
will best suite the viewing environment offered by the de-
vice. No functionality has to be provided for any aspects
concerning application logic, as all parts dealing with data
manipulation as well as the application itself remain within
the connected network. And as no libraries, or supporting
services have to run on mobile devices, the JBSA will be
a preferrable solution for “closed” systems such as mobile
phones, where modifications are hardly possible.

Device
Class
Catalog

Application
Factory

User
Manager

Application ShadowApplication Shadow

External
Communications

Adapter

External
Communications

Adapter
...

...

Manager
Session

Gatweway
JBSA

Application Application

Transformator

Figure 3. The JBSA and its components

A modular design was chosen for the JBSA, in which
functional components are grouped in independent services.
The following section will give an overview on each of the
services currently realized.

Any interaction of a mobile device with the infrastruc-
ture will take place through one of the External Communi-
cation Adapters. ECAs are responsible for providing a com-
munication channel as necessary to meet the capabilities of
a device class and mapping internal JBSA communication

to external communiction with the device (e.g. translation
to a WAP transport protocol, etc.)

The JBSA gateway is responsible for routing events as in-
tercepted by a certain ECA (e.g. with a button being pressed
or a list item being selected) to a corresponding application.
In addition to that, the gateway controls the various XSLT
processors used to translate user interface “snapshots” into
concrete representation formats.

Application Shadows are “chained” into Java’s SWING
user interface event queue mechanism of a running appli-
cation and continously monitor its state. Each application
shadow is responsible for exactly one application instance
and can analyze its user interface to generate “snapshots”
in the “Java Swing Markup Language” (JSML), an XML–
dialect especially designed to describe graphical user inter-
faces2, and “inject” user interaction back into the running
application´s event queue.

The Application Factory is responsible for the manage-
ment of applications registered with the JBSA infrastructure
and available for remote control from mobile devices. It of-
fers necessary functionality to add applications and their re-
spective startup parameters in a central database and it is the
factory´s duty to start applications and their corresponding
application shadow when triggered by the JBSA gateway.

The Session Manager realizes a session control at the
application layer within the JBSA infrastructure. It is re-
sponsible for temporary suspension of a running session,
e.g. when changing the device used to access the applica-
tion, and its subsequent reactivation after the user has re-
connected to the infrastructure at a later moment.

The User Manager serves to personalize the JBSA in-
frastructure. It organizes the user accounts known to the
system and is responsible for user authentication issues and
will be used within the JBSA to store all user–specific in-
formation such as lately used applications, preferences, etc.

The Device Class Catalog (DCC) realizes a type man-
agement system for all device classes known to the JBSA
infrastructure. To each device class, the DCC holds a de-
scription on its unique characteristics and the stylesheet
necessary to create content to be displayed by a device of
that class.

4 Workflow as an Application Area

As motivated in the introduction, workflow is an applica-
tion area which fits integration of mobile devices very well.

The primary task of a workflow management system is
to enact case-driven business processes. The architecture of
a workflow management system according to the reference
model of the WfMC ([4]) consists of interacting modules,
which are the process definition, the workflow engine(s),

2See http://www.jbsa.de for details on the JSML markup language.

3



the administration and monitoring tools, the invoked appli-
cations, and the workflow client application. For specifying
the process definition, tools are used which translate graph-
ical models into some process definition language. The
workflow engine is the system’s kernel which actually ex-
ecutes a workflow instance. Administration and monitor-
ing tools are used for example to influence and visualise
workflow execution at runtime. Normally, the workflow en-
gine assigns to–do tasks to some user in the system (push
model) and stores the resulting list of work items per user.
The workflow client application is the means for the user
to access his work item list and to tell the workflow engine
which tasks are in work or completed. In more elaborated
approaches, the server stores an overall list of tasks for the
execution of which a certain skill or role is required. Any
user who fulfills the requirements can commit himself to
perform the task (pull model) and then later report its com-
pletion. The workflow engine then has to take care of each
work item to being assigned to at most one user.

Of these modules, the most important for our applica-
tion is the workflow client application. A workflow client
is a stand-alone application which communicates with the
workflow engine through an interface (called Interface 2 by
the WfMC). Since this is a client/server scenario, this com-
munication is usually a remote one. Many workflow sys-
tems use a normal web browser as workflow client, so that
the user interface is also generated by the server. The work-
flow client is the part of the system for which remote and
mobile access is most important, although for administra-
tion tools this might also be useful. In this paper, we focus
on the workflow client.

5 Application Example

The application area of workflow management intro-
duced in the previous section has been chosen for a small
case study to evaluate the JBSA. For a prototype system,
we chose to utilise a workflow engine and client developed
at our University. Technical detail about this project can be
found in [8]. We briefly describe the high-level architecture
of this workflow management system and, slightly more de-
tailed, the workflow client.

The process description language that has been used is
based on a special flavour of high-level Petri nets called
reference nets. Besides Java objects as tokens within the
nets, this formalism allows multiple instances of a Petri net,
which is very convenient for many case instances of the
same business process.

The workflow engine uses the approach of a pull model
described in the previous section. An existing reference net
execution engine (see www.renew.de) has been extended
so that the executing nets can be observed for activated tran-
sitions. These again correspond to tasks that can be exe-

cuted. The workflow client interface provides event meth-
ods for telling a workflow client that a new task is available
or no longer available.

Like the workflow engine, the workflow client appli-
cation has been written in Java. Accessing the workflow
server works via RMI. Multiple clients can access the same
workflow server at a time and changes that affect availabil-
ity of tasks will be propagated to all registered workflow
clients at once. The workflow server serializes incoming
requests and keeps the workflow instances consistent when
processing concurrent tasks.

A Swing GUI is used to display and let the user choose
available tasks (Figure 4, in the lower part of the window).
The list is automatically updated whenever the availability
of a task changes. A second list in the upper part of the
window names the tasks which the user already commited
himself to. These can be selected to inform the workflow
engine of their completion. In the workflow project, the

Figure 4. A simple workflow client application

scenario of a plumbing company was used and several busi-
ness processes were modelled using the reference net editor.
Please note that the application is limited in its functionality
and thus meant as an example and not a real management
software.

The specialty of the concrete application is that plumbers
are in transit during the day, but jobs should be handled on
request (e.g. emergency cases). Another reason for needing
flexibility is that the duration of a job cannot always be es-
timated correctly. Thus, plumbers should be able to accept
jobs and report completion of jobs using mobile devices.
One can easily imagine different categories of such devices:
The staff car of a plumber might be equipped with a lap-
top, while when at a customer’s site, a mobile phone might
be his only communication means. As as third case, there
are employees of the company (like e.g. secretaries) who
usually accept and manage jobs from their “static” working
place.

The solution developed in the workflow project had the
disadvantage that only Java-aware clients could be used as

4



workflow clients. Using the JBSA, it was possible to use a
Web browser, a PDA, and even a WAP phone as the work-
flow client without changing the Java client application.

Figure 5. The workflow client shown in differ-
ent target representation formats

Fig. 5 shows access to the application from a WAP phone
and a terminal using a web browser. Even though actual
handling differs sometimes significantly between two de-
vice classes (and even within a class, e.g. among the various
WAP phones), all application functionality remains avail-
able for remote access. Changing from one device to an-
other is possible anytime and without losses at runtime us-
ing the JBSA. Support for new device classes can be inte-
grated even with applications being actively accessed.

6 Conclusions and future work

This article proposed a new approach to the field based
on the introduction of an abstract layer between presenta-
tion and application logic of an application. By means of a
mechanism of generating user interface “snapshots” on the
fly and transforming generated descriptions through a flexi-
ble stylesheet processor, all integration related problems can
be hidden away from both the application and the target de-
vice. This is of particular importance with mobile devices,
where a “closed” design renders modifications on the device
itself hardly possible most of the times, and resource limita-
tions make porting of appliction clients a difficult task even
where third party code can be installed on the device (e.g.
for Java applications to be used from an average PDA). The
principles described were implemented in the “Java Bor-
der Service Architecture”, a modular framework integration
framework for mobile devices.

The workflow management scenario has proven to be an
ideal target for mobile system integration using the JBSA.
Field workers can now access the central WFM engine from
anywhere. With the integration environment adapting to the
device in use at a time they are free to take the device with
them that best suites their needs on a work day. Still, no

special treatment for mobile devices was necessary within
the existing workflow engine to accomplish this.

We are currently implementing various enhancements to
the JBSA. Additions to the session management will allow
for a user transparent reactivation of multiple suspended ap-
plication sessions. Improvements to the user management
will make it possible to use unique mobile device IDs for
authentication purposes. And we are invesigating if JBSA
support can also be realized for non-Java programming plat-
forms such as native Win32, Motif or similar.

References

[1] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams,
and J. Shuster. UIML: An appliance independant XML user
interface language. In Proc. 8th Intl. World Wide Web Con-
ference, Toronto, Canada, May 1999.

[2] N. Adams, R. Gold, W. Schilit, M. Tso, and R. Want. An
infrared network for mobile computers. In Proc. of USENIX
Symposium on Mobile Location–Independant Computing,
pages 41–52, Cambridge, Mass., 1993.

[3] G. Forman and J. Zahorjan. The challenges of mobile com-
puting. IEEE Computer, pages pp. 39–47, Apr. 1994.

[4] D. Hollingsworth. The workflow reference model. Specifi-
cation TC00-1003, Issue 1.1, Workflow Management Coali-
tion, Jan. 1995.

[5] T. Imielinsky and H. F. Korth, editors. Mobile Computing.
The Kluwer International Series in Engineering and Com-
puter Science. Kluwer Academic Publishers, Boston / Dor-
drecht / London, 1996.

[6] J. Jing, S. Helal, and A. Elmagarmid. Client–server com-
puting in mobile environments. ACM Transactions On
Database Systems, Preliminary Version, 1999.

[7] A. Joshi, S. Weerawarana, T. Drashansky, and E. Houstis.
SciencePad: An intelligent electronic notepad for ubiqui-
tous scientific computing. In Proc. IASTED’95, Washing-
ton, USA, Dec. 1995. Purdue University, Dept. Of Computer
Science.

[8] O. Kummer and D. Moldt. Workflow-Konzepte und Work-
flow-Ausführung für High-Level-Petrinetze. Technical re-
port, University of Hamburg, Germany, 2000. To be pub-
lished.

[9] H. Lei, M. Blount, and C. Tait. DataX: an approach to ubiq-
uitous database access. In Proc. 2nd IEEE Workshop on
Mobile Computing Systems and Applications, WMCSA’99,
New Orleans, USA, Feb. 1999.

[10] S. McDirmid. A distributed virtual machine architecture for
mobile java applications. Handheld Systems, 6(5):37–42,
Sep./Oct. 1998.

[11] S. Murer, P. Schnorf, E. Gamma, and A. Weinand. Eine
realistische Applikationsarchitektur für Multi–Tier Java–
basierte Clients in der Praxis, chapter 9. in: Java in der
Praxis. d.Punkt Verlag, Heidelberg, Germany, 1998.

[12] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
2(1):33–38, Jan/Feb 1998.

[13] M. Satyanarayanan. Mobile information access. IEEE Per-
sonal Communications, 3(1), Feb. 1996.

5


