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Abstract

Agent-oriented programming (AOP) is a client/server paradigm that currently
gains increasing attention. Recently emerging AOP platforms claim to provide
suitable technical support for the implementation of electronic market (EM)
systems. EM systems allow both demanders and suppliers of services and goods in
worldwide communication networks to cooperate freely based on electronic
contracting and clearing services.

This paper first argues that an open system infrastructure to support the „right“
programming paradigm is a necessary but not sufficient condition for fostering
dynamic proliferation of EMs: Another important requirement is organizational
openess of client and server cooperations. The COSM (Common Open Service
Market) infrastructure aims at a system support for such applications. It was
designed and implemented to realize flexible means for accessing remote services
dynamically in evolving electronic markets. The paper then shows how the COSM
infrastructure can be extended by AOP concepts in order to provide an adequate
open systems platform to support highly flexible service offer and access.
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client/server communication, open distributed systems

1 Introduction

An electronic market (EM) can be defined as a computer supported medium that allows both
demanders and suppliers of goods to settle economic contracts at any time and without any
spacial constraints [Schm93]. Accordingly, the underlying technical system platform (the
electronic market system) has to satisfy specific requirements that are also crucial for the
coordination of demand and supply in real economic markets: e.g. possibilities to enter freely
the market with new (innovative) services, to change autonomously product features and to
add value by enriching, combining, or customizing exisiting services [MML95a].

Agent-oriented programming (AOP) is a paradigm that currently gains increasing attention.
Some recently emerging AOP platforms (e.g. [Whit94], [Wayn95]) claim to provide suitable
techniques for the implementation of electronic market systems that allow both demanders and
suppliers of services and goods to exchange them freely based of electronic contracts and
clearing services.

                                               
1 To appear in: IFIP/IEEE International Conference on Distributed Platforms, Dresden, ‘96
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Mobile, itinerant, or intelligent agents are metaphors used within a wide range of computer
science research fields. As far as this paper is concerned, however, only their programming and
communication aspects are examined in greater detail.

This paper first argues that satisfying EM requirements does not neccessarily correlate with a
specific distribution platform or programming paradigm. The suitability of AOP platforms to
match the specific EM requirements for flexible service utilization is then examined. A
corresponding realization based on the existing COSM infrastructure [MML94a] is proposed.

1.1 Cooperation in open networks

Open communication networks serve distributed software applications as well as human users
as a common environment for the mediation and utilization of remote services. Beyond the
scope of communication matters (like, e.g., message delivery or protocol standardization),
distributed applications also realize cooperation in the sense of activity coordination in order to
achieve a semantically higher goal than pure message exchange. Within the scope of this paper,
the term „cooperation“ is understood as (and restricted to) the client/server principle, i.e. a
model which assigns to one of the cooperating applications a „demander role“ and a „supplier
role“ to the other. Additionally, cooperation in open networks can usually be related in this
context to one of the two following application domains:

• In the first domain of cooperation, software applications act always as requesters, i.e. play
the demander role, by remote procedure invocation on the supplier side. In this context, the
underlying communication mechanisms (RPC, message exchange, function shipping [ISO-
RDA], or global tuple space approaches [CaGe92]) of this cooperation are irrelevant. What
matters is the fact that in every case both client and server have to cohere semantically in
order to engage in a meaningful cooperation in order to constitute a distributed application.
It is important to illustrate this context in which the cooperation partners have to „cohere
semantically“: The corresponding (client/server) software components do not necessarily
have to be developed by a common team; they have, however, to rely on a common
convention - as, for example, pragmatic agreements across the desk, mutual specifications,
conformance to any kinds of standards, or programming according to a common software
documentation. In any case, in this application domain both cooperation partners adhere to
something in common - consciously or not, they form a cross-company domain of
conformance. In the remaining part of this paper, this class of applications is called
(organizationally) closed applications of classified services.

• On the other hand, the second domain of cooperation always involves the human user. He
(or she) is able to relax conformance requirements with a given service type. Here,
cognition and interpretation of „fuzzy“ application descriptions makes dedicated
development of client software components obsolete. The World-Wide-Web (WWW) may
serve as an example for this application domain: Interactive servers are used correctly in
most cases if the provided service semantics is evident to its users. As will be shown later,
the representation of communicated data does not matter either in this case: It may, e.g., be
exchanged as an HTML document (WWW) by a simple message transfer, or by a remote
procedure call. However in contrast to classified services, as adressed above, the message
content is not standardized here. An interpretation does not take place after data transfer,
therefore data is frequently represented in a plain text format. In the rest of this paper, this
class of interactively accessed services is called (organizationally) open applications of
unclassified applications.

Of course, there is a trade-off between closed and open applications: In the first case,
communication can be handled more efficiently, type-safe, and semantically coherent; in the
second case, a service can be provided within a much shorter time-to-market, client
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applications do not need service-specific modules (stubs), and service providers are able to
develop individual (therefore more competitive) functionality. In this context, early, innovative
movers are better off. There is no general reason, however, to favour one approach over the
other - both have their specific merits: classified services are suitable for low-level, well
established application domains like FTP, NFS, or the transmission of MPEG video streams -
interactive services, on the other hand, fit well to user-level applications like ticket reservations
or “kiosk services“ etc.

In analogy to these application domains, there is also a choice of alternate infrastructure
concepts: Which aspects of the application domain should be incorporated into the
(standardized) platform design and which should be left to individual applications? In other
words: What constitutes a reasonable borderline between the standardized (the middleware)
and the „chaotic/open“ part (the specific framework) of a distributed system [Bern93]?
Evolution of commercial information systems shows that the more relevant a system
component is for service competitiveness, the more potential for individualization should be
supported by the platform design: At the application presentation level, home banking
videotext services, for example, provide user interfaces and dialogue control that adhere more
to individual corporate identity objectives than to standardized layout rules. Service
behaviours vary accordingly. On the other hand, there are strict conformance requirements to
communication level standards.

As shown below, AOP provides a technology that allows development of both closed and open
applications. However, before AOP extensions to the COSM open systems platform are
introduced, a closer look is taken at system infrastructure aspects which can either be provided
by distribution support or are implemented individually by the application itself.

1.2. Open systems platforms

System platforms supporting open client/server cooperation can be classified according to the
standardization degree of various functional elements (i.e. by the level of their respective
standardization borderline)2:

• server behaviour and application semantics which are usually not a subject of
standardization in most infrastructures. However, an implicit standardization is given if
client and server applications are developed by a organizationally closed team (compare to
closed applications like, e.g., FTP clients and services). Also CORBA object services are
examples of a well-defined, standardized behaviour.

• service definitions are in most cases represented as an IDL (interface definition language)
script. The scope of specifiable service characteristics is therefore restricted to a
standardized grammar. IDLs are usually not capable to describe service semantics and EM
relevant aspects such as, e.g., billing information. Only CORBA allows to represent
interface definitions as first-class items. No platform supports extensible IDL grammars or
dynamic evolution of the repository schema in order to allow applications to specify
additional service characteristics.

• quality of service characteristics. In ODP trading [ISO-ODP], e.g., service attributes that
characterize server capabilities have to be standardized before any server can be accessed

                                               
2 In this context, „standardization“ refers to and is limited to application-specific conventions. A „print“

function, for example, is standardized in this sense if distributed application components (client and server
code) adhere to a distinct function signature and semantics. Application independent aspects, like the
transport protocol are not considered here.



4 4

on this basis. PAPERSIZE, COSTPERPAGE, or QUEUELENGTH have to be well-typed and well-
known to the print server, client, and the trader itself in the case of print servers.

• user interface design which is left to the individual application developer. On the other
hand, representation and behaviour of user interface components, such as buttons or data
controls is standardized in systems like WWW or Compuserve.

• Finally, conventions on communication protocols are the least common denominator to any
distributed application standard. Each open distributed platform trivially relies at least on a
common communication standard.

Reality shows various approaches which can be distinguished according to their respective
different standardized functions (Fig. 1).

User Interface

Quality of
Service

Server
Semantics

Interface
Specification

Communication
Protocol

ODP (Trader)      DCE  CORBA (DII)          WWW COSM

Service
Type

Interface
UUID

Service
Attribute
Types

IDL IDL

DCE/ONC RPC
Sockets

DCE RPC
Sockets

Sockets
DCE RPC Sockets DCE/ONC RPC

Service
Representation

HTML
Service

Representation

Fig.1: Cooperation platforms and their standardized functions

This set of choices raises several questions for realizing highly generic system platforms for
open distributed applications, for example: Which level of conformance is flexible enough to
combine individual application design with efficient infrastructure standards? User interface
layout is surely not something to be standardized. Application semantics must remains
individual within the context of an electronic service market, too (as argued in [MML95a]).
Service attribute and service type standardization in the sense of ODP trading [ISO-ODP] is
even contra-productive if it is an essential requirement for service accessibility in a competitive
scenario. However, as an add-on feature, trading supports efficiently service selection.

What remains is to allow providers to offer an individual, unique service and to extend
existing distribution platforms by means of access support to this kind of applications. For
designers of electronic market platforms, a general question addresses the gap between
requirements of market dynamics and the capabilities of technical communication systems. This
paper argues that the agent-oriented programming (AOP) approach provides means to bridge
this gap if correctly applied. As shown further below, AOP provides a language interface to the
application designer.3

The rest of this paper is organized as follows: Chapter 2 introduces some practically relevant
approaches to AOP and analyzes how these satisfy the requirements of an electronic service
market. Chapter 3 shows how adequate AOP concepts can be integrated into the COSM

                                               
3 Although the agent programming language may be standardized, individual programs are surely not.

However, agents must be programmed correctly in order to conform to another agent's or server’s semantics
and thus a domain of conformity can be identified again.
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platform and which extensions to the COSM service representation are necessary. A closer
look at the structure and behaviour of COSM agents is given in Chapter 4. After presenting an
AOP example and its implementation based on the COSM platform, Chapter 5 finally focusses
on open issues which are addressed in the ongoing COSM design and prototype development.

2 Basics on agent-oriented programming

Agent-oriented programming as a computer science field reaches from distributed AI
[Shoh93], distributed programming [Tsic87, HaCK95, MaMS95] to the field of computer
communications [Tsch93]. This paper focusses on client/server cooperation aspects of AOP. In
this context, AOP approaches from research as well as from commercial products relevant to
open service markets are examined.

Definition

A mobile agent is an encapsulation of code, data, and execution context that is able
to migrate autonomously and purposefully within computer networks during
execution.

The agent system provides an algorithmically complete programming language. Therefore, an
agent is able to react sophistically on external events. An agent may be persistent in the sense
that it can suspend execution and keep local data in stable storage. After resuming activity, an
agent‘s execution is continued, not neccesarily at the same location.

According to the definition, a migrated process is not an agent unless the process itself
influences the migration target. A remotely executed script (see, e.g., SUN‘s HotJava
extension to HTML [Sun95]) is not an agent either unless execution state is transferred and
full execution autonomy is given. Agents only cease to exist when they are explicitly deleted.
(Self-) deletion may be carried out by the agent program. Agents act on behalf of a (human)
principal, who directly or indirectly defines the goal of an agent‘s activity.

The given definition restricts the possible variety of agent implementation approaches to a
quite small set of possibilities: each case requires a local evaluator - the engine - in order to
execute the agent program.

The most obvious agent application domain seems to be information gathering. Agents may,
for example, perform database queries on behalf of their principals. This may result into a local
full-text query or, e.g., a price inquiry for a specific good at each engine involved. Implemen-
ting such information gathering agents requires specific knowledge about server semantics -
therefore this context forms a closed application in the sense as defined in Section 1.

Another rationale for agent activity is the provision of added-value: existing - maybe
heterogeneous - resources, like booking services, are accessible through a customized or
standardized user interface. In this case, a (commercial) third party provides the agent as a
facilitator service in order to support access to “awkward“ services. A facilitator agent can be
transferred to the client‘s site and bound to the user interface library. This enables users to
access the facilitator service without using dedicated client software. Here, AOP bridges the
gap between third party requirements of individualization (agent program) and infrastructure
standardization (user interface components).

Agents may also be developed to provide notification services. Here, messages are sent or
activities triggered after a distinct event has occured. This may happen, for example, if an
application state changes at the agent‘s site.
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2.2 AOP models

AOP models have various aspects: the programming model provides the conceptual basis, but
in the context of open distributed applications also agent migration and cooperation aspects
are of interest.

AOP programming models are frequently Smalltalk-like in combination with an abstract
machine [Wayn95]. Such mechanisms provide the required homogeneity for allowing seamless
transfer of evaluation contexts between heterogeneous hardware and operating system
platforms. Compared with communication mechanisms like RPC, agents carry their own
process state around. This fosters failure recoverability if the agent state can be preserved by a
persitency service. If an agent thus encapsulates client application state, the accessing
application may remain stateless - and therefore easy to recover. However, [HaCK95] argues
that even such client/agent cooperation requires a specific protocol in order to access the
results, i.e., to relate the returning agent or response to the original request. The client
application must therefore at least preserve an application protocol state. This restriction
applies in any situation where service-specific semantics is obeyed by client implementations -
thus leading back to the world of closed applications again.

Another approach to migration is to encapsulate evaluation state as far as sufficient by a
persistent storage manager (object store) and to allow accessing applications to perform
computations on this data in a coordinated way. This approach does not neccessarily require an
agent representation “substrate“ that circulates through the distributed system. Just a notifi-
cation message may pass control from a previous evaluator to the next. Heterogeneity is
bridged by the underlying communication mechanism like RPC. Although such an approach
was considered as well in the COSM project, this paper focusses on the “substrate“ approach.

Agent cooperation requires coordination of purposeful activities of all involved partners in
order to achieve a common goal as, e.g., carrying out a purchase. Here, two variants can be
distinguished: direct interaction between cooperating (client/server) agents (“direct interpreta-
tion“) or involving a third party that supports a purposefull “match“ between the interacting
agents (“3rd-party-matching“).

2.3 AOP in an open world

This paper argues that an electronic service market emerges most dynamically if an
infrastructure that fosters proliferation of open applications is provided. However, our
examples have shown that AOP can be interpreted as programming local to the client site. This
view is based on a „closed application“ paradigm, since, in this view, service providers and
agent programmers constitute a joint domain of conformance as described in the first section.



7 7

Client

Server

Forward
Agent

Developes,

Installes,
Parameterizes,
Starts

Appl. developer

Client
Server

Reverse
Agent

Developes

Appl. developer

User

Installes,
Parameterizes,
Starts

Client Domain Server Domain

Shared Domain of Convention

Autonomous Domain of ConventionAutonomous Domain of Convention

Fig. 2:Agents within the contexts of classified and unclassified services

AOP is thus best applicable if the domain of conformance is restricted to the service providing
organization. The only possible way to decouple client and server in such a scenario is to install
a server-created agent at the clients site. The respective process may be executed either by the
server as a „remote installation“ or by the client by „agent acquisition“. In either case, such
installation is only possible with the client‘s benevolence. The agent encapsulates all
information and code required to allow the human user to interaction reasonably with either
the agent itself or the remote service. This principle shall be called the reverse agent principle
(Fig. 2).

For supporting electronic market applications, AOP offers certain characterstics that make this
approach more favourable than, e.g., RPC: Agents may support directly the application-level
protocol required to invoke specific server operations. This enables vendors to allow server
access not via specific client applications but rather by general access information to remote
resources - encapsulated by a respective agent [Tsch93]. Today‘s service distribution
mechanisms are, in most cases, still based on delivery of RPC or message-passing oriented
client applications with all the inherent disadvantages as, e.g.: the lack of persistent application
state, arbitrary user interface styles, the burden of handling a large range of software
applications with individual installation procedures on client systems, etc. Individual and
spontaneous client/server cooperation is only possible if this burden is minimized by, e.g.,
dedicated facilitator agents that allow for the reverse agent principle.

Finally, powerful user interfaces are required for a meaningful interaction between human
users and agents. Therefore, an additional client component is needed to support service agent
administration and agent interaction. In the case of MagicCap [Whit94], e.g., a city-metaphor
is used for a browsing directory to support user access to installed agents rsp. services. Here,
each service is represented by an individual building; user/agent interactions can commence
after a building has been “opened“.

The following chapter introduces the COSM infrastructure as a complementary platform for
the reverse agent principle. Designing and realizing an adequate system support for the access
to remote services in open environments is the main goal of the COSM approach. This leads to
a technical platform for realistic electronic service markets which are dynamically evolving and
comprise great varieties of individual service offers and many service requesting clients.
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3 The next step: involving the human user

As argued above, closed applications have several disadvantages in the electronic service
market field. Most importantly: they require dedicated client components which have to be
individually installed. Therefore, the burden of maintenance is shifted to client users. On the
other hand, current open applications, such as interactive WWW services, neither allow to
store service descriptions (HTML documents) in a well-structured form nor do they provide
sophisticated call-interfaces that conform to existing middleware platforms like CORBA DII
(Dynamic Invocation Interface).

Combining the advantages of both approaches - decoupled client and server development on
the one hand, call interfaces with well-structured and well-processable interface descriptions on
the other - leads to the development of the COSM platform [MML94a]. The result is a flexible
service implementation and access mechanism based on service representations (SR).

3.1 Support for a Common Open Service Market

The COSM system platform [MML94a] was designed and built in an ongoing project at the
University of Hamburg in order to combine and support the advantages of both closed and
open applications: decoupled client and server development on the one hand, and call
interfaces with well-structured and well-processable interface descriptions on the other. The
result is a flexible service implementation and access mechanism based on the concept of self-
contained, generic service representations. A COSM service representation (SR) contains se-
veral descriptional components defining, e.g., the operational service interface, the Generic
Client user interface layout, the interrelation between user interface and remote procedure in-
vocation, human-understandable descriptions of service functionality, billing information on the
charge of procedure invocations, a definition of the legal order of invocation sequences, etc.

Based on generic service representations, the architecture of the COSM prototype system
consists of the following main components (Fig. 3):

COSM Server

ORB

DII Dyn. Skeleton

Gen. Cl.

COSM-Server

SR

BOA

SR GUI 
Editor

Fig. 3: Definition and usage of service representations

• A Generic Client (GC) component that supports users in service discovery, access and
binding, and in the inspection of service descriptions at run-time.

• A common Service Representation (SR) which contains several descriptional components
(defining, e.g., the operational service interface, the GC user interface layout, the interre-
lation between user interface and remote procedure invocation, human-understandable de-
scriptions of service functionality, billing information on the charge of procedure invocati-
ons, a definition of the legal order of invocation sequences, etc.).
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• Service providers which implement dedicated functionalities and are accessible on-line in
the COSM network. (They supply their respective SRs to potential users - either directly or
indirectly via GC or mediation services).

• The Object Request Broker (ORB) which is required as middleware platform for binding
support, DII-based parameter transfer, and server adaption. The SR is used as input for a
stub generator only at the server’s site.

• SR browsers and repositories which support users to inspect and store SRs.

• Service traders which identify appropriate service suppliers by an automated search for the
best possible services based on given service description criteria, and, finally,

• mediation services provide application specific tasks like, e.g., collecting news articles for
their customers.

In this environment, the SRs correspond to the reverse-agent principle of the AOP context as
defined above: The COSM agent (resp. the SR) is developed and provided by the remote
server. The user selects an appropriate agent from a distribution service like a repository.
Agent and service are implemented within the same domain of conformance - whilest the client
remains generic in order to allow its user to access any COSM server. After both client and GC
have received a server's SR, the corresponding user interface can be generated automatically at
the client site. The user can then inspect the information provided by the SR and familiarize
with the described service functionality. So, a direct client binding to the server can finally be
established (or released if this information does not describe the kind of service the user was
looking for). The user interface representation of a remote services site is standardized at every
GC; service layout and content, however, may vary from service to service. This interface
enables users to execute remote operation calls just by filling out forms and pressing cor-
responding buttons automatically.

Based on this agent/SR analogy, the COSM platform can be extended smoothly with AOP
concepts by simply augmenting COSM SRs: A COSM SR could thus contain both code and
control flow specifications. Before focussing in more detail on this task, the following section
first elaborates a bit more on COSM SRs. Chapter 4 then presents SR extensions for control
flow specifications based on Petri Net representations.

3.2 COSM service representation

In COSM, the crucial data object to contain and transfer arbitrary and location independent
service descriptions is the service representation (SR). At the most generic level, the SR is a
container for data structures of arbitrary run-time types. After receiving an SR, an SR-
interpreter (a component of the COSM Generic Client) seeks description components it is able
to interprete. In the case of the Generic Client there are the following components:

• a specification of operation descriptions, containing operation names and parameter
descriptions. Parameter descriptions refer to data objects which contain actual values.
These components resemble roughly interface definition clauses known from DCE or
CORBA IDLs.

• A specification of the user interface to be generated for human users by the GC. It contains
specifications for dialog boxes, data editors and push buttons. Data editors manipulate data
objects,

• a specification of the service interface protocol, i.e. which operations are enabled to be in-
voked at a given state. Currently, this protocol description is based on a finite state machine
(FSM) model and comprises a set of application states and transitions between them which
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refer to operation descriptions. State changes are effected by user-level events and lead
toRPC invocations,

• informal description components as, e.g., help texts which directly support human users,

• “Price tags“ that inform users on service access modalities and operation invocation fees,
and finally

• any local data values used by the GC in order to represent the client state.

Since the COSM Generic Client is not restricted to a distinct set of applications, specific
service state information, such as window positions or counter variables, can also be captured
by the service representation. Furthermore, it is also possible to store the SR persistently and
to suspend interactions with the remote server temporarily and resume them later on based on
the stored SR status information or from another network site.

Compared with HTML documents, the SR approach therefore facilitates storage and query
processing for service descriptions: SRs can be persistently stored in dedicated repositories.
Type information on SR components are used to extend the repository database schema accor-
dingly in order to allow service providers to extend SR description by individual data. This
allows users to place queries against the repository like: “Return all servers that provide an
operation ´Book‘“, or: “Return all parameters of the operation ´Book‘ in SR ´CarRental‘“.

3.3 AOP on the COSM system platform

SR-based agent specifications do not directly invoke remote procedures; they are rather used
to guarantee type-safe remote service invocation initiated by the generic client on behalf of a
human user. Taken together as a unit, user, generic client, and server form an engine, that
interprets SRs and performs operations on their local state. Service users trigger invocations,
and the server implements the respective service (operation) semantics. If, e.g., a facilitator
agent is to be developed, the following extension is required for the COSM architecture:
Remote services need engine capabilities, i.e. the ability to transfer and receive SRs and to
evaluate locally those basic operations of the agent language that are common to all agents. In
such an environment, the operation MoveTo <hostname> transfers the service representation
including the current evaluation state to the receiving host4 and End terminates the agent, by
letting the engine delete the service representation. Every other operation is not carried out by
the COSM engine itself but is invoked remotely at the server.

The integration of agents with the COSM generic client user interface also requires a graphical
representation of agents that are installed but currently not used. For that purpose, the
directory of Telescript (represented by a city metaphor) is generalized into a dedicated brow-
sing service in COSM. Agents that are ready to be used can be obtained from this remote
browser.

4 Integrating COSM and AOP

This chapter first focusses on Petri Net representations of agent-based control flow
specifications and then on the way agent migration is actually carried out in COSM. Finally, an
example application of the current COSM prototype implementation illustrates how respective
parts of the COSM infrastructure interact in order to support agent circulatation in open
networks.

                                               
4 The command Go was taken from the telescript language [Whit94].
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4.1 Embedding control flow into COSM SRs

The base model of COSM did not provide means to incorporate control flow specifications
into SRs. This motivates the corresponding SR extension by Petri Net representations as
presented below.

In general, Petri Nets [Jens92] serve as a formal tool for specifying the coordination of
concurrent activities. Their advantage lies in the combination of a sound mathematical
foundation, a comprehensive graphical representation, and the possibility to carry out
automatically simulations and verifications. Petri Net tools allow to prove liveness and
deadlock absense for certain net classes. Transitions are generally enabled when

1. all input places provide tokens of the type that is associated with the respective input edge
and furthermore all expressions and variables evaluate conflict-free for the binding and

2. the transition predicate evaluates to "true".

In the COSM context, the Petri Net model is semantically extended by the concepts of split
and join transitions: a split transition separates a single SR into two or more independently
executable SR net representations. In contrast to the standard definition, split transitions do
not mark each outgoing place with a token; they generate a copy of the net representation after
tokens have been withdrawn from all incoming places and occupy only one single outgoing
place per net instance (Fig. 4) instead. In COSM terms, additional sub-SRs (resp. subagents)
are thus created out of the master instance. These instances can be processed independently
until a join transition is reached. The join transition is not enabled unless all required instances
have arrived at the input place. All net instances, except for the master, will be removed when
the join transition is fired. To carry out a join, the required SRs have to be co-located at the
same engine.

Split

Search() Search()

Join

Split

Search() Search()

Join

Split

Search() Search()

Join

Pred Pred Pred

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

<Op>

Fig. 4: Firing split transitions unfolds a net into two instances

Each transition definition is associated with one operation description within the SR. If the
transition predicate evaluates to TRUE firing the transition results in an invocation of the
referred operation.

Pairs of split and join transitions may be nested in net definitions. Therefore, a dedicated
naming schema is required to assure a correct identification of the agent instances to be
merged. These agent instances form a common task that is set-up by an initial agent. Tasks
belong to a task type and tasks of various types may be carried out within the engine network
at the same time. A task type is defined by individual agent implementors. The resulting naming
schema appears as follows:
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1. Task type identifiers are coined by agent implementors. However, to enforce uniqueness, a
type identifier comprises a universally unique identifier (UUID).

2. At each task creation (i.e. when an initially marked agent is created), a globally unique task
identifier is appended to the type identifier.

3. Each split transition, in turn, appends a locally unique instance identifier to the task
identifier. The join operation is therefore required to strip off this identifier and to test the
remaining part on equality. Of course, instance identifier may be appended consecutively at
each split. This schema assures a process, that merges the least recently created agent
instances first.

4.2 Go for it!

In summary, the basic components of the COSM based AOP engine architecture are

• the service representation as an encapsulation of the agent‘s local state and control flow,

• the engine as an agent evaluator: The engine carries out operation invocations and passes
agents over to other engines. Application-specific operation calls are invoked at remote
servers which conform to the agent‘s service description. Every engine performs operation
invocations at the same server.

• COSM servers provide application services at remote sites. Their operations are invoked by
engines. Servers are not specific to the AOP approach, they can still be invoked the
„traditional way“ from generic or specific clients. Therefore AOP as a distributed
application concept remains compatible with the existing RPC mechanism of COSM.

Agent operations are distinguished into well-known commands and application-specific ones:
Well-known commands can be locally executed by every COSM engine whilest the latter are
passed on to the engine-specific COSM server. Such a service invocation is executed as if done
by a generic client: First, the current Petri Net state is determined by the engine. If the
predicate of the currently enabled transition evaluates to TRUE the transition is fired. By means
of the SR operation definition, a named value list is created and transferred to the COSM
server through a CORBA DII invocation. Each invocation modifies the local state of an agent
due to the delivery of application specific data.

Splitting and joining is carried out by the evaluating engine. A split transition definition within
the SR is associated with an address list of target engines. When firing, the engine creates
subagent instances - one for each element of the address list - which are transmitted to the
respective target sites.

Concurrent agents are merged to a single instance, if all of them belong to the same task and
have arrived at the same engine. These instances are stored locally to the engines site unless all
of them have arrived. In this case, all exept for the master instance are simply deleted.

Concurrently migrating agents that belong to the same task change their local state individually
due to different operation invocations at different engines. Usually the join transition is carried
out at the agent implementor’s site, since agent and server belong to the same domain of
conformance. The following different merge semantics may illustrate this aspect:

1. Some locally modified state variables are only temporally used and can be ignored at the
merging phase.

2. Results are to be processed by aggregation functions, e.g. the sum of distinct product
prices.

3. Results may be compiled to a list of items, e.g. results of a database query.
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4. Results may be only required to notify the successful execution of all subagent threads.

In principle, any application specific function may be applied to the results. Consistency is
therefore achieved by application-specific code that is invoked at the server of the joining
engine by each agent instance.

4.3 An example

The following example illustrates an agent‘s task to obtain price information from a list of
services: At the user’s Home Server, an agent instance is created and supplied with initial data
by the human user. It is then transferred to the Address Server by executing an according Mo-
veTo command. After an address list with servers to be visited is obtained the agent splits into
three instances: the master agent, and one subagent per address in order to perform the
GetPrice() operation at the respective server(s). Each server still acts as an ordinary COSM
server that can be utilized immediately by the generic client as shown in chapter 3. After all
agent instances have collected their respective price informations, a Join() is carried out on the
fifth host - a host that belongs to the agent implementor‘s domain and that is therefore able to
perform a task-specific collate function of individual results. For the example task given here,
resulting prices are simply aggregated. Finally, the remaining master agent is redirected to the
user in order to present the result via the generic client’s user interface (Fig. 5).
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Fig. 5: Migration path for the sample application

5 Outlook and summary

This final chapter gives a brief overview of the ongoing COSM prototype implementation of
AOP and of additional extensions and concludes with a short summary of this presentation.

5.1 COSM Implementation status and outlook

The current prototype of the COSM AOP system platform was developed in C++ for IBM
AIX. A second implementation exists for IBM OS/2 with the option to run engines on both
platforms and to exchange agents at a cross-platform level. The necessary heterogeneity
transparency is achieved by a representation-independent implementation of the SR.
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This prototype for a COSM AOP infrastructure could be implemented based on several already
existing COSM concepts and components - like the generic client, the service representation,
the repository servers etc. Embedding additional functions - e.g. security mechanisms like a
notary services, electronic currency, or inter-organizational workflow management based on
COSM agents - is a current subject of research. In addition, more sophisticated tools for the
comfortable and safe development of agents and servers are currently under construction:

• Workflow management extension: The agent is extended by role information in order to
interpret the embedded control flow definition as a workflow that allows only authorized
users to perform server invocations. By this means, agents coordinate user accesses to
COSM servers.

• Extending the generic client by engine capabilities. This allows to exchange agents (resp.
SRs) immediately between users. Further, the GC is extended to achieve a better integration
of agents. An SR repository local to the GC is required for this purpose.

• Another extension concerns inter-agent-communication. This can be understood as
spawning sub-agents from a currently executed one.

• In the current infrastructure, there exist no means of securing local sites (engines) against
hostile agents or fraud. Any function call is executed by an engine that was written by the
application programmer - therefore it is the programmer‘s responsibility to allow critical
calls. But if an unauthorized principal lets such agent circulate, elaborated security
mechanisms are required in order to acquire a certification for the agent’s principal.

• In realistic electronic market contexts, additional notary services are required in order to
allow all parties involved in a contract to sign it explicitly and to have it automatically
approved by a dedicated service [MML94b]. Also, electronic clearing services are to be
integrated into the base architecture in order to allow a secure exchange of electronic
currency.

• Agent development tools: Due to the fact that COSM agents are actually implemented as
extended SRs, a generic SR definition tool is developed that allows to define interactively
any data type and instance data that is required for a COSM application. Except for basic
description data about the servers interface type, user interface, petri net definitions, etc.,
application-specific data - such as price information in the example above - may be defined
this way.

5.2 Summary

Agent oriented programming in combination with the reverse agent principle is a promising
approach to implement a platform for electronic service markets. However, standardization of
user interfaces, service attributes, etc. becomes a sensitive design decision in this context.
Application conventions are reduced to the interpretation of SRs and GUI components in
COSM. If the platform imposes over-standardization to its applications there is no possibility
left for service providers to keep the application open to differentiate from competitors by
embedding innovative functionality into the own service. It was shown that conventions
imposed by closed applications can be considered as standards with all shortcomings they
imply. Therefore, one rationale for the agent-oriented approach presented in this paper is to
identify an organizational model that fosters electronic market proliferation.

The approach based on the COSM architecture aims to add-on AOP facilities to the basic
CORBA DII based client/server infrastructure. This keeps AOP as an option which the
application implementor may utilize or not. Thus, the service provider‘s design autonomy is al-
ways preserved. Embedding Petri Nets for control flow specifications and to coordinate
computations on arbitrarily distributed services encourages third-party vendors to provide
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added-value services easily based on facilitating agents. This second rationale for the chosen
AOP approach emphasizes the extensibility aspect of open distribution platforms. The COSM
infrastructure extends puposefully existing concepts of de-facto middelware standards (like
CORBA) in order to demonstrate the principal feasibility of future product developments along
such a line.
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