
The Case for Cross-Entity Delta Encoding
in Web Compression (Extended)

Benjamin Wollmer1,3, Wolfram Wingerath2,3, Sophie Ferrlein3,
Fabian Panse1, Felix Gessert1,3, Norbert Ritter1

1University of Hamburg, Germany, dbis-research@informatik.uni-hamburg.de
2University of Oldenburg, Germany, data-science@uni-oldenburg.de
3Baqend, Hamburg, Gemerany, research@baqend.com

Abstract

Delta encoding and shared dictionary compression (SDC) for accelerating
Web content have been studied extensively in research over the last two
decades, but have only found limited adoption in the industry so far: Com-
pression approaches that use a custom-tailored dictionary per website have
all failed in practice due to lacking browser support and high overall com-
plexity. General-purpose SDC approaches such as Brotli reduce complexity
by shipping the same dictionary for all use cases, while most delta encoding
approaches just consider similarities between versions of the same entity (but
not between different entities). In this study, we investigate how much of the
potential benefits of SDC and delta encoding are left on the table by these
two simplifications. As our first contribution, we describe the idea of cross-
entity delta encoding that uses cached assets from the immediate browser
history for content encoding instead of a precompiled shared dictionary: This
avoids the need to create a custom dictionary, but enables highly customized
and efficient compression. Second, we present an experimental evaluation
of compression efficiency to hold cross-entity delta encoding against state-
of-the-art Web compression algorithms. We consciously compare algorithms
some of which are not yet available in browsers to understand their potential
value before investing resources to build them. Our results indicate that cross-
entity delta encoding is over 50% more efficient for text-based resources

River Journal, 1–17.
© 2022 River Publishers. All rights reserved.



2 B. Wollmer et al.

than compression industry standards. We hope our findings motivate further
research and development on this topic.

The extended version of our previously published paper [10] includes an
additional section on the deltas of HTML files, a more detailed description of
our approach (including a new visualization for the different dictionary strate-
gies), a deeper discussion of compression efficiency, and details on additional
future and ongoing work.

Keywords: Delta Encoding, Caching, Dictionary Compression.

1 Introduction

Every Web browser utilizes a local cache to reduce the payload of a website.
But since cache entries are limited in their lifetime, they become useless in
current schemes once they are stale. However, stale resources can still contain
information that is useful for encoding related files efficiently. Delta encoding
is an example of such an approach, which is generally used to update one
entity to its newest version by sending a diff rather than the whole asset. Most
proposals revolving around this mechanism focus on the similarities between
versions of the same entity (single-entity data encoding).

In this work, we argue that modern websites comprise many pages that are
very similar among one another (e.g. different product pages) and therefore
lend themselves to cross-entity delta encoding as well [11]. We use Com-
paz [9] to evaluate the concept of cross-entity delta encoding and provide
evidence on its potential benefits for payload savings to motivate further
research on the topic. Sections 2 and 3 discuss and distinguish cross-entity
delta encoding from existing work. In Section 4, we present quantitative re-
sults for the potential of cross-entity delta encoding to improve compression
efficiency based on real-world high-traffic website traces. In Section 5, we
drill down into HTML files and show the potential of different page types.
Section 6, how different compression algorithms can further improve the
shown approach. We discuss open challenges and conclude in Section 7.

This paper is an extended version of our previously published paper [10].
In this extended version, we further investigate the deltas of HTML files
in a dedicated new Section 5. Furthermore, we explain our approach with
additional details (including a new visualization for the different dictionary
strategies in Figure 1), provide a deeper discussion of compression efficiency
in Section 6, and present additional future and ongoing work in the outlook
in Section 7.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 3

2 Related Work

Delta Encoding. Mogul et al. proposed to use delta encoding in HTTP to
update stale content [6], which is not implemented by any major browser.
How well this scales depends on how much of the content changes between
the two versions. They evaluated the delta calculation purely for updates of
returning users, but did not consider deltas between different pages. Korn et
al. proposed VCDIFF, a differencing algorithm [4]. They evaluated it sim-
ilar to Mogul et al. by considering deltas between updates of the same file.
Cloudflare’s Railgun uses delta encoding to update the CDN content [3]. This
approach is limited between server and CDN and also only considers updates
between different versions.

Shared Dictionary Compression (SDC). In a standard compression ap-
proach, like with deflate, the encoder reads the file and tries to find repeating
strings from the previously read content. The previously read content is also
referred to as the dictionary. Instead of just using the previously seen content,
the dictionary could also be an external file. In SDC, the same dictionary is
shared between multiple compression processes and can therefore improve
the overall compression ratio further. Chan et al. suggest that Web pages
with a similar URL path also may have similar content and Web pages may
therefore be transmitted more efficiently as a differentials to previously vis-
ited Web pages [2]. They only consider HTML files and assume them to
be uniquely identifiable by URL. While the approach is similar to ours, the
presented results are not applicable to modern websites. First, today’s HTML
files are often personalized and thus not uniquely identifiable by URL. Sec-
ond, some assets are static and uniquely identifiable by URL (e.g. JavaScript
or CSS), but they are not considered. Butler et al. proposed Shared Dictio-
nary Compression over HTTP (SDCH), where the server can actively push
dictionaries to the client [5]. One of the key challenges here is to find the best
dictionary, since the server has to predict which dictionary would be of use for
the client. This dictionary may increase the payload for the first page, since
it is pushed, but maybe only used later. LinkedIn reported that generating
the dictionaries took them about 7 hours per deployment and could easily
take days [7]. Therefore, they were forced to delay the generation of new
dictionaries to every other week. This may be one of the reasons why SDCH
was not widely adopted and removed from Chrome1. However, the key idea
of sharing a dictionary led to Brotli, which was later developed at Google
[1]. For Brotli, the shared dictionary is static and already part of the library

1 groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ

https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ


4 B. Wollmer et al.

and never has to be generated or transferred over the network. Most browsers
support Brotli, but without the custom dictionary functionality which could
be used for cross-entity delta encoding. Zstandard would allow the same, but
has no browser support at all.

3 Cross-Entity Delta Encoding

As shown in the previous section, delta encoding has so far mostly been
evaluated to compute deltas between different versions of the same file or
with a shared dictionary. Calculating deltas between files that share similar
data could provide similar advantages. In contrast to SDCH, this would re-
move the need to create and maintain dictionaries as we use the raw files
as dictionaries. This has some implications. First, the compression for one
asset may deliver different results for different users, since the result depends
on the dictionaries available in the client cache. Second, using client cache
entries requires a cache state synchronization as the server needs to know
which resources can be used for content encoding.

Dictionary Scope Strategies. As a basic rule, only those assets can be
used for encoding, which have already been loaded by the client. We therefore
consider three different strategies for our evaluation(see Figure 1). As the
most powerful strategy, one could consider every previous asset (PA) as a
potential dictionary, which was seen until the currently requested asset. This
includes previously visited pages (page impressions, PIs) as well as assets
from the currently requested PI. This strategy is difficult to implement in
practice, because assets are typically not downloaded in sequence. We ex-
clude the currently processed PI assets as another more practical strategy and
only consider fully downloaded assets up to the previous PI (PP). As a third
strategy, we exclusively consider assets of the entry page as dictionaries (EE).
Due to a similar overall layout (e.g. same header), this could be a reasonable
alternative with a fixed set of dictionaries, compared to the ever-growing
dictionaries of previous strategies.

4 Compression Efficiency on Real-World Traces

In this Section, we examine how cross-entity delta encoding could affect the
transferred size within a user journey. We start by creating a dataset col-
lected from real websites and used them to compare different compression
approaches.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 5

0 1 2
Previous Assets (PA)

Previous PIs (PP)

Entry Exclusive (EE)

0 1 2

0 1 2

Figure 1: Visualization of the different strategies. The numbers indicate the
current step in the journey, and the bubbles visualize the assets belonging to
the step. The blue bubble indicates the current asset to be loaded, and the red
box shows which assets are considered to be a dictionary.

Creating a Dataset. The potential of cross-entity delta encoding relies
on the journey taken by a user, since it defines which dictionaries are in
the cache. We created artificial ones, since we have no access to real user
journeys. We assume that every website offers different kind of page types
of which one is the main page type (e.g. a product in a shop or an article of
a news/blog site). The other types could be types like a category site or the
homepage. We further assume the users ultimate goal to be the content of this
main page type. We start the navigation at the homepage and from there we
try to hit different page types for Step 1 and 2. Step 3 then navigates to the
main content. We name this part of the journey from now on the cold phase,
since we hit distinct page types and the cache is cold in terms of available dic-
tionaries. Step 4-6 are only recommendations from the previous main content
and therefore navigate over potentially similar pages. In contrast, this path is
from now on referred to as the hot phase, since it contains possible dictionary
matches. We make sure that every step in the whole journey is unique. We
used 40 of the traffic-heaviest websites according to SimilarWeb2, providing
the recommendation functionality.

Data Cleaning. This work focuses on text based content, therefore, we
excluded every non-text asset, identified by the content-type header. We re-
moved trivial cases, like the delta between two identical assets, since this is
entirely preventable and would skew the results in favor of cross-entity delta
encoding. Finally, we removed every third-party asset (other domain), since

2 https://www.similarweb.com/de/top-websites/



6 B. Wollmer et al.

0 1 2 3 4 5 6
Journey Progress

0.0
0.5
1.0
1.5
2.0
2.5

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.0
0.5
1.0
1.5
2.0
2.5

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(b) Cumulative Relative Size

Figure 2: The left chart shows the compression size relative to gzip (6), while
the right chart shows the cumulative size up until each step to account for
different page sizes. Replacing every compression with VCDIFF only pays
off in the hot phase (>3), but is on average still worse than the default gzip
compression.

the provider would not have the possibility to change the compression for
these kind of assets.

Calculating Deltas. The compression for the delta was done with open-
VCDIFF to which we from now on will refer to as VCDIFF. We just brute-
force every possible delta for a given asset and chose the smallest one. We
only considered dictionaries which had at least the same type3, e.g. text.

Comparing the Results. The data we collected was compressed by either
Brotli, gzip, or no compression. To create a baseline against which we can
compare, we uncompressed every asset and compressed it with the default
gzip compression level (6), which on average is slightly higher than the re-
sults we got from the server. We also compare against Brotli (11), which may
be impractical due to performance reasons, but represents the currently best
compression ratio.

4.1 Enforcing VCDIFF

In our first experiment, we forced VCDIFF with the different strategies on
every asset. It shows that regardless of the current step within our journey,
just using the entry site will be outperformed in every step by gzip (see Fig.
2a). The results for PP and PE are similar in the cold phase and on par with
gzip after leaving the entry page, but significantly improve and surpass even
Brotli when entering the hot phase, with as low as 28% of gzip’s size. This

3 Still, the best dictionary was almost every time of the same subtype, e.g. text/html.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 7

was expected, since we only look at previously visited page types. Still, due
to the negative impact at the beginning, they cannot compete over the whole
journey (see Fig. 2b).

4.2 Case-Specific VCDIFF

The previous experiment has shown that the results highly depend on the
client cache. Therefore, we repeated the experiment but decided per asset
to either use VCDIFF if it yields an improvement or stick with gzip (6)
otherwise. Since the first PI still cannot leverage any dictionary, it mainly
falls back to gzip (see Figure 3a). Just using the entry page as the dictionary
source can slightly improve the compression ratio overall (˜5%), but as Figure
3a indicates, this is mainly driven by similarities within the cold phase. Again,
choosing the dictionary from previous assets provides the biggest impact
within the hot phase and vastly outperforms Brotli. Stepping back to PP only
slightly decreases the impact and can be an alternative to PA. Overall, using
VCDIFF on specific assets scales well with the length of the journey, as soon
as similar pages are visited. As Figure 3a and 3b show, this will converge
against 25% of the payload for longer journeys.

4.3 VCDIFF With Secondary Compression

VCDIFF files can still contain many common strings and could therefore
benefit from secondary compression, which is currently not implemented in
open-VCDIFF. This motivated our next experiment. We used VCDIFF as an

0 1 2 3 4 5 6
Journey Progress

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.8

0.9

1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(b) Relative Size per Step (Cumulative)

Figure 3: Using VCDIFF only when it actually provides an uplift yields small
results in the cold phase (<4), but can even further improve the hot phase
and overall eventually leads to results comparable with the maximum Brotli
compression.



8 B. Wollmer et al.

0 1 2 3 4 5 6
Journey Progress

0.0
0.2
0.4
0.6
0.8
1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)+gz(6)
vcdiff(PA)+gz(6)

vcdiff(PP)+gz(6)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.5
0.6
0.7
0.8
0.9
1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)+gz(6)
vcdiff(PA)+gz(6)

vcdiff(PP)+gz(6)

(b) Relative Size per Step (Cumulative)

Figure 4: While VCDIFF is still not competitive on the first page load, com-
bining it with secondary compression outperforms Brotli on every following
page load.

Opt-in on every text asset, but piped the VCDIFF output through gzip on
level 6. Figure 4a shows that this approach drastically improves the results,
as we now outperform Brotli even before entering the hot phase. Within the
hot phase, we can compress the assets as low as 14% of gzip (6). Overall the
cumulative size can be reduced to 58% of our baseline (see Fig. 4b).

4.4 Impact on Different MIME-Types

We expected the HTML to gain the most benefit of cross-entity delta encod-
ing and compared them with the other types. We grouped them by the step,
as well as the subtype to make sure that the actual weight of the single assets
were reflected. For the cold phase, we exclude the entry pages (step 0), since
the previous experiments have already shown that cross-entity encoding is no

0.0 0.5 1.0 1.5
Size relative to Origin Size

css
html

javascript
json

(a) Cold Phase (Excluding Entry)

0.0 0.5 1.0
Size relative to Origin Size

css
html

javascript
json

(b) Hot Phase

Figure 5: Compression efficiency by MIME type: Using HTML for cross-
entity delta encoding works well in almost all cases. Using other MIME types
leads to mixed results in the cold phase (a), but yields high efficiency in the
hot phase (b).



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 9

0 1 2 3 4 5 6

0 0.30% 106.03% 67.22% 71.94% 69.77% 67.90% 68.74%

1 103.74% 3.19% 87.63% 93.64% 93.14% 92.39% 92.47%

2 43.92% 97.67% 0.11% 34.87% 27.55% 24.10% 26.25%

3 44.12% 101.47% 31.99% 0.12% 15.84% 13.25% 15.54%

4 43.39% 101.21% 31.57% 23.79% 0.13% 12.19% 15.09%

5 44.19% 101.29% 32.52% 26.04% 17.46% 0.14% 14.94%

6 44.11% 101.47% 32.32% 25.98% 17.96% 12.36% 0.13%

To
Fr
o
m

Figure 6: The heatmap shows the mean compression ratio of deltas from page
type to another, only including the HTML files.

real alternative in that step. HTML benefits the most from cross-delta entity
encoding (see Figure 5) and is a safe alternative in the hot phase. We excluded
XML and plain text responses, since we had too few samples. SVGs could
in some cases further reduced by 10% compared to gz (6). While the other
types on average can still greatly benefit, they are site-specific cases and need
further investigation. Note that the hot phase had only a few CSS samples and
may not be representative, since most sites do not load additional CSS files
at this point.

5 Optimizing HTML

As shown in Section 4.4, delta encoding is highly effective for HTML com-
pression. In this section, we will closely examine the effects of delta encoding
on HTML files.

Figure 6 indicates that the entry page can act as a dictionary for most
page types (except page type 1) which is most likely due to a similar header
and footer on the pages. This chart also confirms the suspicion that product
pages are excellent dictionaries for other product pages. Furthermore, the
category page (type 2) is, on average, another good dictionary for the product
pages. This is no surprise since category pages are likely to show a preview
of products and therefore share some similarities in stylings, which may be
reusable. Figure 5 also includes deltas that were redundant for our journey,
like the delta from page 6 to page 0, since we already visited page 0 at this
point and did not have to fetch it again. We still included the redundant results



10 B. Wollmer et al.

to see if there is a page type that acts an excellent dictionary for all other page
types, which was not the case.4

One of the takeaways from Figure 6 is that delta encoding provides a
significant efficiency benefit over plain gzip on average, no matter from what
product page to what other product page the user navigates. Our experiments
indicate that this is not only the case on average. The box plot in Figure
7 shows the variation of compression ratio between the best and the worst
possible choice for a delta, illustrating that basically any product page can
be used to compute a delta for any other product page: In other words, the
figure shows by how much the compression ratio would have suffered, if the
worst-possible delta in that journey would have been chosen instead of the
best-possible delta. Compression ratio was close to the gzip baseline only
in a single case (far right), while the difference between best and worst was
neglectable with around 7% on median and still below 15% for three quarters
of all journeys.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Deviation

Figure 7: The box plot shows the deviation of compression ratio for all jour-
neys, comparing delta encoding with the most efficient delta against delta and
coding with the least efficient delta. Even in extreme cases, using the worst-
possible delta is comparable with simply loading the target resource via other
baseline gzip compression.

6 Using Algorithms Beyond VCDIFF

Combining gzip (6) with VCDIFF already could on average reduce the jour-
ney size to 58%. But compression efficiency could be further improved by
increasing the compression level and/or using different algorithms. We are

4 The diagonal line shows the delta to itself, which is completely useless, but we included
it for the sake of completeness.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(Opt-in) Relative Journey Size Compared to gz(6)

br(11)(PA)

br(11)(PP)

zstd(22)(PA)

br(6)(PA)

vcdiff(PA)+br(11)

br(6)(PP)

vcdiff(PP)+br(11)

vcdiff(PA)+zstd(22)

br(11)(EE)

vcdiff(PA)+gz(9)

vcdiff(PA)+gz(6)

vcdiff(PP)+gz(6)

br(6)(EE)

vcdiff(EE)+gz(6)

vcdiff(PA)

vcdiff(PP)

br(11)

vcdiff(EE)

gz(6)

Figure 8: Replacing the secondary compression yields even better results.
Alternatively, Brotli and zstandard also allow a more efficient use of custom
dictionaries.

aware that a higher compression level may be impractical in an actual de-
ployment, but should act as an upper limit. While increasing gzip to level 9
had almost the same result, replacing gzip (6) with Brotli (11) reduces the
cumulative journey size to 51% (see Figure 8). As mentioned earlier, one
could also directly use a custom dictionary with Brotli or zstandard (which
is not supported by any browser). This reached the highest compression ratio
and could reduce the result to 45% for Brotli (11) and 48% for zstandard (22),
compared to gzip (6)5

As previously shown, the product pages are highly compressible with
delta encoding. Figure 9 shows additional compression algorithms on these

5 Due to limited space, we only present a few selected alternatives here and refer to
https://icwe.compaz.info for an extensive overview.

https://icwe.compaz.info


12 B. Wollmer et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(Opt-in) Relative Journey Size Compared to gz(6)

br(11)(PA)

zstd(22)(PA)

br(6)(PA)

vcdiff(PA)+br(11)

vcdiff(PA)+zstd(22)

vcdiff(PA)+gz(9)

vcdiff(PA)+gz(6)

vcdiff(PA)

br(11)

gz(6)

Figure 9: Looking only at the HTML of recommendations shows that the
uplift between VCDIFF and the other types is still existing, but not as signif-
icant.

HTML files. However, since we are already at such small file sizes, the overall
effect is less significant than other file types (compare figure 8). 6

7 Conclusion

Our results show that reusing cached assets for delta encoding can signif-
icantly reduce transferred bytes in the Web, even though we simulate new
users who start with cold caches. This approach should thus be seen as a
complement to existing compressions rather than a replacement. But it should
be noted that potential uplift is even more significant for returning user who
start their journeys in the hot phase and thus directly benefit from cross-entity
delta encoding.

Open Challenges. In our experiments, we made several simplifying as-
sumptions that do not hold in a real-world setting. First, we employ the
perfect dictionary selection via a brute-force approach, but a more efficient
heuristic would be required for practical use. Also, cache state synchroniza-
tion remains challenging: The server does not only have to select the ideal
dictionary for encoding, but also one that is already present in the client cache
to enable decoding. Another open challenge is the lack of browser support for
different aspects of delta encoding and shared dictionary compression. While
all major browsers support generic Brotli and gzip, VCDIFF and Brotli with

6 We only consider PA since we only look at HTML files; therefore, the result would be
the same for the other two strategies.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 13

a custom dictionary are currently not supported by any of them. While using
HTML files as dictionaries was most effective in our evaluation, content that
is generated per user makes it infeasible to keep all dictionaries (HTMLs)
in the server. Reducing this complexity would require some kind of normal-
ization to strip personlized content for encoding and decoding (cf. Dynamic
Blocks [8]), akin to app shells in single-page applications.

Closing Thoughts. Despite a host of literature on delta encoding and
shared dictionary compression from more than two decades of research, there
is still a lot of untapped potential in existing compression technologies. Our
results indicate that using the client cache as a dictionary for delta encoding
can reduce the text payload by up to 86% for single pages and by 55-80% for
user journeys over recommended content. But there is still further research
needed in areas like dictionary selection and cache state synchronization.
Lacking browser support for cross-entity delta encoding algorithms is an-
other practical barrier, but could be added in platform-independent fashion
with a service worker implementation. However, performance depends on
the client device and is likely not comparable with native compression algo-
rithms. Without native browser support, delta encoding only seems viable for
scenarios where network efficiency is critical (e.g. for mobile users in data
saving mode).

Finally, as shown in Section 5, almost every product was an excellent
dictionary for all other product HTML files. This can significantly reduce
the overhead of choosing a suitable dictionary for product pages. We plan
to combine this observation with predictive preloading of HTML files by
choosing a popular product as a dictionary that gets downloaded by the client
so that every following product is a delta of this preloaded product. This is
similar to SDCH[5], but the dictionary is also usable as a product preload
since it is an actual HTML file. Furthermore, since the deltas have the size
of a fraction of the current state-of-the-art compression, this will allow us to
either safe bandwidth for product preloads or increase the cache hit rate by
preloading multiple products for the cost (in terms of bytes) of one page.

References

[1] Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert
Obryk, Zoltan Szabadka, and Lode Vandevenne. Brotli: A general-purpose data
compressor. ACM TOI, 37(1).



14 B. Wollmer et al.

[2] Mun Choon Chan and T.Y.C. Woo. Cache-Based Compaction: A New Technique
for Optimizing Web transfer. In IEEE INFOCOM ’99. Conference on Computer
Communications.

[3] Dane Orion Knecht, John Graham-Cumming, and Matthew Browning Prince. Method
and apparatus for reducing network resource transmission size using delta compression.

[4] David G Korn and Kiem-Phong Vo. Engineering a differencing and compression data
format. In USENIX annual technical conference, general track, pages 219–228, 2002.

[5] Bryan McQuade, Kenneth Mixter, Wei-Hsin Lee, and Jon Butler. A proposal for shared
dictionary compression over http. 2016.

[6] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy. Po-
tential Benefits of Delta Encoding and Data Compression for HTTP. SIGCOMM CCR,
1997.

[7] Omer Shapira. SDCH at LinkedIn., 2015. Accessed: 2022-01-20.
[8] Wolfram Wingerath, Felix Gessert, Erik Witt, Hannes Kuhlmann, Florian Bücklers,

Benjamin Wollmer, and Norbert Ritter. Speed Kit: A Polyglot & GDPR-Compliant
Approach For Caching Personalized Content. In ICDE, Dallas, Texas, 2020.

[9] Benjamin Wollmer, Wolfram Wingerath, Sophie Ferrlein, Felix Gessert, and Norbert
Ritter. Compaz: Exploring the Potentials of Shared Dictionary Compression on the Web.
In 22th International Conference on Web Engineering, ICWE, 2022.

[10] Benjamin Wollmer, Wolfram Wingerath, Sophie Ferrlein, Felix Gessert, and Norbert
Ritter. Compaz: Exploring the potentials of shared dictionary compression on the web.
In Proceedings of the 22nd International Conference on Web Engineering (ICWE), 2022.

[11] Benjamin Wollmer, Wolfram Wingerath, and Norbert Ritter. Context-Aware Encoding
& Delivery in the Web. In 20th International Conference on Web Engineering, ICWE,
2020.



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 15

Biography

Benjamin Wollmer is a data engineer at Baqend as well as a PhD student
at the databases and information systems group (DBIS) at the University
of Hamburg. His PhD thesis is supervised by Norbert Ritter and his
research interests revolve around efficient data transmission and compression
algorithms in the Web. As a data engineer at Baqend, Benjamin is also part
of the team that develops and operates the real-user monitoring and analytics
solution built into Speed Kit to generate performance-critical insights.

Wolfram “Wolle” Wingerath is professor for data science at the University
of Oldenburg (UOL) and Data Science Advisor at Baqend. Before joining
UOL in 2022, Wolle headed Baqend’s data engineering team and was
responsible for developing and operating Baqend’s real-user monitoring
pipeline for zero-latency analytics. His research interests revolve around
data-intensive applications and high-performance web infrastructure,
but he also has a passion for hands-free coding to increase productivity
(https://handsfree-coding.gi.de). Wolle published several books, articles, and
tutorials on these topics together with his colleagues and frequently talks
about his research at scientific and developer conferences.

https://handsfree-coding.gi.de


16 B. Wollmer et al.

Sophie Ferrlein is a Data Scientist at Baqend where she turns web tracking
data into actionable web performance insights and data products. Based
on her B.Sc. in Computer Science for Media Applications and her B.A.
in Journalism, she focuses her professional efforts on communicating data
effectively.

Fabian Panse currently heads the databases and information systems group
(DBIS) at University of Hamburg as a substitute professor where he has been
a postdoctoral researcher before. Fabian has been doing research in the fields
of deduplication, uncertain data management and data quality since 2009.
During this time, he wrote several papers that address the problems of mea-
suring data quality, evaluating duplicate detection algorithms, and test data
generation.

Felix Gessert is the CEO and co-founder of the Backend-as-a-Service
company Baqend. During his PhD studies at the University of Hamburg, he
developed the core technology behind Baqend’s Web performance service.
Felix is passionate about making the Web faster by turning research results



The Case for Cross-Entity Delta Encoding in Web Compression (Extended) 17

into real-world applications. He frequently talks at conferences about
exciting technology trends in data management and Web performance. As
a Junior Fellow of the German Informatics Society (GI), he is working on
new ideas to facilitate the research transfer of academic computer science
innovation into practice.

Norbert Ritter is the Dean of the Faculty for Mathematics, Informatics, and
Natural Science of the University of Hamburg, but headed the databases and
information systems group (DBIS) as a full professor until August 2022.
Norbert received his PhD from the University of Kaiserslautern in 1997. His
research interests include distributed and federated database systems, trans-
action processing, caching, cloud data management, information integration,
and autonomous database systems. He has been teaching NoSQL topics in
various database courses for several years. Seeing the many open challenges
for NoSQL systems, he, Felix, Wolle, and Benjamin have been organizing
the annual Scalable Cloud Data Management Workshop (https://scdm.cloud)
to promote research in this area.

https://scdm.cloud

	Introduction
	Related Work
	Cross-Entity Delta Encoding
	Compression Efficiency on Real-World Traces
	Enforcing VCDIFF
	Case-Specific VCDIFF
	VCDIFF With Secondary Compression
	Impact on Different MIME-Types

	Optimizing HTML
	Using Algorithms Beyond VCDIFF
	Conclusion

