
Compaz: Exploring the Potentials of Shared
Dictionary Compression on the Web

Benjamin Wollmer1,3 , Wolfram Wingerath2,3 , Sophie Ferrlein3 ,
Felix Gessert3 , and Norbert Ritter1

1 University of Hamburg, Germany
dbis-research@uni-hamburg.de

2 University of Oldenburg, Germany
data-science@uni-oldenburg.de
3 Baqend, Hamburg, Germany

research@baqend.com

Abstract. In this demonstration, we present Compaz, an extensible
benchmarking tool for web compression that enables evaluating approach-
es before they have been fully implemented and deployed. Compaz makes
this possible by collecting all relevant data from user journeys on live
websites first and then performing the benchmark analysis as a subse-
quent step with global knowledge of all transmitted resources. In our
demonstration scenario, the audience can witness how current websites
could improve their compression ratio and save bandwidth. They can
choose from standard and widespread approaches such as Brotli or gzip
and advanced approaches like shared dictionary compression that are
currently not even supported by any browser.

Keywords: Delta Encoding · Caching · Dictionary Compression.

1 Introduction & State of the Art

Compression is one of the critical components to tune the performance of web-
sites. However, we have not seen much movement in browser support of different
compression algorithms over the last decades [10]. Since then, gzip has been the
most widely used format for text-based compression, with Brotli as the only
noteworthy contender [4]. Nevertheless, advanced approaches like delta encoding
[6] or shared dictionary compression [5,3,7] could achieve better compression ra-
tios using cached data as dictionaries. Since some of these advanced approaches
are extremely complex, assessing their true potential for practical use cases re-
mains challenging (especially for approaches that have not been implemented,
yet). This paper introduces Compaz, an extensible compcompcompcompcompcompcompcompcompcompcompcompcompcompcompcompcompression aaaaaaaaaaaaaaaaanalyzzzzzzzzzzzzzzzzzer that
can benchmark context-reliant compression approaches without deploying them
to an actual website [9]. Similar to tools like WebPageTest, it evaluates an exist-
ing website, but with a focus on possible payload improvements instead of the
current performance.

https://orcid.org/0000-0002-0545-8040
https://orcid.org/0000-0003-3512-5789
https://orcid.org/0000-0002-3549-8879
https://orcid.org/0000-0003-4991-9432
mailto:dbis-research@uni-hamburg.de?cc=benjamin.wollmer@uni-hamburg.de,norbert.ritter@uni-hamburg.de
mailto:data-science@uni-oldenburg.de?cc=wolfram.wingerath@uni-oldenburg.de
mailto:research@baqend.com?cc=ww@baqend.com,bw@baqend.com,fg@baqend.com


2 B. Wollmer et al.

Fig. 1. Sharing the client’s context while requesting a file (1) and choosing the best
dictionary (2) for compression (3) is a core challenge of shared dictionary approaches.

Motivating Example: Shared Dictionary Compression. We are par-
ticularly interested in the potential benefits of advanced shared dictionary com-
pression as illustrated in Figure 1. A client request (1) shares its context, like
the cache state, while requesting a file. The server could choose one of those files
to be the dictionary (2) used for compressing the requested file (3) and send the
compressed file to the client (4). The client uses its cached files (5) along the
compressed file to compute the initially requested file. This has some implica-
tions: First, the client needs to describe its cache state to the server. Since the
cache can easily hold hundreds of files, sharing a list of every file in the cache is
not feasible. Furthermore, the server would need to have every file of the client
cache at hand, which can work for static content, but is especially difficult for
dynamically rendered HTML. Moreover, the server would have to know which
cache entry would be the best dictionary for this request. Still, this is a simplifi-
cation of the problem, and for the best performance, this would need support for
other advanced caching techniques [8] and CDNS. Since the compression result
depends on the client cache, the results differ for each user, and therefore, the
cache hit rate on the CDN level could drastically suffer from such an approach.
This indicates that an implementation would be some approximation but not
the optimal solution for data saving. Nevertheless, testing actual implementa-
tions is currently not easily done. While we had browser support for shared
dictionary compression over HTTP (SDCH), it was removed due to a lack of
traction [1], and as a result, browser support for custom dictionaries is currently
nonexistent, and we have to fall back to a synthetic environment. Unlike static
dictionary approaches like Brotli [2], user data is necessary to evaluate the im-
pact of (dynamic) shared dictionary compression, since the compression result
depends on the available dictionaries (e.g., previously visited HTML files) in the
current client context and cannot be tested with a static set of files.

2 Compaz In a Nutshell

Generally, Compaz can be split into three parts: The collection of input data,
the benchmarking of compression algorithms, and the data access.



Compaz: Exporing the Potentials of SDC on the Web 3

Fig. 2. Compaz utilizes a proxy to capture user journeys (1-2) and persists them in
a database (3), so that the journey data can be used by different compressors (4) to
compare the approaches (5).

Collecting Data. Compaz utilizes Selenium4 to navigate through user-
defined journeys. Compaz currently supports three ways to define a journey.
First, it can be defined as a static list of URLs, where Compaz will call the
URLs one by one. Similarly, a list of regular expressions can be defined. These
will be used to find links within the HTML so that Compaz will click them and
proceed with the navigation. Compaz can also start a browser session that a user
will manually handle as a third option. As Figure 2 shows, the browser connects
through a proxy, from which we can copy each request and persist it in Compaz’s
database. This makes sure that we see every request, but even more importantly,
we only consider requests that were not served by the client’s cache. Addition-
ally, we keep the chronological order and therefore can reconstruct which assets
were available at which point in time for a shared dictionary approach.

Compressing Data. After a journey has been completed, it can be used by
the compressors. For a shared dictionary approach, Compaz replays the requests
and uses the decompressed assets to compress them with different approaches.
Compaz provides the compressor instance with every asset for a shared dictio-
nary approach, which could potentially be used as a dictionary to decompress
(and therefore compress at the server side) the asset. It calculates every combi-
nation and keeps the best result. As mentioned in Section 1, this approach would
not be feasible in practice but shows us the best potential of each compressor.
The considered assets can be configured to, e.g., only consider those of the same
MIME type or only those from a specific page in the journey. Furthermore, differ-
ent compressors can be chained so that the output of one compressor is the input
of another, which brings a significant improvement for some approaches. While
we only persist the metrics for the compression results, we keep the original raw
journey. This ensures that we can compare new approaches later against the
same dataset, even if the approach did not exist while the journey was collected.

Comparing Data. The results are available via the API. We also created
a frontend, which visualizes the results. Since the results are as low as on asset
level, finding the best solution per asset is possible. This also shows which pages
contain assets that could serve as dictionaries for shared dictionary approaches.

4 https://www.selenium.dev/

https://www.selenium.dev/


4 B. Wollmer et al.

Prototyping New Compression Algorithms. Compaz was designed to
be easily extendable, so new compression approaches can be benchmarked quickly
without deploying them on live servers. As of now, Compaz has support for gzip,
open-vcdiff, Brotli, and zstandard. Except for gzip, all other compressors can
make use of a dictionary. To implement a new compressor, one must implement
a configuration class with all necessary configuration parameters (e.g., compres-
sion level or window size) and the compressor itself. The compressor only needs
two methods to be implemented: compress and decompress. While only the for-
mer is required for the calculation, the latter is to ensure integrity. Our unit test
suite will automatically pick up each compressor without the need to write new
tests. The logic to provide available dictionaries and chain different compressions
is handled by Compaz and does not need any implementation considerations.

Similarly, new navigators can be implemented. We already provide an ab-
stract class, which acts as a wrapper for Selenium. Each navigator can access
the currently rendered DOM to decide the next action to be taken.

3 Conclusion

This paper has shown how Compaz can create repeatable compression evalua-
tions using user journeys instead of arbitrary single files. Combined with Com-
paz’s extensibility, this ensures comparability of old results to new compression
techniques. Compaz can be used to guide further research by evaluating a gold
standard for currently not supported compression techniques, like delta encod-
ing, before investing work in browser support or performance optimizations.

References
1. Intent to Unship: SDCH (2016), https://groups.google.com/a/chromium.org/

d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ, accessed: 2022-02-20
2. Alakuijala, J., Farruggia, A., Ferragina, P., Kliuchnikov, E., Obryk, R., Szabadka,

Z., Vandevenne, L.: Brotli: A general-purpose data compressor. TOIS 37(1) (2018)
3. Chan, M.C., Woo, T.: Cache-Based Compaction: A New Technique for Optimizing

Web transfer. In: IEEE INFOCOM ’99. Conference on Computer Communications.
4. Fischbacher, T., Kliuchnikov, E., Coms,a, I.: Web Almanac: Compression, https:

//almanac.httparchive.org/en/2021/compression, accessed: 2022-02-25
5. McQuade, B., Mixter, K., Lee, W.H., Butler, J.: A proposal for shared dictionary

compression over http (2016)
6. Mogul, J.C., Douglis, F., Feldmann, A., Krishnamurthy, B.: Potential Benefits of

Delta Encoding and Data Compression for HTTP. SIGCOMM CCR 27(4) (1997)
7. Shapira, O.: Shared Dictionary Compression for HTTP at LinkedIn., https://

engineering.linkedin.com/shared-dictionary-compression-http-linkedin
8. Wingerath, W., Gessert, F., Witt, E., Kuhlmann, H., Bücklers, F., Wollmer, B.,

Ritter, N.: Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Per-
sonalized Content. In: 36th ICDE 2020, Dallas, Texas, April 20-24, 2020 (2020)

9. Wollmer, B., Wingerath, W., Ferrlein, S., Panse, F., Gessert, F., Ritter, N.: The
Case for Cross-Entity Delta Encoding in Web Compression. In: 22th ICWE (2022)

10. Wollmer, B., Wingerath, W., Ritter, N.: Context-Aware Encoding & Delivery in
the Web. In: 20th ICWE 2020, Helsinki, Finland, June 9-12, 2020 (2020)

https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://almanac.httparchive.org/en/2021/compression
https://almanac.httparchive.org/en/2021/compression
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin

	Compaz: Exploring the Potentials of Shared Dictionary Compression on the Web

