
The Case for Cross-Entity Delta Encoding in
Web Compression

Benjamin Wollmer1,3 , Wolfram Wingerath2,3 , Sophie Ferrlein3 ,
Fabian Panse1 , Felix Gessert3 , and Norbert Ritter1

1 University of Hamburg, Germany
dbis-research@uni-hamburg.de

2 University of Oldenburg, Germany
data-science@uni-oldenburg.de
3 Baqend, Hamburg, Germany

research@baqend.com

Abstract. Delta encoding and shared dictionary compression (SDC)
for accelerating Web content have been studied extensively in research
over the last two decades, but have only found limited adoption in the
industry so far: Compression approaches that use a custom-tailored dic-
tionary per website have all failed in practice due to lacking browser
support and high overall complexity. General-purpose SDC approaches
such as Brotli reduce complexity by shipping the same dictionary for all
use cases, while most delta encoding approaches just consider similarities
between versions of the same entity (but not between different entities).
In this study, we investigate how much of the potential benefits of SDC
and delta encoding are left on the table by these two simplifications.
As our first contribution, we describe the idea of cross-entity delta en-
coding that uses cached assets from the immediate browser history for
content encoding instead of a precompiled shared dictionary: This avoids
the need to create a custom dictionary, but enables highly customized
and efficient compression. Second, we present an experimental evalua-
tion of compression efficiency to hold cross-entity delta encoding against
state-of-the-art Web compression algorithms. We consciously compare
algorithms some of which are not yet available in browsers to under-
stand their potential value before investing resources to build them. Our
results indicate that cross-entity delta encoding is over 50% more efficient
for text-based resources than compression industry standards. We hope
our findings motivate further research and development on this topic.

Keywords: Delta Encoding · Caching · Dictionary Compression.

1 Introduction

Every Web browser utilizes a local cache to reduce the payload of a website.
But since cache entries are limited in their lifetime, they become useless in
current schemes once they are stale. However, stale resources can still contain
information that is useful for encoding related files efficiently. Delta encoding is

https://orcid.org/0000-0002-0545-8040
https://orcid.org/0000-0003-3512-5789
https://orcid.org/0000-0002-3549-8879
https://orcid.org/0000-0002-0675-4116
https://orcid.org/0000-0003-4991-9432
mailto:dbis-research@uni-hamburg.de?cc=benjamin.wollmer@uni-hamburg.de,fabian.panse@uni-hamburg.de,norbert.ritter@uni-hamburg.de
mailto:data-science@uni-oldenburg.de?cc=wolfram.wingerath@uni-oldenburg.de
mailto:research@baqend.com?cc=ww@baqend.com,bw@baqend.com,fg@baqend.com


2 B. Wollmer et al.

an example of such an approach, which is generally used to update one entity to
its newest version by sending a diff rather than the whole asset. Most proposals
revolving around this mechanism focus on the similarities between versions of
the same entity (single-entity data encoding).

In this work, we argue that modern websites comprise many pages that are
very similar among one another (e.g. different product pages) and therefore lend
themselves to cross-entity delta encoding as well [10]. We use Compaz [9] to
evaluate the concept of cross-entity delta encoding and provide evidence on its
potential benefits for payload savings to motivate further research on the topic.
Sections 2 and 3 discuss and distinguish cross-entity delta encoding from existing
work. In Section 4, we present quantitative results for the potential of cross-entity
delta encoding to improve compression efficiency based on real-world high traffic
website traces. We discuss open challenges and conclude in Section 5.

2 Related Work

Delta Encoding. Mogul et al. proposed to use delta encoding in HTTP to
update stale content [6], which is not implemented by any major browser. How
well this scales depends on how much of the content changes between the two
versions. They evaluated the delta calculation purely for updates of returning
users, but did not consider deltas between different pages. Korn et al. proposed
VCDIFF, a differencing algorithm [4]. They evaluated it similar to Mogul et al.
by considering deltas between updates of the same file. Cloudflare’s Railgun uses
delta encoding to update the CDN content [3]. This approach is limited between
server and CDN and also only considers updates between different versions.

Shared Dictionary Compression (SDC). In a standard compression ap-
proach, like with deflate, the encoder reads the file and tries to find repeating
strings from the previously read content. The previously read content is also re-
ferred to as the dictionary. Instead of just using the previously seen content, the
dictionary could also be an external file. In SDC, the same dictionary is shared
between multiple compression processes and can therefore improve the overall
compression ratio further. Chan et al. suggest that Web pages with a similar
URL path also may have similar content and Web pages may therefore be trans-
mitted more efficiently as a differentials to previously visited Web pages [2]. They
only consider HTML files and assume them to be uniquely identifiable by URL.
While the approach is similar to ours, the presented results are not applicable
to modern websites. First, today’s HTML files are often personalized and thus
not uniquely identifiable by URL. Second, some assets are static and uniquely
identifiable by URL (e.g. JavaScript or CSS), but they are not considered. Butler
et al. proposed Shared Dictionary Compression over HTTP (SDCH), where the
server can actively push dictionaries to the client [5]. One of the key challenges
here is to find the best dictionary, since the server has to predict which dictio-
nary would be of use for the client. This dictionary may increase the payload for
the first page, since it is pushed, but maybe only used later. LinkedIn reported
that generating the dictionaries took them about 7 hours per deployment and



The Case for Cross-Entity Delta Encoding in Web Compression 3

could easily take days [7]. Therefore, they were forced to delay the generation
of new dictionaries to every other week. This may be one of the reasons why
SDCH was not widely adopted and removed from Chrome4. However, the key
idea of sharing a dictionary led to Brotli, which was later developed at Google
[1]. For Brotli, the shared dictionary is static and already part of the library
and never has to be generated or transferred over the network. Most browsers
support Brotli, but without the custom dictionary functionality which could be
used for cross-entity delta encoding. Zstandard would allow the same, but has
no browser support at all.

3 Cross-Entity Delta Encoding

As shown in the previous section, delta encoding has so far mostly been evaluated
to compute deltas between different versions of the same file or with a shared
dictionary. Calculating deltas between files that share similar data could provide
similar advantages. In contrast to SDCH, this would remove the need to create
and maintain dictionaries as we use the raw files as dictionaries. This has some
implications. First, the compression for one asset may deliver different results for
different users, since the result depends on the dictionaries available in the client
cache. Second, using client cache entries requires a cache state synchronization
as the server needs to know which resources can be used for content encoding.

Dictionary Scope Strategies. As a basic rule, only those assets can be used
for encoding, which have already been loaded by the client. We therefore consider
three different strategies for our evaluation. As the most powerful strategy, one
could consider every previous asset (PA) as a potential dictionary, which was
seen until the currently requested asset. This includes previously visited pages
(page impressions, PIs) as well as assets from the currently requested PI. This
strategy is difficult to implement in practice, because assets are typically not
downloaded in sequence. We exclude the currently processed PI assets as another
more practical strategy and only consider fully downloaded assets up to the
previous PI (PP). As a third strategy, we exclusively consider assets of the entry
page as dictionaries (EE). Due to a similar overall layout (e.g. same header),
this could be a reasonable alternative with a fixed set of dictionaries.

4 Compression Efficiency on Real-World Traces

In this Section, we examine how cross-entity delta encoding could affect the
transferred size within a user journey. We start by creating a dataset collected
from real websites and used them to compare different compression approaches.

Creating a Dataset. The potential of cross-entity delta encoding relies on
the journey taken by a user, since it defines which dictionaries are in the cache.
We created artificial ones, since we have no access to real user journeys. We
assume that every website offers different kind of page types of which one is
4 groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ

https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ


4 B. Wollmer et al.

0 1 2 3 4 5 6
Journey Progress

0.0
0.5
1.0
1.5
2.0
2.5

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.0
0.5
1.0
1.5
2.0
2.5

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(b) Cumulative Relative Size

Fig. 1: The left chart shows the compression size relative to gzip (6), while the
right chart shows the cumulative size up until each step to account for different
page sizes. Replacing every compression with VCDIFF only pays off in the hot
phase (>3), but is on average still worse than the default gzip compression.

the main page type (e.g. a product in a shop or an article of a news/blog site).
The other types could be types like a category site or the homepage. We further
assume the users ultimate goal to be the content of this main page type. We
start the navigation at the homepage and from there we try to hit different page
types for Step 1 and 2. Step 3 then navigates to the main content. We name
this part of the journey from now on the cold phase, since we hit distinct page
types and the cache is cold in terms of available dictionaries. Step 4-6 are only
recommendations from the previous main content and therefore navigate over
potentially similar pages. In contrast, this path is from now on referred to as the
hot phase, since it contains possible dictionary matches. We make sure that every
step in the whole journey is unique. We used 40 of the traffic-heaviest websites
according to SimilarWeb5, providing the recommendation functionality.

Data Cleaning. This work focuses on text based content, therefore, we
excluded every non-text asset, identified by the content-type header. We removed
trivial cases, like the delta between two identical assets, since this is entirely
preventable and would skew the results in favor of cross-entity delta encoding.
Finally, we removed every third-party asset (other domain), since the provider
would not have the possibility to change the compression for these kind of assets.

Calculating Deltas. The compression for the delta was done with open-
VCDIFF to which we from now on will refer to as VCDIFF. We just brute-
force every possible delta for a given asset and chose the smallest one. We only
considered dictionaries which had at least the same type6, e.g. text.

Comparing the Results. The data we collected was compressed by ei-
ther Brotli, gzip, or no compression. To create a baseline against which we can
compare, we uncompressed every asset and compressed it with the default gzip
compression level (6), which on average is slightly higher than the results we got

5 https://www.similarweb.com/de/top-websites/
6 Still, the best dictionary was almost every time of the same subtype, e.g. text/html.



The Case for Cross-Entity Delta Encoding in Web Compression 5

from the server. We also compare against Brotli (11), which may be impractical
due to performance reasons, but represents the currently best compression ratio.

4.1 Enforcing VCDIFF

In our first experiment, we forced VCDIFF with the different strategies on every
asset. It shows that regardless of the current step within our journey, just using
the entry site will be outperformed in every step by gzip (see Fig. 1a). The results
for PP and PE are similar in the cold phase and on par with gzip after leaving
the entry page, but significantly improve and surpass even Brotli when entering
the hot phase, with as low as 28% of gzip’s size. This was expected, since we
only look at previously visited page types. Still, due to the negative impact at
the beginning, they cannot compete over the whole journey (see Fig. 1b).

4.2 Case-Specific VCDIFF

The previous experiment has shown that the results highly depend on the client
cache. Therefore, we repeated the experiment but decided per asset to either use
VCDIFF if it yields an improvement or stick with gzip (6) otherwise. Since the
first PI still cannot leverage any dictionary, it mainly falls back to gzip (see Figure
2a). Just using the entry page as the dictionary source can slightly improve
the compression ratio overall (˜5%), but as Figure 2a indicates, this is mainly
driven by similarities within the cold phase. Again, choosing the dictionary from
previous assets provides the biggest impact within the hot phase and vastly
outperforms Brotli. Stepping back to PP only slightly decreases the impact and
can be an alternative to PA. Overall, using VCDIFF on specific assets scales well
with the length of the journey, as soon as similar pages are visited. As Figure 2a
and 2b show, this will converge against 25% of the payload for longer journeys.

0 1 2 3 4 5 6
Journey Progress

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.8

0.9

1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)
vcdiff(PA)

vcdiff(PP)

(b) Relative Size per Step (Cumulative)

Fig. 2: Using VCDIFF only when it actually provides an uplift yields small results
in the cold phase (<4), but can even further improve the hot phase and overall
eventually leads to results comparable with the maximum Brotli compression.



6 B. Wollmer et al.

0 1 2 3 4 5 6
Journey Progress

0.0
0.2
0.4
0.6
0.8
1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)+gz(6)
vcdiff(PA)+gz(6)

vcdiff(PP)+gz(6)

(a) Relative Size per Step

0 1 2 3 4 5 6
Journey Progress

0.5
0.6
0.7
0.8
0.9
1.0

Re
la

tiv
e 

Si
ze

 to
 g

z(
6)

br(11)
gz(6)

vcdiff(EE)+gz(6)
vcdiff(PA)+gz(6)

vcdiff(PP)+gz(6)

(b) Relative Size per Step (Cumulative)

Fig. 3: While VCDIFF is still not competitive on the first page load, combining
it with secondary compression outperforms Brotli on every following page load.

4.3 VCDIFF With Secondary Compression

VCDIFF files can still contain many common strings and could therefore ben-
efit from secondary compression, which is currently not implemented in open-
VCDIFF. This motivated our next experiment. We used VCDIFF as an Opt-in
on every text asset, but piped the VCDIFF output through gzip on level 6.
Figure 3a shows that this approach drastically improves the results, as we now
outperform Brotli even before entering the hot phase. Within the hot phase, we
can compress the assets as low as 14% of gzip (6). Overall the cumulative size
can be reduced to 58% of our baseline (see Fig. 3b).

4.4 Impact on Different MIME-Types

We expected the HTML to gain the most benefit of cross-entity delta encoding
and compared them with the other types. We grouped them by the step, as
well as the subtype to make sure that the actual weight of the single assets
were reflected. For the cold phase, we exclude the entry pages (step 0), since
the previous experiments have already shown that cross-entity encoding is no
real alternative in that step. HTML benefits the most from cross-delta entity
encoding (see Figure 4) and is a safe alternative in the hot phase. We excluded

0.0 0.5 1.0 1.5
Size relative to Origin Size

css
html

javascript
json

(a) Cold Phase (Excluding Entry)

0.0 0.5 1.0
Size relative to Origin Size

css
html

javascript
json

(b) Hot Phase

Fig. 4: Compression efficiency by MIME type: Using HTML for cross-entity delta
encoding works well in almost all cases. Using other MIME types leads to mixed
results in the cold phase (a), but yields high efficiency in the hot phase (b).



The Case for Cross-Entity Delta Encoding in Web Compression 7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(Opt-in) Relative Journey Size Compared to gz(6)

br(11)(PA)
zstd(22)(PA)

vcdiff(PA)+br(11)
vcdiff(PA)+zstd(22)

vcdiff(PA)+gz(6)
vcdiff(PA)

br(11)

Fig. 5: Replacing the secondary compression yields even better results. Alterna-
tively, Brotli and zstandard also allow a more efficient use of custom dictionaries.

XML and plain text responses, since we had too few samples. SVGs could in
some cases further reduced by 10% compared to gz (6). While the other types
on average can still greatly benefit, they are site-specific cases and need further
investigation. Note that the hot phase had only a few CSS samples and may not
be representative, since most sites do not load additional CSS files at this point.

4.5 Using Algorithms Beyond VCDIFF

Combining gzip (6) with VCDIFF already could on average reduce the journey
size to 58%. But compression efficiency could be further improved by increasing
the compression level and/or using different algorithms. We are aware that a
higher compression level may be impractical in an actual deployment, but should
act as an upper limit. While increasing gzip to level 9 had almost the same
result, replacing gzip (6) with Brotli (11) reduces the cumulative journey size to
51% (see Figure 5). As mentioned earlier, one could also directly use a custom
dictionary with Brotli or zstandard (which is not supported by any browser).
This reached the highest compression ratio and could reduce the result to 45%
for Brotli (11) and 48% for zstandard (22), compared to gzip (6)7

5 Conclusion

Our results show that reusing cached assets for delta encoding can significantly
reduce transferred bytes in the Web, even though we simulate new users who
start with cold caches. This approach should thus be seen as a complement to
existing compressions rather than a replacement. But it should be noted that po-
tential uplift is even more significant for returning user who start their journeys
in the hot phase and thus directly benefit from cross-entity delta encoding.

Open Challenges. In our experiments, we made several simplifying assump-
tions that do not hold in a real-world setting. First, we employ the perfect dictio-
nary selection via a brute-force approach, but a more efficient heuristic would be
required for practical use. Also, cache state synchronization remains challenging:
7 Due to limited space, we only present a few selected alternatives here and refer to

https://icwe.compaz.info for an extensive overview.

https://icwe.compaz.info


8 B. Wollmer et al.

The server does not only have to select the ideal dictionary for encoding, but also
one that is already present in the client cache to enable decoding. Another open
challenge is the lack of browser support for different aspects of delta encoding
and shared dictionary compression. While all major browsers support generic
Brotli and gzip, VCDIFF and Brotli with a custom dictionary are currently not
supported by any of them. While using HTML files as dictionaries was most
effective in our evaluation, content that is generated per user makes it infeasible
to keep all dictionaries (HTMLs) in the server. Reducing this complexity would
require some kind of normalization to strip personlized content for encoding and
decoding (cf. Dynamic Blocks [8]), akin to app shells in single-page applications.

Closing Thoughts. Despite a host of literature on delta encoding and
shared dictionary compression from more than two decades of research, there
is still a lot of untapped potential in existing compression technologies. Our re-
sults indicate that using the client cache as a dictionary for delta encoding can
reduce the text payload by up to 86% for single pages and by 55-80% for user
journeys over recommended content. But there is still further research needed in
areas like dictionary selection and cache state synchronization. Lacking browser
support for cross-entity delta encoding algorithms is another practical barrier,
but could be added in platform-independent fashion with a service worker im-
plementation. However, performance depends on the client device and is likely
not comparable with native compression algorithms. Without native browser
support, delta encoding only seems viable for scenarios where network efficiency
is critical (e.g. for mobile users in data saving mode).

References
1. Alakuijala, J., Farruggia, A., Ferragina, P., Kliuchnikov, E., Obryk, R., Szabadka,

Z., Vandevenne, L.: Brotli: A general-purpose data compressor. ACM TOI 37(1)
2. Chan, M.C., Woo, T.: Cache-Based Compaction: A New Technique for Optimizing

Web transfer. In: IEEE INFOCOM ’99. Conference on Computer Communications.
3. Knecht, D.O., Graham-Cumming, J., Prince, M.B.: Method and apparatus for

reducing network resource transmission size using delta compression
4. Korn, D.G., Vo, K.P.: Engineering a differencing and compression data format. In:

USENIX annual technical conference, general track. pp. 219–228 (2002)
5. McQuade, B., Mixter, K., Lee, W.H., Butler, J.: A proposal for shared dictionary

compression over http (2016)
6. Mogul, J.C., Douglis, F., Feldmann, A., Krishnamurthy, B.: Potential Benefits of

Delta Encoding and Data Compression for HTTP. SIGCOMM CCR (1997)
7. Shapira, O.: SDCH at LinkedIn. (2015), https://engineering.linkedin.com/

shared-dictionary-compression-http-linkedin, accessed: 2022-01-20
8. Wingerath, W., Gessert, F., Witt, E., Kuhlmann, H., Bücklers, F., Wollmer, B.,

Ritter, N.: Speed Kit: A Polyglot & GDPR-Compliant Approach For Caching
Personalized Content. In: ICDE, Dallas, Texas (2020)

9. Wollmer, B., Wingerath, W., Ferrlein, S., Gessert, F., Ritter, N.: Compaz: Ex-
ploring the Potentials of Shared Dictionary Compression on the Web. In: 22th
International Conference on Web Engineering, ICWE (2022)

10. Wollmer, B., Wingerath, W., Ritter, N.: Context-Aware Encoding & Delivery in
the Web. In: 20th International Conference on Web Engineering, ICWE (2020)

https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin

	The Case for Cross-Entity Delta Encoding in Web Compression

