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Abstract— Collected data often contains uncertainties. Prob-
abilistic databases have been proposed to manage uncertain
data. To combine data from multiple autonomous probabilistic
databases, an integration of probabilistic data has to be per-
formed. Until now, however, data integration approaches have
focused on the integration of certain source data (relational or
XML). There is no work on the integration of uncertain (esp.
probabilistic) source data so far. In this paper, we present a first
step towards a concise consolidation of probabilistic data. We
focus on duplicate detection as a representative and essential step
in an integration process. We present techniques for identifying
multiple probabilistic representations of the same real-world en-
tities. Furthermore, for increasing the efficiency of the duplicate
detection process we introduce search space reduction methods
adapted to probabilistic data.

I. INTRODUCTION

In a large number of application areas (e.g., astronomy
[1]), the demand for storing uncertain data grows increasingly
from year to year. As a consequence, in the last decades
several probabilistic data models have been proposed (e.g., [2],
[31, [4], [5], [6]) and recently several probabilistic database
prototypes have been designed (e.g., [7], [8], [9]).

In current research on data integration, probabilistic data
models are only considered for handling uncertainty in an
integration of certain source data (e.g., relational [10], [11] or
XML [12]). Integration of uncertain (esp. probabilistic) source
data has not been considered so far. However, to consolidate
multiple probabilistic databases to a single one, for example
for unifying data produced by different space telescopes, an
integration of probabilistic source data is necessary.

In general, an integration process mainly consists of four
steps: (a) schema matching [13] and (b) schema mapping
[14] to overcome schema and data heterogeneity; (c) duplicate
detection [15] (also known as record linkage [16]) and (d) data
fusion [17] to reconcile data about the same real-world entities
(in the literature, the composition of the last two steps is also
known as entity resolution [18] or the merge/purge problem
[19]). In this paper, we focus on duplicate detection as a
representative step in the data integration process and show
how to adapt existing techniques to probabilistic data.

The remainder of this paper is structured as follows. First
we present related work (Section II). In Section III, we

examine current techniques of duplicate detection in certain
data. Then we introduce duplicate detection for probabilistic
databases in Section IV. In Section V, we identify search
space reduction techniques for probabilistic data making the
duplicate detection process more feasible. Finally, Section VI
concludes the paper and gives an outlook on future research.

II. RELATED WORK

In general, probability theory is already applied in methods
for duplicate detection (e.g., decision models), but current
approaches only consider certain relational ([18], [16], [19])
or XML data [20]. Probabilistic source data is not considered
in these works. On the other hand, many techniques that
focus on data preparation [21] and verification [22] as well
as fundamental concepts of decision model techniques [22]
can be adopted for duplicate detection in probabilistic data.
Furthermore, existing comparison functions [15] can be incor-
porated into techniques for comparing probabilistic values.

There are several approaches that explicitly handle and
produce probabilistic data in schema integration, duplicate
detection and data fusion. Handling the uncertainty in schema
integration requires probabilistic schema mappings [11], [23].
Van Keulen and De Keijzer ([6], [24], [12]) use a semi-
structured probabilistic model to handle ambiguities arising
during deduplication in XML data. Tseng [10] already used
probabilistic values in order to resolve conflicts between two
or more certain relational values. None of the studies, however,
allows probabilistic data as source data.

III. FUNDAMENTALS OF DUPLICATE DETECTION

The data sets to be integrated may contain data on the same
real-world entities. Often it is even the purpose of integration:
to combine data on these entities. In order to integrate two or
more data sets in a meaningful way, it is necessary to iden-
tify representations belonging to the same real-world entity.
Therefore, duplicate detection is an important component in
an integration process. Due to deficiencies in data collection,
data modeling or data management, real-life data is often
incorrect and/or incomplete. This principally hinders duplicate
detection. Therefore, duplicate detection techniques have to be



designed for properly handling dissimilarities due to missing
data, typos, data obsolescence or misspellings.
In general, duplicate detection consists of five steps [22]:

A. Data Preparation

Data is standardized (e.g., unification of conventions and
units) and cleaned (eleminiation of easy to recognize errors)
to obtain a homogeneous representation of all source data [21].

B. Search Space Reduction

Since a comparison of all combinations of tuples is mostly
too inefficient, the search space is usually reduced using
heuristic methods such as the sorted neighborhood method,
pruning or blocking [22].

C. Attribute Value Matching

Similarity of tuples is usually based on the similarity of
their corresponding attribute values. Despite data preparation,
syntactic as well as semantic irregularities remain. Thus, at-
tribute value similarity is quantified by syntactic (e.g., n-grams,
edit- or jaro distance [15]) and semantic (e.g., glossaries or
ontologies) means. From comparing two tuples, we obtain a
comparison vector ¢ = [c1,...,Cp], Where ¢; represents the
similarity of the values from the ith attribute.'

D. Decision Model

The comparison vector is input to a decision model which
determines to which set a tuple pair (¢1, t2) is assigned: match-
ing tuples (M), unmatching tuples (U) or possibly matching
tuples (P). In the following, the decision’s result is stored in
the matching value n(t1,t2) € {m,p, u}, where m represents
the case that (¢1, 1) is assigned to M (resp. to P or U).

The most common decision models are based on domain
knowledge or probability theory:

Knowledge-based  techniques. In  knowledge-based
approaches for duplicate detection [22], domain experts
define identification rules. Identification rules specify
conditions when two tuples are considered duplicates with
a given confidence (certainty factor). An example of such a
rule is shown in Figure 1. This rule defines that two tuples
are duplicates with a certainty of 80%, if the similarities
of their names and jobs are greater than the corresponding
thresholds. Ultimately, if the resulting certainty is greater than
a third, user-defined threshold seperating M and U, the tuple
pair is considered to be a duplicate (the set P is usually not
considered in works on these techniques).

IF name > threshold; AND job > thresholds
THEN DUPLICATES with CERTAINTY=0.8

Fig. 1. Identification rule

'If multiple comparison functions are used, we even obtain a matrix.
Without loss of generality, we restrict ourselves to a comparison vector.
Furthermore, we restrict on normalized comparison functions (= ¢ € [0, 1]™).

Probabilistic techniques.  In the theory of fellegri and sunter
([16], [22]), two conditional probabilities m(¢) (m-probability)
and u(é) (u-probability) are defined for each tuple pair (¢1, t2).

m(@ = P(@|(t1,ts) € M) (1)
W@ = P(E|(t,t) € U) 2)

Based on the matching weight R = m(c)/u(¢) and the
thresholds T}, and T), the tuple pair (¢1,t2) is considered
to be a match, if R > T}, or a non-match, if & < T (see
Figure 2). Otherwise, the tuples are a possible match and
clerical reviews are required. For computing or estimating m-
and u-probabilities as well as the two thresholds T}, and T)
several methods (with or without labeled training data) have
been proposed in the literature ([25], [26], [27], [28]).
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Fig. 2. Classification of tuple pairs into M, P or U

In general, the decision whether a tuple pair (¢1,t2) is a
match or not, can be decomposed into two steps (see Figure 3).
In the first step, a single similarity degree sim(t1,t2) is
determined by a combination function:

v:[0,1]" = R sim(ty,t2) = ¢(C) 3)

The resulting degree is normalized, if a knowledge-based
technique is used (certainty factor) and non-normalized if
a probabilistic technique is applied (matching weight). In a
second step, based on sim(t1,t2) the tuple pair is assigned to
one of the sets M, P or U by using one or two thresholds
(depending on the support for a set of possible matches).

Input: tuple pair (¢1,t2), comparison vector (¢ = [c1,...,¢y))
1. Execution of the combination function ¢(¢)

= Result: sim(ty,t2)
2. Classification of (t1,t2) into {M, P,U} based on sim(t1,ts)

= Result: 7(t1,t2) € {m,p,u}

Output: Decision whether (¢,¢5) is a duplicate or not

Fig. 3. General representation of existing decision models

E. Verification

The effectiveness of the applied identification is checked
in terms of recall, precision, false negative percentage, false
positive percentage and Fj-measure [22]. If the effectiveness
is not satisfactory, duplicate detection is repeated with other,
better suitable thresholds or methods (e.g., other comparison
functions or decision models).



name

tu Tim

t12 | {John: 0.5, Johan: 0.5}
t13 |{Tim: 0.6, Tom: 0.4}

job p(t)
{machinist: 0.7, mechanic: 0.2} || 1.0
{baker: 0.7, confectioner: 0.3} 1.0
machinist 0.6

name job p(t)
to1 | {John:0.7, Jon:0.3} | confectionist 1.0
too | {Tim: 0.7, Kim: 0.3} | mechanic 0.8
tos | Timothy {mechanist: 0.8, engineer: 0.2} | 0.7

Fig. 4. The probabilistic Relations R (left) and Ro (right)

IV. DUPLICATE DETECTION IN PROBABILISTIC DATA

Theoretically, a probabilistic database is defined as PDB =
(W, P) where W = {I,...,I,} is the set of possible worlds
and P : W — (0,1], > ;o P(I) = 1 is the probability
distribution over these worlds. Because the data of individual
worlds often considerably overlaps and it is sometimes even
impossible to store them separately (e.g., if |[W| — o) a
succinct representation has to be used.

In probabilistic relational models, uncertainty is modeled
on two levels: (a) each tuple ¢ is assigned with a probability
p(t) € (0,1] denoting the likelihood that ¢ belongs to the
corresponding relation (tuple level), and (b) alternatives for
attribute values are given (attribute value level).

In earlier approaches, alternatives of different attribute val-
ues are considered to be independent (e.g., [3]). In these
models, each attribute value can be considered as a separate
random variable with its own probability distribution. Newer
models like Trio [7], [29], [30] or MayBMS [8], [31] support
dependencies by introducing new concepts like Trio’s x-tuple
and MayBMS’s U-relation. For ease of presentation, we focus
on duplicate detection in probabilistic data models without
dependencies first, before considering x-tuples.

In general, tuple membership in a relation (uncertainty on
tuple level) results from the application context. For example,
a person can be stored in two different relations: one storing
adults, the other storing people having a job. If we assume that
the considered person is certainly 34 years old and jobless
with a confidence of 90%, then the probability that a tuple
t1 representing this person belongs to the first relation is
p(t1) = 1.0, but the probability that a corresponding tuple
to belongs to the the second relation is only p(t2) = 0.1.
Note that both tuples represent the same person despite the
significant difference in probabilities. This illustrates that not
tuple membership but only uncertainty on attribute value
level should influence the duplicate detection process (see
Section IV-B).

A. Duplicate detection in models without dependencies

Consider the two probabilistic relations to be integrated,
R1 and Rs as shown in Figure 4. Both relations contain
uncertainty on tuple level and attribute value level. Note
that the person represented by tuple ¢1; is jobless with a
probability of 10%. In the following, this notion of non-
existence (meaning that for the corresponding object such a
property does not exist) is denoted by _L.

Since no dependencies exist, similarity can still be de-
termined on an attribute-by-attribute basis. Two non-existent
values refer to the same fact of the real-world, namely that
the corresponding property of the considered objects does

not exist for both of them. A non-existent value, however, is
definitely not similar with any existing one. Thus, we define
sim(L,1) =1 and sim(a, L) = sim(L,a) =0 (a # 1).
Assuming error-free data, the similarity of two uncertain
attribute values a; and as each defined in the domain D
(D = {D U L}) can be defined as the probability that both
values are equal:

sim(ay,az) = Pla; = ag) = Z Pla; =d,as =d) @)
deD

In erroneous data, the similarity of domain elements has to be
additionally taken into account:

sim(aq,az) :Z ZP(alzdl,agzdg)-sim(dl,dg) )
dleﬁdQeD

For instance, the similarity of t¢i;.name and t¢s2.name
is either sim(Tim,Tim) = 1 (with probability 0.7) or
sim(Tim,Kim) = « (with probability 0.3), where « de-
pends on the chosen comparison function. For example,
if we take the normalized hamming distance, & = 2/3
and hence the similarity of both attribute values results in
sim(t11.name, too.name) = 0.9. By using the same distance,
the similarities sim(machinist, mechanic) = 5/9 and hence
sim(t11.job, tag.job) = 0.2+ 0.7 - 5/9 = 0.59 result.

Common decision models can be used without any adaption,
because uncertainty is handled on the attribute value level
and matching invariably results in a comparison vector ¢. For
example, if we use the simple combination function

0(@)=0.8-¢1+02 ¢y

for calculating tuple similarity, the similarity of ¢;; and Zs2
results in sim(ty1,t22) = 0.8-0.940.2-0.59 = 0.838.

B. Duplicate detection in models with x-tuples

To model dependencies between attribute values, the con-
cept of x-tuples is introduced in the ULDB model of Trio
[29], [30]. An x-tuple ¢ consists of one or more alternative
tuples (t!,...,t™) which are mutually exclusive. The ULDB
model does not support an infinite number of alternatives (e.g.,
uncertainty in a continuous domain). In these cases, and to
avoid high numbers of alternatives, a probability distribution
can sometimes still be associated with the attribute value. For
example the value *mu*’ (see t3,.job) represents a uniform
distribution over all possible jobs starting with the characters
'mu’ (e.g., musician). Maybe x-tuples (tuples for which non-
existence is possible, i.e., for which the probability sum of the
alternatives is smaller than 1) are indicated by ‘?’. Relations
containing one or more x-tuples are called x-relations. For
demonstrating duplicate detection in data models supporting



co Rty =t b))
comparison matrix (¢(t1,t2) = [C11,- - -, Cri])

Input: x-tuple pair (t; = {t},.

1. For &; of each pair of alternative tuples (¢}, t%)

1.1  Execution of the combination function ¢(;j)

= Result: sim(ti, 1) € R

= Result: 5(t1,t2) = [sim(t},£3),..., sim(t},th)] € R¥X!
2. Execution of the derivation function 9(5(t1,t2))

= Result: sim(t1,t2) €R
3. Classification of (¢,t) into {M, P,U} based on sim(t1,t2)

= Result: (t1,t2) € {m,p,u}

Output: Decision whether (¢1,%2) is a duplicate or not

'7tlf}7 to = {f%//té})

oy Ct))

1. For ¢j; of each pair of alternative tuples (ti,té)

Input: x-tuple pair (¢; = {ti,..

comparison matrix (¢(t1,t2) = [C11, -

1.1 Execution of the combination function ¢(;j)
= Result: sim(t%,t}) € R
1.2 Classification of (¢}, t}) into {M, P,U} based on sim(t,t})
= Result: matching value n(t%,#}) € {m,p,u}
= Result: 7j(t1,t2) = (td, 13), ..., n(th, )] € {m, p,u}**!
2. Execution of the derivation function 9(7j(t1,t2))
= Result: sim(t1,t2) €R
3. Classification of (¢y,t2) into {M, P,U} based on sim(ty,ts)
= Result: n(t1,t2) € {m,p,u}

Output: Decision whether (¢, {2) is a duplicate or not

Fig. 6.

the x-tuple concept, we consider a consolidation of the two
x-relations Rg and R4 of Figure 5.

name | job p(t) name | job p(t)
¢ John | pilot 0.7 ¢ John | pilot 0.8
311 Johan | mu* 0.3 411 Johan pianist 0.2
Tim mechanic || 0.3 tso | Tom mechanic || 0.8 |?
t3s | Jim mechanic || 0.2 |? ¢ John 1 0.2 o
Jim | baker 0.4 43 | Sean | pilot 06 |
Fig. 5. X-relations R3 (left) and R4 (right)

Principally, we derive the similarity of two x-tuples t; =
{t},...,th} and t5 = {t},... t5} from the similarity of their
alternative tuples. Therefore, in the attribute value matching
step, the attribute values of all alternative tuples of ¢; and
all alternatives tuples of {5 are pairwise compared. Since
individual attribute values (e.g., t3;.job) can be uncertain,
we use the formulas of Section IV-A. In this way, instead
one single vector ¢, k X | comparison vectors are obtained.
Therefore, decision models for assigning the pair (t1,t2) to
one of the sets M, P or U need to be adapted.

We define two approaches (see Figure 6). For each ap-
proach, the input consists of the considered x-tuple pair (¢1, t2)
and a comparison matrix containing the comparison vector
of each alternative tuple pair (t%,#3). In the first approach
(Figure 6, left side), the similarity of the x-tuples is based
on the similarity of their alternative tuples (¢ : R¥*! — R). In
the second approach (Figure 6, right side), it is derived from
their matching results (9 : {m, p,u}**! — R).

similarity-based derivation. In more detail, the first, more
intuitive approach is based on the similarity vector 5(ty,t2)
containing the similarity of each alternative tuple pair (¢}, )
which is determined by ¢(¢;;) (Step 1). The final similarity
sim(t1,t2) results from a derivation function 9(8(t1,t2))
(Step 2). Ultimately, the x-tuple pair is classified into {M, U}
or {M,P,U} by comparing sim(ti,t2) with one or two
thresholds (Step 3). Since the similarity of two x-tuples is

General representations of decision models adapted to the x-tuple concept: similarity-based (left) and decision-based derivation (right)

directly derived from the similarities of their alternative tuples,
this approach is denoted as similarity-based derivation.

One adequate derivation is to calculate the expected value
of the alternative tuple similarities. Since tuple membership
is not relevant for duplicate detection, the probability of each
alternative tuple t* has to be normalized w.r.t. the probabil-
ity of the corresponding x-tuple (p(t%)/p(t)), where p(t) =
2 jelin] p(t7). Resulting from this normalization (also known
as conditioning [32] or scaling [33]) the similarity of the two
x-tuples £, and t5 is defined as the conditional expectation
I(5(t1,t2)) = E(sim(t%,t})|B), where B is the event that
both tuples belong to their corresponding relation, and hence
results in:

Sim(tl,tg) = Z Z

i€[1,k] j€[1,1]

p(t) p(t)

p(t1) p(t2) ©

Note that equations 5 and 6 are equivalent to the expected
value of the corresponding similarity over all possible worlds
containing the considered tuples.

As an example, we consider the two x-tuples t3o and 5.
With respect to these two x-tuples there exist the eight possible
worlds {I1, I, ..., Is} shown in Figure 7. Both tuples should
belong to their corresponding relation (event 13). The database
conditioned with B is obtained by removing the possible
worlds {I4, I5, Is, I7,Is}. The probabilities of the three re-
maining worlds have to be renormalized to have again sum up
to 1. From these renormalizations the conditional probabilities
P(I,|B), P(I3|B) and P(I5|B) result from dividing the
original probabilities by

P(B) = P(L)+ P(I2)+ P(I5)

= (p(thy) + p(t32) + p(t32)) - p(ths)
p(ts2) - p(taz) = 0.72

The similarity of ¢3o and t4o in the possible world [ is the
similarity of the two alternative tuples t3, and t},. In world I,
(resp. I3), this similarity is equal to the similarity sim(t3,,t]s)



name | job name | job
tso | Tim mechanic tso | Jim mechanic
tso | Tom mechanic tyo | Tom mechanic
L = {1%2’@112} I, = {tgzvtzb}
P(I,) =0.24 P(Iy) =0.16
name | job name | job
tso | Tim mechanic tso | Jim mechanic
Is = {t§2} Is = {tgz}
P(I5) = 0.06 P(I) = 0.04

name | job name | job
tzo | Jim baker tso | Tom mechanic
tso | Tom mechanic
I3 = {t§2at}12} Iy = {tzlm}
P(Ig) =0.32 P(I4) = 0.08
name [ job
tzo | Jim baker
I = {t3,} Is = {0}
P(I7) =0.08 P(Ig) = 0.02

Fig. 7. The possible worlds I, ..., Ig

(resp. sim(t3,,t4,)). As a consequence, the expected similar-
ity E(sim(t4,,t)5)|B) and hence the similarity of both tuples
result in:

Sim(tgg, t42) = P

+ P(I3)/P(B) - sim(t3,, t42)
- ggii; 2223 - 5im(t30, ta2)
" zgiiz; Zggzi - sim(t3y, t42)

= 0.3/0.9 - 0.8/0.8 - sim(t3y, t42)
+ 0.2/0.9-0.8/0.8 - sim(t2y, t42)
+ 0.4/0.9 - 0.8/0.8 - sim(t3y, t42)

Given sim(Jim, Tom) = 1/3, sim(baker, mechanic) = 0
and hence sim(ti,, ts2) = 11/15, sim(t35,t42) = 7/15 and
sim(t3,,t12) = 4/15, the similarity of the both x-tuples
results in sim(ts2,t42) = 7/15.

Unfortunately, if the values resulting from Step 1 are not
normalized, the expected value E(sim(ti,})|B) can become
unrepresentative. For example, if the two alternative tuples
% and ¢ are similar to a large extent (¢(¢;) — 00),
the similarity sim(t1,t2) becomes infinite, too, independent
from the probability of these alternatives. As a consequence,
this approach is more fitting for knowledge-based than for
probabilistic techniques.

decision-based derivation.  In the second approach, after cal-
culating the similarity of all alternative tuple pairs (Step 1.1),
each of these pairs is classified into {M, P,U} (Step 1.2).
From the resulting matching vector 7 = {m,p,u}**!, the
similarity of the corresponding x-tuples is derived (Step 2) and
the tuple pair is assigned to one of the three sets M, P and
U (Step 3). In this approach, the similarity of two x-tuples
is derived from the decisions whether their alternative tuple

pairs are duplicates or not. As a consequence, this approach
is denoted as decision-based derivation.

The derivation function ) of Step 2 can be based on prob-
ability theory. For example, by defining the tuple similarity
sim(ty,t2) as a kind of matching weight:

sim(ty,ta) = P(m)/P(u) 7
where the two probabilities P(m) and P(u) are defined as:
B pt) p(t)
Pim) = 3 i ent o) ol ®
B pt) p(t)
PO = 2 e o) i) )

P(m) is the overall probability of all possible worlds in which
both tuples are determined to be a match. In contrast, P(u)
is the overall probability of all possible worlds in which both
tuples are determined to be a non-match. Thus, this derivation
is based on the idea that the greater the difference between
the probabilities of the alternative tuple pairs determined as
a match, and the probabilities of the alternative tuple pairs
determined as a non-match (and hence the difference between
the overall probabilities of the corresponding possible worlds),
the greater is the similarity of both tuples.

As an example, we once more consider the two x-tuples
t3o and t49 and hence the possible worlds 1, I> and I3. If we
define the two thresholds T = 0.4 and T}, = 0.7, in world
I, both tuples are declared as a match. In contrast in world
I35 both tuples are determined to be a non-match. Moreover,
in world I, the tuple pair is assigned to the set of possible
matches. As a consequence, the probability P(m) is equal to
the conditional probability P([;|B) = 3/9 and P(u) is equal
to P(I3|B) = 4/9. Accordingly, the similarity of ¢3o and ¢4
results in sim(tsz2, ts2) = (3/9)/(4/9) = 0.75 (note that this
value is non-normalized).

Since in this approach the similarity of two x-tuples is based
on values defined in the discrete domain {m, p, u}, the x-tuple
similarity is naturally more imprecise than in a similarity-
based derivation. In contrast, in spite of unnormalized results
of Step 1, cases of total unrepresentative similarity values can
be avoided.




In summary, a similarity-based derivation is more suitable
for knowledge-based techniques (for example by calculating
the expected certainty in Step 2) and a decision-based deriva-
tion is more adequate for probabilistic techniques.

Even though we only present one derivation for each
approach in this paper, further adequate derivation functions
are possible. For example, another decision-based derivation
results by defining ¥} as the expected matching result of
the alternative tuple pairs E(n(t,t})|B), where each match-
ing result is considered as one of the following numbers
{m=2,p=1,u=0}.

V. SEARCH SPACE REDUCTION

As already mentioned in Section III, duplicate detection
requires the comparison of all tuples which each other. With
growing data size, this quickly becomes inefficient and perhaps
even prohibitive. Therefore, the search space has to be reduced
in a way that has a low risk of loosing matches, for example
by applying heuristic methods such as the sorted neighborhood
method or blocking. In both methods a key has to be defined.
In probabilistic databases, this is especially difficult, if the
defined key includes uncertain attributes. For instance, in
our examples a key could contain the first three characters
of the name value and the first two characters of the job
value. Unfortunately, for tuple to5 it is not clear which of
the possible names has to be used for creating the key value.
As a consequence, these heuristics need to be adapted to
probabilistic data.

A. Sorted Neighborhood Method

In the sorted neighborhood method ([19], [22]), the key is
used for tuple sorting. In probabilistic databases key values
often have to be created from probabilistic data. There are
basically four approaches to handle this problem. The first
three attempt to obtain certain key values. The fourth adapts
the sorted neighborhood method to uncertain key values.

1) Multi-Pass over Possible Worlds: A first intuitive ap-
proach is a multi-pass approach. In each pass the key values
are created for exact one possible world. In this way, the key
values are always certain and the sorted neighborhood method
can be applied as usual. Note, since tuple membership should
not influence the duplicate detection process and each tuple has
to be assigned to a key value, only possible worlds containing
all tuples have to be considered.

name | job name | job
t31 | John pilot t31 | Johan | musician
tzo | Tim mechanic tzo | Jim mechanic
ty1 | Johan | pianist ty1 | John | pilot
tso | Tom mechanic tso | Tom mechanic
tys | Sean | pilot ts3 | John 1
Fig. 8. Possible worlds 17 (left) and I2 (right) of R34

Figure 8 shows two possible worlds (/; and I5) of the
x-relation R34 = {R3 U R4}, each containing all tuples. If
we define the sorting key as mentioned above (first three
characters of name and first two characters of job), in both

possible worlds different sorting orders of the x-tuples result
(see Figure 9). Thus, depending on the window size both
passes can result in different x-tuple matchings.

key value || tuple key value || tuple
Johpi t31 Jimme t3o
J thi t41 Joh t43
Seapil tas Johmu t31
Timme t3o Johpi ta1
Tomme tao Tomme tao

Fig. 9. Tuples sorted by the key values created for I7 (left) and I (right)

In principle, this approach seems absolutely suitable. Un-
fortunately, the number of possible worlds can be tremendous
and hence the efficiency can be very poor. This drawback can
be avoided, however, if instead of using all possible worlds
only the most probable worlds are considered. Unfortunately,
it is likely that two highly probable worlds are very similar
as well, so both passes have a roughly identical result. Such
a redundancy seriously decreases the effectiveness of this
approach. Therefore, to obtain an adequate efficiency as well
as an adequate effectiveness, besides decreasing the number
of considered worlds, worlds have to be selected carefully.
Instead, a set of highly probable and pairwise dissimilar worlds
has to be chosen, but this requires comparison techniques on
complete worlds.

2) Creation of Certain Key Values: Alternatively, certain
key values can be obtained by unifying tuple alternatives to
a single one before applying the key creation function. In
general, conflict resolution strategies known from techniques
for the fusion of certain data [17] can be used. For example,
according to a metadata based deciding strategy the most
probable alternative can be chosen. This results in a sorting of
R34 as shown in Figure 10.

key value || tuple
Jimba t32
J thi t31
J thi t41
Seapi tas
Tomme tao

Fig. 10. Relation R34 after key value sorting

Note, chosing the most probable alternatives for key value
creation is equivalent to take the most probable world. Thus,
the set of matchings resulting from this strategy is always a
subset of the matchings resulting from the multi-pass approach
presented previously.

3) Sorting Alternatives: Moreover, key values for all (or the
most probable) tuple alternatives can be created. In this way,
each tuple can have multiple key values. Finally, the alterna-
tives’ key values can be sorted while keeping references to the
tuples they belong to (see Figure 11). As a consequence, each
tuple appears in the sorted relation for multiple times (e.g.,
t3o appears for three times). Obviously, matching a tuple with
itself is meaningless. Therefore, if two neighboring key values



are referencing to the same tuple, one of this values can be
omitted (e.g., see the first two entries of the sorted relation).

key value || tuple key value || tuple
Johpi ‘ Jimba t30
Johmu 31 Fme +
Timme Joh t4s
Jimme t32 sorting Johmu t31
Jimba Johpi forr
Johpi ta Johpi t41
Tomme ta2 Seapi tas
Joh ‘ Timme t3n
Seapi s Tomme tao
Fig. 11. Sorting alternatives

This approach may result, however, in multiple matchings
of the same tuple pair. This can be avoided by storing already
executed matchings (see matrix in Figure 12).

As an example, assuming a window size of 2, from the
ten possible x-tuple matchings of R34 (intra- as well as
intersource) five matchings are applied (each for exact one
time): (t32,t43) (entries 1 and 3), (t43,t31) (entries 3 and 4),
(t31,t41) (entries 4 and 6), (t41,t43) (entries 6 and 7) and
(t32,t42) (entries 8 and 9).

tz1 tzz t41 taz ta3

ts1 X X
t32 X | X
ta1 | X X
ta2 X

taz | X X X

Fig. 12. Matrix for storing already executed matchings

4) Handling of Uncertain Key Values: Another and w.r.t.
effectiveness more promising approach is to allow uncertain
key values and to sort the tuples by using a ranking function
as proposed for probabilistic databases (e.g., [34], [35], [36],
[37]). In general, a probabilistic relation can be ranked with
a complexity of O(n-logn) (see the ranking function PRF*®
in [37]). Thus, the complexity of this approach is equal to
the complexity of sorting tuples in relations with certain data
[22]. As an illustration, sorting based on the probabilistic key
values of relation R34 created by using the key defined above
is shown in Figure 13. Note that t4; has a certain key value
despite of having two alternative tuples.

key value | p(k) || tuple key value | p(k) || tuple

Johpi 0.7 . Timme 0.3

Johmu 03 | ™ Jimme 02 || ts2

Timme 0.3 . Jimba 0.4

Jimme 0.2 t3o ranking | Johpi 0.7

Jimba 0.4 Johmu 03 || ™

Jthi 1.0 t41 Jthi 1.0 t41

Tomme 0.8 tao Joh 0.2 ‘

Joh 02 |, Seapi 0.6 43

Seapi 0.6 43 Tomme 0.8 tao
Fig. 13.  Sorting based on the uncertain key values of relation R34

B. Blocking

With blocking [22], the considered tuples are partitioned
into mutually exclusive blocks. Finally, only tuples in one
block are compared with each other. The partition can be
realized by choosing a blocking key and grouping into a
block all tuples that have the same key value. As for the
sorted neighborhood method, a multi-pass approach over all
possible worlds is most often not efficient. However, a multi-
pass over some finely chosen worlds seems to be an option.
Furthermore, as known from the sorted neighborhood method,
conflict resolution strategies can be used to produce certain
key values. In this case, blocking can be performed as usual.
Handlings for uncertain key values can be based on clustering
techniques for uncertain data (e.g., [38], [39], [40]).

Moreover, similar to the approach of sorting alternatives an
x-tuple can be inserted into multiple blocks by creating a key
for each alternative. An example for blocking with alternative
key values is shown in Figure 14. The tuples are partitioned
into six blocks by using a key consist of the first character
of the name and the first character of the job. If an x-tuple is
allocated to a single block for multiple times (e.g., £31 in block
By), except for one, all entries of this tuple are removed. By
using this approach, three x-tuple matchings result: (f31,%21)
(blOCk Bl), (t217t22) (blOCk BQ) and (t227t32) (b]OCk Bg).

—t31r-
t31 to2 t32
t21 t21 ta2 to2 t33 t33
B1="]P  By="]M’ B3="TM’ B4=]JB’ Bs="J Bg="SP’

Fig. 14. Blocking with alternative key values

VI. CONCLUSION

Since many applications naturally produce uncertain data,
probabilistic databases have become a topic of interest in the
database community in recent years. In order to combine the
data from different probabilistic data sources, an integration
process has to be applied. However, an integration of uncertain
(esp. probabilistic) source data has not been considered so far
and hence is still an unexplored area of research.

In order to obtain concise integration results, duplicate
detection is an essential activity. In this paper, we investigate
how duplicates can be detected in probabilistic data.

We consider probabilistic data models representing uncer-
tainty on tuple and attribute value level with and without
using the x-tuple concept. We introduce methods for attribute
value matching and decision models for both types of models.
Furthermore, we examine how existing heuristics for search
space reduction, namely sorted neighborhood method and
blocking, can be adapted to probabilistic data.

In conclusion, this paper gives first insights in the large area
of identifying duplicates in probabilistic databases. Individual
subareas, e.g., detecting duplicates in complex probabilistic
data, have to be investigated in future reflections. Moreover,



for

realizing an integration of probabilistic data: schema

matching, schema mapping and data fusion have to be con-
sidered w.r.t. probabilistic source data in future work. Finally,
in this paper we consider duplicate detection as a determined
process (two tuples are either duplicates or not). Nevertheless,
by using a probabilistic data model for the target schema, any
kind of uncertainty arising in the duplicate detection process
(e.g., two tuples are duplicates with only a less confidence) can
be directly modeled in the resulting data by creating mutually
exclusive sets of tuples. For that purpose, the used probabilistic
data model must be able to represent dependencies between
multiple sets of tuples. For example, in the ULDB model
dependencies between two or more x-tuple sets can be realized
by the concept of lineage.
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