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Data Management in Multi-Agent Simulation Systems

From Challenges to First Solutions
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Abstract: Multi-agent simulations are an upcoming trend to deal with the urgent need to predict
complex situations as they arise in many real-life areas, such as disaster or traffic management. Such
simulations require large amounts of heterogeneous data ranging from spatio-temporal to standard
object properties. This and the increasing demand for large scale and real-time simulations pose many
challenges for data management. In this paper, we present the architecture of a typical agent-based
simulation system, describe several data management challenges that arise in such a data ecosystem,
and discuss their current solutions within our multi-agent simulation system MARS.
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1 Introduction

In the digital age, more and more data is available used to predict future conditions and
effects emerging from potential (re)actions. A popular approach to make such predictions
are simulation systems. They can be used to predict the course of catastrophic events, such
as social-ecological changes [LWC18], nuclear disasters [Wa18] or epidemics [ZKC05]
(e.g., to play through the effects of various measures), but can also be used to control,
predict and evaluate everyday aspects, such as traffic with climate influence, topographic
changes and individual-driven decision-making [WGC18]. One way to simulate such
complex social-world processes is to use a multi-agent simulation (MAS) [WR15] in which
the system models every individual by a separate agent interacting directly or indirectly
with other agents or the considered world. Since MASs are temporal systems and often
deal with spatial properties given by the represented world and locations of simulated
objects, spatio-temporal data management is a crucial part of modern MAS systems such
as GAMA [Gr13], NetLogo [WR15] or MARS (Multi-Agent Research and Simulation)
[We19]. Due to the ongoing digitalization (e.g., through the Internet of things) and the
growing availability of data (e.g., open data), simulations receive more and more attention
while the heterogeneity and volume of useful data are continually growing. For short-term
planning, such as city-wide traffic-jam forecasting [We19], simulation results must be
1 Universität Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany {glake,panse,ritter}@informatik.uni-
hamburg.de
2 HAW Hamburg, Berliner Tor 7, 20099 Hamburg, Germany {thomas.clemen, ulfia.lenfers}@haw-hamburg.de

cba doi:10.18420/btw2021-22

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 423

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-22


2 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

determined and aggregated quickly to provide value for decision support. In contrast, for
long-term planning, e.g., infection spreading estimations [Ye06], the data management and
simulation must be robust and offer sufficient capacity. Global sensitivity analyses further
intensify these requirements. These circumstances cause several challenges in the data
management of MAS systems, which we address in this paper from a general perspective
before discussing some first solutions currently implemented in the MARS system.

This paper is structured as follows: In Section 2, we describe the typical components of a
MAS system and how they are involved in the system’s data management. Thereafter, we
discuss open challenges for different data management aspects in Section 3 and describe in
which way we address these challenges in MARS in Section 4. Finally, we discuss related
work, conclude our paper and give an outlook on open research in Section 5.

2 Multi-Agent Simulation Systems

In this section, we describe the typical architecture of a MAS system (see Figure 1) and
describe the individual components that interact within such a system. The architecture
contains four main (represented by solid frames) and several optional (represented by dashed
frames) components.

Simulation: The simulation component is the core of a simulation system. It receives a
simulation model selected by the user and then loads all relevant input data from the data
management component into the simulation’s class model via the input adapter or the query
mediator (see below). The simulation data can be categorized into four basic classes: Vector
layers, graph layers, raster layers, and objects (agents and entities). Vector layers contain
spatial information such as the position and structure of buildings, streets, or squares. Graph
layers represent networks, for example, to model roads or public transport routes such as
metro lines. Raster layers divide the considered space into equally large cells and store one
or multiple – usually numerical – values per cell (e.g., the amount of rainfall). Agents are
the active components of a simulation. Based on their environmental data, they are capable
of autonomous actions and interact with each other to coordinate them. Such multi-agent
interactions take place either directly via messages or indirectly via an environmental layer.
Entities are not active, i.e., they cannot make decisions and initiate actions stand-alone, but
have a life-cycle and can be used by agents (e.g., a car driven by a person).

After the initial state of the simulation has been created, the component starts the time-discrete
simulation process. During this process, the simulation state is subject to a continuous
change in each expiration of a previously defined step size (a so-called tick) with an optional
real-time reference, e.g., layer values can change or agents can move. At the end of each tick,
the current simulation state (including objects, layers, and tick metadata) is collected and
passed to the output adapter, which forwards these results to their respective output channels
(see below). State changes of individual agents, entities, and layers are synchronized to
enable a consistent world state, i.e., all of them are always in the same tick. If the system
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Fig. 1: Architecture of a Multi-Agent Simulation System

cannot load new data during runtime, the calculation of the following state can always only
be based on the current one.

Data Management: The data management component includes various database systems
of different data models, all of which serve a specific purpose. The user-defined agent-based
models and some additional input files are persisted in a simple file system. Spatial rasters,
e.g., for location-specific weather information, are suitable for data stores with array support
(e.g., SciDB, Postgres, or Oracle GeoRaster). Vector-based features3, including houses,
factories, and other points of interest, are stored in databases supporting spatial indexing
(e.g., PostGIS or MongoDB). The temporal data management (e.g., Timescale or InfluxDB)
concerns the validity periods and transactions of data objects as well as aspatial time-related
data, e.g., business hours. Single or combinations of aggregate-oriented NoSQL or relational
systems with graph abstraction or mapping collection, as applied by multi-model databases
(e.g., ArangoDB or OrientDB), are suitable for storing domain data. This domain includes

3 A vector-based feature is a spatial geometry associated with a set of attributes and values.
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entities and agents, each comprising subsets of value- or (un)directed reference-typed
attributes (1:1, 1:n, or n:m) along inheritance hierarchies. Other facts or validity checks
and analysis results can be stored in it as well. Finally, the input to the simulation system
can be a data stream containing real-time data originating from sensor systems, such as
temperature or air quality measurements. Additionally, the data management component
manages several indexes, such as kd-trees for vector layers, that allows the input adapter and
the query mediator (see below) fast access to the data.

The datamanagement component has three subcomponents: The source discovery component
is responsible for automatically detecting new and relevant datasets. Such a search can
occur within a specific intranet (e.g., cloud), but also in the World Wide Web. The ETL/data
preparation component loads external data (from private systems or the Web) into the data
management component. Before loading it into an appropriate database, it standardizes,
cleans, and enriches the data. The quality verification component is responsible for the high
quality of the data already in the system. It includes a cross-database verification to detect
inconsistencies between separately stored datasets.

Input Adapter: The input adapter supplies the runtime system with the simulation model
(usually loaded from the file system) and initializes the first state as configured by the
investigated scenario. This data mapping needs to overcome the impedance mismatch of
the input data to the different kinds of models supported by the simulation component (i.e.,
vector, raster and graph layers as well as agent and entity classes). Therefore, it loads the
data into local (in-memory) databases and indexes, kept for the duration of the currently
running simulation process and – if implemented – are frequently updated by posing queries
to the mediator (see below). These local databases allow fast access on layers, agents and
entities, but limit the support only to point queries and k-NN queries with range filters.
Unlike the query mediator, the input adapter is only used to map and load data to build the
initial state of the simulation by utilizing user-defined scripts.

Query Mediator: In contrast to the input adapter, the query mediator enables dynamic
and flexible ad-hoc access to the data management component by abstracting the required
operations via a logical single query interface. Based on the mapping between defined
operations and the underlying stores, themediator decomposes queries into several subqueries
while utilizing available store-specific features to make the most of their unique advantages.
The subqueries are rewritten into native queries of the addressed stores and passed to
them. Finally, their results are merged and forwarded to the running simulation or the user
applying the analytical task. A rich query interface (including spatio-temporal operations
and result formats), knowledge of store-specific features as well as planning, decomposing
and rewriting queries are essential aspects in ensuring data transparency and providing short
runtimes. The query mediator is supposed to support various types of queries, including:
(i) spatio-temporal queries (e.g., to get objects from specific intersecting areas of Hamburg
in the last month), (ii) range queries (e.g., to identify persons, cars, or buildings that are
within a specific range to the ground zero of a disaster), (iii) k-NN queries (e.g., to identify
the nearest bus stations or restaurants of a pedestrian), (iv) path traversals (e.g., to traverse
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along the stations of a metro line), and (v) point queries (e.g., to access data of a particular
point of interest). For practical reasons, k-NN queries must be combinable with range queries
(i.e., the k-NN search is limited to a predefined range). Together with the data management
and migration components, the query mediator forms a spatio-temporal polystore.

Data Migration: The structure and requirements for individual data objects change from
time to time and often depend on the simulation processes using them. To meet such
changing conditions, it can be useful to replicate data in different databases with different
data models or migrate them from one model to another. Ideally, the system itself recognizes
the demand for such a migration and automatically starts the corresponding migration
process. Under certain circumstances, the query mediator initiates such a migration if it
detects that the requested data are not available in the required format. In such a case, the
migration must be performed at runtime either eagerly or lazily, for the current query only, or
permanently. Since every migration step changes the location of the data, existing mappings
between the databases and the simulation model may need to be updated.

Output Adapter: The output adapter is responsible to collect and forward snapshots of
the individual objects and layers to the data management component and/or other software
artifacts that aim to process them. Since the amount of data can be overwhelmingly large,
exporting all of them can delay the simulation. Thus, it may be necessary that the adapter
reduces the output to the most relevant values. It must also select a suitable format and
compression method to keep the volume of data transferred as small as possible. Examples
for relevant output data can be the volatile parts of the individual agents (e.g., position or
vitality), but also the states of the different layers (e.g., temperature or water level) and
additional measurements (e.g., traffic load).

Result Processing: Data exported by the output adapter can be stored directly in some of
the databases, but can also be analyzed, visualized, and validated for violated constraints
and expected behavior. The (often aggregated) results can, in turn, also be persisted in the
databases. All three processing methods can be executed in real-time or batch mode, but
only the first mode allows an intermediate intervention into the simulation’s current state.

3 Challenges for Data Management

Besides the challenges that still need to be solved for polyglot data management in
general [Pa16, Kr19, Ta17], such as query mediation [Cl98], automatic data migration [Kl16,
SLD16] or cross-model replication [VSS18], there are a number of challenges that are
specific to MAS systems. We will take a closer look at these challenges in this section.

Simulation Input: Although most simulations are limited to a specific area, it is almost
always beneficial to transfer them to other areas by exchanging their location-specific data.
For example when transferring a traffic simulation from Hamburg to Beĳing, we need to
exchange site maps, road networks and aspatial data, such as bus schedules. Since such a
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location-based transfer is to be performed very often, flexibly and at short notice, adequate
support in terms of (i) an automatic discovery and acquisition of relevant and qualitatively
suitable input data, (ii) preparation of the newly acquired data, and (iii) an automatic
integration of these data into the simulation model, is more relevant and crucial than in
many other data integration use cases.

Dataset Discovery: Many spatio-temporal datasets are published in a structured form using
a data portal/repository software, such as CKAN4 [As20] or dataverse [Te20]. To find
useful data in those portals, we must first discover a suitable data portal and then search for
the required data in it. To support the second step, CKAN and dataverse provide several
functionalities including full-text search and fuzzy matching on the datasets’ meta data as
well as browsing between related datasets. In contrast, finding a suitable data portal is – to
the best of our knowledge – currently not supported by any software. If we do not find the
required data in any portal, we have no choice but to crawl the World Wide Web and to
extract the – often unstructured – data from the found websites [Fu13, Fe14, Fa18].

Preparation: After loading the data from the discovered sources, we restrict them to the
spatio-temporal range of the simulation by removing all data points that are outside the
area and time period of the corresponding scenario. Thereafter, we need to standardize,
clean and enrich the remaining data. Spatial standardization includes transformations
into the same spatial reference system, such as UTM or USNG. Raster layers have to be
transformed to the same scale and converted so that their cells are congruent. Graph layers
need to be transformed into compatible graph models [AG08]. Timestamps have to be
normalized by transforming them into the same format, calendar and time zone. Finally, the
attribute data can be standardized using conventional preparation techniques [Py99, KJN20].
The data cleaning has to include a removal (or repair) of (i) spatial [CS06, KL17] and
temporal [Gu14, Zh17] outliers, (ii) inconsistencies between different polygons (e.g.,
overlapping borders) or timestamps (e.g., a building was demolished before it was built), and
(iii) errors in the attribute data, such as typos or violated dependencies [GS13, IC19, Ch14]
where some of these errors can only be detected by comparing data from different layers.
Useful examples of data enrichment include using alternative data sources to refine the road
network of Open Street Map (OSM) [RFS16] or applying geocoding to locate address data
in the spatial layers accurately [CCW04].

Integration: After collecting and preparing relevant source data, we need to integrate them
into the simulation model. This includes resolving conflicts in the sources’ spatial and
temporal overlaps, such as contradicting geographical details (e.g., the same building is
represented by different polygons). The integration can be materialized or virtual [LN07,
DHI12]. In the first case, we initially integrate all source layers of the same type (raster,
vector or graph) into a single layer persisted in the simulation system. Thus, all data conflicts
are resolved in a typical ETL process [KR02] once before the simulation process starts.
This approach, however, is static and cannot deal with real-world changes that happen when

4 Comprehensive Kerbal Archive Network
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the simulation process is already running (see stream based input described below). In
the second case, we integrate the source layers (and thus resolve conflicts) at query time
by defining a global-as-view mapping [DHI12]. This is computationally more expensive,
but flexible to changes against the source data. The same integration principles apply to
temporal dimensions when we have several data sources covering different periods of time
of the same spatial areas. To the best of our knowledge, there is currently no research that
addresses a virtual integration of spatio-temporal data layers [GRC20].

Simulation Output: Exporting the snapshot of the current tick quickly becomes a bottleneck
if the simulation is using a large number of agents. The biggest challenge is therefore to
export the data without blocking the simulation process or creating a significant delay that
would make it impossible to analyze, validate or visualize them in real time. The volume
of the exported data is significantly related to whether we export only data changes or
entire snapshots. The former reduces the volume, but makes immediate (possibly real-time)
analyses, validations and visualizations of the simulation much more difficult because we
need to reconstruct the actual snapshots from the exported changes.

Stream Based Input: The computed simulation states, including agent attributes and
environment information, become fuzzier in their correctness as the simulation progresses
and reaches further into the future. Public sensor data systems and APIs, such as the
widely used SensorThingsAPI standard [LHK16], offer updates for temporally available
environmental and entity-level information that can be used to reduce the corridor of
uncertainty. Frequently updating the simulation states according to sensor-based input data
by synchronizing the simulation with the real-time, results in a digital representation of
real-world scenarios suitable for short-term forecasts and simplified global views of real-life
happenings (e.g., to identify superspreading events within a pandemic). Problems are scalable
handling of massive push-based inputs [WRG19] and merging incoming values on different
time and granularity levels [CV86] without producing unrealistic simulation behavior (e.g., a
full car park is emptied by beaming cars to remote locations). The latter can be done by either
introducing them into the current simulation or forking a new one with the corrected state.
Particularly relevant is the identification of model-independent growing uncertainties under
consideration of user-defined constraints, defined via windowing queries and evaluated at the
simulation’s runtime. In addition to the usual integration problems, stream-based data present
specific problems in dealing with non-equidistant inputs, duplicates, erroneous or noisy
values, and sharp peaks. Solutions include the application of Kalman filters with wavelet
corrections, comparisons of running windows for duplicate detection [SZ08, DNB13], and
sliding aggregate functions [CV86]. For example, continuously averaging the attribute
values of particular vector-based features can correct the simulation step by step.

Spatio-Temporal Query Interface: Because of the time-based definition of simulations,
temporal operators are an essential aspect in the mediator’s query interface. As it has been
discussed by Siabato et al. [Si18], the support for Allen’s interval operator [Al83] is essential
for interval-based logical reasoning on time-series, getting versioned model objects. In
context to the spatial characteristic, agents need access to environmental information for their

Data Management in Multi-Agent Simulation Systems 429



8 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

own decision making. This often corresponds to their current location,which requires k-NN
queries with range filters. Such queries often have a circular shape, but can be abstracted
to any geometrical shape. Polygon-based intersections require a pre-triangulation task to
check for containment of the polygons’ coordinates. Data access has to be provided by
operators, such as include, overlap or adjacent, which also need to be part of the query
interface [GRC20]. Since not only users perform analytical queries, but also the active
agents themselves, the simulation can control queries against the mediator in time.

Spatio-Temporal Query Planning: The polystore has to manage the mapping between
the simulation model’s instance and its cross-system representation in the databases. This
mapping requires a cross-system perspective, including requirements from the applied
operations of the active agents in the simulation and subsequent analysis of results by
the user. Populating the model with data from the polystore should be independent of the
underlying databases and therefore transparent in the selection of convenient stores. Polyglot
data storage offers the potential to meet a large set of (non-)functional requirements by
taking into account the respective capabilities of each connected store in the mediated
data processing. In order to exploit this potential for simulations, it is necessary to know
the respective spatial, aspatial and temporal features of the individual databases and to
describe them in a structured way. This description has to contain an input specification
including constraints on expected objects as well as potentially produced outputs and their
limitations. Query planning utilizes these feature descriptions to compute plans for distinct
spatial and temporal queries, in which constraints are primarily affected by the expected
models, for example, for relational data processing [SLD16]. Therefore, plans must address
minimal intermediate migration steps where the cost of transfer does not exceed the cost
of data processing. However, finding an optimal migration plan is NP-hard and can only
be approximated [Kr19]. Beside migration problems, the system has to resolve references
between data objects by providing an integration of partial results, either by implementing
the bind-join [Ko16] approach or applying spatial-joins according to their references.

Further challenges concern cross-model data matching/merging [DHI12] and data lin-
eage [HDB17] (e.g., to debug the simulation in case of errors).

4 Current Implementation

To meet the challenges of Section 3, we are extending our existing MARS architecture [Gl17,
WGC18, We19], which aims to provide large scale, agent-based simulations for any domain
expert. The key idea behind MARS is to combine the flexibility of self-adaptive and data
model agnostic simulation systems, by following an as-a-service perspective on modeling
and simulation (MSaaS). MARS schedules and runs simulation (or optional other agent-
systems) pods within a heterogeneous cluster environment and scale-up and out along
available processing units and computing nodes.
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Simulation Input: For the integration of new input data, MARS provides an external
Python subsystem called ODDI 5 [Gl19]. ODDI integrates a CKAN, Open Data Protocol,
and Open Street Map client. The system utilizes a keyword search on the portals and
retrieves all metadata by using the MinHash similarity. Results include vector, raster and
table meta data, loaded in memory through OpenGIS Web services (WFS, WCS for vector
and WMS for raster data)6. ODDI can also be used to audit the datas’ quality through
statistic analyses using a small statistics package and integrated plotter. New spatial data is
prepared by transforming it into the WGS:84 EPSG:4326 reference system. Timestamps are
uniformly converted to the same format. To integrate spatio-temporal data, MARS uses a
hybrid approach. While spatial data layers are integrated materially, temporal changes are
integrated virtually (i.e., we manage a separate layer for every time period).

Simulation Output: Since the focus of MARS are large-scale scenarios, the calculated
results are proportional to the dimensioned agent types with their respective number of
instances per simulated tick [WGC18]. The system persists snapshots of agents and layers
along the underlying databases according to the current workload. Collected snapshots
are persisted either as complete object versions or as deltas from the last versions. Each
persistence task is applied in a specified output frequency or if a model object has been
changed since the last tick. In the data management component, it can be decided whether
the results are fully replicated in all data stores, a subset of data stores is used in order to
produce specific output formats, or all data are saved only in one store or file format. Due to
wrong or missing semantics in the resulting data, not all output combinations are possible
for every layer or agent type (e.g., in the case of a missing support for matrix types or raster
files). In addition, the output can be reduce to specific states by using predefined output
conditions (e.g., the current spatial extension coming from the visualization on the client
map). In order to enable a fast and parallel transfer of the output data to analysis, validation
and visualization tools, the data are passed to a Kafka pipeline.

Modelling & Querying: MARS uses a polyglot approach to data modeling. The entire
platform supports the complete workflow of simulative analyses and offers the external
static-typed MARS DSL modeling and query language [Gl17]. The language includes a
type inference system and links the agent-based paradigm with the spatio-temporal layer.
The language conceptualize type definitions (agent, entity, vector- and raster-layer) and
allows spatial queries by applying conditional area filters and k-NN queries as well as access
on time series by specifying concrete points in time.

When comparing our current solution to the challenges described in Section 3, the following
differences become apparent: (i) The system accesses the data management component only
via the in- and output adapter. (ii) No requests are delegated to the database by a mediator.
Data is kept entirely in-memory during the simulation. (iii) Spatio-temporal queries are
limited to in-memory indexes. (iv) Query planning is considered at compile-time and does
not include online data migration. (v) ODDI allows for automated retrieval of public data and

5 Open Data Discovery and Integration
6WFS = Web Feature Service, WCS = Web Coverage Service, WMS = Web Map Service
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spatial linking, but the datas’ quality has to be checked manually. (vi) Streaming data into a
running simulation is currently not supported. We plan to fill these gaps by extending MARS
to a spatio-temporal polystore [Ta17]. In developing the mediator, we plan to use the MARS
DSL as the logical query interface. We intend to implement data migration by adapting
current approaches [Kr19, HKS19] to our needs, including an extension to spatio-temporal
features. Query planning is firstly accomplished by pushing-down operations to store-related
features, applying selection queries for spatial or temporal data and integrating results
via bind-joins. We will leverage existing research on web data extraction [Fa18] and data
cleaning [Ch14] to improve ODDI. To realize an integration of data streams into a running
simulation, we plan to evaluate several strategies for adapting simulation states to these real
values, without producing significant anomalies in the simulation behaviour.

5 Related Work & Conclusion

The main goal of MARS is to support large-scale scenarios for general purposes by
utilizing polyglot data management with spatial and temporal data processing. Other existing
simulation systems, such as NetLogo [WR15] and GAMA [Gr13], focus on smaller-scaled
scenarios with less complexity or involved agents. Although GAMA offers direct SQL
database access to its agents, it does not consider a polyglot design and keeps transparency on
the level of the SQL language. Yang et al. [Ya18] also use the layer concept for simulations,
but do not consider temporal changes of spatial objects. The system of Zehe et al. [Ze16]
involves multi-store data management and attempts to use each store appropriately for the
tasks at hand, but lacks in making these decisions transparent and generic by integrating
an automatic query planning component. In addition, the system does not allow spatio-
temporal queries. Existing multi-/polystore systems, such as RHEEM [Al19], Myria [Wa17],
Polybase [De13] and ESTOCADA [Al19], follow a general-purpose approach by unifying
the query-interface or applying intermediate (self-defined or automatic) migration steps
between stores, providing uniform read-only access. In our opinion, this approach is
unsuitable for simulations, because it ignores change operations, processing queries with
store-specific features, which is a major challenge in polyglot data management [Pa16, Ta17],
and capabilities for querying spatio-temporal data. Systems, such as CloudMdSql [Ko16]
and BigDAWG [Du15], are first promising candidates. CloudMdSql provides users with
direct access to native data storage languages by embedding them into a SQL-like language,
but lacks in providing data independence, so that the user must always know which data is
stored in which data store. BigDAWG provides transparency at the level of multiple query
languages, but does not support any kind of updates.

In this paper we presented the general architecture for data management in spatio-temporal
multi-agent simulations. We concluded a number of challenges and gave a brief overview of
the current status with open issues of our own system MARS. Future work will address the
development of a query mediator as well as the (further) development of components for
data migration, quality management, and real-time processing.
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