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Abstract—Duplicate detection identifies multiple records in a
dataset that represent the same real-world object. Many such
approaches exist, both in research and in industry. To investigate
essential properties of duplicate detection algorithms, such as
their result quality or runtime behavior, they must be executed on
suitable test data. The quality evaluation requires that these test
data are labeled, constituting a ground truth. Correctly labeled,
sizable, and real or at least realistic test datasets, however, are
not easy to obtain, creating an obstacle for the advancement of
research. In this tutorial, we present common methods to evaluate
duplicate detection algorithms and to generate labeled test data.
We close with a discussion of open problems.

I. INTRODUCTION

Duplicate detection, also known as entity resolution [1] or
record linkage [2], is an essential aspect in data cleaning
[3]–[5], data integration [6], [7] and schema matching [8],
[9]. Whereas the identification of exact duplicates is rather
trivial, the detection of so-called fuzzy duplicates can be a
tough challenge, depending on how much the duplicate records
differ from one another due to data errors (e.g., typos, OCR,
or calculation errors), heterogeneous representations (e.g., dif-
ferent formats, vocabularies/terminologies, languages, or units
of measurements), as well as missing and outdated values.
Because the detection of duplicates is such an important but
also difficult task, much research has been performed in this
area over the last decades [10]–[13].

The detection of duplicates is not only a complex problem,
but the suitability of a solution strongly depends on (i) the con-
sidered domain, (ii) the characteristics of the given data (e.g.,
size, schema complexity, error proneness), (iii) the quality
requirements of the user in terms of precision and recall, and
(iv) cost including the amount of required training data, careful
design of similarity rules or runtime budget. Due to all these
(partly conflicting) factors and the resulting heterogeneity of
use cases, none of the existing algorithms has shown to be a
generally applicable and superior solution. Instead, in every
use case, it remains a difficult (and expensive) task to choose
and configure them, so that they provide adequate results.

Due to these circumstances, the evaluation of duplicate
detection algorithms with proper test data is an essential
necessity and needs to be performed carefully. However, the
selection of suitable evaluation measures and the acquisition
of correctly labeled test data is challenging.

In this tutorial, we give an overview of the dimensions
and techniques for evaluating duplicate detection algorithms
with a focus on quality measures and test data generation. We
present state-of-the-art research and discuss open challenges,
covering the composition of a typical duplicate detection
pipeline, the large range of existing quality measures, and
different ways to generate test data with labeled duplicates.
We provide overviews of existing methods and tools for test
data generation and discuss their respective strengths and
weaknesses. We also focus on data profiling as an important
prerequisite for domain-independent and targeted pollution of
real-life datasets with fuzzy duplicates. Finally, we motivate
open problems by discussing existing use cases.

II. TUTORIAL OUTLINE

This tutorial is split into five parts:
(1) Duplicate Detection. We introduce the traditional prob-

lem of duplicate detection using several real-life use cases
and a formal definition, describe its application contexts,
and sketch the steps of a typical duplicate detection
pipeline.

(2) Quality Evaluation. We motivate the evaluation of du-
plicate detection algorithms and discuss which require-
ments different application contexts impose on such an
evaluation. Thereafter, we present the composition of test
datasets and discuss several kinds of ground truths (e.g.,
gold and silver standards) as well as several measures to
quantify the algorithms’ quality.

(3) Test Data Generation. We discuss methods to generate
labeled test data and compare them with regard to salient
properties, such as correctness, domain independence,
and scalability. Moreover, we present a study on popular
test datasets and give an overview of existing tools for
automatic test data generation.

(4) Data Profiling. We discuss how metadata shall influence
test data generation of arbitrary domains. We give an
overview of several data profiling algorithms to discover
such metadata to ultimately assist in producing realistic
test data.

(5) Open Challenges. Finally, we propose a set of require-
ments for test data generation tools, evaluate existing
tools based on these requirements, and discuss open
problems based on the results of this evaluation.
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Fig. 1. The five steps of a typical duplicate detection pipeline based on pairwise record comparisons

III. GOALS AND OBJECTIVES

This section provides details about the tutorial parts.

A. Duplicate Detection

We introduce our audience to the topic of duplicate detec-
tion in four steps. First, we motivate its use through some real
life use cases. Second, we describe the problem of detecting
duplicates formally. Thereafter, we briefly discuss different
application contexts, such as integration, cleaning and linkage,
in which the detection of duplicates is relevant and highlight
their differences. Finally, we present the different steps of a
typical duplicate detection pipeline (see Figure 1) and briefly
sketch some popular algorithms that are used to execute them.

The first step, data preparation, standardizes, cleans and en-
hances data with additional meta information [14]. The second
step generates candidates with the aim to reduce the quadratic
search space by using simple and efficient mechanisms to pair
only those records that are potential duplicates [15], [16]. In
the third step, the records of each of these candidate pairs are
compared at the attribute level by using similarity (or distance)
measures, such as Levenshtein, Jaro-Winkler, Monge-Elkan, or
Jaccard [6], [11], or learned similarity models. Based on these
attribute similarities, a decision model decides in the fourth
step whether two compared records are duplicates (Match)
or not (Unmatch). For this purpose, a variety of methods
can be used ranging from simple distance-based models to
automatically learned models (supervised and unsupervised)
[6], [13], [17], [18]. The final step is a clustering [19], [20] that
uses the pairwise duplicate decisions to compute a globally
consistent result, i.e., one that satisfies transitivity.

B. Quality Evaluation

We start the second part by motivating the necessity for eval-
uating duplicate detection algorithms in research and practice.
This can be to investigate the behavior of newly developed
algorithms, but also to identify and tune an adequate setting
(i.e., selection of a suitable algorithm as well as the setting of
its parameters) for a particular use case. Moreover, datasets
with labeled duplicates are required as training data if a
supervised machine learning algorithm should be used in any
step of the duplicate detection pipeline (e.g., a support-vector
machine in the decision model).

Thereafter, we specify the composition of a suitable test
dataset that depends on the application context under con-
sideration. Moreover, we discuss different ways to model

information on true duplicates within test datasets, especially
when they are not fully known or not known with certainty.
Here, we distinguish gold and silver standards [21].

Finally, we present several measures that have been used to
quantify the quality of a duplicate detection process [22]–[25].
These measures ranges from well-known pairwise measures,
such as recall, precision and F1-score, to less known pairwise
measures, such as the H-measure [26], to measures comparing
entire clusterings, such as the closest cluster F1-score [22],
the variation of information [27], or the generalized merge
distance [22]. In this discussion, we illustrate how much these
measures can differ in their understanding of quality [28].

C. Test Data Generation

In this main part of the tutorial, we describe and compare
several methods for generating test data. Moreover, we present
a study on popular test datasets, such as CDDB, Cora, the
Fodor’s and Zagat’s restaurant1, or the Magellan datasets2, and
give an overview on existing test data generators.

Generation Approaches. Basically, labeled test data for dupli-
cate detection can be generated in five ways:

(i) by manually labeling duplicates in an existing unclean
dataset (with the optional help of some duplicate detec-
tion tools),

(ii) by running several duplicate detection algorithms on an
existing unclean dataset in order to create a silver or
annealing standard,

(iii) by integrating several duplicate-free data sources based
on an error-free global identifier (e.g., the ISBN or SSN),

(iv) by synthesizing a complete dataset (including duplicates)
from scratch, or

(v) by polluting an existing clean dataset with duplicates,
errors and inhomogeneities.

Each of these approaches have their benefits and drawbacks,
which we discuss and compare. For example, one problem
with manually labeled datasets is that such a labeling process
is expensive and can be applied only to small datasets.

Current Test Datasets. We give an overview of the evaluation
of duplicate detection algorithms in more than 50 contributions
from top journals and conferences and point out open problems
in these evaluations. These include the limitations of existing

1Compiled at http://hpi.de/naumann/projects/repeatability/datasets
2https://sites.google.com/site/anhaidgroup/useful-stuff/data
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Fig. 2. Example of modifications on schema and instance level performed by data pollution processes

test datasets, but also the unsatisfactory or even missing
documentation of their creation and use.
Error Types and Generation. In both data synthetization and
data pollution, errors are created artificially, leading to the
problem that the resulting errors and error patterns may be less
realistic than those of a real unclean dataset. It is therefore
necessary that as many error types (e.g., syntactic, but also
semantic and phonetic) as possible are covered and that their
selection can be domain and case-specific. In this part, we give
a brief overview on potential error types [3], [29] and what
information (context or auxiliary) we need to apply them.
Existing Test Data Generators. Because the manual generation
of individual test datasets can be time-consuming, it makes
sense to use automated approaches. We present and discuss
several test data generators, distinguishing between data syn-
thetization tools, such as DBGen [30] and Febrl [29], and
data pollution tools, such as TDGen [31], GeCo [32], and
DaPo [33]. We also take into account other test data generation
tools whose topics are closely related to duplicate detection,
such as BART [34] and iBench [35].

D. Data Profiling

In data pollution systems the input data can be changed
in two basic ways (see Figure 2). First, the schema (and
sometimes even the data model) may be modified, e.g.,
by splitting/merging attributes or normalizing tables, which
includes a migration of the instance data from the old to
the new schema. Second, duplicates, errors and heterogeneity
are injected into the transformed instance data. Both changes
must be as realistic as possible: simple error injection rules
are in turn easy to overcome by duplicate detection systems,
invalidating their evaluation. In particular, considering cross-
attribute properties, such as data dependencies, can yield data
that is more aligned with real-world situations. To collect such
meta information, data profiling [36] plays an important role in
the pollution process. The same applies when synthesizing data
based on the properties of a real-life dataset (e.g., to preserve
its confidentiality).
Collecting Metadata. To determine realistic errors (e.g., out-
liers) for the individual attributes or combination of attributes,
metadata about these attributes are needed. These include basic
statistics, such as the minimum, maximum, average, variance
and entropy of numerical attributes, and the length, number of

tokens, token lengths and number of occurrences of individual
characters or tokens for non-numerical attributes, as well as
histograms [37] modeling their distributions.

But it also includes constraints and dependencies, such
as unique constraints, inclusion dependencies and functional
dependencies [38], which help to understand, prepare and
clean the input data, or vice versa to pollute it appropriately.
These metadata can be exact (i.e., they apply unconditionally),
approximate (i.e., they apply to most but not all records)
or conditional (i.e., they apply to only a specific subset of
all data). Knowledge of constraints helps to choose suitable
error types, such as a violation of an inclusion dependency,
during the pollution process. For example, BART is a test
data generator that focuses on the injection of errors violating
a predefined set of functional dependencies [34].
Data Types and Domains. Often, the input data do not provide
any information on data types or the provided types are
unspecific (e.g., ZIP codes are not typed as five-digit numbers,
but as integers or strings). One major task of data profiling is,
therefore, to identify the actual data types of the individual
attributes by analyzing the structure of the given instance
data. Based on these types, semantic domains, such as book
titles, personal names, or postal addresses, can be assigned to
the attributes. The acquisition of such information allows the
domain-specific selection of suitable error types.
Temporal Metadata. With increasing velocity, outdated data
become a major quality issue [39]. However, to simulate
outdated values realistically, we need to know:

• when, how often, and how a value changes,
• which intra-record (e.g., phone landline number ↔ res-

idence) and inter-record (e.g., residence of family mem-
bers) dependencies exist, and

• which integrity constraints are not allowed to be violated
at any point in time.

Such statistics and dependencies can be learned only from a
historical/temporal database or a data history.

E. Open Challenges

In the last part of the tutorial we evaluate existing ap-
proaches to automatic test data generation and derive a number
of open challenges from the results of this evaluation. We
start with presenting a set of requirements that are essential
for test data generation tools [33]. This includes (i) scalability,
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(ii) domain independence, (iii) realistic data values & patterns,
(iv) realistic & variable error patterns, (v) a simple but
adaptable configuration, and (vi) representation diversity (e.g.,
the tool should be able to produce data of different models).

Thereafter, we compare the different test data generators
of Section III-C based on these requirements and highlight
several common deficits. Finally, we summarize the current
status of duplicate detection evaluation and test data generation
and briefly discuss the open challenges we have identified in
the course of this tutorial.
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