
LARGE-SCALE TRAFFIC SIMULATION FOR SMART CITY PLANNING WITH MARS

Julius Weyl
Ulfia A. Lenfers
Thomas Clemen

Hamburg University of Applied Sciences
Department of Computer Science

Berliner Tor 7
20099 Hamburg, Germany

{julius.weyl, ulfia.lenfers, thomas.clemen}
@haw-hamburg.de

Daniel Glake
Fabian Panse
Norbert Ritter

University of Hamburg
Department of Informatics

Vogt-Kölln-Straße 30
22527 Hamburg, Germany
{daniel.glake, panse, ritter}

@informatik.uni-hamburg.de

SummerSim-MSaaS, 2019 July 22-24, Berlin, Germany; c©2019 Society for Modeling & Simulation International (SCS)

ABSTRACT

Understanding individual mobility in larger cities is an important success factor for future smart cities. Re-
lated simulation scenarios incorporate enormous numbers of agents, with the disadvantage of long run times.
In order to provide large-scale and multimodal traffic simulations, we developed MARS V3. Adapting the
Modeling and Simulation as a Service (MSaaS) paradigm, a seamless workflow can be provided to the
modeling community. An integrated domain-specific language allows model descriptions without a tech-
nical overhead. For this study, selected parts of an individual-based traffic model of the City of Hamburg,
Germany, were taken as an example. The entire workflow from model development, open data integration,
simulation, and result analysis will be described and evaluated. Performance was measured for local and
cloud-based simulation execution for up to one million agents. First results show that this concept can be
utilized for building decision support systems for smart cities in the near future.
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1 INTRODUCTION

Individual mobility needs and demands are key issues in order to understand and manage traffic in larger
cities (Grignard et al. 2018). Simulation plays a major role in solving transportation related issues in order to
test planning and management scenarios before applying them to the real system (Bazzan and Klügl 2013).
However, the vast amount of entities involved in daily traffic, e.g. humans, cars, buses especially requires
new perspectives towards agent-based modeling and simulation (Waldrop 2018).

By applying the agent-based paradigm to the field of traffic simulations, a high levels of detail, i.e. micro-
scopic simulations, can be achieved. This, in contrast to macroscopic simulations, allows us to gain insights
about the non-linear dynamics of a traffic system itself (Schadschneider 2004).

Even though these types of simulations have different fields of applications, the detailed, microscopic ones
have only been used in small scale scenarios while macroscopic simulations could cover large spatial ex-
tends. In the past, this has been a necessity due to scarce computational resources either through missing
computation power, e.g. CPU and memory restrictions, or insufficient disk space to store extensive amounts
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of result data. With powerful laptop computers and virtualization solutions available, this distinction is now
fading, so that even large scenarios can be executed on a microscopic level of detail (Foytik et al. 2017;
Weyl et al. 2018; Ramamohanarao et al. 2017). As a consequence, the complexity and extent of model
descriptions and scenarios require a stronger research focus to the model definition process (Grignard et al.
2018).

We propose a seamless modeling and simulation workflow based on the MARS framework (Weyl et al.
2018). As an example, up to one million of individual car agents were were placed into the road network
of the City of Hamburg, Germany. Experiments with varying numbers of agents were conducted in order
to identify a threshold for moving from local simulation execution to a cloud-based one. The next section
briefly presents the context of this work. Section 3 introduces into the MARS framework, whereas section
4 describes the overall workflow in detail. Section 5 and 6 present the experiments and their results. A
discussion and a conclusion part finalize this paper.

2 RELATED WORK

Traffic simulation models can be classified based on their scale (Tchappi Haman et al. 2017). This includes
both the covered spatial extent of the simulation as well as the level of detail. Microscopic simulations
offer fine-grained insights because they include individual traffic participants like cars, pedestrians, bikes,
and buses. In the field of microscopic modelling the agent-based approach remains the most popular one
(Grignard et al. 2018, Kesting et al. 2008). Their biggest downside is the heavy resource requirements since
the behavior of each entity has to be computed. Using the modeling and simulation as a service paradigm
(MSaaS), this resource scarcity and missing analytical features can be mitigated by exploiting the features
and elasticity of cloud computing. A public reference architecture are already proposed by (Hannay and
van den Berg 2017), where besides necessary requirements, the system is separated by multiple top-level
capabilities in a service oriented fashion. These cover aspects around missions and operations, operational
capabilities, user facing capabilities as well as backend capabilities, each of them with further refinements.
An outline by (Siegfried et al. 2014) goes one step further and concludes the decision from a more technical
and orchestration perspective as well as propose also a set of requirements tackling the simulation execution
in the near future.

Complementary to the detailed way of looking at things through microscopic simulations is the macroscopic
approach. This type of simulations uses differential equations to depict the traffic as fluids or gases, thereby
describing the flow of traffic (Schadschneider 2004). Using different levels of detail leads to distinct areas of
application. Microscopic simulations traditionally have been used to examine limited spatial extends while
macroscopic models were applied to large scenarios. Through the continued advances in computational
power over the last decades, this clear distinction is melting away. While simulating districts, cities or coun-
tries was only possible through macroscopic simulations, the newly available resource abundance through
cloud computing allows for a high level of detail even at these scales.

Agents and their definition of being autonomous entities, acting based on perceptions of their environment
are the perfect templates to depict traffic participants. As before with the microscopic traffic simulations,
most agent frameworks deal with scalability problems (Pawlaszczyk and Strassburger 2009). This either
limits the number of agents that the frameworks can handle, the execution time for the simulation itself
or the result data the framework is capable of producing. Another topic for traffic simulations is the data
utilized for initialization purposes. For multi-agent systems with spatial relatedness, using of GIS data is
considered of paramount importance (Dallmeyer et al. 2011). Not all frameworks allow to use this kind of
data though.

New to this field is also the trend of ’OpenData’ that is available to the public. Prominent examples where
this kind of data has been used in traffic simulations are (Mcardle et al. 2014; Kickhöfer et al. 2016; Ziemke
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and Nagel 2017; Ramamohanarao et al. 2017). In the case of (Ziemke and Nagel 2017), OpenStreetMap
data was used to depict the streets of Berlin. A large variety of projects that deal with traffic simulation were
described in literature, e.g. (Foytik et al. 2017), Matsim (Balmer et al. 2008), Transim (Strano et al. 2013)
and Sumo (Krajzewicz et al. 2012) are prominent frameworks that have been used in the past (Bieker-Walz
et al. 2015, Fernandes et al. 2013).

3 MARS FRAMEWORK AND TRAFFIC MODEL

The Multi-Agent Research and Simulation framework (MARS) provides an ecosystem for developing multi-
agent simulations based on the Modeling and Simulation as a Service paradigm (Hüning et al. 2016, Parker
and Epstein 2011). End users can create their own simulations in a variety of ways and then execute them
directly on their machine or in the dedicated MARS cloud. The MARS system is a cloud-native framework
that allows models to use the available server hardware, thereby scaling up the simulations. Results from
simulations can be persisted to databases and files which allows for a wide variety of analysis including
3D visualization and visual analytics. After completing the third version of the framework (LIFE v3) we
are now presenting the new capabilities by showcasing the workflow from creating a model all the way to
running large-scale simulations.

The model used throughout this process is a microscopic simulation of Hamburgs street traffic. Agents
in this model are cars which drive through the city. Each car-agent has individual driving parameters for
acceleration, deceleration and top speed. A car-following model (Intelligent Driver Model) is used to give
the agents a realistic driving behavior (Treiber et al. 2000). If the agent has enough space up front to drive,
they do so while dynamically accelerating in every simulation step until they reach their top speed. If other
road users get in the way, they adapt their speed so that they don’t collide. In front of crossings the agents
slow down, choose a random adjacent road and continue driving. In the beginning of the simulation, the
agents are instantiated at randomly chosen intersection throughout the city. How such a model is build will
be covered in the next section that describes the typical workflow.

4 WORKFLOW

Our approach to model creation and simulation execution consists of four basic steps as shown in figure 1. In
the beginning of the model creation process, everything is being developed locally and probed under certain
conditions, equivalent to the software development test-stage of checking for syntactic and semantic errors.
Necessary for this step is a data preparation process that includes setting up the simulation parameters and
adding the required input data like for example GIS files. If small-scale executions with an reduced amount
of agents or a restricted spatial extend produce the expected results without throwing errors, the next step
can be taken. This is the switch to running large-scale simulations where our approach enables the modeller
to bundle the model and scenarios as one simulation unit which is then executed in the automatically pro-
visioned cloud environment. The model then harvests the available resources of the cloud environment and
persists all results into a appropriate data store (Hüning et al. 2016).

4.1 Model Development

Model development can be done in two ways, either through programming in C# or by using the MARS
domain specific language (MARS-DSL). In both ways, the first step of the workflow is to build a conceptual
model that clarifies the considered research question. This abstract form, usually a written description, is
then translated into a well-structured and machine-readable MARS-DSL model. In that, the agent and layer
entity types are created and fitted with individual attributes and data types. Alternatively it is possible to use
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Figure 1: MARS V3 Workflow describing the modeling, execution and analysis phase.

an existing model from the core-library which equips the modeller with a set of useful modeling tools, i.e.
an SI-unit converter-system or simple math calculation functionalities.

0 model SimpleRescueModel
1 l a y e r RoadLayer
2
3 agent P e d e s t r i a n on RoadLayer {
4 e x t e r n a l observe var N e x t P o s i t i o n : Tuple < rea l , rea l >
5 e x t e r n a l var Unconsc ious : bool
6 e x t e r n a l v a l I n d i v i d u a l W a l k V e l o c i t y : r e a l
7 //...
8 def F a s t ( ) =>
9 i f ( Gender == GenderType . Male )

10 re turn C o n s t a n t s . M a l e V e l o c i t y∗Time . D e l t a
11 e l s e re turn C o n s t a n t s . F e m a l e V e l o c i t y∗Time . D e l t a
12 }

Listing 1: Example type definition with input
and output parameters.

0 N e x t P e d e s t r i a n := n e a r e s t P e d e s t r i a n
1 where [ he => re turn he . I s U n c o n s c i o u s ]
2 v a l pos = #( xcor , ycor )
3 i f ( Math . D i s t a n c e ( pos , N e x t P e d e s t r i a n . P o s i t i o n ) < 1)
4 N e x t P e d e s t r i a n . Help
5 e l s e move me F a s t to N e x t P e d e s t r i a n
6
7 //...

Listing 2: Example expression language for
agent query and movement.

The MARS-DSL is a full featured external language, including concepts of individual based modeling for
Multi-Agent systems. Modelers use agent-specific modeling paradigms when defining the agent behaviour
based on the widely accepted sense-reason-act pattern. The conceptual model with its identified agent
types, involved attributes and simulation environment, including spatial (i.e. satellite image) or temporal
(i.e. time-series) data can directly be integrated in the description. With focus on the agent logic and their
interaction, the language provides a set of expressions for handling exploration of the environment as well as
various movement actions. A similar and more established general purpose language is SARL (Rodriguez
et al. 2014), which besides the agent type itself also considers a multi-level holonic decomposition, where
one agent is a sub part of another. For general purpose systems the SARL Language is recommended but
for the case of individual-based simulation models, this language is not as tailored to the domain as the
MARS-DSL. When it comes to performing complex agent movements, querying other entities and working
with spatial and temporal data, the MARS-DSL provides a more suitable modelling environment.
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Besides these describing elements, the language comes with a type-system to infer non-explicit defined types
from each point in the model and which is used within the subsequently ahead-of-time (AOT) compilation
process. A more detailed introduction of this process has already been given in (Glake et al. 2017). An
example type definition with the MARS-DSL is shown in Listing 4.1, where a simple agent type can be
defined by creating an instance of the agent-meta type and an assignment on which layer environment
this instance shall live. Furthermore the agent input and output parameters can be defined similar to field
definitions of regular object-oriented languages. A short example of the proposed expressions is shown in
listing 4.1, where adapting the individual-based approach, the agent itself makes simple nearest query for
another agent-type.

The language tries to bridge the gap between the high complex programming concepts of existing run-time
languages, like C#, Java, Python or C/C++ and the well understood agent modeling paradigm, extended
with concepts to query spatial and temporal data from layer data source. The AOT compilation step involves
this through using a tree-transformation to generate coarse-grained code snippets, which are then combined
into a cross-platform code block. Later these blocks are compiled into platform specific byte code for an
optimized local or cloud execution.

4.2 Data Preparation

The second step in the workflow is the description of the desired scenario and input data that should be
used to initialize the model. For data collection purposes we have developed an OpenData discovery and
integration tool which uses the public OData endpoints as well as public OWS services, to query and trans-
form publicly available raster and vector files into MARS compliant input. Instead of proprietary formats,
open industry standards like (GeoTiff, ASCII Grid, simple Bitmaps and GDAL supported formats) are being
used.

To start a simulation, a model and respective scenario is needed. Therefore, the modeller can specify an own
scenario description within MARS-DSL, slightly decoupled from the model description and only holding
references by the conceptual model and respecting type name. The description is concrete directly writable
JSON or YAML document and control the global configuration for the simulating time resolution, i.e. x
steps or 1 seconds for the traffic model and the time interval as real-time or an amount of steps to simulate.

4.3 Model Execution

After the model has been prepared, the simulation runtime executes the model according to the given sce-
nario description. Each of the input files is collected and the containing data assigned to the respective layer
or agent instance. From the technical perspective, the agents get mapped to corresponding initialization file
entries and are then created. Each table T is then associated with an equivalent agent model type A. External
and thus required attributes of A are mapped by exactly one column of the input table. If no input file is
available, also a constant attribute value can be specified, which is then valid for all instances of the type. If
there are no external attributes defined, this step is skipped. The mapping only includes value-types and not
reference-types, so that e.g. interaction references between agent entities need to be resolved in the model
itself or by another intermediate step.

A local execution will be performed concurrently on one or multiple processors. Each of them executes
the actual simulation tick for each agent. Internal, the tick is projected to the logical simulation step for
the specified ∆t or the corresponding real time e.g. 2019.01.01 12:05:01, calculated by the start-time point
within the scenario. These configuration are necessary for models with unit subjected equations, such as
velocity calculations. Within one simulation step, the agent follows his internal logic of operators and
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statements, as described in 4.1 section. For traffic simulations these operators are mapped to a so called
Spatial Graph Environment (SGE) (Weyl et al. 2018), which is an in-memory graph data structure to depict
road system. Besides well-known graph algorithms, it comprises high-frequency movement and explore
semantics for other containing entities, i.e. agents exploring the environment or moving along a road.
Internally the SGE uses an index-based query for each operator to get predecessors and successors, to query
entities in front or behind or to perform collision tests between entities, by checking overlapping lines. These
queries are lane-precise, so that merges and branches of lanes are considered in the query execution.

At the end of each simulation step, a snapshot of the current state gets persisted either into a database or to
a set of spreadsheet CSV files. It is possible to specify which attributes of the agents are relevant for the
own research question and therefore should be persisted through the model description. Once the execution
finished, the modeller can use tools like R, Python etc. analyse the results. Each agent key-frame kmi stands
for one agent m at tick i, representing one data row in the output table or a document/message in the cloud
deployment. This keyframe is associated with the current agent position pi for the tick i and optional the
corresponding realtime projection r(i) as well as a set of recorded primitive agent attributes {a1i, ...,ani},
specified by MARS-DSL or the scenario.

When the amount of agents, the spatial extent of the considered environment or the internal logic needs to
increase and be more complex, able to profit from emergent effects or other heavy-weight scenarios, i.e.
resulting traffic-jams for huge events, or the modelling of incoming and outbound traffic flow of the city,
a more suitable environment is needed. On the one hand obviously, the model execution performs better
through vertical CPU and Memory scalability, proposed by the cloud infrastructure. On the other hand this
also profits from the massive multi-tenant storage infrastructure, taking place to get each individual result
and layer output of all ticks be persisted and available for subsequently or later data analytic tasks. Due to
this identified problems we established an automatic cloud deployment pipeline, where the locally specified
scenario and first model probes can directly be deployed into this environment. The logical deployment
view is shown in figure 2.

The deployment components used during the modeling phase are the Modeling and Decision Support Tool
(MDSS), as well as the MARS runtime, running already locally on the scientists’s machine. The MARS
Runner Service (MRS), the WebAnalytics Board (WA), the WebGL Visualization (WGLV), the the Messag-
ing system (MS) and database layer running in a Cloud environment. All components are active throughout
all life cycle phases and the scientist develops his model using the MARS-DSL within the MDSS tool.
During the cloud model execution he can monitor the running simulation instances and in contrast to the
established business workflow domains in the eScience workflow domain there is typically only one role
responsible for the modeling, deployment and execution of a simulation or application. Therefore, just like
in many eScience systems, we integrated the modeling, deployment and monitoring functionalities in one
tool (Sonntag and Karastoyanova 2010). The WA and the WGLV provide realtime results of running and
already finished simulation executions.

The MRS endpoint is the basic piece of the cloud interface needed to provision the cloud execution mid-
dleware. Instead of provisioning the whole execution middleware in one step, we follow a two-step boot-
strapping process. In the first step (step 1), the MRS creates a job descriptor which contains information
about the run. These are information’s about the sim-run name, the user (tenant) triggering this deployment
and a retry counter which can be used together with a start time, to build this deployment as a batch-job.
Before applying this specification, the MRS takes the input model and scenario configuration, package them
together into one container image and persist them into a container registry. In the second step (step 2), the
MRS applies the job descriptor loads the packaged image from the registry and schedules the such called
sim-container to exactly one cluster node. The sim-container can now be accessed via the specified name.
At this point the MARS runtime, which was also used during the local development, assumes the remaining
responsibility.
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Figure 2: MARS V3 Cloud deployment view.

Instead of writing the keyframes into entity-type separated CSV files, the runtime now uses the underlying
storage engine. Each database node is already deployed or will be provisioned by the cluster and associated
with their persistent volumes. This contains the underlying durable file-system and database files what is
managed by a distributed Ceph file system (Weil et al. 2006). The database service schedules the queries
with an integrated load balancer. In addition to the regular output, each update will be pushed into the
Messaging system what informs each registered WA or WGLV participant. This decoupling facilitates it to
integrate other services as well.

After all, finished simulations will be marked as completed and also running simulations can be stopped
by the MRS endpoint by simply forwarding a stop message to the internal MARS runtime in the sim-
container. The simulation loop will be interrupted, remaining results will be persisted and all acquired
resources released.

5 EXPERIMENTS

The multi-agent traffic model was executed at multiple scales to assess the limits of local execution and to
find out when it is advisable to switch to simulating in the cloud. Results from performing the experiments
are presented in the next section while the classification takes place in the DISCUSSION section. Setting
for the simulations was Altona, one of the biggest districts of Hamburg. It is located in the cities west and
spans an area of 77.5 km2 with the total road length equating to 545.884 km. The graph that represents this
part of town is comprised of 16.743 nodes and 43.825 edges. During the experiments, different amounts
of agents were simulated until the local execution-time exceeded reasonable limits. This limit is reached
once 1 simulated second takes longer than 1 second in real time. To compensate for varying tick durations,
this requirement was changed so that the simulation of 1h of traffic mustn’t exceed 1h in real time. The
simulation scenario was run with 103,104,105, and 106 car agents. All simulation series were deployed
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locally and in the cloud environment. The results from multiple runs were noted and averaged afterwards.
Simulation time was one hour with a ∆T = 1 sec., i. e. 3600 ticks per run.

The experiments were conducted using two different hardware configurations. The computer used for local
execution is a MacBook Pro (late 2016) with a quad core 2,6GHz Intel Core i7 processor, 16 Gigabyte of
memory and 512Gb of SSD storage. At the time of performing the experiments, macOS 10.14.3 Mojave
was installed. The simulations carried out in the cloud environment were run on SuperMicro SuperServer
6029TP-HTR TwinPro2 machines and Mac Pro’s from the end of 2013. Former are configured with two 10
core Intel Xeon Gold 5115 processors per node, running at 2,4GHz, 192GB memory and a SSD with 1,6T B.
The latter have a 3,5GHz Intel Xeon 6 core processor, 64GB of memory and 200GB of disk space available.
For all cloud machines Core OS is being used as operating system on top of which a Kubernetes cluster is
running, orchestrating the simulation pods and equally distributing them to the machines, described above.
All simulations in the cloud are executed inside Docker containers that use the Dotnet 2.1 runtime as base.

6 RESULTS

Table 1 shows the results from the local and cloud simulating runs. All simulations were executed four
times and the average running-time was calculated. The first group of experiments with 103 agents took,
on average, 43.5s locally and 37.61s in the cloud which gives a ratio of 0.86. Simulating 104 agents took
8m.54s on the laptop and 8m.1s in the cloud, resulting in a 0.9 ratio. Experiment group number three with
105 agents took 1h,22m,14s locally and 1h,12m,59s in the cloud (ratio of 0.89). The last simulations with
1 million car-agents took 12h,20m,29s on the laptop and 10h,57m,26s in the cloud which results in a ratio
of 0.88.

Figure 3 shows the plots of average run-time measurements from tick 0 to 3600, grouped by an interval of
10 ticks. For each time line it shows fluctuations in the local execution, emphasize with measured peaks
between tick 1400 and 2500 for 103 and 104 agents as well as an initialization overhead only for the 103

scenario at tick 0. The increasing deviation of the local- to the cloud time shows a benefit of up to 14%.
This starts to throttle when it comes to run scenarios with 107 agents, where the deflection has the maximum
at tick 2240 with an average difference of 1854 milliseconds. This benefits shrinks to 1208 milliseconds for
105.

Table 1: Running times for simulations in the cloud and locally with different amounts of agents.

Amount of agents avg local sim duration avg cloud sim duration ratio
1000 43.5s 37.61 0.86
10000 533.75s 480.89s 0.9

100000 4934.42s 4379.49s 0.88
1000000 44429.82s 39446.76s 0.88

7 DISCUSSION

The difference in running time between local simulation and execution times in the cloud environment is up
to 14% for the used traffic model. Throughout the range of simulation with 1000 agents to 1 million agents,
the ratio varies between 10% and 14%. For large runs with 1 million agents this saves up to 1h and 23m of
time when compared to the local execution. This was to simulate one hour of traffic.

Technically, the two ways of executing the simulation are not fully comparable. However, by this study we
wanted to analyze whether the naive approach of deploying the execution engine onto the Kubernetes cloud
would bring any advantages.
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Figure 3: Comparison of local and cloud based execution for different agent amounts.

For small-scale settings, the local development process is feasible up to scenarios with 10.000 - 50.000
agents. Once over this threshold, the total simulation duration exceeds the simulated time. For example the
simulations with 100.000 agents took 1 hour and 22 minutes on average while simulating one hour of traffic.
Predictive scenarios where the simulation has to run fast enough to depict future conditions aren’t possible
anymore at that scale. Even though the execution times in the cloud were shorter, they only allow to cut
down the running time by up to 10 percent.

Simulations of 1 million agents are not advisable on personal computers. Since running times exceed one
day, the batch processing in the cloud offers more convenience. Even if the simulation takes multiple weeks,
the process can be left running in the cloud where long running times don’t interfere. Not using the own
personal computer for a week is just not feasible. In context of larger amounts of agents the cloud-based
execution also benefits from the underlying data-management. The fluctuations over time indicate that the
system is busy with rescheduling of concurrent processes and their management of data-frames. While this
overhead is noticeable in run with lower amount of agents, the run-time deviation can be neglected in larger
scenarios.
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8 CONCLUSION

MARS V3 is an agent-based modeling and simulation framework that provides planning and decision-
support capabilities to city planners and political stakeholders on a massive scale. This study compares
performance measures of a local execution with a cloud deployment in order to develop recommendations
for its usage. Additionally, we presented a comprehensive workflow from model development to the analysis
of results.

The performance results indicated that with the presented twofold architecture it is plausible to develop very
complex models locally, moving to a cloud-based execution afterwards when it comes to serious scenarios
and that require persisting large simulation results for a later analysis.

However, the current architecture uses a single-node execution principle to run the equivalent scenarios
and models from the same perspective and just scales the run-time vertically, but also getting benefits from
persisting the result into the target databases. In terms of the local, single-node testing environment the
boundary of limited amounts of processors still needs to be overcome i.e. by integrating GPU-based pro-
cessing in manifold ways. This can be done by for specific accelerations of environment move and explore
tasks. In cases of the cloud-based execution the run-time reduction will benefit from a horizontal scalability
of the SGE graph, what is still a hard problem in terms of graph-databases.

Future work includes enhancing the model by multi-modal transport features and adaptive human behavior.
Furthermore, the simulation results will be validated by field data obtained through public authorities and
public transport organizations. Additionally, the presented approach will also be adapted to other cities.

ACKNOWLEDGMENTS

This study was partly funded by the ahoi.digital initiative, City of Hamburg, Germany (SmartOpenHamburg
project).

REFERENCES

Balmer, M., K. Meister, M. Rieser, K. Nagel, and K. W. Axhausen. 2008. “Agent-based simulation of travel
demand Structure and computational performance of MATSim-T”. In 2nd Conference on Innovations
in Travel Modeling. Portland.

Bazzan, A. L., and F. Klügl. 2013. “A review on agent-based technology for traffic and transportation”.
Knowledge Engineering Review (29), pp. 375–43.

Bieker-Walz, L., D. Krajzewicz, A. Morra, C. Michelacci, and F. Cartolano. 2015. “Traffic Simulation for
All: A Real World Traffic Scenario from the City of Bologna”. Lecture Notes in Control and Information
Sciences vol. 13, pp. 47–60.

Dallmeyer, J., A. D. Lattner, and I. J. Timm. 2011. “From GIS to Mixed Traffic Simulation in Urban Sce-
narios”. Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, pp.
134–143.

Fernandes, R., F. Vieira, and M. Ferreira. 2013. “Parallel Microscopic Simulation of Metropolitan-scale
Traffic”. In Proceedings of the 46th Annual Simulation Symposium, ANSS 13, pp. 10:1–10:8. San Diego,
CA, USA, Society for Computer Simulation International.

Foytik, P., C. Jordan, and R. M. Robinson. 2017. “Exploring Simulation Based Dynamic Traffic Assign-
ment With A Large-Scale Microscopic Traffic Simulation Model”. In ANSS ’17 Proceedings of the 50th
Annual Simulation Symposium. Virginia Beach, USA.



Weyl, Glake, Lenfers, Panse, Ritter, and Clemen

Glake, D., J. Weyl, C. Dohmen, C. Hüning, and T. Clemen. 2017. “Modeling through model transformation
with MARS 2.0”. In Proceedings of the Agent-Directed Simulation Symposium, pp. 2. Society for
Computer Simulation International.

Grignard, A., L. Alonso, P. Taillandier, B. Gaudou, T. Nguyen-Huu, W. Gruel, and K. Larson. 2018. “The
Impact of New Mobility Modes on a City: A Generic Approach Using ABM.”. In Unifying Themes in
Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity., edited by A. Morales, C. Ger-
shenson, D. Braha, A. Minai, and B.-Y. Y., Springer, Cham.

Hannay, J. E., and T. van den Berg. 2017. “The NATO MSG-136 reference architecture for M&S as a
service”. M&S Technologies and Standards for Enabling Alliance Interoperability and Pervasive M&S
Applications (STO-MPMSG-149), Lisbon, pp. 20–21.

Hüning, C., M. Adebahr, T. Thiel-Clemen, J. Dalski, U. A. Lenfers, L. Grundmann, J. Dybulla, and G. A.
Kiker. 2016. “Modeling & Simulation as a Service with the Massive Multi-Agent System MARS”. ADS
’16, pp. 8. San Diego, CA, USA, Proceedings of the 2016 Spring Simulation Multiconference.

Kesting, A., M. Treiber, and D. Helbing. 2008. “Agents for Traffic Simulation”. Multi-Agent Systems: Sim-
ulation and Applications, pp. 325–356.

Krajzewicz, D., J. Erdmann, M. Behrisch, and Bieker Laura. 2012. “Recent Development and Applica-
tions of SUMO - Simulation of Urban MObility”. International Journal On Advances in Systems and
Measurements.

Parker, J., and J. M. Epstein. 2011. “A Distributed Platform for Global-Scale Agent-Based Models of Disease
Transmission”. ACM Trans. Model. Comput. Simul. vol. 22 (1), pp. 2:1–2:25.

Pawlaszczyk, D., and S. Strassburger. 2009. “Scalability in Distributed Simulations of Agent-Based Mod-
els”. In Proceedings of the 2009 Winter Simulation Conference, edited by M. Rossetti, R. Hill, A. D.
Johansson, and R. Ingalls.

Rodriguez, S., N. Gaud, and S. Galland. 2014. “SARL: a general-purpose agent-oriented programming
language”. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and In-
telligent Agent Technologies (IAT), Volume 3, pp. 103–110. IEEE.

Schadschneider, A. 2004. “Physik des Straßenverkehrs”. Institute for Theoretical Physics University of
Cologne.

Siegfried, R., A. Diehl, S. Y. Diallo, M. Bertschik, G. Herrmann, and M. Rother. 2014. “Outline of a
Service-Based Reference Architecture for Effective and Efficient Use of Modelling and Simulation”.
NATO Modelling & Simulation Group (NMSG) Multi-Workshop, Paper 18, Washington D.C., USA.

Sonntag, M., and D. Karastoyanova. 2010. “Next generation interactive scientific experimenting based on
the workflow technology”. In Proceedings of the 21st IASTED International Conference on Modelling
and Simulation (MS 2010).

Strano, E., M. Viana, L. da Fontoura Costa, A. Cardillo, S. Porta, and V. Latora. 2013. “Urban street net-
works, a comparative analysis of ten European cities”. Environment and Planning B: Planning and
Design vol. 40 (6), pp. 1071–1086.

Tchappi Haman, I., V. C. Kamla, S. Galland, and J. C. Kamgang. 2017. “Towards an Multilevel Agent-based
Model for Traffic Simulation”. Procedia Computer Science vol. 109, pp. 887–892.

Treiber, M., A. Hennecke, and D. Helbing. 2000. “Congested Traffic States in Empirical Observations and
Microscopic Simulations”. Physical Review E 62.

Waldrop, M. M. 2018. “Free agents”. Science vol. 360 (6385), pp. 144–147.



Weyl, Glake, Lenfers, Panse, Ritter, and Clemen

Weil, S. A., S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn. 2006. “Ceph: A scalable, high-
performance distributed file system”. In Proceedings of the 7th symposium on Operating systems design
and implementation, pp. 307–320. USENIX Association.

Weyl, J., D. Glake, and T. Clemen. 2018. “Agent-based Traffic Simulation at City Scale with MARS”. In
Proceedings of the Agent-Directed Simulation Symposium, ADS ’18, pp. 2:1–2:9. San Diego, CA, USA,
Society for Computer Simulation International.

Ziemke, D., and K. Nagel. 2017. “Development of a fully synthetic and open scenario for agent-based
transport simulations – The MATSim Open Berlin Scenario”. VSP Working Paper 17-12, TU Berlin,
Transport Systems Planning and Transport Telematics, pp. 1–11.

AUTHOR BIOGRAPHIES

JULIUS WEYL is a master’s student in computer science and a research associate at the University of Ap-
plied Sciences in Hamburg, Germany. His research in the MARS group focuses on large-scale, agent-based
simulations of individual mobility in urban scenarios and socio-ecological modeling. His email address is
julius.weyl@haw-hamburg.de.

DANIEL GLAKE is a PhD candidate at the University of Hamburg and has a Master degree in com-
puter science by the University of Applied Science in Hamburg. His research focus lies on polyglot data
management, language- and compiler-engineering, including their transformation and more efficient data
structures for simulation execution or general purpose applications. His email address is daniel.glake@uni-
hamburg.de.

THOMAS CLEMEN holds a position as a full professor at the University of Applied Sciences in Hamburg,
Germany. His teaching activities predominantly cover topics within information management and data sci-
ence, whereas he is focusing on modeling and simulation of dynamic, complex and self-organizing systems
in his interdisciplinary research. His email address is thomas.clemen@haw-hamburg.de.

ULFIA A. LENFERS is a PhD candidate at the Hamburg University of Applied Sciences in cooperation
with the CAU University Kiel. She has a Diploma degree in geography and a Master of Science in interdisci-
plinary environmental science. Her research focus is the analysis and modeling of complex social-ecological
and urban-geographical systems of various space-time scales. Within the MARS group it is her focus to build
the bridge between geography and computer sciences. Her email address is ulfia.lenfers@haw-hamburg.de.

NORBERT RITTER is a full professor at the Department of Informatics, Faculty of Mathematics, In-
formatics and Natural Sciences, University of Hamburg, heading the Databases and Information Systems
group. His research focus areas are modern database technology, esp. NoSQL-Systems, and scalable infras-
tructures for big data management and cloud data management. His email address is ritter@informatik.uni-
hamburg.de.

FABIAN PANSE is a PhD at the University of Hamburg. His research and teaching activities cover several
topics in the field of databases and information systems, whereas he is focusing on data cleaning, data
integration and uncertain data management. His email address is panse@informatik.uni-hamburg.de.

mailto://julius.weyl@haw-hamburg.de
mailto://daniel.glake@uni-hamburg.de
mailto://daniel.glake@uni-hamburg.de
mailto://thomas.clemen@haw-hamburg.de
mailto://ulfia.lenfers@haw-hamburg.de
mailto://ritter@informatik.uni-hamburg.de
mailto://ritter@informatik.uni-hamburg.de
mailto://panse@informatik.uni-hamburg.de

	Introduction
	Related Work
	MARS Framework and Traffic Model
	Workflow
	Model Development
	Data Preparation
	Model Execution

	Experiments
	Results
	Discussion
	Conclusion

