Integration of Intelligent and Mobile Agents for
E-commerce — A Research Agenda
M.T. Tu, F. Griffel, W. Lamersdorf *

Distributed Systems Group, Computer Science Department,
University of Hamburg, Germany

Vogt—Ko6lln-Str. 30, 22527 Hamburg, Germany

[tulgriffel|lamersd]@informatik.uni-hamburg.de

Abstract

The challenge of realistic E-commerce application scenarios makes an inte-
gration of both mobile and intelligent technology — which have been tradition-
ally treated separately as a result of the diversity of research and development
work on agent technology — appear essential. This paper introduces into some
relevant technology issues related to this integration task which all still need
substantial research efforts. It also gives some hints on corresponding work

done (and published elsewhere) by the authors.

Keywords: intelligent and mobile agents, dynamic software components, in-

teraction patterns, electronic commerce.

1 Introduction

One of the most obvious motivations for developing agent technology is to provide
agents which are able to perform commercial transactions on behalf of the peo-
ple launching them (see, e.g., [Gen97]). Using software agents — including both
intelligent and mobile ones — in electronic commerce is attractive for several rea-
sons: disburdening people from routine transactions, handling (gathering, selecting)
great amounts of information in a given time, supporting mobile device users by
asynchronous communication etc. (see [CGHT95]).

However, a consequence of the diversity of research and development work on
agent technology is that a strong distinction between “mobile” and “intelligent
agents” has emerged which can also be regarded as a distinction between location
autonomy and decision autonomy. This simple de-facto classification of agents
at present seems unfortunately inaccurate because the features of mobility and
intelligence are obviously by no means mutually exclusive or even only contrary.
And although the integration of these two qualities is certainly desired in order to

face the challenging requirements of realistic agent application scenarios modeling

*This work is supported, in part, by grant no. Lal061/1-2 from the German Research Council
(Deutsche Forschungsgemeinschaft, DFG)



the complexity of real-world business processes, there have been up to now very few
concrete approaches in this direction.

In view of this situattion, this paper is intended to identify and introduce into
relevant aspects of this integration problem. In order to limit the size of the paper,
these aspects are first presented as independent base technologies to be developed
or advanced in near future. Then, the challenge of realizing automated negotiations
as a concrete application area that can profit from the base technologies is discussed
by means of an agent framework developed at the University of Hamburg.

Before going into the specific aspects, some general requirements arising from the
integration problem should be mentioned: One of the main difficulties a practical
approach has to deal with is that the incorporation of “intelligent” capabilities into
mobile software agents can become very expensive because reasoning mechanisms,
for instance, are usually much more complex than a few “go” and “select” commands
coded in simple agents roaming the network nowadays, i.e. the agents can become
literally too “fat” and consequently, their mobility is reduced. This problem is
even more severe if the concrete purpose or task of the agent is not known ahead
(at compilation time), in which case either many agents for different tasks or very
general-purpose agents, which are likely even bigger in size, have to be built. In
order to cope with this problem, some important requirements have to be imposed

on a corresponding system design:

e Role-specific functionality: A mobile agent should not be loaded with every
kind of available functionality or intelligent capability at the same time (as
it is usually the case with complex AI systems or human beings), but should
rather carry with him only the functionality required to fill out the actual
role(s) assigned to him at a given time, for instance “seller” or “notary” in

the context of electronic commerce.

e On-thefly loading: Moreover, the functionality of an agent should be able
to be loaded “on demand”, i.e. at (or short before) the moment it is really

needed.

o Flexible configuration: The agent’s functionality should also be flexibly and
dynamically configurable so that it can be reused in many similar, but dif-
ferently constrained situations without having to replace its corresponding

implementation.

These requirements can be regarded as boundary conditions that always need to

be kept in mind when discussing about mobile agents with intelligent capabilities.



2 Development of Base Technologies

In this section, a selection of the technologies contributing to the development of
mobile and intelligent agents which can participate in practical E-commerce scenar-

ios is introduced.

2.1 Dynamic Software Components as Agent Building Blocks

First, in order to satisfy the requirements of role-specific functionality, on-the-fly
loading and flexible configuration mentioned above, the agents that make up an
application (or represent the application part of a (E-commerce) system cannot be
built in a static way (i.e. compiled once out of all classes/functions that will be
needed for the whole life-time of the agent), but have to consist of functional parts
which can be “glued” together in a dynamic way. The componentware paradigm
[Gri98] aims exactly at providing technical support for this kind of applications.
The basic idea is really simple: Instead of generating a new application by writ-
ing the neccessary program code, compiling it (together with other existing source
code), installing and starting the application, it should be composed out of active
components — each of which encapsulates a (non-trivial) functionality that can be
utilized through well-defined interfaces — which do not need to be recompiled but
only eventually reconfigured®.

In particular, so-called plug-in mechanisms can be used as a generic method to
add, delete or exchange components of an application at run-time. In [TGML9S,
TSL99], a plug-in mechanism is described that allows for the (orthogonal) plugging
of distributed and mobile components and is therefore appropriate to support the
task of embedding arbitrary functionalities which can be some intelligent capabilities
into mobile agents at run-time. Even the meta-feature of being pluggable (in either
direction) can be acquired by a component or agent of the corresponding framework
dynamically.

However, there are still a lot of open issues concerning component-based software
to be investigated including, for example, complete and sound aggregation models,
versioning and updating issues, secure (sealed) components and semantically rich

interfaces [Gri98, GTZL99].
1Such a reconfiguration can even be performed automatically by means of adaption mechanisms

[YS95, Gri9s].




2.2 Integration of Agents, Business Objects and Workflows

In order to use agent technology to solve real-world business problems efficiently, it
is of utmost importance to integrate this technology with other business-oriented
technologies and corresponding software architectures that have been developed
quite independently. Currently, Business Objects and Workflow Management are
certainly two of the most relevant technologies to be considered for a seamless
integration with agent technology, especially with mobile agents, since mobility
and distribution in general entails a lot of additional (technical) possibilities as
well as problems. For example, modeling business-relevant information as mobile
agents carrying such data allows for more application-level oriented system designs
comprising data that actively takes part in cooperative scenarios (self-controlled
data flows) [Gri98]. Further, the actors within workflow systems may themselves be
represented as agents allowing for decentralized workflows that may be adjusted in
more flexible ways to changes of a company’s internal organization and also allow

better support for inter-organzational workflows [MLMJLIG].

2.3 Policy and Rule Management

The characteristic features of autonomy (which implies the possibility to completely
delegate certain tasks to the agents) and interaction make the agent programming
paradigm on the one hand attractive for a wide range of distributed applications
— in particular those related to E-commerce — but on the other hand also pose
a considerable semantical risk potential, since the decisions delegated to an agent
could bring about results that are not desired by its principal. Therefore, a generic
approach of imposing rules on the behavior of (mobile) agents in order to reduce
this kind of risk — without impairing the agents’ basic decision logic and interaction
ability — needs to be developed. In particular, it is important to enable the use of
(dynamic) rules that influence the agents’ interaction behavior.

At the Distributed Systems Group of University of Hamburg, a generic rule man-
agement system for distributed applications and mobile agents has been developed
[TGML97, TGML99] which enables both a central and decentral management of
currently four concrete rule types including invariants, action rules and state tran-
sition rules, as specified by the Business Object Component Architecture (BOCA)
of the OMG [OMG98]. In particular, this rule system, which is formally based on
a special form of predicate logic called LDNF, supports policies representing in-

teraction rules (of different agents) that can be automatically unified to enforce a



common cooperation basis between the agents.

Two important issues which should then be investigated are first the extension
of such a rule management system into a rule-sensitive middleware as a platform
that provides integrated technical support for business applications including such
services as event, transaction and domain management. Secondly, the elaboration
of an application framework for rule-sensitive E-commerce applications is required
to explore the potential of dynamic rules as a mechanism to provide “semantical

add-on”, i.e. to extend the semantics of applications at run-time.

2.4 Genetic Algorithms

GAs are inspired by the the evolution taking place in nature. Evolution in nature
discloses an unmatched variety of different species each optimized for its ecological
niche. This is achieved by very simple principles: selection together with repro-
duction, crossover and mutation. Selection means that only the fittest individuals
survive. Reproduction is the ability to breed new individuals and mutations are
deviations during this reproduction process. Crossover is the ability to take two
individuals (parents) to breed one new individual that shares some attributes with
each parent.

In GAs, the basic principles of evolution (reproduction, mutation and crossover)
are used to create objects that are optimized for a certain function. To carry out
this process, a set of objects (the population) is evaluated at discrete points in time
(between the generations). Each individual has a certain probability to be taken
into the next generation. This probability depends on its quality (fitness) mea-
sured by the function that should be optimized. The individual can be propagated
into the next generation either unchanged (reproduction), mutated or as resulted
from a crossover with another individual. The evolutionary approach can be used
for the optimization of numerical problems (Genetic Algorithms) as well as for the
automatic generation of programs (Genetic Programming). The main benefit of
evolutionary techniques is that they make few assumptions about the environment
they are applied to. All that is needed is the definition of the reproduction, mutation
and crossover operations for the data structures used and a fitness function. Evo-
lutionary techniques are very often used successfully in environments where little
knowledge of their structure exists.

Therefore, GAs seem to be a very powerful approach to implement agents’ tasks
that require some kind of adaptation or flexible strategy in general. In [TWL99],

an approach to implement GAs which can be utilized for automated negotiations



is presented. These GAs are based on Finite State Machines (FSM) which provide
a greater expressiveness than linear data structures like vectors or tuples. How-
ever, substantially more research is required to ensure the quality and especially

performance of this technology in real-world situations.

3 Automated Negotiations as a Sample Applica-
tion Area

Each of the base technologies briefly introduced above is by itself an important re-
search area that can make significant contributions to the goal of providing mobile
intelligent agents which are capable of solving real-world E-commerce problems in an
open distributed environment such as the Internet. For proof-of-concept purposes,
however, it would be desirable to have an application area that is wide enough to
profit from all these technologies and nevertheless poses a set of goals to be achieved
which can be clearly defined. In our view, the task of enabling automated negotia-
tions, especially in E-commerce scenarios, is exactly one of such application areas.
Moreover, the challenge of automating negotiations can of course be considered an
independent research goal that requires a firm conceptual foundation of its own
[Rai82].

Basically, enabling software agents to perform automated negotiations requires
that they be equipped with two capabilities: acting conforming to a public negoti-
ation protocol and implementing a concrete strategy to achieve their private nego-
tiation goals. Since the number of possible protocols and strategies is principally
unlimited, it is important to be able to switch between different implementations
of them in a flexible manner. Therefore, we have proposed a modular and very
dynamic framework, in which the required negotiation capabilities can be subse-
quently loaded into a mobile agent or can be exchanged at run-time and which also

allows explicit control of the mobility of an agent’s components [TGML98, TSL99].

According to this framework, which is depicted in Figure 1, a negotiation en-
abled agent consists of three main components that can be dynamically aggregated
(by means of generic plug-in mechanisms mentioned above): a communication, a
protocol and a strategy module. Such an agent can make use of several third-party
support services such as a broker and a protocol engine that helps coordinate and
checking the compliance of the participants’ negotiation actions [TLGL99].

However, there is still a lot to be undertaken to improve the practical usability



Strategy )
Building

Kit

Protocol
Generator

Protocol
Engine

design initialization negotiation

Figure 1: Structure of negotiation enabled agents and support services

of such a framework. Currently, an actor-based framework to develop distributed
strategy modules is being implemented [TSL99] and the deployment of genetic al-

gorithms for such modules is investigated by experimental work [TWL99].

4 Concluding Remarks

In this paper, we have briefly introduced several technology issues related to the
goal of integrating mobile and intelligent agents to tackle the challenge of real-world
E-commerce scenarios. These issues, which were divided into basic research topics
such as componentware and rule management and more specific aspects related to
automated negotiations, represent topical research areas which in our view bear a
great potential for the practical deployment of agent technology in general and are

therefore worth thorough investigation and further development.

References

[CGH*95] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik.
Ttinerant Agents for Mobile Computing. Technical Report RC 20010,
IBM Research Division, T.J. Watson Research Center, 1995.

[Gen97] General Magic. Odyssey, 1997. www.genmagic.com/agents/.
[Gri9g] F. Griffel. Componentware. dpunkt—Verlag, 1998.

[GTZL99] F. Griffel, M.T. Tu, C. Zirpins, and W. Lamersdorf. Towards Policy-
mediated Component Composition. Technical report, Distributed Sys-
tems Group, University of Hamburg, 1999.

[MLMJL96] M. Merz, B. Liberman, K. Miiller-Jones, and W. Lamersdorf. Interor-
ganizational Workflow Management with Mobile Agents in COSM. In
Proc. PAAMY96 Conference on the Pracical Application of Agents and
Multiagent Systems, London, 1996.



[OMGY8]

[Rai82]

[TGML97]

[TGMLYS]

[TGML99)

[TLGL99)

[TSL99)

[TWLOO]

[YS95]

Business Object Component Architecture Revision 1.2. OMG Docu-
ment 98-07-01. http://www.omg.org, 1998.

H. Raiffa. The art and science of negotiation. Harvard University
Press, 1982.

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Generic Policy Man-
agement for Open Service Markets. In H. Konig and K. Geihs, editors,
Proc. of the Int. Working Conference on Distributed Applications and
Interoperable Systems (DAIS’97), Cottbus, Germany, Cottbus, Ger-
many, September 1997. Chapman & Hall.

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A Plug-In Architec-
ture Providing Dynamic Negotiation Capabilities for Mobile Agents. In
K. Rothermel and F. Hohl, editors, Proc. 2. Intl. Workshop on Mobile
Agents, MA’98, Stuttgart. Springer LNCS, September 1998.

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Interaction-Oriented
Rule Management for Mobile Agent Applications. In Proc. of the Sec-
ond Int. Working Conference on Distributed Applications and Interop-
erable Systems (DAIS’99). Kluwer Academic Publisher, June 1999.

M.T. Tu, C. Langmann, F. Griffel, and W. Lamersdorf. Dynamis-
che Generierung von Protokollen zur Steuerung automatisierter Ver-
handlungen. In Proc. 29. Jahrestagung der Gesellschaft fiir Informatik
(Informatik’99). Springer LNCS, 1999. (In German).

M.T. Tu, C. Seebode, and W. Lamersdorf. A Dynamic Negotiation
Framework for Mobile Agents. In Proc. 8. Intl. Symposium on Mobile
Agents, MA’99, Palm Springs, California. IEEE, October 1999.

M.T. Tu, E. Wolff, and W. Lamersdorf. Genetic Algorithms for Auto-
mated Negotiations: A FSM-based Application Approach. Technical
report, Distributed Systems Group, University of Hamburg, 1999.

D. M. Yellin and R. E. Strom. Collaboration Specifications and Com-
ponent Adapters. Technical report, IBM T.J. Watson Research Center,
1995.



