
Context-Aware Encoding & Delivery in the Web

Benjamin Wollmer1[0000−0002−0545−8040], Wolfram
Wingerath2[0000−0003−3512−5789], and Norbert Ritter1

1 University of Hamburg, Hamburg, Germany
{wollmer, ritter}@informatik.uni-hamburg.de

2 Baqend GmbH, Hamburg, Germany
wolle@baqend.com

Abstract. While standard HTTP caching has been designed for static
resources such as files, different conceptual extensions have made it ap-
plicable to frequently changing data like database query results or server-
generated HTML content. But even though caching is an indispensable
means to accelerate content delivery on the web, whether or not cached
resources can be used for acceleration has always been a binary decision:
a cached response is either valid and can be used or has been inval-
idated and must be avoided. In this paper, we present an early-stage
PhD project on a novel scheme for content encoding and delivery. Our
primary goal is minimizing the payload for client requests in the web by
enabling partial usage of cached resources. We discuss related work on
the topic and analyze why existing approaches have not been established
in practice so far, despite significant gains such as reduced bandwidth
usage and loading times for end users. We then present open challenges,
derive our research question, and present our research goals and agenda.

Keywords: web caching · efficiency · compression algorithms · delta
encoding · benchmarking · runtime optimization · user experience.

1 Introduction

In the web, performance is crucial for user satisfaction and business-critical met-
rics such as conversion rate or revenue per session [17]. But even though new
devices and browsers are being developed year after year, the principles of data
transfer in the web seem stuck. To illustrate this phenomenon, consider how
traditional web caching is used in practice. For decades, the browser’s decision
whether to use a cache or to load a resource via network has been determined by
(1) whether the resource’s identifier is present in the cache, (2) whether it has
been invalidated already, and (3) whether its cache lifetime (time to live, TTL)
is still valid. However, this procedure is inefficient in certain scenarios. For exam-
ple, state-of-the-art caching approaches do not make use of cache entries that are
similar (but not exact matches) to a requested resource. Invalidated resources
are discarded entirely, even if only a minor update occurred and major portions
of the invalidated resource could be reused in theory. As another example, com-
pression algorithms are typically not chosen based on runtime parameters, even
though information such as available bandwidth or processing power may well be

https://www.inf.uni-hamburg.de
mailto:wollmer@informatik.uni-hamburg.de
mailto:ritter@informatik.uni-hamburg.de
https://www.baqend.com
mailto:wolle@baqend.com


2 B. Wollmer et al.

performance-critical factors for choosing the right method in a given situation.
Intuitively, though, performance and efficiency could be improved, if parameters
such as image resolution or compression codec were chosen based on whether the
user is on a high-bandwidth fiber cable or an unstable mobile connection with
limited data allowance. We think these inefficiencies in the web content delivery
chain are mere implementation artifacts that can be removed in practice. We
intend to prove it.

This paper describes our research and development agenda to achieve this
goal. In Sections 2 and 3, we briefly survey the state of the art in content encoding
and delivery, list the most critical open challenges, and formulate our research
question. In Section 4, we then present the main research goals of this PhD
project and a brief outline of our research agenda. Section 5 concludes the paper.

2 Content Encoding: State of the Art

Even though introduced in the early 1990s, the purely text-based Gzip is still
the most widely used compression method in the web: As of 2019, it is used for
more than 30% of all mobile requests and for over 40% of requests for text-based
web resources overall [4]. While more efficient approaches have been developed
in the last decades, none of them has become as widespread in practice as Gzip
which is natively supported by all relevant browsers and web servers today.

Classic compression algorithms like Gzip remove redundancy within individ-
ual transmissions, thus increasing efficiency compared with transmitting uncom-
pressed raw data. However, redundancy between different transmissions is not
addressed, so that requesting two very similar versions of the same resource will
essentially double the transmitted amount of data, compared with requesting
only one. Delta encoding addresses this weakness by transferring only changes
whenever a prior version of the requested resource is already known to the client.
Since changes in websites (HTML) and web assets (e.g. stylesheets or JavaScript
files) are often small, delta encoding can have a significant impact on page load
times: A study from the late 1990s [11] showed potential savings of more than
80% of transferred bytes for text-based web content.

There were plans to standardize delta encoding [10] and even full-fledged
user-facing implementations (e.g. [9]). All these efforts failed in practice, though,
because calculating deltas fast enough to be used by requesting clients turned out
prohibitive. To the best of our knowledge, the only commercial implementation of
delta encoding is Cloudflare’s Railgun™ which merely optimizes data transfer
between web servers and the Cloudflare CDN. Since end users still request their
web content through standard HTTP requests in this scheme, however, they do
not profit from delta encoding directly [5]. As another limitation, Railgun™ is
reportedly difficult to deploy and operate: According to architectural lead Nick
Craver [6], Railgun™ had been evaluated at Stack Exchange for over a year, but
was eventually canceled as the deployment never became stable.

Another way to exploit similarities between data entities is shared dictio-
nary compression [15]. As the basic idea, client and server share a common



Context-Aware Encoding & Delivery in the Web 3

dictionary, so that portions of the payload can be encoded as references to dic-
tionary entries instead of the actual content. As the only implementation we
are aware of, Google’s SDCH (pronunciation: “sandwich”) [3] was supported
by Chrome-based browsers and tested at LinkedIn where it outperformed Gzip
compression by up to 81% [13]. Unfortunately, though, support was never added
to other browsers and was eventually removed from Chrome [14], because vir-
tually no website provider apart from LinkedIn overcame the high technical
complexity of computing and maintaining shared dictionaries. To address this
challenge, Google developed Brotli [1] compression as a derivative of SDCH
where the dictionary is shipped with the library itself and does not have to be
tailored to individual websites. Brotli’s dictionary is still tuned for web content3,
but generic enough to be used across different websites. While this makes it more
widely applicable than SDCH, it also bars Brotli from exploiting frequently oc-
curring page-specific strings that would be efficiently encoded in SDCH.

Choosing a compression method or compression level always is a trade-off
between minimizing computation time and minimizing transmitted bytes [8]. But
even though the sweet spot depends on dynamic parameters such as the available
computing power of both parties and the bandwidth between them, modern web
servers typically use static heuristics like “always use default compression levels”
or “use Brotli when available and Gzip otherwise” [4].

There are many other evolutionary optimizations to content encoding
and delivery mechanisms such as HTTP/2 (incl. server push, header compres-
sion, pipelining, multiplexing) [2] or eTags [12, Sec. 14.19], and even advanced
approaches for caching dynamic data [7]. However, new technologies are often
adopted slowly, because they are complex (and thus expensive) to integrate with
legacy architectures or because they are only supported by a relatively small
share of the end users’ devices and browsers.

3 Open Challenges & Research Question

Today’s web infrastructure relies on technology that is several decades old. While
more advanced compression algorithms than Gzip do exist, none of them has
gained broad adoption. Delta encoding and other advanced approaches have
failed, because they are hard to deploy or not noticeably useful for end users.
Summing up, we see several critical challenges for content delivery in the web:
C1 Lack of Client Support. While delta encoding with Railgun™ optimizes

communication between backend servers and the CDN, it does not provide
an actual (noticeable) benefit for users of an enhanced website. Approaches
that do improve performance for users significantly, in contrast, typically
also rely on browser support for broad adoption and cannot succeed without
it. The history of SDCH illustrates this dilemma.

C2 Lack of Backend Support. Disregarding support for end users, just im-
plementing the backend for advanced technologies already is a major chal-
lenge: The technical complexity alone can be prohibitive (cf. Railgun™ at

3 Brotli’s dictionary contains frequent terms from natural and programming languages.



4 B. Wollmer et al.

Stack Exchange), but even with that resolved lack of third-party support
can still cause a project to fail (cf. SDCH at LinkedIn).

C3 Inefficient Cache Usage. State-of-the-art caching discards a data item
entirely as soon as it expires or is invalidated by an ever so slight change.
Delta encoding exploits similarities between the current and expired/inval-
idated versions of the same entity, but no current approach exploits simi-
larities between different entities: Requesting two similar resources (e.g. two
different product pages in a web shop) always means transmitting highly
redundant data.

C4 Inflexible Protocol Negotiation. Compression protocols and their pa-
rameterization are typically selected according to static rules, although per-
formance ultimately depends on runtime parameters. For example, CPU-
intensive Brotli compression is preferable for a user while on a flaky mobile
connection, but using Gzip may be faster as soon as the user comes home
and connects to the local Wi-Fi. We consider neglecting the runtime context
for performance optimization a major flaw in current technology.

We are convinced that the above challenges can be resolved with a careful
end-to-end system design. We therefore set out to address the following research
question: How can partial caching and encoding methods be used to accelerate
data access in a distributed architecture with heterogeneous clients and servers?

4 Research Goals & Agenda

In order to address these challenges and our research question, we aim to devise a
unified system design that enables efficient and context-aware encoding methods,
exploits partial cache hits, and builds on widely supported browser and web
server features to facilitate widespread adoption. Our research goals are:

R1 Efficiency Gold Standard. To evaluate the potential gains of different
encoding methods, we will collect real-world Internet traffic over a period of
time and compute the optimal compression savings using hindsight knowl-
edge: Our gold standard encoding will thus work under the unrealistic as-
sumption of perfect knowledge of all relevant factors. We think this will help
us assess the maximal possible benefit of our approach in concept and the
efficiency of our implementation in practice.

R2 Pluggable Server-to-Client Content Encoding. Two major roadblocks
for earlier approaches have been poor support for end users (C1) and high
complexity of deployments (C2). To address both these challenges, we will
design an extensible architecture for content encoding that only relies on
widely available browser features on the user side (cf. C1) and that does not
require tight integration with web servers in the backend (cf. C2). We will
build our prototype on the JavaScript-based technology Speed Kit [16], be-
cause it allows hooking into the client-server communication in a transparent
way and because it is supported by more than 90% of all browsers.



Context-Aware Encoding & Delivery in the Web 5

R3 Cross-Entity Delta Encoding. Current approaches for delta encoding
only exploit similarities between different versions of the same entity, but
disregard similarities between different entities (cf. C3). We will develop a
storage engine with the ability to exploit the similarity between stored enti-
ties: When a certain product page htmlA is queried, for example, our intended
cross-entity storage engine may not respond with htmlA directly, but rather
with the information required to construct htmlA from information that is
already known to the client (e.g. from an old version of htmlA or from an
entirely different product page htmlB).

R4 Context-Aware Runtime Optimization. Our approach will let the stor-
age engine choose a content encoding based on client-provided context infor-
mation at runtime (cf. C4). From the context information provided in Query
1.1, for example, the storage engine could derive that (1) it may encode htmlA
as a diff to either htmlB or htmlC (if that is more efficient than sending the
full document) and that (2) Gzip may be preferable over Brotli, because the
client has broadband Internet access but only limited CPU power.

GET htmlA WITH CONTEXT (
inCl ientCache : [ htmlB , htmlC ]

, bandwidth : high
, process ingPower : low

)
Query 1.1. Clients will provide context information with every request, so that our
storage engine can choose the most efficient encoding on a per-request basis.

As the first step in our research agenda, we plan to evaluate the potential
gains of different encoding algorithms (R1). We are going to start with delta and
cross-entity encoding as they are pivotal in our research plan. We expect to find
that both approaches yield a significant performance uplift, given the unrealistic
premise of perfect knowledge. Next, we will devise a client-to-server architecture
for web content delivery (R2). One of the critical challenges in our architecture
will be the context-aware storage backend (R3). We envision an implementation
in different modules for different types of content (e.g. uncompressed text-based
content, compressed/bundled scripts, images). To guide and evaluate our efforts,
we will benchmark our implementation (R4) against the gold standard (R1) for
the theoretically most efficient way of cross-entity encoding.

5 Wrapup

Choosing the right encoding for content delivery has a crucial impact on perfor-
mance in any globally distributed architecture. But while many attempts have
been made to establish more efficient content encoding and delivery methods
in the web, only few have found widespread adoption. This paper presents an
ambitious research plan for addressing this issue. Our basic idea revolves around
(1) the client attaching runtime context information to every server request and
(2) the server dynamically optimizing every response based on the given context.



6 B. Wollmer et al.

To make this practically feasible, we strive for a system design that builds on
widely available browser technologies and is easy to integrate for website admin-
istrators. While we plan to publish our follow-up research results in the future,
we hope to spark interesting discussions on the topic right away.

References
1. Alakuijala, J., Szabadka, Z.: Brotli Compressed Data Format. RFC 7932 (2016)
2. Belshe, M., Peon, R., M. Thomson, E.: RFC 7540. Hypertext Transfer Protocol

Version 2 (HTTP/2) (2015)
3. Butler, J., Lee, W.H., McQuade, B., Mixter, K.: A proposal for shared dictio-

nary compression over http (2008), https://pdfs.semanticscholar.org/c53e/
e3d44f1314c2c4d14dca7d25d1858cf55246.pdf, accessed: 2020-02-20

4. Calvano, P.: Web Almanac: Compression (2019), https://almanac.httparchive.
org/en/2019/compression, accessed: 2020-02-20

5. Cloudflare: Optimierung des Ursprungsnetzwerks mit Railgun™ (2018), https:
//www.cloudflare.com/website-optimization/railgun/, accessed: 2020-02-20

6. Craver, N.: HTTPS on Stack Overflow: The End of a Long Road (2017), https://
nickcraver.com/blog/2017/05/22/https-on-stack-overflow, accessed: 2020-
02-20

7. Gessert, F., Schaarschmidt, M., Wingerath, W., et al.: Quaestor: Query Web
Caching for Database-as-a-Service Providers. PVLDB (2017)

8. Jarrod: Gzip vs Bzip2 vs XZ Performance Comparison (2015), https:
//www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/, ac-
cessed: 2020-02-20

9. Korn, D., MacDonald, J., Mogul, J., Vo, K.: The VCDIFF Generic Differencing
and Compression Data Format. RFC 3284 (June 2002)

10. Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van Hoff,
A., Hellerstein, D.: Delta Encoding in HTTP. RFC 3229 (January 2002)

11. Mogul, J.C., Douglis, F., Feldmann, A., Krishnamurthy, B.: Potential Benefits of
Delta Encoding and Data Compression for HTTP. SIGCOMM Comput. Commun.
Rev. 27(4), 181–194 (Oct 1997). https://doi.org/10.1145/263109.263162

12. Nielsen, H.F., Mogul, J., Masinter, L.M., Fielding, R.T., et al.: Hypertext Transfer
Protocol – HTTP/1.1. RFC 2616 (Jun 1999). https://doi.org/10.17487/RFC2616

13. Shapira, O.: Shared Dictionary Compression for HTTP
at LinkedIn. (2015), https://engineering.linkedin.com/
shared-dictionary-compression-http-linkedin, accessed: 2020-02-20

14. Sleevi, R.: Shared Dictionary Compression for HTTP at LinkedIn. (2016),
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/
HNpR96sqAgAJ, accessed: 2020-02-20

15. White, H.E.: Printed english compression by dictionary encoding. Proceedings of
the IEEE 55(3), 390–396 (March 1967). https://doi.org/10.1109/PROC.1967.5496

16. Wingerath, W., Gessert, F., Witt, E., Kuhlmann, H., Bücklers, F., Wollmer, B.,
Ritter, N.: Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Per-
sonalized Content. In: 36th ICDE 2020, Dallas, Texas, April 20-24, 2020 (2020)

17. Young, J., Barth, T.: Akamai Online Retail Perfor-
mance Report: Milliseconds Are Critical (2017), https:
//www.akamai.com/en/us/about/news/press/2017-press/
akamai-releases-spring-2017-state-of-online-retail-performance-report.
jsp, accessed: 2020-02-20

https://pdfs.semanticscholar.org/c53e/e3d44f1314c2c4d14dca7d25d1858cf55246.pdf
https://pdfs.semanticscholar.org/c53e/e3d44f1314c2c4d14dca7d25d1858cf55246.pdf
https://almanac.httparchive.org/en/2019/compression
https://almanac.httparchive.org/en/2019/compression
https://www.cloudflare.com/website-optimization/railgun/
https://www.cloudflare.com/website-optimization/railgun/
https://nickcraver.com/blog/2017/05/22/https-on-stack-overflow
https://nickcraver.com/blog/2017/05/22/https-on-stack-overflow
https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/
https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/
https://doi.org/10.1145/263109.263162
https://doi.org/10.17487/RFC2616
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://doi.org/10.1109/PROC.1967.5496
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp

	Context-Aware Encoding & Delivery in the Web

