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Abstract—Traditional databases are optimized for pull-based
queries, i.e. they make information available in direct response
to client requests. While this access pattern is adequate for
mostly static domains, it requires inefficient and slow worka-
rounds (e.g. periodic polling) when clients need to stay up-to-
date. Acknowledging reactive and interactive workloads, modern
real-time databases such as Firebase, Meteor, and RethinkDB
proactively deliver result updates to their clients through push-
based real-time queries. However, current implementations are
only of limited practical relevance, since they are incompatible
with existing technology stacks, fail under heavy load, or do
not support complex queries to begin with. To address these
issues, we propose the system design InvaliDB which combines
linear read and write scalability for real-time queries with
superior query expressiveness and legacy compatibility. We
compare InvaliDB against competing system designs to emphasize
the benefits of our approach that has been serving customers
at the Database-as-a-Service company Baqend since July 2017.

Index Terms—database systems, real-time queries, real-time
databases, Firebase, Meteor, RethinkDB, push-based data access,
result change notifications, NoSQL, document stores, MongoDB

I. INTRODUCTION

Many of today’s Web applications notify users of status
updates and other events in realtime. But even though more
and more usage scenarios revolve around the interaction
between users, building applications that detect and publish
changes with low latency remains notoriously hard even with
state-of-the-art data management systems. While traditional
databases1 excel at complex queries over historical data [14],
they are inherently pull-based and therefore ill-equipped to
push new information to clients [20]. Systems for data stream
management, in contrast, are natively push-oriented and thus
facilitate reactive behavior [13]. However, they do not retain
data indefinitely and are therefore not able to answer historical
queries. The separation between these two system classes
gives rise to high complexity for applications that require both
persistence and real-time change notifications [29].

In this paper, we present the real-time database system
design InvaliDB for bridging this gap: InvaliDB is built on
top of a pull-based (NoSQL) database, supports the query
expressiveness of the underlying datastore for pull- and push-
based queries alike, and scales linearly with reads and writes
through a scheme for two-dimensional workload distribution.

1We use “database” and “database system” synonymously, when it is clear
whether we are referring to the base data or the system maintaining it.

II. RELATED WORK

Subsumed under the term “real-time databases”2 [22] [31],
systems like Firebase, Meteor, and RethinkDB provide push-
based real-time queries that do not only deliver a single
result upon request, but also produce a continuous stream
of informational updates thereafter. Like traditional database
systems, real-time databases store consistent snapshots of
domain knowledge. But like stream management systems,
they let clients subscribe to long-running queries that push
incremental updates. Table I sums up the query capabilities
of some of the most popular systems for real-time queries in
comparison with our system design InvaliDB.

Meteor RethinkDB Parse Firebase InvaliDB
Poll-and-Diff Log Tailing Proprietary 2-D Dist.

Scales With
3 7 7 7 7 3Write Throughput

Scales With
7 3 3 3 � 3Number of Queries (100k connections)

Real-Time Change
7 3 3 3 3 3Notifications

Composite Queries
3 3 3 3 � 3(AND/OR) (AND in Firestore)

Sorted Queries 3 3 3 7 � 3(single attribute)

Limit 3 3 3 7 3 3
Offset 3 3 7 7 � 3(value-based)

TABLE I: A direct comparison of the different collection-
based real-time query implementations detailed in this paper.

Meteor [15] is the only system featuring two different real-
time query implementations: Poll-and-diff relies on periodic
query reexecution and scales with write throughput, whereas
log tailing relies on processing changes within the application
server and scales with the number of concurrent real-time
queries – neither scales with both [16]. RethinkDB [2] and
Parse [4] provide real-time queries with log tailing as well and
therefore also collapse under heavy write load: A lack of write
stream partitioning represents a scale-prohibitive bottleneck
in the designs of all these systems. While the technology

2In the past, the term “real-time databases” has been used to reference
specialized pull-based databases that produce an output within strict timing
constraints [19] [1] [8]; we do not share this notion of real-time databases.
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stacks behind Firebase [3] and Firestore [7] are not disclosed,
hard scalability limits for write throughput and parallel client
connections are documented [9] [11]. Further, it is apparent
that both services mitigate scalability issues by simply denying
complex queries to begin with: In the original Firebase model,
composite queries are impossible and sorted queries are only
allowed with single-attribute ordering keys [25]. Even the
more advanced Firestore queries lack support for disjunction
of filter expressions (OR) and only provide limited options for
filter conjunction (AND) [10]. All systems in the comparison
apart from Firebase offer composite filter conditions for real-
time queries, but differ in their support for ordered results:
Meteor supports sorted real-time queries with limit and offset,
RethinkDB supports limit (but no offset) [17], and Parse does
not support ordered real-time queries at all [23].

We are not aware of any system that carries pull-based query
features to the push-based paradigm without severe compro-
mises: Developers always have to weigh a lack of expres-
siveness against the presence of hard scalability bottlenecks.
Through the system design InvaliDB, we show that expressive
real-time queries and scalability can go hand-in-hand.

III. INVALIDB: SCALABLE REAL-TIME
QUERIES FOR TRADITIONAL DATABASES

InvaliDB is a real-time database design that provides push-
based access to data through collection-based real-time que-
ries. Its name is derived from one of its usages: Within the
Quaestor architecture [12] for consistent caching of query
results, InvaliDB is used to invalidate cached database queries
once they become stale, i.e. it detects result alterations and
purges the corresponding result caches in a timely manner.

Similar to some current systems (e.g. Meteor and Parse),
InvaliDB relies on a pull-based database system for data
storage. End users do not directly interact with the database,
but instead with application servers that execute queries and
write operations on the users’ behalf. As an important distinc-
tion to state-of-the-art real-time databases, however, InvaliDB
separates the query matching process from all other system
components: The real-time component (InvaliDB cluster) is
deployed as a separate system, isolated from the application
servers, and it can only be reached through an asynchronous
message broker (event layer). To enable real-time queries, an
application server only runs a lightweight process (InvaliDB
client) which relays messages between the end users, the
database, and the InvaliDB cluster. The expensive task of
matching active real-time queries against ongoing writes, on
the other hand, is offloaded to the InvaliDB cluster. By thus
decoupling real-time query workload from the main applica-
tion logic, even overburdening the real-time component cannot
take down the OLTP system: As the InvaliDB cluster becomes
unresponsive, only requests sent against the event layer remain
unanswered, but pull-based queries continue to work.

In order to subscribe to a real-time query, a Web or mobile
application sends a subscription request to one of potentially
many application servers. The application server then executes
the query against the database to produce the initial result, i.e.

the data objects currently matching the query. This result and a
representation of the query itself are asynchronously handed to
the InvaliDB cluster which then activates the query. From then
on, the InvaliDB cluster maintains an up-to-date representation
of the query result. Similar to a real-time query subscription,
a request for real-time query cancellation is asynchronously
passed to the InvaliDB cluster, so that the given query can be
deactivated and does not consume further resources. To make
zombie queries expire eventually, subscriptions are further
registered with a time to live (TTL) that is extended by every
live subscriber through a periodic TTL extension request. For
every write which is executed at the database, the after-images
(i.e. fully specified representations) of the written entities are
handed to the InvaliDB cluster. Every after-image is then
matched against all active real-time queries to detect changes
to currently maintained results. As a response to a real-time
query subscription, the InvaliDB cluster sends out a stream of
change notifications each of which represents a transition of
the corresponding query result from one state to another. Every
notification carries the information required to implement the
corresponding result change, e.g. an after-image of the written
entity and a match type that encodes the exact kind of result
change: add (new result member), change (result member
was updated), changeIndex (sorted queries only: result
member was updated and changed its position in the query
result), remove (item left the result). The first notification
message for any real-time query contains the initial result; this
message is generated on query subscription. All subsequent
notifications contain incremental result updates: Whenever a
write operation changes any currently active real-time query,
the InvaliDB cluster sends a notification to the subscribed ap-
plication servers which, in turn, forward the notification to the
subscribed clients. Since communication over the event layer is
asynchronous, InvaliDB may receive after-images delayed or
skewed (compared with the order in which the corresponding
write operations arrive at the database). While a query result
maintained by InvaliDB may thus diverge temporarily from
database state, it will synchronize once InvaliDB has applied
the same write operations as the database. InvaliDB thus
follows eventual consistency [6].

A. Two-Dimensional Workload Distribution

To enable higher input rates than a single machine could
handle, the InvaliDB cluster partitions both the query subscrip-
tions and incoming writes evenly across a cluster of machines:
By assigning each node in the cluster to exactly one query
partition and exactly one write partition, any given node is
only responsible for a subset of all queries and only a fraction
of all written data items.

Figure 1 depicts an InvaliDB cluster with three query par-
titions (vertical blocks) and three write partitions (horizontal
blocks). When a subscription request is received by one of the
query ingestion nodes (1), it is forwarded to every matching
node in the corresponding query partition; while the query
itself is broadcasted to all partition members, the items in
the initial result are delivered according to their respective



query
par��on 1

2

3

1

query
par��on 2

query
par��on 3

w
rit

e
pa

r�
�

on
 1

w
rit

e
pa

r�
�

on
 2

w
rit

e
pa

r�
�

on
 3

!

query inges�on

write inges�on

no�fica�on output

+wp

+qp

Fig. 1: InvaliDB partitions both queries and writes, so that
any given matching node is only responsible for matching few
queries against some of the incoming writes.

write partitions (i.e. every node receives only a partition of
the result). Likewise, any incoming after-image received by
one of the write ingestion nodes (2) is delivered to all nodes
in the corresponding write partition as well. To detect result
changes, every matching node matches any incoming after-
image against all of its queries and compares the current
against the former matching status of the related entity. In the
example, a change notification is generated by the matching
node (3) that is responsible for the intersection of query
partition 2 and write partition 2. Since every matching node
only holds a subset of all active queries and only maintains a
partition of the corresponding results, processing or storage
limitations of an individual node do not constrain overall
system performance: By adding query partitions (+qp) or write
partitions (+wp), the number of sustainable active queries and
overall system write throughput can be increased, respectively.
In similar fashion, the sustainable rate of data intake can
be increased by adding nodes for query and write stream
ingestion; these nodes are stateless (and therefore easy to scale
out) as they merely receive data items from the event layer,
compute their respective partitions by hashing static attributes,
and forward the items to the corresponding matching nodes.

To make workload distribution as even as possible, InvaliDB
performs hash-partitioning for inbound writes and queries.
For after-images, the hash value is computed from the primary
key, because it is the only attribute that is transmitted on insert,
update, and delete. For queries, the corresponding hash value
is computed from the query attributes when a subscription

request is received, so that distinct subscriptions to a particular
query are always assigned the same hash value and are thus
routed to the same partition, even when received by differ-
ent application servers. Since only the subscription request
contains the query attributes, though, the hash value cannot
be computed for requests other than the initial subscription.
To make sure that TTL extensions and cancellations can be
routed correctly, an application server remembers every hash
value for the entire lifetime of a subscription and attaches it
to every subsequent request relating to the same subscription.

To avoid losing result changes to race conditions between
the initial query result and incoming write operations, In-
valiDB employs temporary write stream retention: Every
matching node stores received after-images and matches them
against a new query on subscription. However, since every
matching node has only bounded space, long-lasting network
partitions can render this scheme infeasible. In practice, reten-
tion time therefore needs to be chosen according to actually
observed delays. For reference, the production deployment at
Baqend retains writes for few seconds, since our InvaliDB
prototype exhibits consistent notification latencies in the realm
of double-digit milliseconds with subsecond peaks (see [26,
Ch. 5]). Since communication is purely asynchronous, write
stream retention is crucial for staleness avoidance as write
operations that might have been missed can always be replayed
safely: Since InvaliDB relies on data to be versioned, write
operations are simply ignored whenever a more recent insert,
update, or delete for the same item has already been received.

B. Advanced Queries With Processing Stages

By partitioning queries and writes orthogonally to one
another, the task of evaluating query predicates is evenly
distributed across all nodes in the cluster. While this scheme
avoids hotspots, however, it also prevents capturing the context
between items in a result: As every matching node holds
only result partitions, result changes can only be registered
on a per-record basis. In more detail, changes relating to the
sorting order (match type changeIndex) cannot be detected
and queries that aggregate values from different entities (e.g.
to compute an average) or queries that join data collections
cannot be handled, either. In order to make InvaliDB suitable
for these kinds of real-time queries without impairing overall
scalability, the process of generating change notifications for
sorted queries, joins, and aggregations is performed in loosely
coupled processing stages that can be scaled independently
(cf. staged event-driven architecture (SEDA) [24]). While the
InvaliDB implementation at Baqend supports sorted queries
with limit and offset, real-time joins and aggregations are still
ongoing work. We refer to [26, Ch. 3] for details.

IV. PROTOTYPE & INDUSTRY APPLICATIONS

Since July 2017, an implementation of the system design
described in this paper has been used in production at the
company Baqend. Our InvaliDB prototype is built with the dis-
tributed stream processor Storm [21] (workload distribution)
and the in-memory store Redis [5] (event layer) to provide



real-time queries on top of the NoSQL database MongoDB
[18]. While we chose MongoDB for our initial prototype, we
implemented a pluggable query engine, so that support for
additional database languages (e.g. SQL) could be added later
with relative ease. This is possible, because most aspects of our
system design are database-agnostic. For example, the event
layer only handles opaque data transmissions between the
application server and the InvaliDB cluster. Similarly, the two-
dimensional workload distribution scheme does not assume
any concrete database language to be used, either.

At Baqend, InvaliDB serves two different purposes. First,
it adds push-based real-time queries to the otherwise pull-
based query interface of the MongoDB-based Database-as-a-
Service. As a second use case, InvaliDB makes query result
caching feasible by providing low-latency invalidation mes-
sages for stale query results and thereby improves throughput
and latency of the underlying pull-based query mechanisms
by more than an order of magnitude [12].

V. RELATED PUBLICATIONS & FURTHER READING

This paper contains revised material from the PhD thesis
[26] in the context of which InvaliDB has been developed
and which has spawned several other publications on related
topics. The introduction in Section I, the related work part
in Section II, the system design description in Section III,
the overview of our industry prototype in Section IV, and
the conclusion in Section VI further contain revised material
from earlier tutorial and demo abstracts [27] [28] [29]. In our
other publications, we present a vastly extended version of
our related work [30], an extensive performance evaluation
[26, Ch. 4 & 5], and details on our industry use cases [12].

VI. CONCLUSION

While the rising popularity of push-based datastores like
Firebase and Meteor indicates a public demand for databases
with real-time queries, no current implementation combines
expressiveness, high scalability, and fault tolerance. In this pa-
per, we propose the novel real-time database design InvaliDB
that adds push-based real-time queries as an opt-in feature to
existing pull-based databases, but avoids the limitations other
state-of-the-art systems are constrained by. InvaliDB sets itself
apart from existing system designs through (1) a novel two-
dimensional workload partitioning scheme for linear scala-
bility, (2) support for expressive real-time queries including
sorted filter queries with limit and offset, (3) a pluggable query
engine to achieve database independence, and (4) a separa-
tion of concerns between the primary storage subsystem and
the subsystem for real-time features, effectively decoupling
failure domains and enabling independent scaling for both.
The production deployment at Baqend supports MongoDB
expressiveness and has been serving customers for several
years in different applications. These facts confirm that our
design is feasible to implement and can service a wide range
of use cases. We hope that our work sparks new confidence
in the practicality of real-time databases and that it inspires
further research on the topic within the database community.
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