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Abstract

Use cases in the Internet of Things (IoT) and in mobile clouds often require the interaction of one or more mobile devices with their
infrastructure to provide users with services. Ideally, this interaction is based on a reliable connection between the communicating
devices, which is often not the case. Since most use cases do not adequately address this issue, service quality is often compromised.

Aimed to address this issue, this paper proposes a novel approach to forecast the connectivity and bandwidth of mobile devices
by applying machine learning to the context data recorded by the various sensors of the mobile device. This concept, designed as
a microservice, has been implemented in the mobile middleware CloudAware, a system software infrastructure for mobile cloud
computing that integrates easily with mobile operating systems, such as Android.

We evaluate our approach with real sensor data and show how to enable mobile devices in the IoT to make assumptions about
their future connectivity, allowing for intelligent and distributed decision making on the mobile edge of the network.
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1. Introduction

Mobile devices like smartphones, wearables and sensor nodes have become more powerful every year. Never-
theless, they often rely on the resource augmentation through centralized resources, enabling a multitude of cloud-
augmented mobile applications. Examples are location-based advertising [9], realtime sensor networks, the Nvidia
Shield video-gaming console [13], which computes parts of the gameplay on remote resources, or the voice recogni-
tion assistant Siri [3]. Common to these use cases is the fact, that they rely on a preferably fast and stable connection
to centralized or edge clouds [1]. Even with upcoming 5G networks it is believed that the obstacle of the intermittent
connectivity of mobile devices will persist [17].

Knowledge about the future connectivity and bandwidth of mobile devices allows to design their applications
accordingly and allow an improved usability and user experience, for example by deciding whether to prefetch data
or postpone the synchronization with cloud services.
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Moreover, information about the current and future bandwidth can be used to decide when to activate the wireless
network interfaces, e.g. GSM or WiFi, of the mobile device. Hereby, the interfaces will only be activated in situations
where a high bandwidth can be achieved, improving the ratio between the required energy and the transferred data
and thus saving energy, often the most limited resource on mobile devices.

Currently, many of the proposed solutions in the domain of connectivity forecasts are limited to specific use cases
and only allow short-term forecasts. Filling this gap, this paper, which is based on our previous works in the domain
of context forecasts [14, 15, 16], aims to provide a concept for the connectivity forecast on a multitude of different
mobile devices, allowing them to reason about their future bandwidth. This way, a more efficient interaction between
mobile devices as well as between cloud and edge cloud resources becomes possible and can provide a higher user
experience while at the same time saving energy. Hence, the contributions in this paper can be summarized as follows:

e The concept of a modular connectivity service that is able to run on a multitude of devices. Firstly through
the dynamic adaptation of the computational requirements and secondly through the adaptation to the relevant
sources of information.

e A quantitative evaluation of the presented approach based on realistic mobile device usage data provided by the
Lausanne Data Challenge Campaign (LDDC) [10].

The remainder of this paper is structured as follows: Section 2 summarizes related work, afterwards Section 3
briefly derives requirements and describes our own approach, that is subsequently evaluated in Section 4. At the end,
we summarize our findings, highlight open challenges and give prospects for future work in Section 5.

2. Related Work

As summarized in [15], the task of forecasting the future connectivity of a mobile device can either be seen as
a software engineering- or a networking problem. Seen primarily as a software engineering problem, solutions in
the domain of mobile cloud computing like Serendipity [22] try to distribute computation tasks among other nearby
mobile devices to speed up computation or to save energy. Hereby, Serendipity takes into account the future state
of the mobile network connection by forecasting its reliability. Similarly, /C-Cloud [23] focuses on the challenge of
dynamically offloading computation tasks to cloud resources, by taking into consideration that the necessary code
and data can be delivered and the results received in time before the next link failure is likely to happen. Specifically
developed for the application in mobile edge computing, Sato et al. [20] recently proposed a radio environment aware
algorithm that is able to forecast the mobile connectivity between mobile nodes in access points.

Seen primarily as a networking problem, solutions like BreadCrumbs [11] try to forecast the future connectivity to
WiFi hotspots based on a model of the environment. Recorded sensor data is used to generate user-based models which
are then applied to schedule network usage based on connectivity forecasts. BreadCrumbs relies on the fingerprinting
of hotspots that is combined with GPS data to forecast a mobile user’s bandwidth. Focusing on the aspect of the
location forecasting even further, in NextPlace [21] a non-linear method is employed to forecast the time and duration
of a user’s next visit to one of his significant places. Their method identifies patterns in a user’s mobility history that
are similar to his recent movements in order to forecast his behavior. Similarly, Anagnostopopulus et al. [2] employ
supervised learning to perform a classification of trajectories which is then used to forecast the future location of
mobile users.

Further related works can either be found in the domain of mobility- and connectivity forecasts like in mobile
ad-hoc networking (MANET) or vehicular ad-hoc networking (VANET) [7, 24]. Summarizing the previous findings,
it can be concluded that several solutions have been proposed to contribute to the problem of connectivity forecasting.
However, current solutions are either not able to operate on a broad range of mobile devices or are not able to provide
the level of accuracy, required in IoT scenarios like computation offloading [15].

3. Bandwidth Forecast Service

In this chapter we will first define the design goals for the bandwidth forecast before we choose the dataset to
perform our analysis on and decide how to prepare the data. Afterwards, we choose different models that we expect
to fit the underlying patterns in the data that are responsible for a changing bandwidth.
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3.1. Design Goals

Apart from the functional requirement of a forecast with high accuracy, developing the Bandwidth Forecast Service
on a mobile device requires to meet several non-functional requirements. Accordingly, we summarize the specific
design goals for the development of the Bandwidth Forecast Service with the following key requirements:

o Support for different time intervals and forecast horizons: Apart from real-time applications it is often
sufficient to forecast the average bandwidth in a certain time interval. The duration of the time interval depends
on the use case and can range between minutes and hours. Likewise, the required forecast horizon for the service
ranges from the next minute to a bandwidth forecast for the next day.

o Resource-conserving and customizable: The service dynamically selects the appropriate learning algorithms
based on the required accuracy and the resources available on the mobile device.

e Can handle small amounts of data: The service is able to operate even when there is little data available on
the mobile device.

o Privacy aware: It is possible to process all information on the mobile device itself. The requirement for external
data processing should be optional.

o Open for extension: The service is open for extension with new learning algorithms or new data sources.

3.2. Dataset and Data Preparation

In January 2009 the Nokia Research Center Lausanne, the Idiap Research Institute and the EPFL initiated the
creation of a large-scale mobile data research. This included the design and implementation of the LDDC, an initiative
to collect sensor data from smartphones created by almost 200 volunteers in the Lake Geneva region over a period
of 18 months [10]. According to [5] it is still the largest dataset that contains information about mobile devices’
bandwidth and sensor data, which is why we chose the LDDC dataset to derive the following information as the input
to our simulation:

o Connectivity and bandwidth: GSM/WiFi/Bluetooth state (on/off), discovered MAC addresses and GSM cells,
signal strength of WiFi as well as GSM cells, extended with our own measurements to get an assumption about
the available bandwidth.

e General information about the mobile device itself: time since the last user interaction, silent mode state,
charging state, remaining energy, free memory.

e Date, time and location: calendar events, average and estimated remaining duration of stay at the current
location.

e Reasoned attributes: estimated duration of stay at the same WiFi access point or GSM cell, user is at
home/work, travelling, moving, or resting.

This information has been transformed into panel data containing observations over a period of at least 18 months
per user. Hereby, we used different time intervals of 2, 10 and 60 minutes to be able to forecast the bandwidth in
different granularities. Figure 1 shows the resulting distributions for the GSM bandwidth (left) as well as for the WiFi
bandwidth (right).

3.3. Architecture and Model Selection

As a baseline as well as a simple model for mobile devices with very limited resources, we choose an autore-
gressive model (AR) that tries to forecast the future bandwidth by just taking into account past observations of the
forecasting target itself. The AR(p) model assumes a linear dependency on its own previous values and a stochastic
term. Equation 1 defines the AR model as follows:

P
Vi=c+ ) Byiite (1)
i=1
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Fig. 1. Distributions of the assumed bandwidth

Based on the AR model, a more sophisticated approach appears to include more information than just the target
variable itself. As we assume that arbitrary additional sensor data can be highly multicollinear, we require a type
of regression estimator that is well-suited to deal with such types of issues. Least Absolute Shrinkage and Selection
Operator (LASSO) [25] is an estimator that performs L1 regularization which adds a penalty equal to the absolute
value of the magnitude of coefficients encouraging simple, sparse models, i.e. models with fewer parameters. This
approach leads to the optimization problem shown in Equation 2, where A is a nonnegative regularization parameter
and p denotes the number of features.

X 1 4
e = argmin = > (=B + 2 ) 1B @)
n=1 i=1

Solving this optimization problem requires substantially more computation power compared to the training of
the AR model, but promises to better capture the relationship between the mobile devices’ context and its future
bandwidth.

Following this approach, we choose decision trees to cover higher order interactions between the individual vari-
ables of the sensor data and the target variable. Using gradient boosting [8], which uses ensembles of weak prediction
models to iteratively build a stronger model, we aim to build a model that has a low bias and low variance at the same
time. As an implementation, we choose XGBoost [4] that currently is considered one of the state-of-the-art machine
learning algorithms to deal with structured data [12].

3.4. Runtime Environment

We employ standard Java and Android technology to implement the Bandwidth Forecast Service as a microservice
which is integrated into the CloudAware mobile middleware presented in [15]. CloudAware is based on the the Jadex
[18] middleware that provides infrastructure components such as service discovery in mobile environments and allows
to expose the microservice.

4. Evaluation

The developed Bandwidth Forecast Service is evaluated by selecting 20 users who have provided data of at least
18 months to the LDDC dataset.

The model used to simulate the usage of a mobile device, described in [16], uses the context data to simulate a
mobile device in its constantly changing environment, which aims at reflecting the real-world usage throughout the
whole period of the observations. In line with the research goals defined in Section 1, we will focus on two aspects:

e Which context information correlates and helps the most to estimate the future bandwidth of a mobile device?
e Which of the selected models performs best in capturing this relationship?

4.1. Feature Importance

To answer the question which context variable supports the forecast of a future bandwidth at most, we analyze
their linear relationship using the Pearson correlation coefficient as shown in Figure 2. Due to the lack of space,
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Fig. 2. Correlation matrix for the context variables (left) and feature importance scores of an XGBoost model (right)

we just show the most relevant correlations of the total 112 features contained in the panel. As expected, the current
bandwidth, exemplified with the WiFi bandwidth as ”avg_wifi_bandwidth”, is mainly correlated with context variables
that describe the current connectivity of the mobile device as well as its physical location.

Although the correlation plot in Figure 2 shows a high correlation between many of the context variables, it supports
the hypothesis about the relevance of physical and temporal dependencies. To get a further insight which variables
account to the forecast of a future bandwidth at most, we choose the Feature Importance Score (F-Score) of the
XGBoost model. The F-Score describes the relevance of a feature by counting how many times the underlying tree-
based models used the variable as a decision criterion, as shown in Figure 2. Accordingly, it can be concluded that
the availability of these variables helps to forecast the future bandwidth of a mobile device. However, this assumption
mainly refers to moving devices that users carry with them. Other scenarios in the IoT, apart from the bandwidth
forecast, may exhibit other relationships and hence other variables can become the most relevant features for the
forecast.

4.2. Simulation Results

The aforementioned simulation is carried out for 20 users of the dataset to validate the general applicability of
our approach. Accordingly, we perform an ex-post evaluation using a rolling window approach for which we assume
a weekly retraining of the models while, where applicable, the hyperparameters are tuned using grid searches and
cross-validation. Although the latter would typically not be carried out in a real-world implementation, it helps to
estimate the full potential of the evaluated models. To show the general usefulness of the trained models, Figure 3
presents the actual and the forecasted bandwidth for different context intervals in conjunction with a fixed horizon.
Figure 4 shows different forecasting horizons together with a fixed context interval, both on a randomly chosen day
of the simulation. A first look at the data leads to the assumption that only the XGBoost model is able to properly
capture the relationships between the context data and best forecasts the future bandwidth of a mobile device.

For an overall evaluation of the forecasting accuracy, an appropriate error-measure needs to be selected. As this
depends highly on the use-case, we choose the typical linear and quadratic error measures, shown in Table 4.2 for
a forecast interval of one hour. Additionally, Figure 5 presents the corresponding error distributions. With a mean
absolute percentage error (MAPE) ranging from 35.6% for a bandwidth forecast for the next hour to an MAPE of
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103.3% for a forecast in 20 hours, XGBoost appears to be the most robust and accurate predictor for this problem.
Nevertheless, the LASSO and the AR model can depict interesting alternatives, when computation resources are low
or the use case does not require such a high level of accuracy.
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Table 1. Error measures for different models and horizons

Error Mean Abs. Error (MAE) ‘ Mean Abs. Perc. Error (MAPE) ‘ Root Mean Squared Error (RMSE) ‘
Horizon 1 5 20| 1 5 20 | 1 5 20 |
AR 27,185.3 34,261.9 58.8 | 38,027.0 51,290.2 103.8 | 325,301.4 374,053.3 65.6
LASSO 583.2 59.3 66.5 815.8 88.8 117.3 5982.0 82.7 92.0
XGB 25.5 442 58.6 35.6 66.2 103.3 36.5 56.1 76.4
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Fig. 5. Distribution of the errors for different models, context intervals and horizons (outliers removed for AR)

5. Conclusion

'
!
it

In this paper, we proposed a novel approach for a Bandwidth Forecast Service for mobile devices in mobile edge
and IoT scenarios. Using real usage data of the LDDC we highlighted the benefit of using the mobile devices sensor
data to forecast their future bandwidth. We showed that the XGBoost model was able to forecast the future connectivity

of mobile devices in a constantly changing environment and we highlighted which sensor data contains the
important information for this task.
This contribution can support a multitude of scenarios where the limited bandwidth of a mobile device needs

most

to be

forecasted. Mainly to mitigate the effect of upcoming network bottlenecks by either delaying, advancing or adapting
data transfers, but also to save energy. Furthermore, the discovered relationships can also positively influence other

scenarios that require to forecast the context of mobile devices.
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Nevertheless, reliably forecasting the wireless connectivity by forecasting the user’s mobility patterns is considered
a complex task and still an open challenge [6, 17]. Although XGBoost was able to provide a high forecast accuracy, its
training phase might need to be offloaded to more powerful cloud resources. Hence, at least some categories of mobile
devices need to be provisioned with pre-trained models, an aspect we plan to survey in our future work. Especially
for the domain of IoT it would also be interesting to further investigate federated approaches, as proposed in [19], that
would allow edge devices to form a distributed intelligence.

Acknowledgement: Parts of this research used the MDC Database made available by Idiap Research Institute.
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