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Abstract

Microservices are a widely deployed pattern for implementing large-scale distributed systems. However, in order
to harden the overall system and when crossing datacenter boundaries, the authenticity and confidentiality of mi-
croservice calls have to be secured even for internal calls. Since most microservice systems employ HTTP-based
approaches, TLS communication is usually used to secure the communication channels. However, TLS by itself
provides only link-level security. Authentication options are limited or alternatively must be implemented in the
application code. As a result, microservice systems often lack proper defense in depth. In this paper we present how
standard cryptographic primitives can be combined to provide a flexible communication system providing a high
level of security even when easy to manage low-entropy authentication secrets are used. Furthermore, the approach
provides encryption, forward secrecy and protection against replay attacks even for out-of-order communication.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

In order to allow horizontal scaling, large-scale software systems are generally distributed and therefore con-
sist of multiple machines cooperating via networks. In this context, microservices are a novel development
pattern for such systems in which the overall functionality is provided by a large number of small software
components. These components use and provide software services and are developed and maintained by
independent teams, which enjoy high degrees of autonomy regarding development and deployment of tech-
nical solutions as long as the service functionality is provided as agreed. Unlike traditional development
approaches where development teams and operations teams are separated, microservice teams provide all
development and operation requirements for their service (DevOps).

Figure 1 shows a simplified microservice system scenario. The system consists of five services working
together to provide an application like a web shop to an external user. The user runs a client application
such as a mobile app or a browser application, which accesses the external user API provided by the system.
This API service is then able to invoke further internal services to provide the requested functionality: a
suggestion service that provides purchase suggestions to the user, a payment service to process user payments,
a shipping service that initiates the shipping with a logistics provider and a warehouse service for managing
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Fig. 1. Example scenario of a microservice system

the physical products. Each of these services are maintained by an autonomous DevOps team that will
develop, maintain and deploy the service.

Most microservice systems are based on standard web technology for communication between service and
between the external API and the user, though internally each service team is free to choose any suitable
technology and if agreed upon, other technology may be used.

The communication between the user and the external API is usually secured through a combination of
Transport Layer Security (TLS)10 and additional authentication mechanisms such as passwords. In general,
the most important aspect of the network security is the so called perimeter defense, which tries to protect
the system boundaries from the outside internet9. As a result, security of individual microservices tends to
be neglected20 or considered to be handled by a separate security team25.

This lack of internal security results in a system that, while unauthorized access is generally hard from the
outside, allows an attacker to use all of the internal services easily once one of them has been compromised.
In the example scenario, if the DevOps team of the suggestion service failed to adequately secure their
service, an attack can then use the suggestion service platform to gain access to more valuable targets such
as the payment service. Due to the interally open nature of the system this attack could succeed despite
the fact that the suggestion service probably does not require access to the payment service.

As a result, a defense in depth approach for developing microservice systems is generally desirable. While
technically possible, this is disregarded due to one or more three factors: First, in most cases, hypertext
transfer protocol (HTTP) communication is employed and while HTTP Secure (HTTPS)24 based on TLS
is available, it provides purely channel based security between two hosts identified by certificates without
extra work. As a result, only one identity for each side of the communication channel can be used.

Second, while additional authentication and identity management can be implemented using an external
authentication system, this would need to be managed separately, possibly even in a centralized fashion.

Finally, the security has to be implemented in large part in the application code. The service developers
would have to be sure to use secure communication channels such as HTTPS, ensure proper certificate checks
especially if identities beyond host identities are employed. If an external authentication management system
is used, tokens would need to be requested and checked.

All of these checks are often quite non-trivial: A public key infrastructures (PKI) certificate trust chain
would need to be followed up to a trust anchor, with each step of the chain validated separately. Validity
time intervals need to be validated for each certificate. Certificate permissions such as certificate authority
signing need to be ensured. In addition, some systems include concrete capabilities within tokens that need
to be coordinated with the token provider.

This requires a specialized knowledge set to be available to each of the DevOps teams and strongly
distracts from the development focus of the team of providing the service functionality to the system.
Some approaches would also undermine team autonomy by requiring coordination with external, possibly
centralized systems to acquire certificates and capability sets.

As a result, a microservice system should be able to address the following three challenges in order to
encourage developers to internally harden their systems:



Kai Jander, Lars Braubach, and Alexander Pokahr / Procedia Computer Science 00 (2016) 000–000 3

Table 1. Approaches for securing microservice systems
Role Support Autonomy Ease of Use

Plain TLS - o o
TLS + Authentication Service + - to o -
Microservice Frameworks - + +

Role Support: How can service communication be secured independently of communication channels while
providing potentially multiple roles to be attached to the communication?

Autonomy: How can authentication be provided in a flexible manner that allows each DevOps team to
make independent decisions regarding identities?

Ease of Use: How can this be achieved in an easy-to-use manner that does not require extensive expert
knowledge within the team and without resorting to centralized dependencies for the team?

In the next Section existing microservice approaches for service authentication and encryption are dis-
cussed. Afterwards, in Section 3 fundamental requirements for a solution are presented and in Section 4 a
novel approach addressing these requirements is conceptually described. Details of its implementation are
introduced in Section 5 and a summary and an outlook on future work are given in Section 6.

2. Microservice Approaches for Service Authentication and Encryption
Since microservices are a design pattern and not restricted to any particular technology, any applicable
technology can be used to develop distributed systems based on the approach. For example, the developers
of a microservice system may always choose to implement their own internal security approach, however,
this would require a high degree of expert knowledge in the development teams as mentioned.

As a result, existing technologies and frameworks are used to support microservice development. When
based on the three challenges in Section 1, the most common technologies used in microservice systems can
be categorized into three different approaches as shown in Table 1.

The first approach is relying on TLS to secure a connection between two hosts. This includes the common
case of basing the service invocation of the microservice system services on representational state transfer
(REST)14, in which case HTTPS can be used. TLS supports authentication of both sides of a communication
channel through server and client certificates. Provided the authentication is successful and sufficient, the
following communication is encrypted and authentication based on the original certificates is ensured.

However, the most common use case of TLS authenticates only the server side based on host names
using a public PKI. If client authentication is required, it is usually performed in-band through the use of a
separate password or similar authentication. The use of client certificates is rare and support would have to
be explicitly invoked by the application code. Furthermore, authentication based on host name only may be
insufficient. While TLS does not strictly mandate how the certificates are used and validated, thus allowing
custom authentication approaches, these complex approaches must be implemented in application code.

Authentication extensions for TLS are available8, but library support for them is generally poor. In
any case, the implementer would still be forced to deal with detailed authentication aspects if they are
used. This means that there is a tradeoff between ease-of-use and sophisticated authentication styles such
as roles. With server-side-only authentication, the implementation effort is moderate, but role support is
not available. Team autonomy is restricted by the use of an external PKI.

The second approach attempts extending host-authenticated TLS with in-band authentication options.
In most cases, a trusted third party is used to issue permits in the form of tokens like e.g. JSON Web
Tokens (JWT)18. The trusted third party can be either implemented manually as a separate service or with
a single sign-on framework such as OAuth217. Some approaches can be quite advanced such as Shibboleth19,
which allows federated security that can exhibit higher degrees of autonomy for the DevOps team. However,
deploying and integrating such systems is very complex and once again requires specialized knowledge.

Finally, there are microservice frameworks that support the development of microservice systems by
providing a middleware for service acquisition, invocation and communication. They also offer programming
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models to deal with the distributed and concurrent nature of such systems. While microservice frameworks
offer the potential for a well-integrated security solution that enable easy implementation of security concepts,
features offered by such frameworks are often quite limited.

For example, the Vert.x framework12 offers an event bus for communication between services. While
the bus itself can be secured using TLS, every service that has access can use all capabilities of the bus
without limitation. As a result, defense in depth would have to be built on top of it and implemented by the
service providers. Another example is the Lagom framework11, which is based on Akka3. Here, the same
issue applies: TLS is available, more advanced authentication and defense in depth is left up to the service
implementation.

Since microservice frameworks are comparably easy to use, offer a high degree of transparency and come
with a helpful programming model, it would be advantageous for microservice frameworks to also provide
flexible and autonomous security solutions that allow microservice systems to provide defense in depth. In
the following sections we will present a solution for the microservice framework Jadex which provides a high
degree of security, high performance while allowing for easy usage and autonomous management.

3. Requirements
The basis of communication for services is the exchange of messages. In order to support multiple roles
getting attached to messages, all messages need to be encrypted and associated with one or more identities.
The goal of a security system is to provide the service implementation with the identities associated with
the message and the assurance that confidentiality was maintained and the associated identities are verified.
The service implementation can then implement the authorization layer based on the identities provided.

Roles are a useful pattern in this regard since they are not restricted purely to an identifier of a single
entity but can be claimed by multiple identities if necessary. A role that can only be claimed by a single
entity therefore becomes equivalent to that entity. As a result, specific support for entity (e.g. particular
services or hosts) are not necessary and can be subsumed as roles.

Claims to a role can be proven by a prover to a verifier through a number of means, typically either using
a shared secret in possession of both the prover and verifier or using a digital signature generated by the
prover with a secret key that is verified by the verifier with a corresponding public key that follows a trust
chain to a trust anchor for the role.

While digital signatures tend to be the most powerful approach, in particular allowing the verifier to
verify roles without being able to claim them, it generally requires complex management of a public key
infrastructure (PKI). If the use case is simple enough for an approach based on a shared secret, this overhead
can and usually is avoided as can be shown by the continuing popularity of WPA2-PSK (Wi-fi Protected
Access with Pre-Shared Key, see22) for easy wireless network deployment.

As a result, a solution should therefore be capable of supporting both approaches, allowing the service
implementers to pick an approach most suitable for their use case. Furthermore, passwords as a particular
type of shared secret, despite their weaknesses, are widely used due to their convenience and should therefore
be also supported in some fashion.

Confidentiality should be ensured by means of authenticated encryption. The authentication can be
based on the role identities of the participants. Furthermore, if possible, forward secrecy should be provided
through the use of ephemeral keys to prevent compromising past communication if long-term keys are
exposed.

Finally, since the communication may be routed through intermediary systems, these should be unable
to read the message content. Additionally, they should be prevented from modifying the message content
without the recipient noticing the modification. Finally, the message should reveal as little information to
the intermediary as possible but enough to ensure delivery is possible.

4. Solution Concepts
A microservice system generally consists of multiple processes, often server applications like web servers,
that are distributed on multiple machines, which can be either virtual or real. Each process can offer one or
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Table 2. Overview of authentication approaches
Convenience Entropy Asymmetric Roles

Password High Low No
Symm. Key Medium High No
Key Pair (X.509) Low High Yes

more services and make use of other services. Since each service within a process has access to the memory
space of the process and could therefore undermine any further subdivision, it makes sense to treat those
processes as a single entity with regard to the roles it has, regardless of the number of services provided by
the process. If further separation between services is needed, the process providing multiple services could
be split up in multiple processes for each service.

The basic approach for setting up secure and authenticated communication between two of such processes
is the execution of a key exchange between those processes and authenticating that exchange with all of
the roles available to each process. The processes would then be able to verify both that the exchange
was authenticated (if at least one role could be verified) as well as associate all verifiable roles with the
exchanged key. The resulting ephemeral key can then be used in a symmetric authenticated encryption
scheme. Messages that are encrypted and can be validated using the ephemeral key can then be tagged with
the roles that were verified during the key exchange.

Based on the requirements, the resulting system should support role authentication based both on pub-
lic/private key pairs as well as shared secrets. Since shared secrets are further subdivided into passwords
and keys, three approaches can be differentiated: passwords, keys and asymmetric key pairs as represented
by X.509 certificates.

In this scenario, the use of public/private keys is relatively straightforward: The contributions to the
key exchange are signed for each role with the private key and the public key chain is transmitted with the
signature to the other participant who can verify the signature using the public key trust anchor associated
with each role, resulting in a list of verified roles.

As shown in Table 2, while keys and passwords are technically both a type of shared secret, they are
distinguished here with regard to their assumed entropy. Keys are assumed to contain sufficient entropy to
make any brute force attacks computationally infeasible. Therefore, authentication using a key simply takes
the key exchange contribution as input and generates a message authentication code (MAC) using the key.
This procedure is then repeated by the other participant and the MACs are compared: If they match, then
the associated role is considered verified.

Passwords are often considered to be a very convenient way of authentication. Depending on complexity,
they can be memorized by the user and therefore can always be entered if the user is present. However,
this convenience is often due to the generally low entropy of passwords: High-entropy passwords are often
difficult for people to remember, so simpler, low-entropy passwords are chosen.

However, low-entropy passwords are an easy target for brute force attacks: A completely random password
that is 8 characters long containing, potentially, upper- and lowercase letters as well as numbers has an
entropy of 628 u 248 possible combinations and thus roughly 48 bits. If an attacker is able to mount even a
moderately fast brute force attack, the password will be discovered quickly. Brute force attacks tend to be
especially effective if they can be mounted offline, i.e. without interacting with participants who know the
password.

As a result, a simple MAC using the password as the key is insufficient since it would allow an attacker
to perform a fast, offline brute force attack which could not be resisted by the password’s low entropy.
WPA2-PSK attempts to resolve this issue by using an key derivation function (KDF). A key derivation
function performs a large number of both CPU- and memory-intensive operations such as expanding and
contracting hashes on the password and using the result similar to a high-entropy key. This approach can
slow down brute force attacks considerably since they are required to repeat the same number of expensive
operations for each trial.

However, a major disadvantage of this approach results from the fact that legitimate participants each
also need to perform the expensive operation albeit only once. As a result, the complexity of the KDF needs
to be carefully balanced between slowing brute force attacks and effort required by legitimate participants.
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Fig. 2. Handshake protocol between participants
This situation is made worse by the fact that this balance shifts with hardware capabilities: As hardware
gets more processing capabilities and memory becomes cheaper, the KDF iterations and memory footprint
needs to be expanded to keep pace. Since this changes the output of the KDF, such changes are not
backward-compatible.

A better approach is therefore to prevent the attacker from performing fast offline attacks and forcing
them instead to perform online attacks, which can be slowed hardware-independently by the participants.
Another advantage is that such attempts can be logged for later analysis and even stopped by establishing a
maximum number of trials per given timeframe and an accompanying blacklist that will impede brute force
attempts.

Forcing the attacker to perform online attacks can be accomplished by a set of protocols called password-
authenticated key exchanges (PAKE). In such protocols, a shared secret is agreed upon in a key exchange
protocol that is authenticated using the password. The end result of such an exchange is a randomly
generated, high-entropy key. An attempt by an attacker to manipulate such an exchange results in the
keys on each side to differ. The PAKE protocol chosen for this approach is the password-authenticated
key exchange by juggling (J-PAKE16). For each password-authenticated role a J-PAKE exchange is set up
which is then performed in parallel to generate a key for each password-authenticated role.

The resulting high-entropy key can then be used as if the role had been secured with a high-entropy key
in the first place: A MAC is generated based on the key exchange contribution and the J-PAKE-generated
key and verified by the receiver using the same generated key. If a mismatch occurs, it means that either the
passwords did not match in the first place or an attacker attempted to manipulate the J-PAKE exchange. In
either case the role is not accepted as valid and the exchange has to be either repeated or accepted without
the role being accepted.

5. Implementation
The protocol was implemented in the Jadex Active Components framework,7,6 which offers message exchange
and service invocation using a multi-transport overlay network. Since Jadex builds its service call layer on its
message exchange layer, authentication and encryption was implemented for the message exchange, therefore
automatically providing its capabilities to the service call layer as well.

Messaging in Jadex is transparent and can be performed using multiple types of communication channels
such as TCP/IP23 and Websockets.13 When a message is being sent to a remote Jadex platform, the local
platform attempts to find a communication channel, called transport. Potentially, there can be multiple
transports to a remote platform and platforms can dynamically change available transports as well. While
transports are chosen based on performance criteria, the choice is relatively consistent but messages can
be sent using multiple different transports to the same platform. As a result, while Jadex is supposed to
provide at-most-once semantics for messages, it does not preserve message order.

Figure 2 shows the handshake protocol between two participants who wish to communicate. The goal of
this protocol is to establish an ephemeral symmetric key between the two participants and securely associate
the key with the verifiable roles available to each side. The protocol starts either when the initiator attempts
to send its first message to the responder or occasionally by participants with established key to negotiate
a new key to maintain forward secrecy.

The initiator begins by sending a list of names of proposed cryptosuites which are sets of concrete
cryptographic primitives used during handshake and later communication. The initiator must ensure to
select only suites of acceptable security since the responder can select any of the proposed suites. The
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responder will then select a single suite based on its own preferences. If no match is found, the protocol
fails. The selected suite is then sent to the intiator to confirm the selection. This is done for modularity, so
an agreement about the suite is confirmed before the exchange itself starts. An optimization of this approach
would be to interleave the subprotocols to a greater extent, however, since this exchange is independent of
the communication channel, it is expected to occur only on occasion to ensure forward secrecy.

After suite selection, the J-PAKE exchange is started by the responder by sending the data set of the
first round of J-PAKE for all its passwords to the initiator. The initiator then generates its own first round
J-PAKE data set and calculates the second round information and sends both back to the responder. If no
passwords are used, these J-PAKE parts of the handshake could be skipped.

The responder then finalizes the J-PAKE exchange. At this point, both sides have generated shared keys
authenticated by their shared passwords. The key exchange algorithm is then initialized by the responder,
which generates the key contribution of the responder. This contribution is hashed and authenticators are
generated based on the hash: For both shared keys and password-derived keys a MAC is generated with
the key contribution hash as input. For X.509 certificates, a signature for the hash is created. The second
round data of the J-PAKE exchange, the key exchange contribution and the authenticators are sent to the
initiator.

The initiator finalizes the J-PAKE exchange, generates its key exchange contribution and generates the
ephemeral key. The third round of the J-PAKE protocol which confirms that the keys match can be omitted
at this point since the generated keys are used for authentication only: If the keys differ, the authentication
will fail. The received authenticators are verified, only roles with a verified authenticator are associated with
the ephemeral key. The intiator also generates authenticators for its own key the same way as the responder
contribution and sends those along with its key contribution to the responder.

Afterwards, the responder generates the ephemeral key and verifies the authenticator and sends a con-
firmation that it is now ready to exchange messages. After this exchange, both sides possess a shared
ephemeral key that is associated with the roles that could be verified. If no role could be verified, it can
be indication of either a man-in-the-middle attack or no matching roles between the participants. In this
case, the participants can either abort the communication or accept that the communication is untrusted
and only has opportunistic encryption available.

The shared ephemeral key is then used in an authenticated encryption algorithm with nonces to encrypt
messages. In order to prevent replay attacks, nonces are only accepted once by the receiver. Since the
message order is not guaranteed, a sliding window is used: Successfully decrypted messages advance the
window and mark the nonce as invalid. Lower nonces are valid until their message arrives, at which point
they will be marked as invalid in the data structure. In order to limit memory consumption, any nonce
below a fixed distance from the highest received nonce are automatically considered invalid whether they
have arrived or not (unarrived messages are considered lost).

The current implementation only offers a single cryptosuite that attempts to secure the key exchange
as much as possible while offering high symmetric performance after the exchange. The cryptographic
primitives contained in this suite are as follows: The Blake2b2 algorithm is used both as hash and MAC
function. The authenticated encryption combines the ChaCha205 symmetric cipher with the Poly13054,21

authenticator.
For the key exchange, two algorithms are run in parallel and their outputs are hashed together to hedge

against each of their potential weaknesses: The Ed448 elliptic curve algorithm15 is used for the historically
good record of elliptic curve cryptograpgy, while the NewHope algorithm1 is used to potentially provide
quantum security, provided the authentication is also quantum-secure (i.e. MACs based on keys are used).
By hashing their outputs together, an attacker would have to tackle both of the algorithms.

With regard to the challenges identified in the introduction, the solution supports roles as described
above. Furthermore, the solution achieves the same autonomy as other microservice frameworks like Vert.x
that also provide a ready to use messaging infrastructure. Considering ease of use, our first experiences with
the new security architecture are promising. Roles can be defined bilaterally between two services, but also,
e.g. as a convention that is agreed upon in the company, applied to the system as a whole, if needed. Yet,
in no case a central authentication service is needed for roles, which reduces management effort (usability)
and supports the DevOps approach (autonomy).
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6. Conclusion and Outook
Security in microservice systems is often neglected and responsibility is delegated to an API gateway which
shields the internal services and provides authentication as well as authorization. While convenient for the
DevOps this approach lacks defense in depth and a hacker only needs to find a weakness in the gateway to
get access to any of the hidden backend microservices. In order to prevent this, an approach is proposed
that provides authentication and decentralized role-based authorization out of the box. The solution has
been designed to be adoptable with minimum effort and tries to hide as many security aspects from the
application layer as possible. It supports authentication via password, key and key pair and ensures that
low entropy approaches are leveraged using key deviation functions. The approach has been realized in the
Jadex framework. As part of future work it is planned to optimize the efficiency of the protocol and to
implement the protocol for standard REST via HTTP. The former can be achieved by reducing the number
of messages while the latter can be done by first using the proposed protocol to establish a symmetric key
that can be subsequently used to encode the content of all further HTTP traffic. This means that invocations
could remain plain HTTP but are secured except for the headers.
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