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Abstract Markets for mobile applications offer myr-

iads of apps ranging from simple to quite demanding

ones. The latter are on the rise since every new gener-

ation of smartphones is equipped with more resources

(CPU, memory, bandwidth, energy) to even allow re-

source-demanding services like speech- or face recogni-

tion to be executed locally on a device. But compared

to their stationary counterparts, mobile devices remain

comparatively limited in terms of resources. Because of

this, current approaches aim at extending mobile device

capabilities with computation and storage resources of-

fered by cloud services or other nearby devices. This

paradigm, known as Mobile Cloud Computing (MCC),

is challenged by the dynamically changing context of

mobile devices, which developers are required to take

into account to decide, e.g., which application parts are
when to offload. To rise to such and similar challenges

we introduce the concept of Generic Context Adap-

tation (GCA), a data mining process that facilitates

the adaptation of (mobile) applications to their current

and future context. Moreover, we evaluate our approach

with real usage data provided by the Nokia Mobile

Data Challenge (MDC) as well as with CloudAware,
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1 Introduction

Throughout the last decade, mobile devices became con-

stant companions allowing to access information and

services anytime and anywhere. Due to the ongoing

miniaturization and cost-reduction of constituents, these

devices are nowadays powerful enough to support lots

of our everyday routines. Along with that trend, ven-

dors like Google, Apple, and Microsoft built up mar-
ketplaces to easily distribute any kind of application

to further extend the possibilities of such devices. The

users in turn got accustomed, demand for even more

sophisticated applications and are willing to invest in

even more feature-rich and powerful devices, leading to

a positive spiral of supply and demand in terms of mo-

bile computation power at hands.

The mentioned situation has led to an increasing

demand for a system support that is able to exploit

the potentials of spontaneous interaction and therefore

needs to be able to dynamically adapt to the quickly

and constantly changing context of mobile ad-hoc sce-

narios. At present, many of the proposed solutions pro-

vide only limited context awareness or just specific pre-

diction capabilities that moreover often require configu-

ration by the developers. Consequently, we present the

concept of Generic Context Adaptation (GCA), where

we combine context awareness features with machine

learning to serve as a prediction engine for arbitrary

context attributes in mobile environments. In this way,
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more generic and flexible scenarios that go beyond than

just adaptation to the current context but to a future

context become possible. The contributions in this pa-

per can be summarized as follows:

– The concept of the GCA process that is able to pre-

dict arbitrary context attributes to anticipate the

quickly changing context of mobile applications.

– A simulation of the developed GCA process that is

based on realistic context information provided by

the Nokia Mobile Data Challenge (MDC) campaign.

– An evalulation of the GCA process in a Mobile Cloud

Computing (MCC) offloading scenario for image pro-

cessing.

The remainder of this paper is structured as follows:

Section 2 introduces the foundations of context aware-

ness and MCC. Afterwards, Section 3 describes typical

application scenarios, whose general requirements are

matched with the related work, presented in Section

4. Subsequently, the concept of GCA is presented and

evaluated in Section 5. At the end, we summarize our

findings and give prospects for future work in Section

6.

2 Background

In this section we will describe the concept of MCC and

context awareness being the two main foundations for

the remainder of our work.

2.1 Mobile Cloud Computing and related Paradigms

MCC tries to weaken the restrictions of mobile applica-

tions by offering centralized resources to augment mo-

bile devices. According to (Dinh et al, 2011) it is de-

fined as the integration of cloud computing into the

mobile environment to overcome obstacles related to

performance (e.g., battery life, storage and bandwidth),

environment (e.g., heterogeneity, scalability and avail-

ability), and security (e.g., reliability and privacy). We

agree with this definition, extending the consideration

of environmental restrictions to the more general prob-

lem of context adaptation. An early definition men-

tioned in the context of MCC which especially covers

the aspect of mobility is the term cyber foraging. Coined

by Satyanarayanan in 2001 (Satyanarayanan, 2001) it

is described as:

”...construed as ’living off the land’, [...] The

idea is to dynamically augment the computing

resources of a wireless mobile computer by ex-

ploiting wired hardware infrastructure.”.

Introducing the concept of cloudlets as an interme-

diate layer between mobile devices and cloud resources,

cyber foraging is expected to further improve latency

and execution speed.

A similar, but more recent definition that is more fo-

cused on the edges of a network is the so-called (Mobile)

Edge Computing. As an evolution to mostly central-

ized resource augmentation strategies like MCC, mo-

bile edge computing (MEC) or simply egde computing

moves further in terms of decentralization. MEC tries to

move the major part of remote operations from central

resources directly into the surrounding infrastructure

and so includes the logical extremes of a network. To do

so, it replicates parts of an application’s business logic

onto nearby devices. Coined in 2004 by Akamai (Davis

et al, 2004) it was first used to describe the topology of

their content delivery networks that was used to cache

often-requested contents at the logical edges of the net-

work, but today the definition is used to provide more

complex services by using cloud computing principles in

a pay-as-you-go manner. Popular examples providing

resource augmentation to increase the mobile devices

computation power are MAUI (Cuervo et al, 2010),

CloneCloud (Chun et al, 2011) and ThinkAir (Kosta

et al, 2012).

2.2 Context Adaptation

Mobile devices are continuously faced with changes in

their physical as well as logical environment. This might

open up new opportunities (e.g., access to new services),

but also challenges the execution continuity of running

applications (e.g., need for service rebindings). In order

not to bother the user with a decreasing quality of ser-

vice or possible re-configuration requirements while on

the move, applications and services ideally adapt them-

selves to their current context, as defined by Salber et

al. (Salber et al, 1999) as:

”Environmental information or context covers

information that is part of an application’s oper-

ating environment and that can be sensed by the

application. This typically includes the location,

identity, activity and state of people, groups and

objects.”

If applications or services make use of such envi-

ronmental information, collected by either physical or

virtual sensors, they are called context-aware. Accord-

ing to Dey and Abowd this definition includes the abil-

ity of a system to provide relevant information and/or

services to the user where relevancy depends on the

user’s task (Dey and Abowd, 1999). This process of in-

formation extraction for adaptation purposes can be as
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trivial as receiving GPS coordinates to show the user’s

location on a map, or as complex as employing the pro-

cess of knowledge discovery in databases (KDD) to the

vast amount of sensor data available on current smart-

phones.

For example, in order to distinguish if the user is

running, walking or sitting, this can include employ-

ment of various sensors of a smartphone, data selec-

tion (choosing the right sensors and adjusting their

resolution to acquire the right amount of data), pre-

processing (data cleansing and transformations), mod-

elling (finding appropriate models and fitting them to

the problem) and deployment (using an efficient imple-

mentation that performs well on mobile devices) (Yuan

et al, 2014). More detailed specifications of context adap-

tation introduce further distinctions (Geihs, 2008), namely:

– parametric adaptation

– compositional adaptation

– anticipated or non-anticipated adaptation

Parametric adaptation describes the adjustment of

an application’s control flow initiated by changes in the

context. This criterion is often associated with typi-

cal examples of context awareness like location-based

recommendations for electronic tourist guides, which

we assign to the domain of classical context-aware re-

search. In contrast, compositional adaptation refers to

the replacement of certain application components at

runtime, e.g. exchange a TCP1-based communication

adapter against a Bluetooth GATT2 adapter once the

communication channel changes. The third criterion,

anticipation, describes the condition in which future

alternatives of context states are known a priori, or,

in the case of non-anticipation, can at the earliest be

determined at runtime.

The last two criteria can be crucial ones for future

MEC scenarios, because respective applications need to

adapt the composition of their constituent components

when offloading tasks into the network. And for the de-

velopers it is hardly possible to foresee all imaginable

future context states of a highly dynamic environment

that require such an offloading decision (Wei and Chan,

2013). We therefore consider these kinds of adaptations

the main requirement for resource augmentation in en-

vironments with intermittent connectivity like oppor-

tunistic computing. Hence, we describe context adap-

tation for MEC as:

1 Transmission Control Protocol, core protocol for internet-
based communication
2 Generic Attribute Profile, contains common Bluetooth

operations and framework

”The ability of an MEC application to react to

current and future connectivity states and re-

evaluate the non-anticipated deployment strategy

along with the available resources accordingly by

using compositional adaptation.”

Recent MEC solutions consider context adaptation

only as a minor factor to allow offloading parts of the

computation to a surrogate, while we consider it the

essential criterion to enhance the user experience, which

will be reflected upon in Section 5.

3 Application Characteristics

To further illustrate the idea of MCC, three application

scenarios are exemplified in the following. Common to

this scenarios is the fact, that their distribution into

the infrastructure is not static, but dependent on the

context which is why they were chosen and, in a gen-

eralized manner, will serve as a base for the evaluation

presented in Section 5.

Machine Learning as a Service: If an applica-

tion is able to forecast a user’s future activities, it can

better adapt its behavior to the current needs, e.g. defer

tasks until appropriate resources are available. To do so,

an application must first learn about the user’s behav-

ior and daily routines. Therefore, context data must be

collected continuously and be used to train prediction

models. This not only involves quite huge amounts of

data, but is also a computational intensive task. Hence,

the context data can be uploaded from the mobile de-

vice into the cloud where prediction models are built

or updated and only estimates of short term activity

predictions are returned to the application afterwards.

Realtime Audio Fingerprinting: Modern smart-

phones are equipped with capabilities that allow their

use as small media libraries containing huge amounts

of music and video files. Acoustic fingerprinting is one

popular method to identify songs using only short (and

possibly noisy) fragments thereof. Suppose you are in

a club, a really nice song is playing and you want to

know what song that is. You record a few seconds and

calculate an acoustic fingerprint which is broadcasted

thereafter to all other smartphones nearby. On these

devices the fingerprint is compared with the music files

in the local media library and if a match is found, the

file or at least the meta-data is sent back to you.

Sensor Data Analysis: Myriads of sensors have

already been woven into our everyday live. Often, these

are used to monitor certain conditions in the surround-

ing and communicate their observations to some kind

of base station which resides at the edge of the sensor

network and acts as a gateway in order to e.g. further
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disseminate and finally analyze the data. Typical sce-

narios include CCTV surveillance, environmental mon-

itoring to detect wildfires, tsunamis, earthquakes, etc.

as well as crowd-sourced weather information. If all the

raw observation data (e.g., the live video stream) would

be transferred to some central point of processing the

required amount of bandwidth and central processing

capabilities would be extremely high. One solution is

to reduce the amount of data as early as possible (i.e.

at the edge, see Figure 1) by using filters, aggregators

or some kind of analysis techniques to infer higher-level

information. For example, instead of transmitting video

streams from hundreds of surveillance cameras to a cen-

tral operating center, edge nodes could already perform

a face recognition and only forward relevant informa-

tion. This way, the processing load is shifted to the

edge right where the data originates from and valuable

bandwidth in the rest of the network is saved.

Sensors and 
Sensor Networks

Edge 
Node

Cloud Infrastructure

Fig. 1 Application Scenario: Edge Processing of Sensor Data

4 Related Work

From the middleware perspective, research on context-

aware software has mostly addressed mechanisms that

best support dynamic adaptation for specific use-cases.

Early approaches in the field of self-adaptation were fo-

cused on the integration of context handling and the

applications’ business logic, whereas current solutions

try to separate business logic from the context aware-

ness features, to allow both parts of the implementa-

tion to be handled and replaced separately. Apart from

some early approaches that explicitly handle the con-

text some modularized approaches like the Mobile Gaia

(Chetan et al, 2005) have emerged, which provided raw

sensor data to its applications.

Notable current approaches from the domain of con-

text-aware mobile middleware have been presented by

Preuveneers and Barbers (Preuveneers and Berbers, 2007).

They present a context-aware middleware for mobile

devices that is component-based and self-adaptive. Nev-

ertheless, there are no program-ming-level concepts that

ease the development. Another prominent approach that

aims at providing a self-adaptive middleware is pre-

sented in MADAM (Mikalsen et al, 2006), and later

in MUSIC (Rouvoy et al, 2009). Here, applications are

assembled by a component composition process and

context awareness is achieved by exchanging the com-

ponents’ implementations with others having the same

functional behavior. Still, adaptation rules need to be

defined by the developer (e.g. using annotations). Fur-

ther well-known solutions include PACE (Henricksen

et al, 2005), SOCAM (Gu et al, 2004) and CAMPUS

(Wei and Chan, 2013) whereas the last one represents

the most current approach of an automatized reasoning

by using the applications’ context.

However, it can be concluded that in most context-

aware systems, the adaptation logic of an application is

implemented at the time of development. Such an ap-

proach has limited flexibility and poses a high burden

for developers as it is almost impossible to foresee all

conceivable context states, especially in mobile environ-

ments with a quickly changing context.

Summarizing the previous findings, we conclude that

several solutions have been proposed to contribute to

the fields of context adaptation. However, there is no

ready-to-use solution, as none of the current solutions

is able to provide context adaptation capabilities on a

broad range of context attributes. As a consequence,

we present the concept of Generic Context Adaptation,

a holistic approach to tackle the challenges of both do-

mains: computation offloading and context adaptation

through a generic context adaptation process.

5 Generic Context Adaptation

In January 2009, the Nokia Research Center Lausanne

(NRC), the Idiap Research Institute, and the EPFL

initiated the creation of a large-scale mobile data re-

search. This included the design and implementation of

the Lausanne Data Collection Campaign (LDCC), an

effort to collect sensor data from smartphones created

by almost 200 volunteers in the Lake Geneva region over

18 months (Laurila et al, 2013). To our knowledge it is

the largest dataset that contains information about mo-

bile devices as well as application usage statistics, which

is why we chose the Nokia MDC dataset to derive the

following information as an input to a simulation of the

prediction performance for several context attributes as

well as an evaluation of a previously presented MCC-

offloading solution (Orsini et al, 2015):

– GSM/WiFi/Bluetooth state (on/off), discovered MAC

addresses and GSM cells, signal strength of WiFi

as well as GSM cells, extended with our own mea-
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surements to get an assumption about the available

bandwidth.

– General information about the mobile device itself:

time since the last user interaction, silent mode switch

status, charging state, battery level, free memory.

– Date, time, location, calendar events, average and

predicted remaining duration of stay at the current

location.

– Reasoned attributes: remaining duration of stay at

the same WiFi access point or GSM cell, user is at

home/work, traveling, moving, resting.

– Application usage data: The applications the user

interacts with and the specific screens of these ap-

plications.

5.1 Generic Context Adaptation Process

The previously presented data serves as input to our

data mining process called Generic Context Adaptation

(GCA) that is tailored to forecast any of the mentioned

attributes by predicting it using the remaining provided

attributes. More formally, GCA represents a data min-

ing process that provides three types of predictions:

– A binary classifier (e.g. for predicting the future

availability of a WiFi),

– a multi-class classifier (e.g. to predict a bandwidth

range) and

– a regression mode to forecast real-valued attributes

like the execution time of an offloaded task.

This way, historical data that has been collected by

the mobile device can be used to forecast a future value

of a certain context attribute. To perform such a predic-

tion the GCA process needs to be provided with the his-

torical input data. It is furthermore required to choose

the context attribute to be predicted and the forecast

horizons (the number of time intervals to look ahead

into the future) to initiate the learning phase. The re-

sulting predictive model can then directly be used to

forecast the chosen context attribute. The data used in

the GCA process is mainly the same as in the MDC and

is just converted to a representation that is suitable to

be presented to machine learning algorithms.

5.1.1 General design decisions

To be used together with a mobile middleware like Cloud-

Aware (Orsini et al, 2015), the GCA process is de-

signed to be executed on a mobile device. As the pre-

processing is performed in SQL and the application of

the data mining models is performed in Java, the pro-

cess is able to run on any (mobile) device that pro-

vides a Java virtual machine. Nevertheless, the train-

ing of the data mining models is computationally in-

tensive and is currently intended to run on more pow-

erful cloud resources, whereupon the trained model is

transferred to the mobile device, to be used for predic-

tions. We currently use an interval of five minutes to

collect the required sensor data to not drain the bat-

tery too much. Furthermore, we reduced the available

preprocessing- and machine learning algorithms to pro-

vide a lightweight implementation of the GCA process,

that is able to run on mobile devices and hence is used

for the evaluation presented in Section 5.2 and 5.3.

5.1.2 Preselection of suitable data mining algorithms

During the selection of suitable algorithms we focused

on classifiers and regression techniques that have been

successfully used in the domain of context reasoning.

For example, the training of an artificial neural net-

work is considered too heavyweight, both in terms of

the runtime as well as in terms of the amount of data

that would be required.

In Lim and Dey (2010) the authors have surveyed

which classifiers are commonly used in scenarios where

context data needs to be predicted. This evaluation was

refined in Perera et al (2014) and the following classi-

fiers were found to be the ones that where most often

used:

– Decision Trees (15 %)

– Rule-based Systems (54 %)

– Hidden Markov Models (13 %)

– Naive Bayes (13 %)

– Support Vector Machines (4 %)

– k-Nearest Neighbor (2 %)

Together with the aforementioned decision for the

interval-based modeling we selected the following algo-

rithms and respective configurations for the reasoning

in the GCA process:

– k-Nearest Neighbor (k-NN), where the value of k is

chosen during the training

– M5 Decision Trees, using the CHAID-algorithm

– Naive Bayes

– Logistic Regression, using a polynomial kernel

– Support Vector Machines (SVM) or Support Vector

Regression (SVR), using an rbf kernel

– An adaptive boosting (AdaBoost) for each of the

learners
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Fig. 2 GCA training and validation process

5.1.3 The GCA model selection process

To achieve both, a good prediction performance as well

as a lightweight model (in terms of training time), the

model selection process and the training process are

separated in GCA. The model selection process aims at

finding the right data mining algorithm, suitable hyper-

parameters (if applicable) and a suitable set of principal

components for a certain context attribute and for an

appropriate amount of data required for training. It is

not intended to run on the mobile device as it performs

the following tasks:

– The training data is filtered for missing attributes,

which are then, if the attribute is at least complete

to a minimum degree of 90%, filled with the at-

tributes’ average.

– A simple time series prediction for the prediction

target is performed and added to the feature set.

– To reduce the runtime of subsequent steps a prin-

cipal component analysis (PCA) is applied, where

the first five principal components are used.

– Training and test sets are split via linear sampling

while the shares are 80% training- and 20% test set.

– A preselection of the principal components is per-

formed (adding features iteratively), as some of the

chosen algorithms perform better with only the most

relevant principal components.

– Where applicable, a parameter optimization is per-

formed and the parameters are saved for the later

training.

– Each of the learners is trained and its prediction

accuracy, the hyperparameters, the input attributes

used and the amount of data available for training

are saved to a database.

5.1.4 The GCA training process

With the information from the model selection process

about which learner has the best performance for a cer-

tain amount of data, the GCA training process now

builds the requested prediction models. The training

process performs the same preprocessing as the model

selection process, but then selects the hyperparame-

ters, input attributes and the information about which

learner achieved the best performance from the database.

This configuration is then trained with all available

data, as exemplified in Figure 2. As a classification per-

formance criterion we chose the F1-score, as the accu-

racy score is often uninformative in unbalanced sample

sets. As a regression performance criterion we chose the

mean absolute deviation (MAD) as the cost of a false

prediction is considered equal for over- and for under-

estimation of the predicted target.

Furthermore, to face the obstacle that at the begin-

ning of the simulation there is no training data, we use

simple averages as long as we collected enough statis-

tics (around 15 samples) before we switch to the output

of the real prediction model. After an increase of the

available data, the training set is further reduced to be

more tailored to the specific prediction target, more pre-

cisely we are switching from weekly to weekday-specific

models as we found that many predictions of context

attributes benefit from this type of preprocessing. Fig-

ure 3 shows the weekly forecasting performance for the

context attribute ”charging state”, showing that the de-

scribed approach allows forecasts, even with no or just

a small amount of training data available.
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5.1.5 Learnings and Results

While designing the GCA process we chose to carry out

exploratory data analysis on the MDC dataset to find

relevant correlations between the prediction targets and

the remaining features that served as inputs to the ma-

chine learning. Next, we combined some of these basic

input variables into combined features to serve as an

additional input to the machine learning. Furthermore,

we normalized this set of features and carried out a

PCA to reduce theamount of data to ensure a fast pro-

cessing of the subsequent machine learning steps. This

way, the developer is only required to provide the GCA

process with a set of sensor data and by choosing a pre-

diction target apart from this, the process is hands-free

and does not require any further parameterization as,

for example, hyperparameters of some of the learning

algorithms are adjusted automatically.

Regarding the prediction horizon and the quality of

the predictions our approach is able to discover both,

periodic patterns that are expected in the next hours

or days, as well as closer events that depend on current

changes of the mobile devices context.

5.2 Evaluation with the Nokia MDC dataset

The top row diagrams in Figure 4 show that many of the

discovered patterns in a mobile device’s context follow

time- or location-dependent patterns, hence adding an

extensive modeling of time and location and even pro-

viding an estimation about when the user is expected to

leave his current location highly improved the forecast-

ing performance, shown in the bottom row of Figure 4.

Here it can be seen that for binary classifications (left

diagram) a good F1 score is achieved that slowly de-

creases for wider prediction horizons. The same holds

for the regression performance shown in the right dia-

gram.

5.3 Evaluation with the CloudAware Mobile

Middleware

As a second evaluation scenario we chose an improved

version of CloudAware (Orsini et al, 2015), an MCC/MEC

offloading solution which differs from previous or sim-

ilar approaches in the domain of MCC and context-

adaptive mobile middleware by its primary design goal

to support ad-hoc and short-time interaction with not

only centralized resources, but also nearby devices. How

CloudAware faces these restrictions and which general

assumptions motivate specific design decisions has been

described in previous work (Orsini et al, 2015) while

the focus of this work are the results that have been

achieved by employing the concept of GCA to improve

CloudAware’s offloading decision, i.e. when will offload-

ing be beneficial considering the predicted future con-

text.

The evaluation is performed by picking users that

provided data for at least 18 months from the Nokia

MDC dataset and by using the provided context at-

tributes to design an event-based simulation that con-

siders the connectivity (i.e. latency, intermittent con-

nectivity and round trip times) of a mobile device as

well as the battery drain, charging state, the limited

computation power of a mobile device as well as the en-

ergy that is required to compute and to send or receive a

specific amount of data via a specific interface (WiFi or

GSM). The developed sample application applies differ-

ent image filters to pictures taken with a smartphone’s

camera. It produces 20 different types of tasks. For each

task the execution time, its variance, as well as input

and output sizes (i.e. the amount of data that needs to

be transferred in case of an offloading) have been mea-

sured and linked to real application events, that have

been recorded in the MDC dataset.
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5.3.1 Simulation of the infrastructure

The used infrastructure consists of a Samsung Galaxy

S5, representing the mobile device. The devices battery

level found in the MDC dataset is considered a baseline,

while the prototyped sample application generates an

additional battery drain, therefore all tasks could only

be successfully executed if the mobile device would be

connected to an energy source at all times. The dis-

tinctive energy consumption of the sample application

has been measured by measuring the amount of energy

consumed, directly at the battery of the mobile device.

Theoretically, similar measurements could be acquired

by using a software like PowerTutor 3 but the corre-

sponding power profile was unavailable. Furthermore,

we consider the time and energy that is required to

apply the trained GCA model as well as the energy

that is required to communicate with the infrastruc-

ture via WiFi or GSM. Hence, it would be possible for

developers to benchmark their application by using the

described software-based approach.

The cloud server is simulated by measurements from

and to a virtual server running at a german cloud ser-

vice provider. To reflect the MEC scenario we further-

more assume cloudlets with the performance of an up-

to-date desktop computer to be available at the three

most frequently visited locations of each user. Further-

more, due to their limited resources, these cloudlets are

assumed to be overloaded at certain times of the day, re-

sulting in longer execution times or even timeouts that

lead to unsuccessful offloading.

3 http://ziyang.eecs.umich.edu/projects/powertutor/

5.3.2 Scheduling strategy and optimization goal

For each of the of the offloadable tasks, it is decided

whether to offload this task to a cloud-server or a cloudlet

by predicting its probability to be executed successfully,

meaning that the result is returned to the mobile de-

vice. Therefore, we consider all tasks equally important

and hence execute them by their invocation time, with

the exception that already computed tasks may return

to the mobile device with a higher priority. The offload-

ing decision is furthermore influenced by choosing the

alternative with the minimum invocation time and if

equal the lowest energy consumption. We defined seven

different scenarios which differ in the used offloading

strategy:

Mobile: All tasks are being executed on the mobile de-

vice. The success rate in this scenario is limited to

86% as the additional energy that is consumed by

the sample application produces additional periods

of time in which the mobile device has run out of

energy.

Cloud and Cloudlet: All tasks are being executed on

the respective surrogate. In both scenarios, the suc-

cess rate is limited, as sending tasks to and receiv-

ing tasks from the surrogate consumes additional

energy by using the GSM or Wi-Fi interface of the

mobile device.

CloudAware (CA): Tasks are being assigned to the cloud,

the cloudlet or the mobile device based on the afore-

mentioned scheduling strategy. Even if this strategy

appears equal to the previous one, the higher band-

width and lower latency to the Cloudlets (the cloud
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Fig. 5 CloudAware evaluation results for a single application
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Fig. 6 CloudAware evaluation results for a mix of applications

servers are connected through a WAN-connection

in our simulation) can result in higher execution

speeds.

CloudAware supported by GCA (CA+GCA): Same as

CloudAware scenario but the context manager of

the CloudAware middleware provides predictions about

the probability for a specific task to be successfully

executed on a surrogate and furthermore predicts

the expected time to execute. This information is

used to decide about the offloading target.

5.3.3 Evaluation

For the evaluation of the trained models we perform

a round-based training with a step-size of a week (we

assume a weekly re-training of the models sufficient as

it depicts a good balance between the availability of a

significant amount of new data and the up-to-dateness

of the prediction model).

Figure 5 reflects the results of our simulation for a

single application, both for a single user as well as for

an averaged statistic that includes different users and

their specific usage patterns. It can be seen that the

local execution (Mobile) for the single user, reflecting

the baseline, allows an execution of 96% of the simu-

lated tasks while achieving an average execution time of

21 seconds. The cloud-based execution results in a suc-

cess rate of 62% while achieving an average execution

time of 15 seconds. As expected, the execution time is

lower but due to the limited network connectivity of

the mobile device, the success rate is lower as well. The

”Cloudlet” version of this scenario allows even lower

execution speeds of 11 seconds, but the success rate is

only 6% due to the limited reliability of the Cloudlet

(see simulation setup).

Comparing these baselines to the standard offload-

ing cases in mobile cloud computing (CA) and mobile

edge computing (MEC Speedup) it can be seen that

offloading based on a simple cost function to reduce

the execution time is not always able to improve the

service quality of mobile users as the success rates are

not always higher, which is due to the case that inter-

mittent connectivity sometimes prevents the successful

completion of an offloading task.
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Compared to this, it can be concluded that already

the baseline version of CloudAware provides a speedup

of 24% while executing 70% of the tasks. Using the

GCA-supported version of CloudAware further increases

the average energy consumption to 94% while it is the

only scenario maintaining a lower execution times as

well as energy consumption compared to the local ex-

ecution. In terms of energy usage it can be concluded

that offloading is not always beneficial if energy and

bandwidth, next to speed, is included in the offloading

decision. Here, the scenario ”CA + GCA” is able to

achieve the best trade-off between all evaluated scenar-

ios as the consumed bandwidth and energy are both

similar (bandwidth) or lower (energy), compared with

the traditional MCC- or Cloud-based scenarios.

To proove the general applicability we designed an

even more complex scenario, containing different ap-

plications and a higher variance, especially regarding

execution times and the amount of state that is trans-

ferred. Figure 6 shows that the presented approach of

GCA is capable to discover these patterns and allows

this approach to be used for a broad range of applica-

tion scenarios.

To summarize, it can be concluded that it is often

not beneficial to just rely on past execution statistics

and that the use of machine learning can provide deci-

sion support in context-dependent offloading tasks.

6 Conclusion

Augmenting the resources of mobile handheld devices

can significantly improve their usability in areas such as
health care, mobile learning, entertainment, and daily

routine. Nevertheless, this type of augmentation can

only be achieved by proper context adaptation and be-

sides several efforts have already been directed towards

context awareness in mobile middleware, the surveyed

solutions are often domain-specific. Additionally scala-

bility Xue and Deters (2016) and security AlShahwan

et al (2016) are still areas of active research. Further-

more, the requirement for additional configuration pre-

vents their immediate use in the domain of MEC where

a quick, efficient and dynamic context-adaptation is

necessary in order to even anticipate future context sce-

narios.

While there exists lots of work on designing context-

aware mobile services that are able to predict specific

context attributes it was the purpose of this paper to

present a completely generic support for relevant mobile

cloud interaction scenarios through context adaptation.

Furthermore, it is often difficult to integrate context

adaption features into applications as it is complex to

achieve good context predictions for a multitude of con-

figurations, devices and context states that cannot be

foreseen by the developers.

The presented approach of Generic Context Adap-

tion provides a hands-free solution for developers to al-

low context adaption without having to deal with con-

text at all, but leaving the possibility to do so. Apart

from basic services like link- and connectivity prediction

the presented approach is able to predict arbitrary con-

text attributes that are time- and location-dependent

or correlate with other monitored context features. We

evaluated the presented concept based on a real-world

smartphone application and realistic context data pro-

vided by the Nokia MDC dataset and demonstrated

that this scenario can benefit to a considerable degree

from anticipation of future context states.
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