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Abstract

Concurrent and distributed software systems are currently very distinct in their usage
and programming. In the case of Java the first requires threads, the latter RMI, CORBA,
Voyager etc. However, they are tightly related and often cited in one breath. This paper
presents a concept that unifies these two aspects into one. To achieve this the concept of
virtual processor, a mechanism to cluster and transparently migrate groups of object, is
introduced. It can be used to express concurrency as well as distribution and migration
can turn one into the other. As a proof of concept a dialect of Java that implements this
concept and some examples are presented.
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1 Introduction

Why is software development for a distributed environment so hard? Developing a single-
threaded local application can already be very difficult. But the world of programming has
changed and today we find ourselves programming for concurrent and distributed environ-
ments. Concurrency requires the handling of multiple threads of control, synchronization,
deadlock avoidance and the like. Debugging in a multithreaded environment becomes close
to impossible. For distribution, different mechanisms for network communication, object mi-
gration, security etc. need to be introduced. The development of distributed applications is
often considered to be one of the most difficult tasks in software development. In particular,
distribution often leads to concurrency due to the decoupling of communicating entities.

One of the most popular implementation languages used for distributed systems is Java
that, amongst other things, provides platform independence, a local concurrency model based
on threads and a mechanism for remote method invocation (RMI). Compared to other lan-
guages like C++ it simplifies the development for a distributed environment by integrating
these important mechanisms for concurrency and distribution directly into the core language.
But on the other hand, concurrency and distribution need to be dealt with by using very
distinct and unrelated mechanisms: Threads are only a mechanism to express concurrency
on a single machine, but do not allow to express concurrency between remote machines. To
deal with objects on remote machines, though, Java offers RMI. But it is not related to
Java’s concurrency mechanism. As a consequence, Java seems to be well suited for applet and
client /server style programming, where the distinction between distribution and concurrency
is very clear. An applet or a client can remotely access objects on the server using RMI,
and concurrency within the server (or the client) is dealt with using threads. Indeed, Java is
heavily used for this kind of programming.

In distributed applications beyond client/server architectures though, objects may need to
migrate from one place to another. For example, if a producer creates an object hierarchy and
wants to provide it to a consumer on a remote system, the provided object hierarchy might
need to be migrated. Then the difference between remote access and concurrent execution
becomes fuzzy. Java neither allows for migration of objects nor is it prepared to deal with
this relationship between concurrency and distribution. It does not sufficiently support the
development of distributed applications with possibly migrating and concurrently executing
objects. The Java community is so far stuck with client/server style programming.

Concepts better suited for distribution are needed. As a key to achieve this, the paper
proposes to accept the challenges of concurrency and distribution by unifying them into a
single concept. We first introduce this concept, called Virtual Processors, in section 2. These
Virtual Processors control a group of related objects, allow their migration over networks and
manage their synchronization. Then, an extension to Java called Dejay that implements this
concept is presented in section 3. To demonstrate the simplified development using these
technologies, a small example is presented. Finally, some comments on future directions and
the relation to other projects as well as a conclusion are given.

2 A Mechanism for Migration

One of the key mechanisms for the improvement of computer science is abstraction. Three
examples of abstraction that have fundamentally improved software development are a) the
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abstraction from data and functions to objects, b) the abstraction from hardware tasks and
processes to virtual software threads and c) the abstraction from different incompatible hard-
ware platforms to a virtual machine as in Java.

This paper discusses an abstraction from concurrency and distribution to a single unified
concept. Currently, these two concepts are treated independently, which - at a first glance
- may seem natural to most developers. Concurrency is used to execute different tasks in-
dependently and in parallel (or at least simulating it). For example, each of the five dining
philosophers in Dijkstra’s famous example can be represented by a thread, all executing on
the same machine. On the other hand, techniques for distribution are used to communicate
over a network. If, for example, each of the philosophers were implemented on a different
machine, socket communication, RMI or CORBA-like architectures could be used to support
the coordination of the philosophers’ meal. Starting from any of these implementation pos-
sibilities though, a transition to a different one would result in a rewrite of larger parts of
the application. In a system in which the philosophers could migrate from one node to an-
other, the difference between distribution and concurrency could vanish. For example, all five
philosophers could start out on one machine, executing concurrently, and then be migrated
each to a different machine at an arbitrary point in time, now executing distributedly. Then
a dining philosopher program could be written once and be executed either on one machine,
all philosophers executing concurrently, or distributed over several machines, one philosopher
per machine, or as a mixture of both or even change at runtime by migrating the philosophers
from one machine to another, always using the same implementation. Therefore it is sug-
gested to unify the concepts of concurrency and distribution by finding a proper mechanism
for migration.

The mechanism proposed in this paper is based on Java. Principally, the abstractions
proposed are not restricted to this language, but Java provides the prerequisites necessary,
especially for migration in an easy way. Java itself does not support object migration, but
extensions exist that do. One of them is Voyager.

2.1 Migration in Voyager

Voyager [Obj98] is an ambitious project that aims at providing a complete infrastructure for
distributed programming, integrating or even replacing other techniques like RMI, CORBA,
DCOM and Agents in general. It is based on and completely written in Java and offers
compiler and runtime mechanisms that prepare any Java object for distributed computing.
Besides propositions for autonomous migration, persistence, security, CORBA-integration and
multicasting, Voyager introduces the following approach for referencing and migrating remote
objects.

Voyager supports object migration by supplying a moveTo() method for a proxy of a
remote object. This method - when called with an IP address or host name as an argument
- will move the referenced object to the specified machine. Assume we have an object a of
class A on machine X as shown in figure 1. It holds references to an object b of type B and to
a proxy c of an object of type C on machine Y. Further, an object d of type D holds references
to objects b and c.

Using Voyager, the object a can be moved to machine Z by sending it the method call
Mobility.of (a) .moveTo(Z). The question is what happens to references and referenced ob-
jects if a is moved? Figure 2 shows the situation after this migration. Object a itself leaves a
proxy behind and migrates to Z. If object d had a reference to it, it would now reference it over
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a proxy. The proxy object c is simply copied to machine Z without affecting the rest of the
system (see object c in figure 2). Since object a has a reference to a local object b of type B,
b needs to be copied too, to assure correctness of the references of a. In fact, Voyager copies
all objects reachable from a via local references, thus copying what is called the transitive
closure of a. But if a accesses the copy of b and changes the state of it, this change does not
affect the original copy of b, referenced by object d. Thus the two copies of b are not in a
consistent state. Also, if b contains references to further objects which will be copied with
it, the amount of data being moved can be enormous and is difficult to control. In order to
avoid these problems, all references from an object that is to be moved need to be checked by
the programmer and, if necessary, either be cut, or replaced by a reference over proxies. In
praxis, this often means that only objects with very small transitive closures or even with no
references at all can be moved.

Concluding, it can be noted that Voyager does offer object migration to a certain extent
but it has to be used with great care. The migration of an object results in copying its
transitive closure which can a) lead to inconsistent states of different copies of an object and
b) result in the movement of vast amounts of data if references from the object that is to be
moved to objects, that should not be, are undetected. It is the programmers responsibility to
avoid these problems and therefore, the development of distributed systems based on Voyager
still remains an error-prone task. The mechanism proposed in this paper is built on top
of Voyager mechanisms, but at a higher level of abstraction, and avoids these problems, as
explained in the next section. Most important though for the discussion in this paper is that
Voyager does address aspects of distribution such as migration, but does not touch on matters
of concurrency. Thus it is not the abstraction sought for. However, it is very helpful in the
implementation of such an abstraction.

2.2 Virtual Processors

To achieve a unified view on concurrency and distribution we introduce the notion of Virtual
Processors. A Virtual Processor can be seen as an abstraction of a single-threaded physical
processor that controls objects in its address space and sequentially executes methods on these.
The advantage of such an abstraction is that it is independent of its physical location so that a
Virtual Processor can be migrated from one physical processor to another. A Virtual Processor
can maintain connections to other Virtual Processors in such a way that these connections
remain valid even if either of the Virtual Processors is migrated. This means that the physical
location of a Virtual Processor is transparent and does not need to be known. However,
the location of a Virtual Processor can be changed. To express concurrency, two or more
Virtual Processors would be executing on one physical processor. To express distribution,
Virtual Processors would be running on different machines. But since the physical location
of a Virtual Processor is transparent, these two concepts are essentially the same. Since their
physical location can also be changed by migration, each of these concepts can be transformed
into the opposing one. Thus, this approach treats concurrency and distribution as just two
sides of a coin.

For objects within each Virtual Processor the programming is as simple as usual single-
threaded, non-distributed object-oriented programming. Imagine for example that Java had
no threads and distribution mechanisms. A program written in such a simplified Java contains
objects that reference each other and that can call methods upon other objects. Since there
is only one thread of control, only one method is actively executed at any point in time. This
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is just the way a program for a Virtual Processor works. The question to be answered now is
how to connect objects to objects in remote Virtual Processors and how to migrate the latter.

Every object is contained in exactly one Virtual Processor. A reference from an object to
another within the same Virtual Processor is an ordinary local reference as in regular Java.
Objects in different Virtual Processors, though, can also be referenced, but in a different way.
These remote references should syntactically be identical to local references, but should be
distinct in their semantics. A call along such a remote reference should of course retain the
semantics of the equivalent local call, but should respond to the different needs of distribution
and remoteness. We therefore propose to introduce a distinct type for a remote reference that
is syntactically equivalent, but adds treatment of fault susceptibility, migration and larger
response times and latency. Thus objects can be referenced in two different ways. A reference
from an object to another object contained within the same processor is a normal reference.
A call using such a local reference is executed in the usual way. A reference from one object to
another one residing in a different Virtual Processor is distinguished: it has to be of a different
type. This means that the difference between a local and a remote reference is expressed in the
type system. Such a remote type is generated automatically by a compiler from an existing
class. In the system described in the next section, such a type is distinguished from the local
type by an additional prefix which is in this case 'Dj’, so that the remote type for a class A
would be 'DjA’.

Now, while the syntax of calling a method is the same for local and remote references, their
semantics is not. A call using a remote reference is automaticredirected to the remote Virtual
Processor by a proxy mechanism. There, the incoming call is queued until all other execution
in this processor has terminated, in order to keep execution strictly sequential within a Virtual
Processor. It is then executed and the result is sent back to the calling party. A remote call
can be either synchronous or asynchronous. If it is asynchronous, the remote processor will
execute this method in parallel to the calling processor so that the calling one can continue
with other tasks. This is the means to express and create concurrency.

Virtual Processors are also the unit of migration. Objects with tight couplings can be
assigned to one processor, making this concept a grouping mechanism for objects with the
processor as the execution unit of each of the resulting components. When the Virtual Pro-
cessor is migrated, all objects controlled by it migrate together with it. The granularity of
migration is determined by the number and complexity of contained objects and can therefore
be designed and controlled by the programmer.One can choose to either instantiate exactly
one object per Virtual Processor, so that the migration granularity is as fine as possible, or
one can put an application into a single Virtual Processor and move it as a whole, or one can
choose anything in between. Most typically, one would put closely related objects or objects
that need to be co-located in the same Virtual Processor and keep loosely related object in
different ones.

Consider again the scenario given in the last section where Voyager proved to have diffi-
culties, especially with migrating groups of objects. Object a, b and d were located on one
machine, where a needed to be moved and b was referenced by both others. Also, a and d held
a reference to some object ¢ on a different machine. By introducing Virtual Processors, the
notion of machine can be abstracted away, however the notion of remoteness remains. The
remote object ¢ will clearly be put into a distinct Virtual Processor. Whether this is actually
placed on machine Y or moved there later or even removed from there does not matter. It is
referenced by a and d remotely, but its physical location is transparent to them. Since a is
to be moved and d is to remain, they should be placed in different Virtual Processors, even
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though they might start out on the same machine. It needs to be decided though where b is
put. By analyzing its relations, it should be decided whether it is related more closely to a
or d and put in the same Virtual Processor. In either way, both could reference and access b,
one locally and the other remotely. If it is found to be closer to a, it would migrate with it
when a was moved and d would not even need to notice. See figure 1; note that it depicts the
situation before just as well as after a migration, since this remains transparent.

This concept is similar to suggestions by [Mey97], proposed for the programming language
Eiffel. Meyer shows that this concept integrates well with object-orientation, synchronization,
and inheritance, but has so far not provided an implementation . Also he proposes to introduce
a new keyword to distinguish between remote and local references, while we propose different
types. While Meyer has to introduce additional rules when and how this keyword is needed
or forbidden, our solution smoothly integrates into the existing type mechanism, so that the
usual type conformance checking makes additional rules obsolete.

3 Dejay - A Language for Distribution

The following sections present a language that integrates the concept of Virtual Processors
into the Java language to achieve a distributed Java. This language is called Dejay. It aims
at simplifying modeling, development, and programming of distributed systems and allows
execution in an adequately concurrent and distributed way. The assumption is that the
environments found today or in the near future are sufficiently reliable and fast to establish
distributed applications. Such environments may be the Internet, Extra- and Intranets as well
as local area networks.

Dejay is not designed to be a completely new language, but an enhancement of Java for
concurrent and distributed programming, so that the syntax of Dejay is very similar to that
of Java. In fact, in case of single-threaded non-distributed applications, Dejay is identical to
Java. But for multi-threaded or distributed applications, Dejay is mostly a subset of Java:
the threading mechanism of Java as well as the remote method invocation mechanism RMI
have completely been replaced, and all keywords concerning threads are not needed in Dejay.
This reduces the complexity of the language considerably.

Instead of these, Dejay introduces the concept of Virtual Processors. Every object is em-
bedded in a Virtual Processor and is under its exclusive control. If only one thread of control
is needed, the concept of Virtual Processors remains completely transparent. Only if con-
currency or distribution are required, further Virtual Processors are created. No additional
keywords are introduced in Dejay, however the type system as well as the semantics of refer-
ences and method calls are changed, so that a compiler is needed which translates Dejay to
Java.

3.1 Application Scenarios

Before the syntax and usage of Dejay is described, some practical application scenarios should
be helpful. Dejay is part of a research project called COSMOS [COS98], funded by the Eu-
ropean Commission. The aim of the COSMOS project is to provide a distributed contracting
environment for electronic commerce over the Internet and, due to the distributed nature of
such an application, has very high demands on the distribution support of the implementa-
tion language. Dejay is being developed as an implementation language within the scope of
COSMOS to meet these demands. In the following, two application examples from within
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COSMOS are sketched, where common technologies are not sufficient and a higher level sup-
port is required.

Generally speaking, the COSMOS project provides an infrastructure for establishing elec-
tronic contracts over the Internet. It is divided into different phases: In a first stage, a contract
proposal can be established from a catalog of offers, service providers and contract templates.
Once such an offer is set up, the proposed contract can be negotiated on by the involved par-
ties. It is important to note that more than two parties can be involved, for example for the
leasing of a car, a car seller, a buyer that is interested in a car, a notary who will check legal
validity of the contract, and a bank taking financial risk and giving a loan could be involved.
After reaching agreement with all parties, the contract is signed and stored for legal purposes
at the notary. In addition to usual written contracts, electronic contracts can also be used to
support the execution of a contract. In COSMOS, a contract contains a workflow definition
that can be executed as a distributed workflow application.

The first example is taken from the negotiation phase during which a contract proposal
can be changed in terms of price, conditions or legal constraints by either of the involved
parties until all agree. This requires the editing of the electronic document (represented as
a Java-object structure) as negotiation proceeds. The simplest way to avoid inconsistency
during editing, is to only allow one single party to edit the contract that is placed on a central
server and can be locked, copied to the requesting party, edited and copied back

This can be extended in two ways to better reflect the needs and conditions of reality: on
the one hand, more than one editor at a time should be allowed, so that, for example during
a multimedia conference, all negotiating parties can write propositions into the contract in
a way that all others can see the changes. On the other hand, the system can be extended
by distributing control: The master copy of the contract can be migrated from one host to
another, for example from the broker that sets up the contract proposition to the editing party
and further to the notary, where it is finally stored, but needs to be accessible from all parties.
This results in two orthogonal and discrete dimensions (single party /multiple party access and
centralized /distributed management) and four possible combinations, as shown in table 1.

The first combination (single party access/centralized (1)) represents the simplest solution
and can be implemented using standard client /server technology with locking. If the contract
is allowed to migrate (single party access/distributed (2)) a technology like Voyager which
allows for simple object migration is required, but locking has to be taken care of manually
or by an additional transaction service (to be published for Voyager in the next version). If
multiple parties are allowed access at the same time (multiple party access/centralized (3)),
consistency control becomes considerably more difficult since it requires fine grained locking
or conflict resolution mechanisms. Nevertheless this can be solved with usual client/server
technology, but requires more effort for the locking.

But in the case of multiple party access with distributed data (4), current technologies
fall short. However, this is the most realistic setting for this application. The contract object
model should be movable from the contract provider to one of the involved parties so that
editing can be done locally. At the same time other parties should have access to it to read or
even to change it, as for example in a multimedia session (see figure 4). The goal is a location
transparent access where the location of the contract can be changed, for performance as well
as for responsibility, liability or ownership reasons, but all references remain valid, even if the
contract is moving.

The second example is taken from the execution phase of COSMOS, in which a contract
is being executed as a workflow. Such a workflow can automatically be extracted from the
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contract object structure and is expressed in a Petri Net-like graph as described in [COS98|.
Now, usually workflows are executed on a central server by a workflow engine that can access
and call subsystems engaged in the workflow, for example using RMI. This works well in
case of single server systems or small networks. But in the setting of COSMOS the engaged
subsystems are part of distinct, potentially very distant networks of participating parties that
only interact spontaneously so that a client/server architecture falls short. What is needed
is a distributed architecture where objects can be created remotely, objects can be migrated
and references are location transparent. The approach followed in COSMOS is therefore
to distribute the application instead of distributing the communication between workflow
engine and the distributed parties. Each transition of the Petri Net graph represents one of
the involved parties and the interaction between this representative and the actual software
system of the parties host can be very intensive, while the interaction between Petri Net
nodes is scarce and unidirectional and consists of the transmission of (object-) token. Thus
the workflow engine itself is distributed, and the most costly parts of the communication can
be done locally at the distributed hosts.

For the example given above such a workflow is shown in figure 5: the involved parties are
the seller, the buyer, the bank and the notary. For each of these a representative (a business
object) is set up at the parties host. Then objects that describe the activities each party is
responsible for are created, their relations established and finally moved to the representative.
The loan-activity then interacts with the bank and initiates the transmission of a loan to the
buyer, informs the observe-activity of the notary and triggers the pay-activity of the buyer.
This object then interacts with the buyer and arranges the payment to the seller, informs the
notary and triggers the deliver-activity of the seller. This object then induces the delivery
process on the sellers software system and so forth.

This shows two applications that the Dejay language is being designed for that are very
distinct in their nature and show the high requirements that need to be fulfilled: In the first
example, a unique object cluster, the contract description needs to be accessed from several
distributed clients in a location transparent way. In the second example, the application itself,
the distributed workflow engine, is distributed, in order to reduce communication costs. Both
require object migration. Current Java technology falls short in the described settings. A
deeper discussion and further application descriptions are given in [Bog98|.

3.2 Compilation

Dejay is a programing language and therefore has a compiler that currently produces Java
source code as output. Dejay source files have the ending .dj so that a class A is stored in
a file called A.dj and can be compiled using the compiler dejayc.It temporarily produces
two output files, a file A. java and a file DjA. java, that are in turn compiled by an ordinary
Java compiler to A.class and DjA.class. At a first glance and for simple (single-threaded
non-distributed) programs Dejay appears to be identical to Java so that, for example a "Hello
World" program looks the same.
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public class A {

public AQ) {

}

public void m1(String s) {
System.out.println(s);

}

static void main(String[] args) {
A a= new AQ);
a.ml("Hello World");

}

At a closer look though, there is more behind the scenes. In Dejay every object is embedded
in a Virtual Processor, however, the first Virtual Processor in a distributed program is created
automatically so that a class A can be started as usual using its main() method (which is
manipulated by dejayc) and does not need to be aware of Virtual Processors at all.

3.3 Creation of Virtual Processors

The most important new concept of Dejay is the Virtual Processor. It can be started on
the same or on some other remote machine that is reachable over an IP-network and, since
the implementation of Virtual Processors relies on Voyager [Obj98], has a Voyager daemon
running on a known port. In the following we will use an abbreviation for the IP-address and
the port number of such a daemon, such as 134.100.11.185:8000, and simply call this X, Y
or Z.

In Dejay, the equivalent to spawning off a new thread is to create a new Virtual Processor
on the same machine. This is simply done by creating an instance of the class Processor.
The preceding "Dj" is explained in the next section.

// create a processor on local machine X
DjProcessor pl = new DjProcessor();

A typical use of this would be within a chat- or http-server that needs to handle new incoming
requests in concurrently executing handler classes. In Java this would mean spawning off a
new thread, but while in Java this can only be done on the same machine, in Dejay this can
be done on either the same or on any remote machine. To create a Virtual Processor remotely
its constructor is simply passed the name of the intended machine.

// create a processor on a remote machine Y
DjProcessor p2 = new DjProcessor(Y);

Also a virtal processor can be created "close" to some other object. By passing a reference as
an argument to the constructor a new Virtual Processor can be created on the same machine as
some known processor or some other known remote object. Note though, that the referenced
object will not be within the new processor but simply on the same machine.

// create a processor on the same machine
// as some known object obj
DjProcessor p3 = new DjProcessor(obj);
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The mapping of virtual processors to physical machines is very flexible. It can either be
done statically by hard-coding the corresponding strings. Or the configuration can be read
in from a file at startup and assigned to variables like X and Y. Or it could even be changed
at runtime for example by a tool that could monitor and reconfigure the physical placement
using migration, as shown further down.

3.4 Local and Remote References

The second important concept is that of local and remote references. We believe that a
distinction between an object that is local and an object that is remote should be made at
all times for two reasons. Firstly, the time delay of a local and of a remote call can differ in
several orders of magnitudes so that it is important to differentiate between local and remote
calls already at design time. Secondly, remote calls require a different treatment to local
calls, such as extended exception handling or asynchronous message passing. To make this
distinction we extend the type system of Dejay in comparison to Java: a reference to a local
object has a different type than a reference to a remote object. Of course these two types have
a very similar signature and fulfil the same functionality, but they should be incompatible and
express the difference at any time. In this way the semantics of a remote call can be changed
while maintaining the same syntax.

To differentiate these two types of references, the type names of remote references are
constructed from the usual local type name (to express the similarity) but preceded by the
letters "Dj" (to express the difference). For every class compiled by the Dejay compiler
dejayc, class definitions for both types are generated. An alternative to this is to introduce
an additional keyword as proposed by [Mey97] that marks remote references and to leave type
names unchanged. Then, however, additional assignment rules need to be introduced since
local and remote references need to be incompatible in the first place. We have rejected this
approach to integrate our concepts as smoothly as possible into the existing Java language
and its type system.

Objects on the local Virtual Processor are created and used in the usual Java way. Assume
for example an object a of class A instantiated in Virtual Porcessor p1l, located on machine
X. To create an instance b of class B on the same Virtual Processor, the code of class A may
contain the following :

// create an object on same processor
B b = new B();
b.some_method () ;

The creation of instances on remote Virtual Processors is done with the Dj-type of a class.
It does not matter whether a Virtual Processor is on the same or on a different physical
machine, for this difference is abstracted away by Dejay (and the location can change at
runtime anyway as we will see later). To create an instance of, for example, C on a remote
processor on a (potentially) different physical machine one would write the following:

// create an object on processor p2
DjC ¢ = new DjC(p2);

To obtain a remote reference to a local reference, one can call the constructor of the Dj-class
with a reference to the local object. These remote references can be passed as arguments across
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processor boundaries and used as arguments for methods or constructors. To demonstrate this,
a new object d is created in the existing processor p1 (that happens to be on the same physical
machine) and passed as a remote reference to b, once using the constructor and once using a
method.

// create a remote reference

DjB rem_b = new DjB(b);

// pass reference in constructor ...

DjD d = new DjD(rem_b, c, pl);

// or pass reference as parameter in method call
d.setB(rem_b);

The code presented so far will result in a similar scenario as described in the previous section.
It is shown in figure 6, including physical locations of each Virtual Processor.

3.5 Migration

A Virtual Processor can be moved from one machine to another simply by calling a moveTo ()
method. As an argument this method accepts an IP address, a host name or a reference to
another Virtual Processor or remote object. It then migrates the complete Virtual Processor
(and all contained objects) to the specified machine or the machine running the specified
Virtual Processor, respectively, and leaves a forwarder behind, so that calls to this Virtual
Processor will be redirected to the new location. If no argument is given, it moves to the
machine of the calling object. Calling the moveTo() method on an object contained in a
processor will result in the movement of the entire processor as well.

// move processor pl to machine Z, including its object a and b
pl.moveTo(Z);

//equivalent: move a to Z, including its processor pl and object b
a.moveTo(Z);

Logically the situation has not changed, all references remain valid. But physically a com-
ponent has migrated at runtime as shown in figure 7. Migration becomes simple and secure.
Objects are always moved as a group, keeping related objects together avoiding the extra
step of analyzing an object’s closure. Communication between objects belonging to different
processors is the same whether the processors reside on the same or on different machines.
But moving the processors to a local machine can reduce communication time tremendously.

The unit of migration is the Virtual Processor and not the object. Objects can not be
migrated out of a virtual processor in that sense, that they can not move while keeping their
identity. However, they can be copied from one to another Virtual Processor and if the original
is dropped it can be thought of as migration. But the copy has its own identity and references
to the original are not redirected.

The migration mechanism is implemented based on voyager. The Virtual Processor is a
voyager object and is migrated using the voyager mechanism discussed above. However, since
every object belongs to exactly one Virtual Processor, the problems that appear using Voyager
directly are avoided.
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3.6 Concurrency

The concept of processors is also used to express concurrency. Concurrency can be used to
perform actions in parallel, which requires several physical processors. Or it can be used to
control different threads of control on one physical processor, only simulating parallelism, for
example to have one thread calculating while another is waiting for input. If two Virtual
Processors run on the same machine, parallel execution is only simulated. If one of them is
moved to a different machine, real parallelism is exploited.

In Dejay method calls can be synchronous or asynchronous, while in Java method calls
are only synchronous. Calling a method on a remote object, i.e. using RMI, may result in
long waiting times since the calling object is blocked until the result is returned. To simulate
asynchronous behavior in Java, a new thread needs to be spawned off to handle the call
and await the result. This makes asynchronous calls tedious and error-prone. But a simple
mechanism for asynchronous calls is vital for distributed programming since parallelism on
remote machines can be achieved by asynchronous calls. Therefore, Dejay incorporates and
facilitates the use of asynchronous calls.

By default, Dejay executes calls to remote objects in a synchronous fashion. The thread of
control is passed to the remote processor hosting the called object and is handed back when
the call returns. However, it is also possible to issue an asynchronous call to a remote object
that is executed in parallel and therefore spawns off a new thread of control. Such a new
thread rejoins the original one when the result is returned. As a third possibility, one-way
method calls, can be used to omit the rejoining phase if the method’s result is not needed.

To distinguish between these cases, a method call can contain an additional parameter.
This parameter specifies whether the call is a synchronous, an asynchronous or a one-way
method call. The argument is a constant of type Dejay.base.Messenger object. Three
different types of messengers exist that determine the semantics of the call, respectively:

// synchronous, blocks until the result is returned
// this is the default and Dejay.SYNC can be omitted
resultl = c.some_method(Dejay.SYNC) ;

// asynchronous call, continues immediately
result2 = c.some_method(Dejay.ASYNC) ;

// one-way call, continues immediately, no rejoining of threads
c.some_method (Dejay.ONEWAY) ;

To rejoin an asynchronous call and to use the returned result, wait-by-necessity is used. That
means that an application would automatically block when the variable the result is assigned
to is first used. To explicitly wait for the result to return, a method result2.wait() can
be called. It can also be tested if a result has returned by calling result2.poll(), which
returns a boolean value so that the programmer can decide whether the program should wait
or continue.

3.7 Synchronization

In Dejay each object belongs to and is managed by a component controlled by a single Virtual
Processor. Objects can be called from outside the processor by using their virtual objects.
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But the processor intercepts incoming calls at the components boundary, queues them, and
executes calls to its internal objects in a sequential manner. This greatly simplifies synchro-
nization by reducing the need for it. No synchronization is needed between objects contained
in the same processor. Objects are encapsulated within the Virtual Processor in which concur-
rent threads are prohibited so that they are always used exclusively. Synchronization between
objects in different processors is much simpler than in Java. Since a call to a remote object is
always redirected to the encapsulating Virtual Processor and queued until a currently execut-
ing method is terminated, it cannot interfere with other operations and change the state of
an object unexpectedly. In fact, locking of objects is only necessary in a transactional sense if
an object is required in an unchanged state over two or more remote calls. We are currently
working with an extension of the Java keyword synchronized that accepts not only one but
several objects as arguments and blocks all of these until the synchronized-block is terminated.

This allows the efficient support by the compiler translating these high level constructs to
low level Java synchronization. Similar to the replacement of pointers in C++ by references in
Java, or the use of garbage collection instead of explicit memory allocation, the replacement of
low level synchronization mechanisms like semaphores by the more abstract view of complete
Virtual Processors simplifies the language and allows automatic generation of efficient code.
Different mechanisms for expressing synchronization constraints are currently being investi-
gated, including that of Eiffel [Mey97] using pre- and post-conditions as wait conditions. Also,
separate, explicit synchronization specifications or synchronizers as discussed in [Frg96] are
explored. An important aim is to avoid the inheritance anomaly discussed in [MY93]. An
inheritance anomaly can occur when synchronization is defined in a superclass and redefined
in a subclass. This can completely mislead synchronization.

3.8 Exception Handling

Exception handling is not fully implemented yet but basic mechanisms exist. Exceptions that
are thrown by the remotely referenced object are transmitted to the remote caller and must
be treated in the usual way. Thus the semantics of a class for exceptional cases is not changed.
But additional errors can occur due to the fact that the call is remote. This can be network
failures, time-outs, etc. and a programmer needs a possibility to react on these. However,
here we are facing the decision between an optimistic and a pessimistic approach. RMI for
example represents a pessimistic approach, where for every remote call remote exceptions must
be caught. This clutters up the code and makes it more difficult to read and develop. A more
optimistic approach is to catch the exception on the level of the proxy, and to re-throw it as
an error. In Java errors can be but do not have to be caught. This way the developer can
decide if he wants to take care of network failures or if he wants to keep the code simple as
for example in prototypes.

3.9 Implementation

The Dejay language has successfully been implemented and exists in a consistent and demon-
stratable version. However, the language is still under development and will further be ex-
tended. Its implementation has two parts. Firstly, the concept of Virtual Processor was
implemented by an according Java solution. Secondly, a compiler that translates Dejay to
Java was developed.
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For the implementation of the concept of Virtual Processors a number of different alterna-
tives have been evaluated. Of course, this could have been done using the Java JDK alone but
this would have meant reinventing the wheel since there exist solutions this project can rely
on. For the evaluation of distributed extensions to Java a list of criteria has been developed
that needed to be fulfilled to successfully implement Virtual Processors. The criteria were

e a) a basic support of migration of objects. It should be possible to move an object
without loss of its identity and relation to other objects.

e b) the ability to create proxies of any given object at runtime. Many mechanisms only
can create proxies at compile time, which is not sufficient.

e ¢) a possibility to access and interrupt the flow of control when a remote call comes in.
To adequately administer a running system the Virtual Processor needs to be informed
of incoming calls to delay the call and additional actions. It may not just be bypassed.

e d) an optional type compatibility of remote references to normal references for compat-
ibility to usual Java. Since not all Java classes can be rewritten in Dejay, the remote
reference type needs to be compatible to what normal Java classes are used to.

e ¢) access to local references of a remotely created object on the remote machine. This
is needed to support the serialization of a distinct but intertwined object graph. It is
necessary to create a single root for all objects in question for migration.

A number of different techniques has been considered, most closely RMI, JavaParty, CORBA
and Voyager. None of the evaluated techniques supported these features directly. RMI and
CORBA already fall short of the first. The option that finally proved most suitable was
Voyager 2, however, it did not fulfill all criteria, namely ¢) and e) so that it was not possible to
use it directly. The Virtual Processor is implemented as a Voyager object, but a mechanism to
implement proxies to remote objects had to be constructed from scratch using Java Reflection.

A Virtual Processor is implemented and described by the class Processor, sketched in
figure 8. It maintains a list of all objects that are referenced remotely and contained within it.
New objects that are created from remote are automatically registered to it and de-registered
when their proxies are garbage collected. It also maintains a queue of incoming calls. It
dispatches calls one at a time, retaining other calls until the dispatched call is done and the
result is returned. Thereby it insures a sequential processing of the functionality offered by
the sum of the contained objects.

The use of Proxies is hidden from the programmer. To him remote objects are simply
referenced over a different type than a local object. However this is implemented using proxies
that represent the remote object on a remote machine and offer a superset of the original
interface.

Assume an object obj that holds a remote reference to an object of type A, thus a reference
of type DjA, shown in figure 9. 0bj can invoke a method of A which will be handled by the
proxy (step 1).

The proxy does not hand the call directly to the remote object but to the corresponding
Virtual Processor (step 2). This is done by describing the call in a Job-object, that is passed
using a Voyager-call to the Virtual Processor. The proxy holds a Voyager reference to the
Virtual Processor and since Voyager implements call forwarding, this reference is also valid
after migration. There the call is queued in the CallQueue (step 3) and at its turn transformed
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to a local call to the actual object (step 4). The results are first returned to the Virtual
Processor and from there to the calling proxy (step 5). If the call returns references to other
local objects (say of type B), for each of these a proxy is constructed and the proxy is handed
back so that a local reference turns into a remote reference in the eyes of the client. The local
object is registered to the Virtual Processor and the proxy is moved to the calling party.

For the construction of the compiler a tool called OpenJava [Tat97]| has proved to be very
helpful. OpenJava allows the extension of Java through a meta object description protocol. It
has a very elaborate Java parser producing an object parse tree. The meta language allows to
define changes in the grammar and to define operations on this parse tree. It then produces
Java-code according to these definitions. Therefore, it was not necessary to construct the
compiler from scratch, but allowed the development of Dejay as a Java "dialect".

3.10 Unresolved Problems

Some problems could so far not be resolved, mostly due to properties of Java. For compatibility
purposes to regular Java, Dejay proxies are type compatible to the object they represent. This
is done by inheriting from the original class. Since inheritance is not possible from classes
defined as final, these classes can not be type compatible. Also some classes are not defined
to be serializable (i.e. Enumeration) or have no class definition (i.e. arrays). For such classes
a wrapper class has to be built.

To execute objects that are migrated their according class code is needed on the new
platform. This has either to be in the local class path of the new machine or has to be
downloaded from the net. Currently class definitions can be downloaded from a central source
server, for example the machine that the main program is started on.

Some properties of Java clash with the idea of distribution. Java contains variables called
static that are valid for a class and not an instance. Static variables in Dejay are only defined
for a single Java Virtual Machine, but not globally. Also, variables with an according visibility
can be accessed from other classes. Dejay does not support this but requires methods (get
and set) for variables.

4 Examples

To demonstrate Dejay two small examples are given. The first is a “Hello World” example and
is intended to show how remote creation and remote access to objects is using Dejay. The
second is the dining philosophers example, that shows that the same implementation can be
used to express concurrency as well as distribution.

4.1 Hello World

Consider the following class HelloWorld. It is stored in a file HelloWorld.dj and is a legal
Dejay class file:

public class HelloWorld{
public void sayHello(String s) {
System.out.println("Hello "+s);

}
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Syntactically this class differs in nothing from a conventional Java-class. It is simply compiled
with the Dejay compiler dejayc to produce a distribution-, concurrency- and migration-aware
class.

This class can be instantiated like any other Java class. But to demonstrate Dejays abilities,
an instance shall be created remotely and called so that it will print Hello Ping on the screen
of a remote machine X. Then the object is migrated to a different machine Y. Called again, it
will put out Hello Pong on that machine.

public class Startup {
static void main(String[] args) {
//First, say hello on machine X
DjProcessor pl = new DjProcessor(X);
DjHelloWorld hello = new HelloWorld(pl);
hello.sayHello("Ping");

//Then, say hello on machine Y
hello.moveTo(Y);
hello.sayHello("Pong");

}

We believe that this is the shortest and, more importantly, simplest way to express this kind
of functionality in an object-oriented, java-like fashion. The advantages are even bigger if the
application is more complex and a virtual processor contains more than one object. Then
whole components can easily be moved around a network with all local and remote references
automatically retained.

4.2 Dining Philosopher

As further example to demonstrate Dejay, we use Dikstra’s well known dining philosophers.
This example does not detect or avoid deadlock. Deadlock must be avoided by usual means
(for example by having one philosopher pick up the fork in opposite order). It is intended to
show the unification of distribution and concurrency using migration of Virtual Processors.

Five philosophers sit around a table set with five forks and a dish of spaghetti. Each
Philosopher needs two forks to eat. If he is done eating he puts down the two forks and thinks
until he gets hungry again and tries to pick up two forks once again. Since Dejay is designed
for distributed systems, we assume that all of the five Philosophers as well as the five forks
could potentially be placed on different machines in a distributed system. Each Philosopher
thus has to retain a remote reference to a fork on his left and on his right.

import java.io.Serializable;
import dejay.base.x*;
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public class Philosopher implements Serializable {
DjFork left_fork;
DjFork right_fork;
String name;
DjButler james;

public Philosopher (String myName, DjFork left, DjFork right, DjButler butler) {
left_fork = left;
right_fork = right;
name = myName;
james = butler;
System.out.println("Philosopher "+name+" created");

public void dine() {
while (james.isServing()) {
eat();
think();

private void eat() {
while (hungry()) {
// use both forks in parallel, asynchronous call
private DjForkResult left_done;

left_done = (DjForkResult) left_fork.use( Dejay.ASYNC, new DejayResult());
DjForkResult right_done;

right_done = (DjForkResult) right_fork.use( Dejay.ASYNC, new DejayResult());
// now block until both calls return
System.out.println(name +" is eating");
Dejay.wait(left_done);
Dejay.wait(right_done) ;

private void think() {System.out.println(name +" is thinking...");}

private boolean hungry() {
// random algorithm to determine hunger

X
X

To set up the proper scenario, a butler should lay the table and seat the philosophers. The
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butler can create the forks on one (or different) remote Virtual Processors. Since he needs the
forks as parameters for the creation of the philosophers, he does this synchronously. He can
than seat, i.e. create, the philosophers, each in a separate Virtual Processor. Since he calls
the creation asynchronously, he can create all of them in parallel. Finally he serves the meal,
i.e. calls the dine-method on each one, again in parallel. In this case the asynchronous call is
mandatory since the dine method will loop forever. The according code in Dejay is presented
below; for simplicity the example is restricted to two philosophers:

public class Butler {

DjProcessor processorl, processor2, processor0O;
DjFork forkl, fork2;

DjPhilosopher jan, thorsten;

boolean serve = true;

DjButler proxy;

public Butler() {
// X, Y, Z. are IP addresses and port of Voyager demons
// These can be different or identical so that
// the application could run on one or many machines
try {
processor0 = new DjProcessor(X);
processorl = new DjProcessor(Y);
processor2 = new DjProcessor(Z);
} catch (ConstructProcessorFailedException e) {
System.out.println(e);

}

// Lay Forks on table

forkl= new DjFork(processor0);
fork2= new DjFork(processor0);

// Seat philosophers and give each two forks

jan = new DjPhilosopher("jan", forkl, fork2, processorl, new DjButler(this));
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thorsten = new DjPhilosopher("thorsten", fork2, forkl, processor2, new DjButler(this))

System.out.println("Table is set up");
jan.dine(Dejay.ASYNC) ;
thorsten.dine(Dejay.ASYNC) ;
System.out.println("Meal is served");

public boolean isServing(){
return serve;

}

Each of the philosophers or the butler could now be moved from one machine to another, simply
by calling the moveTo() method on either the object or its Virtual Processor. The following
are two methods that change the physical placement. The first gathers all philosophers and
forks on one machine, the other spreads them out again in an altered order. Note that such
a movement does not stop the philosophers meal, all remote references remain valid and the
philosophers keep using the correct forks.

public void assemble() {
// interrupt the meal
serve=false;
// move all philosophers to one machine X
jan.moveTo (processor0) ;
thorsten.moveTo (processor0) ;
// continue the meal
serve=true;
jan.dine();
thorsten.dine();

public void distribute() {
// interrupt the meal
serve=false;
// spread philosophers and forks on different machines
jan.moveTo (processor2) ;
thorsten.moveTo (processorl) ;
// continue the meal
serve=true;
jan.dine();
thorsten.dine();

}

This program can be started in the usual way by calling a main () method. This automatically
creates the initial Virtual Processor in which the butler resides.
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public static void main(String args[]) {
Butler james = new Butler();

james.assemble();

james.distribute();

}
} // class Butler

5 Future Work

The implementation of the presented work has reached a stable state. The next step is a
closer evaluation of the runtime behavior and some fine tuning. However the current runtime
behavior is very promising. We have implemented the distributed calculation of Mandelbrot-
sets using different communication techniques like Sockets, RMI and Voyager and compared
it to an implementation using Dejay. The results are shown in figure 10. The figure shows
results for the full picture, as well as for zooms into communication intensive (red picture) and
computation intensive areas (black picture). The usage of Dejay introduces some additional
overhead, however this seems to be acceptable for a prototype and can be further reduced. The
advantage is that the calculation server implemented in Dejay can remotely be instantiated
and migrated at runtime.

Also some additional services like binding and grouping are being developed. Binding to
existing objects is possible through a name service. An object can be bound to a name and
located by others using this name and its location. This can be implemented using RMI,
CORBA or Voyager mechanisms and has been tested but a final integration into the language
has not yet been done. It would even be possible to smoothly integrate an infrastructure like
Jini to discover such objects.

Grouping of virtual processors on a yet higher level of abstraction is currently being inves-
tigated. Grouping is not difficult to incorporate but it has so far not been decided whether this
grouping should be transitive, reflexive, and/or hierarchical or not. Such a mechanism could
be used to dynamically reconfigure attachments. The currently most favored approach is to
introduce an extra object ProcessorGroup, similar to ThreadGroup, that can hierarchically
combine Virtual Processors that will migrate (or persist) together.

The distribution of objects in space, as presented here, and the distribution of objects
in time through persistence hold similar problems. The potential of Virtual Processors as a
clustering mechanism for persistence is currently being evaluated. The presented paradigm
also appears to be very suitable for independent self-triggered migration as mobile agents do.
Since a Virtual Processor is currently implemented as a Voyager object and since Voyager
offers a mobile agent mechanism, a Virtual Processor can also be seen as a mobile agent. This
aspect is currently being evaluated.

Another important aspect of distributed program development is modeling. Standard-
ized modeling methods like UML give very little or no support to model the distributed or
concurrent aspects of a software system. The main reason for this might be that the current
languages only support relatively complex techniques that are difficult to represent in a model.
Since the concepts used in Dejay allow a more abstract view on a distributed and concurrent
system, they are more suitable for modeling such systems as well. A modeling technique
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as well as supporting tools that extend UML integrating these concepts are currently being
developed.

6 Related Work

It has repeatedly been discussed that Java, as is, is not very well suited for distribution
[BLS97]. Especially the current mechanism for remote method invocation has widely been
criticized [PZ96|. Therefore there is a great interest in Java-based or Java-extending solutions
that aim at improving the distribution abilities of Java. A number of projects try to achieve
this by providing better libraries or frameworks for distributed communication (Voyager, iBus,
JavaGroups, Java ACE, Habanero, JSDT) or by modifying the existing RMI mechanism
(NinjaRMI, JavaParty, FarGo). Some projects develop languages similar to Java (Infospheres,
Pizza, JavaParty) or provide a modified virtual machine (DJ, Pjama). Others incorporate
new communication paradigms like Agents (Voyager, Odyssey, Mole, Straum) or tuple spaces
(JavaSpaces, TSpaces).

The most closely related projects are Voyager and JavaParty. Voyager [Obj98] has already
been mentioned and some of its weaknesses were pointed out. Nevertheless, Voyager is a great
product and the Dejay project has profited much by relying on it. JavaParty [PZ96] is similar
in that also a Java dialect is being developed. It extends Java by adding an extra keyword
remote and provides a new compiler. Its main goal is to provide an improved RMI but its
focus is on multiprocessor machines and tightly coupled networks.

Many other projects exist that examine distribution or concurrency concerns for object
oriented languages. Emerald [BHJ'87] had a strong influence, for example on DOWL [Ach93]
or Beta [SB93]. Here, migration of groups of objects is expressed by explicit attachment. Its
relation to Dejay is discussed in [Bog98|. For a recent overview on concurrent OO-languages
see [BGLI7|.

7 Conclusion

This paper shows that the development of distributed systems does not have to be as hard
as it is today, where matters of concurrency and of distribution have to be dealt with using
completely distinct techniques. An abstraction unifying concurrency and distribution into a
single concept and allowing for transparent object migration was described. Dejay, a new
programming language based on Java, that implements this concept, was presented. Dejay
expresses distribution, grouping and migration of objects and concurrency using the concept
of Virtual Processors. It assembles a set of closely related objects and defines a granularity
of migration. Within this, execution is sequential while other Virtual Processors execute
concurrently to it. The unification of concurrency and distribution into a single concept
makes the development of distributed systems simpler as compared to existing solutions like
Java RMI, CORBA, or Voyager.

References

[Ach93] B. Achauer. The dowl distributed object-oriented language. Communications of
the ACM, 12(9), September 1993.



[BGLI7]

[BHI*+87]

[BLS97]

[Bog98]

[COS98]

[Frg96]

[Mey97]

[MY93]

[Obj9g]

[PZ96]

[SBY3]

[Tat97]

J. Brioit, R. Guerraoui, and K-P. Lohr. Concurrency, distribution and parallelism
in object-oriented programming, December 1997. Technical Report B-97-14, FU
Berlin, FB Mathematik und Informatik.

A. Black, E. J. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and
abstract types in emerald. IEEE Transactions Software Engineering, 13(1), 1987.

G. Brose, K.-P. Lohr, and A. Spiegel. Java does not distribute. In Proceedings of
Technology of Object-Oriented Languages and Systems TOOLS Europe '97, Paris,
1997.

Marko Boger. Migrating objects in electronic commerce applications. In Proceedings
of Trends in Distributed Systems for Electronic Commerce, 1998.

COSMOS. Electronic contracting with cosmos, 1998. www.ponton-
hamburg.de/cosmos/ .

Svend Frglund. Coordinating Distributed Objects. An Actor-Based Approach to
Synchronization. MIT Press, 1996.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, second
edition, 1997.

Satoshi Masuoka and Akinori Yonezawa. Research Directions in Concurrent
Object-Oriented Programming, chapter Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages. MIT Press, 1993.

ObjectSpace. Objectspace, 1998. www.objectspace.com.

Michael Philippsen and Matthias Zenger. Javaparty - transparent remote objects
in java. Concurrency: Practice and Experience, 9(11), November 1996.

O.L. Madsen S. Brandt. Object-oriented distributed programming in beta. In Pro-
ceedings of Object-Based Distributed Programming, ECOOP’93 Workshop, Kaiser-
slautern, Germany, Lecture Notes in Computer Science, Vol. 791, Springer Verlag,
1993.

M. Tatsubori. Openjava, 1997. www.softlab.is.tsukuba.ac.jp/~mich/openjava/.

‘ central distributed ‘

single party access 1 2
multiple party access 3 4

Table 1: Different implementation alternatives for negotiation in COSMOS.
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Figure 6: Objects and References in Dejay.
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Figure 7: After moving a, one copy of b exists. No inconsistencies.
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Figure 9: Implementation of a remote method call.
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Figure 10: Distributed calculation of Mandelbrot-sets with different communication mecha-
nisms and for different areas.



