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The Case For Change Notifications in Pull-Based Databases
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Abstract: Modern web applications often require application servers to deliver updates proactively
to the client. These push-based architectures, however, are notoriously hard to implement on top of
existing infrastructure, because today’s databases typically only support pull-based access to data.
In this paper, we first illustrate the usefulness of query change notifications and the complexity of
providing them. We then describe use cases and discuss state-of-the-art systems that do provide them,
before we finally propose a system architecture that offers query change notifications as an opt-in
feature for existing pull-based databases. As our proposed architecture distributes computational work
across a cluster of machines, we also compare scalable stream processing frameworks that could be
used to implement the proposed system design.

Keywords: continuous queries, materialized view maintenance, real-time stream processing, Big
Data

1 Introduction

OLTP databases traditionally only support pull-based access to data, i.e. they return data as
a direct response to a client request. This paradigm is a good fit for domains where users
work on a common data set, but isolated from one another. A variety of modern (web)
applications like messengers or collaborative worksheets, on the other hand, target more
interactive settings and are expected to reflect concurrent activity of other users. Ideally,
clients would be able to subscribe to complex queries and receive both the initial result as
well as result updates (i.e. change notifications) as soon as they happen. But only few OLTP
database systems provide real-time capabilities beyond simple triggers and application
developers often have to employ workarounds to compensate for the lack of functionality.
For example, applications are often modeled in such a way that application servers can
filter out relevant changes by monitoring specific keys instead of actually maintaining query
results in real-time. This makes it possible to notify co-workers of recent changes in a shared
document or invalidating caches for static resources [GBR14], but more complex scenarios
that cannot be mapped to monitoring individual keys (e.g. maintaining user-defined search
queries) are simply infeasible.

In this paper, we survey currently available systems that do provide query change noti-
fications, discuss strengths and weaknesses of their respective designs and propose an
alternative system architecture that offers a unique set of strong points. The envisioned
system is built around a scalable stream processing framework and, compared to the current
state of the art, provides the following main benefits:
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1. Opt-In Change Notifications: Being a standalone system, our proposed architecture
provides real-time change notifications as an additional feature to existing DBMSs.

2. Linear Scalability: The system is able to scale with the number of continuously
maintained queries as well as the update throughput.

3. Pluggable Query Engine: Through a pluggable query engine, the approach is not
system-specific, but applicable to a variety of different databases.

The rest of this article is structured as follows: In Section 2, we provide an example to
illustrate what exactly query change notifications are and why providing them is a non-trivial
task. We then explore the three use cases (1) real-time notifications for interactive (web)
applications, (2) query result cache invalidation and (3) materialized view maintenance in
Section 3 and survey existing systems that provide query change notifications in Section 4.
Subsequently, we present our own architecture for opt-in query change notifications and
discuss viable candidates for the underlying stream processing framework in Section 5. A
conclusion and final thoughts are given in Section 6.

2 Problem Statement

In order to enable clients to define their critical data set and keep it in-sync with the server,
we argue that clients should be provided with the initial result and updates to the result
alike. For an illustration of a possible set of notifications, consider Figure 1 that shows a
query for NoSQL-related blog posts and a blog post that enters and leaves the result set as
it is edited.

{ title: "NoSQL",

  year: -1 }

{ title: "NoSQL",

  year: 2016 }

{ title: "NoSQL",

  year: 2061 }

{ title: "SQL",

  year: 2016 }

{ title: null,

 year: -1 }

SELECT * FROM posts WHERE title LIKE "%NoSQL%" ORDER BY year DESC

add removechangeIndex change

Fig. 1: An example of notifications that occur while a blog post is edited.

Initially, the blog post is created without title and without year and therefore does not match
the query. When the author chooses the title to be “NoSQL”, the blog post enters the query
result (dashed box) and all query subscribers have to be notified of this event through an
add notification. Since the publication year is still set to the default value of -1, the blog
post currently has the last position in the result set. Next, the author intends to set the
publication year to the current year, 2016, but accidentally sets it to 2061. Irrespective of
this typo, the blog post moves from the last to the first position in the result set, because it
now has the largest year value; subscribers receive a changeIndex notification and are
thus aware of an update to the blog post that changed its position. The author becomes
aware of her mistake and subsequently corrects it by setting the year to 2016. Since there is
no other more recent article, the blog post does not change its position (no changeIndex
notification), but subscribers still receive a change notification. After a change of mind,
the author updates the title to “SQL” and the blog post correspondingly ceases to match the
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query predicate, provoking a remove notification. None of the following blog post updates
will lead to a notification as long as the matching condition is not satisfied.

Detecting query result changes is significantly more complex than detecting updates on
individual data items, because any written object (here: blog post) may or may not satisfy
the matching condition of any maintained query. Further, the previous matching status of
an object with respect to a query has to be known in order to be able to tell the difference
between add, change and changeIndex events and to recognize a remove event.

3 Use Cases
There are many applications that rely on server-side notifications of state updates. They can
be classified as follows:

1. Notifications for Clients: The obvious use case for change notification is forwarding
them to clients, so that they are informed whenever relevant state changes occur.

2. Cache Invalidations: The capability of detecting result changes opens up the possi-
bility of caching dynamic data, namely query results, with minimal staleness windows.
Whenever a result is updated (i.e. becomes stale), the corresponding caches can be
invalidated. Since queries are not only served by the database itself, but also by
caches located near the clients, response times are reduced significantly and read
workload is taken off the database.

3. Materialized Views: Frequently requested queries can be kept up-to-date in a sepa-
rate data store to further relieve the primary database. It is even possible to amend
the querying capabilities of the primary database to enable access patterns that would
otherwise not be available: for example, a materialized MongoDB view could be
maintained on top of a key-value store like Riak by loading all data in a bucket
initially and subsequently only processing incoming updates.

4 State of the Art
The inability of traditional pull-based database systems to cope with streaming data well
has been identified as a critical and mostly open challenge years ago [SC05, ScZ05] and
the integration of static and streaming data has been studied for decades [BLT86, BW01,
MWA+03]. While early prototypes required append-only databases [TGNO92], modern
systems also consider updated and removed data and thus target more practical applications.
Complex Event Processing (CEP) engines [ACc+03, AAB+05] are software systems
specifically designed to derive complex events like a sensor malfunction or an ongoing
fraud from low-level events such as individual sensor inputs or login attempts. Queries
do not only constrain data properties, but also temporal, local or even causal relationships
between events. In contrast to databases that permanently store and subsequently update
information, though, CEP engines work on ephemeral data streams and only retain derived
state such as aggregates in memory for a relatively short amount of time.
Timeseries databases [DF14] are specialized to store and query infinite sequences of
events as a function of the time at which they occurred, for example sensor data indexed
by time. While they store data permanently and some of them do also have continuous
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querying capabilities (e.g. InfluxDB3), they are typically employed for analytic queries,
materialized view maintenance or downsampling streams of information and do not extend
to change notifications.

In recent years, new database systems have emerged that aim to provide real-time change
notifications in a scalable manner, but they provide only vendor-specific solutions. Existing
applications working on a purely pull-based database have to either switch the underlying
data storage system to gain real-time change notifications or have to employ workarounds
to compensate for the lack of them.
Meteor4 is a web development platform backed by MongoDB that provides real-time
query change notifications using two different techniques. In principle, a Meteor server
reevaluates every continuous query periodically and compares the last and the current result
to detect recent changes. This “poll-and-diff” approach allows a complete coverage of the
MongoDB feature set, but also adds latency of several seconds. More importantly, it puts
load on the database and the application server for computing, serializing, sending and
deserializing query results that is proportional to their size. Whenever possible, Meteor
applies a more light-weight strategy called oplog tailing where a Meteor server subscribes
to the MongoDB oplog (the replication stream) and tries to extract relevant changes from
it. While oplog tailing greatly reduces notification latency and processing overhead, it still
requires querying MongoDB when the information provided by the oplog is incomplete.
The approach is further hard-limited by the maximum of replica set members allowed by
MongoDB [Inc16], is only feasible when overall update throughput is low and prohibits
horizontal scaling [Das16, met14]. Parse5 is a development framework with MongoDB-
like querying capabilities and change notifications for queries. The involved computation
can be distributed across several machines, but is ultimately limited by a single-node Redis
instance employed for messaging [Par16b]. Parse’s hosted database service is going to
shutdown in January 2017 and the number of people contributing to the code base has
been decreasing over the last months [Par16a]. Even though other vendors have announced
support of the Parse SDK [Gai16], future support for the Parse platform is uncertain.
Oracle 11g is a distributed SQL database with complex query change notifications that
supports streaming joins with certain restrictions [WBL+07]. Materialized views of the
continuous queries are maintained by applying committed change operations periodically,
on-demand or on transaction commit [M+08]. Due to the strict consistency requirements
and the underlying shared-disk architecture, scalability is limited. PipelineDB6 extends
PostgreSQL by change notifications for complex queries. While the open-sourced version
can only run on a single node, the enterprise version supports a clustering mode that shards
continuous views and associated computation across several machines. However, since
all write operations (insert, update, delete) are coordinated synchronously via two-phase
commit between all nodes [Pip15], PipelineDB Enterprise is only scalable up to moderate
cluster sizes. RethinkDB7 is a NoSQL database that does support rich continuous query
semantics, but is currently subject to a hard scalability limit [Ret16] and does not provide

3 https://www.influxdata.com/time-series-platform/influxdb/
4 https://www.meteor.com/
5 https://parse.com/
6 https://www.pipelinedb.com/
7 https://www.rethinkdb.com/
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streaming joins. It is the underlying data store for the Horizon8 development framework.
Firebase9 is a cloud database that delivers notifications for changed data, but provides only
limited query expressiveness due to the very restrictive underlying data model that requires
information to be organized in a tree of lists and objects.

5 Vision: Scalable Opt-In Query Change Notifications

To enable query change notifications on top of systems that by themselves do not provide
them, we propose amending these systems by an additional real-time subsystem.

application servers

event broker

stream processor

re
al

-t
im

e
O

LT
P

Fig. 2: An architecture that provides opt-
in query change notifications on top of
purely pull-based databases.

In our proposed architecture as illustrated in Figure
2, common OLTP workloads are still handled by ap-
plication servers that interact with the database on
behalf of clients. To cope with additional real-time
workload, we introduce a new subsystem compris-
ing an event broker (i.e. a streaming system like
Kafka) to buffer data between application servers
and a scalable stream processor (e.g. Storm) that
maintains continuous queries and generates notifica-
tions whenever results change.
To make continuous query maintenance stand on
its own, the application server has to provide the
real-time subsystem with all required information,
namely initial query results and complete data ob-
jects on every write. To this end, each continuous
query is evaluated once upfront and then sent to the
event broker along with all matching objects. Every
write operation, i.e. each insert, update and delete,
is sent to the event broker together with a complete
after-image of the written object, i.e. with the com-
plete data object after the operation has been exe-
cuted. Besides, an application server subscribes to
notifications for the continuous queries of its clients
and forwards them correspondingly.
The task of matching the stream of incoming op-
erations against all continuous queries is executed
in distributed fashion and partitioned both by writ-
ten objects and maintained queries. Thus, each pro-
cessing node is only responsible for a subset of all
queries and a subset of all operations. Changes are
detected based on whether an object used to be a
match and whether it still is a match for a query. For
every change, a notification is sent upstream.

8 https://horizon.io/
9 https://firebase.google.com/
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The proposed system design decouples resource requirements as well as failure domains for
primary storage (persistent data, pull-based access) on the one hand and real-time features
(change notifications, push-based access) on the other. Since the real-time workload is
handled in a separate subsystem, resources for continuously maintaining query results
can be scaled out, while persistent data may be kept in a strongly consistent single-node
system. Using a shared-nothing architecture and asynchronous communication throughout
the critical processing path, we avoid bottlenecks and thus achieve linear scalability and
low latency.

5.1 Scalable Stream Processing Frameworks

Over the last years, a number of scalable and fault-tolerant stream processors have emerged.
In the following, we briefly discuss systems that appear as viable candidates for implement-
ing the sketched system design. We therefore do not go into detail on systems that are prone
to data loss (e.g. S4 [NRK10]), have been abandoned (e.g. Muppet10 [LLP+12] or Naiad11

[MMI+13]), are not publicly available (e.g. Google’s Photon [ABD+13] and MillWheel
[ABB+13], Facebook’s Puma and Stylus [CWI+16] or Microsoft’s Sonora [YQC+12])
or cannot be deployed on-premise (e.g. Google’s Dataflow cloud service12 which is built
on the eponymous programming model [ABC+15]). For a more detailed overview over
the stream processing landscape and a discussion of the trade-offs made in the individual
systems’ designs, see our stream processing survey [WGFR16].

One of the oldest stream processors used today is Storm13 [TTS+14]. It exposes a very
low-level programming interface for processing individual events in a directed acyclic graph,
the topology, with at-least-once processing guarantees and is generally geared towards low
latency more than anything else. It also provides a more abstract API, Trident, that comes
with additional functionality (e.g. aggregations) and guarantees (e.g. exactly-once state
management), but also displays higher end-to-end processing latency than plain Storm,
because it buffers events and processes them in micro-batches. Being built on the native
batch processor Spark14 [ZCD+12], Spark Streaming15 [ZDL+13] also works on small
batches, but usually displays even higher latency on the order of seconds. Through its
integration with Spark, Spark Streaming probably has the widest user and developer base
and is part of a very diverse ecosystem. Samza16 [Ram15] and Kafka Streams [Kre16] are
stream processors that are tightly integrated with the data streaming system Kafka [KNR11]
for data ingestion and output. Data flow is based on individual events, but since neither
Samza nor Kafka Streams have a concept of complex topologies, data has to be persisted
between processing steps and latency thus adds up quickly. Flink17 (formerly known as
Stratosphere [ABE+14]) tries to combine the speed of a native stream processor with a rich

10 https://github.com/walmartlabs/mupd8
11 https://github.com/MicrosoftResearch/Naiad
12 https://cloud.google.com/dataflow/
13 http://storm.apache.org/
14 https://spark.apache.org/
15 https://spark.apache.org/streaming/
16 https://samza.apache.org/
17 https://flink.apache.org/
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feature set comparable to that of Spark/Spark Streaming, but is not as widely adopted, yet
(cf. [Fou16b, Fou16a]). Even though Flink allows to configure buffering time of individual
events, it cannot be tuned as aggressively towards latency as Storm (see for example
[CDE+15] or [Met16, slide 71]). Apex18 is another native stream processor with similar
design goals as Flink. Being relatively new on the market, Apex is still getting traction.
Heron19 [KBF+15] was developed by Twitter to replace Storm which had proven inefficient
in multi-tenant deployments, among other reasons due to poor resource isolation. It was
open-sourced recently, but has not found wide-spread use as of writing. IBM Infosphere
Streams [HAG+13, BBF+10] is a proprietary stream processor that is bundled with its own
IDE and programming language. It reportedly achieves very low latency, but performance
evaluations made by IBM [Cor14] indicate it only performs well in small deployments
with up to a few nodes. Concord20 is a proprietary stream processing framework designed
around performance predictability and ease-of-use that has just very recently been released.
To remove garbage collection as a source of possible delay, it is implemented in C++.
To facilitate isolation in multi-tenant deployments, Concord is tightly integrated with the
resource negotiator Mesos21 [HKZ+11].

6 Conclusion

The ability to notify clients of data changes as they happen has become an important feature
for both data storage systems and application development frameworks. However, since
established OLTP databases have been designed to work with static data sets, they typically
do not feature real-time change notifications. The few systems that do are limited in their
expressiveness, difficult to scale or they enforce a strong coupling between processing static
and streaming data.

In this paper, we propose a scalable system architecture for providing change notifications
on top of pull-based databases that sets itself apart from existing designs through a shared-
nothing architecture for linear scalability, coordination-free processing on the critical
path for low latency, a pluggable query engine to achieve database-independence and a
separation of concerns between the primary storage system and the system for real-time
features, effectively decoupling failure domains and enabling independent scaling for both.
We are not aware of any other system or system design that makes complex query change
notifications available as an opt-in feature.

While this paper only introduces the conceptual design and contrasts it to existing technol-
ogy, we already have implemented a prototype that supports the MongoDB query language.
So far, our prototype has been used in combination with MongoDB as primary storage
system for two use cases: first, providing real-time change notifications for users of a web
app and, second, invalidating cached query results as soon as they become stale. We will
provide details on the implementation and performance of our prototype in future work.

18 https://apex.apache.org/
19 https://twitter.github.io/heron/
20 http://concord.io/
21 http://mesos.apache.org/
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