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Large-Scale Data Pollution with Apache Spark
Kai Hildebrandt, Fabian Panse, Niklas Wilcke, and Norbert Ritter

Abstract—Because of the increasing volume of autonomously collected data objects, duplicate detection is an important challenge in
today’s data management. To evaluate the efficiency of duplicate detection algorithms with respect to big data, large test data sets are
required. Existing test data generation tools, however, are either not able to produce large test data sets or are domain-dependent
which limits their usefulness to a few cases. In this paper, we describe a new framework that can be used to pollute a clean, homogene-
ous and large data set from an arbitrary domain with duplicates, errors and inhomogeneities. To prove its concept, we implemented a
prototype which is built upon the cluster computing framework Apache Spark and evaluate its performance in several experiments.

F

1 INTRODUCTION

To integrate data from multiple heterogeneous sources or to
clean a single database, duplicates need to be detected [1], [2],
[3]. Duplicate detection is the task of identifying data objects
that refer to the same real-world entity [4], [5], [6]. Because
of heterogeneous representations (e.g. different data formats,
languages or units of measurements) as well as missing, erro-
neous and outdated values, such an identification is a tough
challenge [7]. The result of a duplicate detection process is a
partition of the considered set of data objects (the so-called
duplicate clustering) where each partition class (i.e. duplicate
cluster) represents another real-world entity [8].

To evaluate the quality of a newly developed duplicate
detection algorithm or to find the parameter setting which is
the best fit for a given application scenario, we require an
application-specific data set that is labeled with its correspond-
ing solution (the so-called gold standard [8]). Such a pair of data
set and gold standard is called test data set through the rest
of this paper. Figure 1 presents an unclean database relation
(in this case data objects correspond to database tuples) and
its gold standard which in this example is modeled by an
additional attribute containing the cluster-id of each tuple.

According to Christen [6], test data sets can be acquired in
five different ways:

• by reusing the results of a former duplicate detection
process (ideally from the same domain),

• by labeling the objects of a real-life data set (semi-)manu-
ally with the help of domain experts,

• by using one of the few test data sets, such as CDDB or
Cora, which were available in the web1,2,

• by synthesizing an unclean data set from scratch, or
• by polluting a clean (real-life) data set with duplicates,

errors and inhomogeneities.
In times of big data, duplicate detection algorithms have

to deal with large sets of data objects and hence have to be
efficient in terms of runtime and storage requirements [9], [10].
To evaluate such efficiencies, we need test data sets of large
sizes. Manual labeling is an extremely time consuming task
and hence can only be applied to small data sets. Public test
data sets typically result from manual labeling and therefore
are small, too (e.g. the CDDB and Cora data sets each contain
less than ten thousand objects). Moreover, reusing the results
of former duplicate detection processes is usually not an option
because we do not have any test data to evaluate the quality of
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1. http://hpi.de/naumann/projects/repeatability/datasets
2. http://www.cs.utexas.edu/users/ml/riddle/data.html

ID forename surname size sex cluster-id
1 Bill Hlal 176 m 1
2 Meg Lee 171 0 2
3 Jule Smith 174 f 3
4 Megan Lee 171 f 2
5 Paul Ryan 186 m 4
6 Hall Bill 178 m 1
7 Will Hall 5.84 m 1

Fig. 1. Test data set with seven objects and four duplicate clusters.

these results. Finally, existing tools for data synthesization and
data pollution, such as DBGen [7], the Febrl data set generator
[11], GeCo [12], TDGen [13] or ProbGee [14] are either not able
to generate sets with more than one million objects, are limited
to a specific schema (and hence domain), and/or the resultant
data sets are far away from being realistic.

For these reasons, we identified a set of desiderata that
should be met by a test data generation tool with respect to big
data and developed a data pollution framework which meets
these desiderata. This framework consists of three phases. In
the first phase, a homogenous clean input data set is read
and analyzed by using data profiling techniques. Important
characteristics of this data set (e.g. the inferred data type, the
percentage of NULL values and the degree of uniqueness per
attribute) are stored in an attribute-based data profile. In the
second phase, this profile is used to automatically derive a
set of application-specific representation and error schemas.
Finally, based on these schemas, the clean input set is corrupted
with data errors including duplicates. In each of these three
phases, the framework is designed in a way that its work-
load can be distributed on the different nodes of a computer
cluster. To prove its concept, we implemented a prototypical
distributed data pollution tool called DaPo that is based on this
framework and built upon the cluster computing framework
Apache Spark3 [15]. We evaluated this tool with regard to
the individual desiderata where we focused on the scalability
aspect. The experimental results show that this prototype scales
with an increasing number of cluster nodes and hence enables
the generation of large test data sets in an acceptable time on
the condition that a sufficiently large computer cluster is given.

The contributions of this paper are:
• an analysis of desiderata for test data generation tools,
• a survey on existing tools (synthesization and pollution)

for generating test data sets for duplicate detection,
• a novel approach for iterative error injection,
• a novel framework for data pollution with an automatic

preconfiguration of schema-dependent parameters,
• a prototypical data pollution tool based on Apache Spark,
• an experimental evaluation of this prototype.

3. http://spark.apache.org/
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The remainder of the paper is structured as follows: First
we identify a set of desiderata which are (more or less) vital
for an appropriate test data generation tool in Section 2. Then,
we survey existing tools for test data generation in the field
of duplicate detection in Section 3. Thereafter, we introduce
our novel data pollution framework (including the novel error
injection approach) in Section 4. In Section 5, we present DaPo
and discuss several experiments performed with this prototype
in Section 6. Finally, we conclude this paper and give an outlook
on open challenges in Section 7.

2 DESIDERATA

In this section, we define a set of desiderata that should be met
by a useful test data generation tool with respect to big data.

2.1 Efficiency & Scalability
Since we aim to produce test data sets that contain millions
(or even billions) of objects, the primary desiderata is that
the designed tool is able to generate large data sets in an
acceptable runtime. To accomplish this goal, it has to work
efficiently. Moreover, it is useful if the tool scales vertically
and/or horizontally so that an increasing data size can be
treated with the addition of extra hardware resources.

2.2 Schema Independence
It does not make sense to use test data about personal informa-
tion in order to find an appropriate configuration setting for a
duplicate detection process that should work in the domain of
molecules. As a consequence, it is important that the test data
generator is independent from a specific schema, and thus can
be used to produce test data of an arbitrary domain.

2.3 Realistic Data Values & Patterns
The insights that are gained from evaluating a test data set
are only useful if the values and value patterns of this set are
realistic for the considered application scenario. Therefore, each
attribute should only contain values belonging to its domain
(e.g. no name of a person should contain a digit). Important
value patterns include (but are not restricted to):

• integrity constraints such as uniqueness, domain restric-
tions or functional dependencies,

• frequencies of single values, attribute value combinations
and NULL values.

Note that integrity constraints address the error-free state of
the data set and therefore can be violated in the generated test
data set, but such violations should always result from errors
(e.g. a name value ‘t1m’ which results from an OCR-error) or
duplicates (e.g. two books with the same ISBN). In general,
whether or not an integrity constraint should be violated by
the pollution process depends on the assumptions made on the
simulated data sources. For example, if a source is assumed to
be a database whose schema models all these constraints, none
of them should be violated by the polluted data objects. In con-
trast, if a source is assumed to be a simple text file or a database
whose schema is poorly modeled, constraint violations are part
of realistic error patterns (see next desiderata).

2.4 Realistic & Variable Error Patterns
Not only the values and value patterns of the generated data set
need to be realistic, but this condition also holds for the injected
errors and the patterns that emerge between these errors.

Whereas some errors are typical for many domains (e.g.
typos), there are several errors that only emerge in specific do-
mains (e.g. measurement errors). For this reason, the generation

of realistic errors requires a large range of error classes [2], [16],
[17], [18] which should be extendable to new classes easily.

In reality, data is oftentimes copied from one source to
another [19]. Thus, data errors are often spread among sources
belonging to the same network. In addition, errors are often
produced during data collection so that software (e.g. trans-
formation or calculation errors) and hardware bugs (e.g. mea-
surement errors) as well as specific software (e.g. application-
specific drop-down lists), and hardware conditions (e.g. specific
keyboard layouts) of the collection process can affect multiple
data objects in the same way. Moreover, data is often outdated
and because outdated values were correct once, it can be as-
sumed that different objects provide the same outdated values
even if they originate from different sources. In summary, in
realistic test data sets it is not unusual that different (duplicate)
data objects contain the same or similar errors (e.g. the same
typos, measurement errors or outdated values), especially if
these objects were created by the same method (e.g. person,
tool or methodology) and are managed by the same party.

Finally, data representation is typically source-specific (i.e.
all objects of the same source are represented in the same way)
so that heterogeneous representation forms (e.g. different data
formats or units of measurement) produced by the data gen-
eration process should not be completely random, but follow
some meaningful pattern.

2.5 Simple but Adaptable Configuration
The generated test data should fit a specific application sce-
nario. Therefore, it is important that the generation process can
be configured in a flexible way. Nevertheless, users are often
unwilling to spend too much time in configuring a system. In
conclusion, we aim for a data generation tool that requires little
configuration effort, but provides many configuration options.

3 RELATED WORK

In this section, we survey existing tools for relational4 test data
generation that are used in the context of duplicate detection.
The first two are data synthesization tools and the last two are
data pollution tools. The third tool can be used in both ways.

3.1 DBGen
The UIS database generator (DBGen) [7] was developed in
1997 (a second version was published 1999). DBGen starts with
generating synthetic personal data tuples by using look-up
tables and rules, and then pollutes these tuples with duplicates
and errors. DBGen has a rudimentary GUI, but can also be used
via command line.

3.1.1 Schema & Flexibility
The schema of the generated data set is hard-coded and
contains twelve attributes (including a cluster-id for the gold
standard) which describe various personal characteristics like
names, dates of birth or addresses. Although the source code
(written in C) is open, an adaptation to another schema would
result in considerable work and would require competent
knowledge on the functionality of the generator.

3.1.2 Duplicate Generation
The number of injected duplicates is specified as a percentage of
the number of synthetically generated tuples (each a duplicate
cluster). Moreover, a cluster size distribution (uniform, Poisson
or Pareto) can be selected by the user.

4. Tools for generating test data sets of non-relational data formats
such as the Dirty XML Data Generator (http://hpi.de/naumann/
projects/completed-projects/dirtyxml.html) are not included.
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3.1.3 Error Injection
The error injection mechanism used in DBGen is strongly
adjusted to the considered person schema. It is hard-coded
which error classes can be applied to which attributes. The
provided error classes include typos, transpositions of fore- and
surnames, substitutions of forenames with initials, deletions
of middle names, substitutions of surnames based on look-
up tables, substitutions of street name endings (e.g. ‘street’,
‘avenue’ or ‘st’), or substitutions of whole addresses.

3.1.4 Limitations, Efficiency & Scalability
DBGen is really fast and requires little memory. Its runtime
scales linearly with the number of generated tuples so that even
large data sets can be created in short time. However, large
generated data sets are far apart from being realistic because
the provided look-up tables are small (ca. 2,500 names and ca.
2,100 ZIP-City-State triples) and the same look-up table is used
for first-, last- and street names which results in a low data
diversity. Moreover, DBGen does not consider dependencies
between the individual attributes (except the ones between
ZIP, City and State) and does not use realistic distributions
of attribute values. Although the user can increase diversity
by incorporating more and larger look-up tables, a general
observation remains: The more tuples are generated, the less
realistic becomes the generated data set.

DBGen is neither multi-threaded nor distributed and hence
always runs on a single core. At least, even with larger look-
up tables (500 times greater than the provided ones) only the
constant effort of loading these tables into memory increases so
that DBGen is also very fast in such cases. By using the larger
look-up tables, the generation of a data set with one million
tuples took less than five seconds.

3.2 Febrl Data Set Generator
The Febrl data set generator (short FebrlDG) [11], [18] was
developed by Peter Christen and Agus Pudjijono between 2005
(Version 1) and 2008 (Version 2) and is part of the duplicate
detection framework Febrl (Freely extensible biomedical record
linkage) of the Australian National University. This tool follows
a very similar approach as DBGen and first generates synthetic
data tuples modeling personal information based on look-up
tables as well as rules, and then corrupts these tuples with
errors, heterogeneous formattings and duplicates. The gener-
ated tuples, however, are much more realistic than the ones
produced by DBGen because more and larger look-up tables
are used. Furthermore, the generation process takes relative
frequencies of possible attribute values as well as dependencies
between specific attributes into account. This tool consists of a
source-open python script and can be used via command line.

3.2.1 Schema & Flexibility
The schema of the generated database relation contains 18
attributes (including information on the gold standard) and is
hard-coded in the aforementioned python script. Since python
is a script language and python code does not need to be
compiled, a modification of the schema is simpler than in
DBGen, but detailed knowledge about the source code is still
necessary. Thus, depending on the amount of intended schema
modifications, the adaptation effort can still be large.

3.2.2 Duplicate Generation
The user specifies the number of original tuples and duplicates.
As in DBGen, the user can choose between a uniform, a Poisson
and a Pareto distribution to determine the individual cluster
sizes. In addition, a maximal cluster size can be defined.

3.2.3 Error Injection

FebrlDG supports a variety of error classes such as typograph-
ical, phonetical, OCR and misspelling errors, insertions and
deletions of blanks, deletions and overwritings of attribute
values, transpositions of string tokens within the same attribute
value and transpositions of values between different tuples
within the same attribute [18]. The python script contains a
probability for each combination of attribute and error class
which can be modified manually (see discussion above).

3.2.4 Limitations, Efficiency & Scalability

Principally, FebrlDG can be used to generate (almost) large data
sets in an acceptable runtime. Due to the sophisticated and large
look-up tables, these sets are much more realistic than these
generated with DBGen. Unfortunately, this tool is neither multi-
threaded nor distributed. Thus, it runs on a single processor
core and the maximal size of the generated data set is limited
by the amount of available main memory. In our experiments,
runtime increased linear with the number of generated tuples
and generating a test data set with one million tuples took 253
seconds. On a machine with 8 GB RAM, the maximal test data
set size was three million tuples.

3.3 GeCo

GeCo (Data Generator and Corruptor) [12], [20] was developed
2012 at the Australian National University as a successor of
FebrlDG. As its predecessor, GeCo generates synthetic data
tuples and corrupts them with errors and duplicates. However,
there are several differences between both tools. Instead of a
single python script, GeCo consists of multiple python modules
which can be integrated into an own project. Moreover, GeCo
has a web interface5 which can be used to generate small data
sets with up to 9,999 tuples [20]. In contrast to its predecessor,
GeCo cannot be controlled via command line. In GeCo, the
generation of a test data set is divided into two step. In the
first step, a duplicate-free set of synthetic tuples is generated.
In the second step, errors and duplicates are injected into this
set. Actually, this corresponds to the approach used in DBGen
and FebrlDG, but because the process is divided into two steps
and the second step can be executed stand-alone, the user is
enabled to import an own (maybe real-life) data set as input
to the corruption step. Finally, GeCo is able to handle different
Unicode character sets and hence is able to process non-latin
characters.

3.3.1 Schema & Flexibility

Whereas DBGen and FebrlDG are based on a hard-coded
schema designed for storing personal data, GeCo enables the
user to define an own schema (nevertheless, GeCo is especially
useful for personal data). If only a small data set is required,
the easy to use web interface fits very well. For generating large
data sets, however, the user needs to code a python program
which uses the provided GeCo modules to define a generation
and/or corruption process.

3.3.2 Duplicate Generation

The duplicate generation process corresponds to this of
FebrlDG (see Section 3.2).

5. ANU Online Personal Data Generator and Corruptor: https://
dmm.anu.edu.au/geco/
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3.3.3 Error Injection
In GeCo, the process of error injection can be configured at
a very detailed level. The user is able to set the number of
errors per tuple, the number of errors per attribute value and
the probability that a specific error is injected into the values of
a specific attribute. In addition, a list of possible error classes
along with respective probabilities can be defined for each
attribute. The configuration process is time-consuming and has
to be done via the web interface or by using python dictionaries
and lists. The provided error classes essentially correspond to
those that are provided by FebrlDG.

3.3.4 Limitations, Efficiency & Scalability
GeCo is able to generate test data sets based on a given input
set, has many features, can be configured in various ways and
is well documented. As its predecessor, GeCo is neither multi-
threaded nor distributed and the maximal size of the generated
test data set is limited by the amount of available main memory.
The runtime of GeCo increases almost linear with the number
of generated tuples, but is generally very slow. Thus, GeCo is
only suitable for a generation of large data sets if long runtimes
from several hours up to multiple days are acceptable for the
user. In our experiments, GeCo needed 13.5 hours to corrupt
a test data set with one million tuples (i.e. processing only
included the corruption step).

3.4 TDGen
TDGen was developed by the German Record Linkage Center
at the University of Duisburg-Essen in 2012 [13]. It is conceptu-
ally based on FebrlDG, but is restricted to the injection of errors
into a given data set and hence cannot generate duplicates
by its own. TDGen is implemented as an extension of the
analytics java platform KNIME6 and provides a predefined
error injection workflow. By default, TDGen is used via the
KNIME GUI, but (as every KNIME workflow) it can also be
executed via command line.

3.4.1 Schema & Flexibility
Principally, TDGen is schema-independent because it can pro-
cess any data set which is provided in form of a CSV-file.
In practice, however, it turned out that the use of custom
data sets can require considerably adaptations of the TDGen
workflow, due to issues regarding data types and NULL values.
Otherwise, TDGen can produce errors which lead to an abort
of the whole process.

3.4.2 Duplicate Generation
An explicit duplicate generation is not provided by TDGen.
Therefore, generating a test data set containing duplicates and
a gold standard, requires a preparation of the input data set by
another tool which inserts exact duplicates whose values are
later polluted by TDGen.

3.4.3 Error Injection
The main reason for developing TDGen was to get a more
flexible control of the degree and way data is polluted than
it is provided by FebrlDG. In TDGen, the user can adapt
the predefined TDGen workflow to her own needs or can
create an all-new one. Within the workflow, several parameters
can be adjusted. The error injection process can be controlled
separately for rows, columns and fields by defining maximal
numbers of errors and error probabilities. In overall, the error

6. https://www.knime.org/

injection process can be controlled very precisely, but despite of
a GUI its configuration is not very user-friendly.

TDGen provides a large number of error classes which for
the most part are adopted from FebrlDG, but also includes
some special classes for string values like ‘keep the longest
token’ and some classes which are tailormade for specific data
types such as dates or ZIP codes.

3.4.4 Limitations, Efficiency & Scalability
TDGen partly uses multiple processor cores and principally
has a satisfactory runtime. However, the size of the processed
data set is limited by the amount of available heap space. Since
the error injection process is extremely memory-intensive, this
upper limit is exceeded relatively fast.

In our experiments, TDGen was not able to process more
than ten thousand tuples if we used the standard configuration.
By optimizing the TDGen workflow, we were able to increase
this number to one hundred thousand. In this case, TDGen
required 4.5 minutes. Principally, TDGen scales only vertically.
However, it seems natural to split a large data set into several
small data sets and to pollute each of these sets on a separate
cluster node. One approach to do this, would possibly the
(commercial) KNIME plugin ‘KNIME Cluster Execution’ which
can be executed on a cluster by using the Sun Grid Engine.

3.5 ProbGee

ProbGee [14] is a tool for deriving (probabilistic) test data sets
from an existing data set which was developed at the Univer-
sity of Hamburg in 2012. This tool was originally designed
to generate probabilistic test data. However, it can also be
used to generate regular (i.e. certain) test data sets. ProbGee
was implemented on the basis of the java-based Rich Client
Platform of Eclipse and thus provides an Eclipse-similar GUI.

3.5.1 Schema & Flexibility
ProbGee provides some preconfigured scripts for parsing the
Java Movie Database7 which contains movie data from IMDb.
In principle, however, every relational database which is pro-
vided by a CSV-file or which can be accessed via JDBC can be
used as generation input. In addition, ProbGee provides a num-
ber of parameters that focus on the generation of probabilistic
data and hence are not considered in this discussion.

3.5.2 Duplicate Generation
In ProbGee, the user is able to specify how many duplicate
clusters of which size should be generated. To prevent that
each value has to be inserted into the input mask separately, the
cluster size distribution can be automatically filled by specify-
ing some parameters and manually modified afterwards. These
parameters are the number of tuples of the to be generated data
set, the minimal and maximal cluster size as well as the used
distribution (uniform, normal, exponential, etc.).

3.5.3 Error Injection
The error injection process of ProbGee is particularly sophis-
ticated and highly configurable. To control the degree of pol-
lution, the user can specify a similarity measure and an indi-
vidual weight for each attribute. In addition, the user defines
a so-called ‘duplicate similarity’ which corresponds to a target
value of the weighted average similarity between the corrupted
tuples of the same duplicate cluster. Furthermore, the user can
specify a probability for each combination of error class and

7. http://www.jmdb.de/
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TABLE 1
Characteristics of Existing Data Generation Tools

year of config- conf. effort schema/domain degree of horizontal runtime runtime runtime
Tool release interfaces urability (minimal) independence pollution scalability (100k) (1mio) (10mio)

DBGen 1997 GUI/CLI low low 7 7 7 5 s 7 s 25 s
FebrlDG 2008 CLI low low 7 7 7 2 min 4.2 min 7
GeCo 2012 Lib/Web-UI high high 3 7 7 80 min 13.4 h 7
TDGen 2012 GUI/(CLI) high medium 3 7 7 4.5 min 7 7
ProbGee 2012 GUI high medium 3 3 7 5.9 h 7 7

DaPo 2015 CLI high low 3 3 3 31 s1 2.1 min1 26 min1

17 s1* 56 s1* 14 min1*

24 s2 46 s2 7.3 min2

15 s2* 27 s2* 3.4 min2*

1 computed by using a single desktop computer (local mode).
2 computed by using a computer cluster with one master and eight worker nodes (distributed mode).
* computed by using predefined representation/error schemas (no automatic analysis/preconfiguration phases).

attribute. For this purpose, however, the user has to manipulate
the XML-files of the automatically created generation scripts.

The duplicate generation process is executed based on the
previously set configuration and consists of two steps. In the
first step, for each original tuple, a tree of tuple-variations (a
so-called error provenance tree) is constructed by injecting errors
randomly. In the second step, a subset of the tree’s variations is
selected by considering their duplicate similarity and the user-
defined target value. Finally, the selected tuple variations form
a duplicate cluster of the generated test data set.

In ProbGee, a variety of error classes is implemented. Many
of these error classes are especially suitable for the provided
JMDB data, but can be applied to any string data in gen-
eral. Moreover, the architecture of ProbGee allows the user
to implement and add new error classes to this open-source
software. The set of provided error classes includes typos based
on confusion matrices, semantic errors (e.g. synonyms) based
on confusion sets, corruptions of year values, transpositions of
values within the same tuple and insertions of NULL values.

3.5.4 Limitations, Efficiency & Scalability
ProbGee can derive (probabilistic) test data sets from any given
data set, has many features and can be configured in various
ways. Nevertheless, ProbGee is neither multi-threaded nor
distributed. In fact, its runtime increases (almost) linear with
the number of generated tuples, but is very poor in general.
The maximal size of the generated test data set is limited by the
amount of available heap space.

In our experiments, ProbGee took around six hours to
generate a test data set with hundred thousand tuples. A data
set with one million tuples could not be generated because the
available 8 GB main memory was too small. As a consequence,
for large data sets, ProbGee is principally not suitable.

3.6 Comparison & Conclusion
Some of the main characteristics of the discussed tools are
summarized in Table 1 (note the characteristics of DaPo are
separatelty discussed in Section 6.5). The usage of DBGen and
FebrlDG is per se limited to a generation of personal data. To
evaluate the runtime behavior of GeCo and TDGen, we used
the same MusicBrainz data sets as for DaPo (see Section 6.1).
In the case of ProbGee, we used the default movie database
which consists of four regular attributes. Each test run was
performed on the master node of our Spark cluster using 7GB
main memory (see Section 6.2). Moreover, we configured all
tools in a way that they produce similar degrees of pollution.

As one can see, among the presented tools only DBGen,
FebrlDG and GeCo were able to generate test data sets with

more than one million objects. DBGen, however, is extremely
inflexible because it is limited to a hard-coded schema and
the error injection process can be configured only to a small
extent. Thus, the resultant data sets are somewhat unrealistic
and cannot be adjusted to the considered application scenario.
At least, the efficiency of DBGen is so outstanding that 10
million objects can be generated in a few seconds. FebrlDG
suffers from similar flexibility problems than DBGen, but had
much longer runtimes and could not produce a data set with 10
million objects. In contrast, GeCo has many features, is schema-
independent and can be configured in various ways. However,
compared to DBGen, the efficiency of GeCo is extremely weak
because it already took 13.4 hours to process one million objects.

In summary, none of these tools meets all the desiderata we
have listed in Section 2. Interestingly, only one of them uses
more than one processor core, none of them is distributed, and
almost all of them exceed their memory limits very fast.

Because of the outlined shortcomings, such as schema de-
pendency or inefficiency (i.e. long runtimes), adapting one of
these tools to a parallel and distributed execution was not an
option and we decided to design a new one instead.

4 DATA POLLUTION FRAMEWORK

In this section, we present our data pollution framework by
describing its instruments and workflow.

4.1 Instruments
The goal of our project was to design a test data set generator
which satisfies all the desiderata we have listed in Section 2. To
accomplish this, we used a number of instruments.

4.1.1 Parallelization & Distribution
A parallel and distributed execution increases efficiency.
Moreover, it enables vertical and horizontal scalability because
parallelization on single machines can be used to exploit all
the cores of a multi-core processor (vertical scalability) and
a distribution of workload across multiple machines enables
exploiting the collective resources of a computer cluster
(horizontal scalability). Due to the latter, hardware resources
like CPU power, main and secondary memory can theoretically
be up- (scale-out) or downgraded (scale-in) at pleasure.

4.1.2 Data Profiling
Data profiling [21] describes the automated analyzing of data
sets. In our framework, we use attribute-based profiling for
identifying several (statistical) characteristics of individual
attributes and attribute combinations. Together with the
schema information provided by the data source, these
characteristics are stored in a data profile.
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1 ErrorSchema(root=RowErrorSequence((
2 ToLower(p=0.14),
3 TransposeFieldsInRow(p=0.1),
4 FieldErrorSchema(fields=Array(
5 null,
6 OneByScore(p=0.14,(Typo,Abbreviate,OCR,Phonetic)),
7 OneByScore(p=0.14,(Typo,Abbreviate,OCR,Phonetic))
8 ))
9 ))

10 ObjectCondition(ID<=1000)
11 )

Fig. 2. Example of an error schema.

1 RepresentationSchema(root=RowTransFSequence(
2 ToLower(All),
3 ToDollar(Currency),
4 ToFormat(Date,’YYYY-MM-DD’),
5 Language(English-US))
6 ObjectCondition(ID mod 5 = 0)
7 )

Fig. 3. Example of a representation schema.

4.1.3 Enriched Data Schema
Depending on the type of the considered data source, a data
schema can contain different amounts of information. For
example, whereas CSV-files only provide the number and
maybe the names of attributes, the schema of a relational
database also contains information on data types (e.g.
VARCHAR, INT or user-defined domains) and constraints (e.g.
UNIQUE, NOT NULL or CHECK clauses). In this framework, an
enriched data schema is used which does not only include the
schema information of the input data source, but also includes
other kinds of information being relevant for the later executed
processing steps. This approach enables schema independence
and sets a basis for generating realistic error patterns as well as
realizing a system which can be configured in a flexible way.

4.1.4 Automated Preconfiguration
To unburden the user from spending too much configuration
effort even though a large number of parameters is given,
a preconfiguration of the actual data pollution process is
automatically derived from the data profile by using reasoning
techniques such as rules or machine learned classifiers.

4.1.5 Error Model
To generate realistic test data, the injected errors should fit to
the given input data. For that reason, we use an error model
containing the following concepts:

• Error Classes: Each error class models a specific kind of er-
ror and can be categorized by its scope. Row-errors concern
single data objects, column-errors concern single attributes,
and field-errors concern single attribute values. Since most
field-errors are domain-specific, this class can be further
divided into several subclasses. For instance, we need other
types of errors for numerical values than for words or
word sequences. Error classes for different domains have
been extensively investigated in the database community
[2], [16], [17], [18] and can be reused in our framework.
Examples of field-errors are typos, OCR-errors (e.g. ‘1’ ↔
‘l’), token errors (e.g. ‘list of’↔ ‘list of of’), phonetic errors
(e.g. ‘Clyne’↔ ‘Klein’), numerical errors (e.g. 120 ↔ 119),
or formatting errors (e.g. ‘Jill A. Doe’ ↔ ‘Doe, Jill Ann’).
Examples of row-errors are:
– transposing/substituting/shifting/merging the values

from different attributes,
– applying the same field-error to all values of one object

(e.g. the same OCR-error or the same formatting error).

Examples of column-errors are:
– transposing/substituting/shifting/merging the values

from different objects,
– applying the same field-error to all values of one at-

tribute (e.g. the same calculation error).
As we will discuss in Section 5.2.2, the distinction of error
classes by scope is helpful for a parallel and distributed
execution of the pollution process on possibly partitioned
data. The distinction of field-errors by domain enables
a flexible handling of different data types and hence
supports the generation of realistic errors.

• Error Schemas: An error schema models a complex
procedure of error injection and is built up by combining
and nesting different error classes with the help of
meta-errors (e.g. sequences or choices). By assigning
probabilities and weights to the individual error-classes
(including meta-errors), parts of the procedure can be
executed randomly. As a result, error schemas allow a
flexible configuration of the pollution process. An example
of an error schema is presented in Figure 2 where a
sequence of row-errors is applied to all objects having an
ID lower than or equal to 1000.

• Representation Schemas: To enable an injection of het-
erogeneity that is caused by integrating objects from data
sources designed, filled and managed autonomously, we
introduce the concept of representation schemas. Each
representation schema defines a source-specific way to
represent data objects. Among others, such representations
can differ in their:
– sets of attributes (e.g. the two attributes ‘forename’ and

‘surname’ vs. a single attribute ‘name’),
– languages (e.g. english (US), english (GB) or french),
– data formats (e.g. ‘24.01.16’ vs. ‘2016-01-24’),
– data encodings (e.g. {0, 1} vs. {f,m} to model gender

information),
– levels of abstraction (e.g. ‘New York City’ vs. ‘Manhat-

tan’ to model residence information),
– units of measurements (e.g. inch vs. cm or $ vs. e).
Note, whereas some of these aspects are source-specific
(e.g. language), some of them only concern particular
attributes of this source (e.g. units of measurements).
In contrast to error schemas, a representation schema
does not contain probabilities and weights, but is a
deterministic sequence of transformation processes. An
example of a representation schema is presented in
Figure 3 where the values of every object whose ID
modulo 5 is 0 are transformed into lower case, its date
values are transformed into the ‘YYYY-MM-DD’ format,
its currency values are transformed into dollars and its
language is changed to American English.

• Object Groups: Another concept that we introduce to
enable a configuration of realistic errors is called object
groups. The idea of such groups is to specify objects
having an error schema in common. By doing so, we
generate structural, syntactic and semantic heterogeneity
between the objects of different groups in order to simulate
different data models (e.g. CSV-file or relational table with
predefined data types and CHECK constraints), input
conditions (e.g. form or API), acquisition contexts (e.g.
weather conditions or sensor quality) or acquisition times.
An object group is defined by adding a boolean condition
to an error schema (e.g. all objects with ID ≤ 1000 or
CITY=‘Hamburg’). Because the individual conditions do
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Fig. 4. Workflow of the presented data pollution framework.

not have to be exclusive, it is possible that an object
belongs to more than one group. This approach can be
used to reduce the number of required error schemas if
different object groups have error patterns in common.

• Source Groups: Source groups are specific object groups
that partition the set of data objects into multiple disjoint
data sources. They are defined by adding boolean
conditions to the representation schemas. Since every data
object has a unique form of representation, the conditions
of the representation schemas need to be disjoint (i.e. every
object belongs to at most one source group). However,
the disjunction of these conditions does not need to be
a tautology, because all objects that are not covered by
any of the defined representation schemas belong to an
indirectly modeled source group whose representation
form corresponds to the one of the input set.

• Error Inheritance: As described in Section 2, in real-life
data, it is not uncommon that duplicate objects contain the
same (or similar) errors even if they originate from dif-
ferent data sources (e.g. because data objects were copied
across sources or values which were correct once are
outdated now). In this framework, such error correlations
can be injected into the polluted data objects by using the
concept of error inheritance. The underlying idea of this
concept is to inherit errors from a data object to one or
more of its duplicate objects. The integration of this idea
into the framework is described in Section 4.2.3.

4.2 Workflow
The input to our data pollution framework is a homogenous
clean (and hence duplicate-free) data set. Its output is the
generated test data set. The workflow of this framework is
presented in Figure 4 and consists of three main phases:

• In the first phase, the homogenous and clean input set
is analyzed by means of attribute-based data profiling.
The analysis results are then stored in a data profile along
with the schema information provided by the input source.

• To be able to execute the actual data pollution process,
several parameters need to be configured in advance.
This is accomplished in two steps. First, an enriched data
schema is derived from the data profile and then sev-
eral representation and error schemas are derived from
this data schema. Each of these automatically generated
schemas has to be regarded as a preconfiguration which
can be reviewed and (if needed) manually revised by the
user afterwards.

• In the last phase, the actual data pollution process is
executed based on the configurations computed in the
previous phase. This execution phase primarily consists
of the injections of duplicates, inhomogeneities and errors
into the input data set.

We consider each of these three phases in more detail in the
rest of this section.

4.2.1 Analysis of the Input Data Set

In this phase, the input data set is imported and analyzed
by running several data profiling algorithms. First of all, the
schema information provided by the input source is imported
and all useful aspects are extracted. Thereafter, for each at-
tribute a number of (statistical) information is computed and
stored in a data profile. Among others, this profile contains the
following information per attribute:

• Distribution of Basis Data Types: Often the input file
does not provide any information on data types or the
provided types are very unspecific (e.g. ZIP codes are not
typed as five-digit numbers, but integers or strings). For
that reason, the profiling algorithm counts how often the
individual basis data types fit to a value of the considered
attribute. The domain of basis data types depends on
the implementation, but should include at least the four
types string, double, integer and boolean. In addition, the
number of NULL values is stored.

• Original Basis Data Type: The data type provided by the
input file (if available).

• Diversity of Attribute Values: The profiling algorithm
counts the number of distinct values and computes their
share in the total number of attribute values (i.e. the
distinct values ratio). Moreover, it counts the number of
occurrences for each of these distinct values.

• Type-Specific Statistics: Depending on the basis data type,
additional information on the attribute’s values can be
useful. For example, in the case of numerical attributes,
it make sense to store statistical characteristics like the
minimum, maximum, average or variance of all values. In
the case of string attributes, it is helpful to compute such
statistical characteristics about
– the number of tokens (e.g. words) per value,
– the token lengths, or
– the number of occurrences of individual letters or tokens

within all values.
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To enable an identification of integrity constraints such as
functional dependencies, the profiling algorithm also evaluates
statistics concerning more than one attribute (and stores them
in the data profile).

4.2.2 Semiautomatic Configuration

The information gained from the analysis of the input set
can be used to configure the schema-dependent parameters of
the pollution process in a meaningful way. For this purpose,
we automatically derive preconfigurations of these parameters
based on the given data profile.

This phase consists of two steps. Initially, based on the data
profile an enriched data schema is derived. Among others, this
schema contains the following aspects:

• The number and names of all attributes.

• A basis data type per attribute which is either the original
one (if available) or one of the types provided by the basis
type distribution.

• An abstract data type per attribute. Abstract data types are
more specific concepts like word, word sequence or text in
order to distinguish between different string types, but can
also correspond to semantic concepts like forename, currency
or ISBN. Moreover, the given unit of measurement, data
format, level of abstraction etc. are derived for this
attribute (if existing) and stored in the data schema. Thus,
making a good job in selecting this abstract data type
is very important not only because of an appropriate
description of the actual representation form, but it also
enables an association of alternative representation forms
to this attribute and thus accomplishes a more realistic
data pollution process.

• A (dis)similarity/distance measure per attribute which is
able to compare two values of the attribute’s data type in
a (semantically) meaningful way.

• Integrity constraints such as UNIQUE, NOT NULL or func-
tional dependencies.

Recall, the derived data schema only serves as a proposal which
can be reviewed and revised by the user at the end of this step.

In the second step, sets of representation and error schemas
are derived from the data schema. This reasoning is accom-
plished by algorithms that determine which attributes are as-
sociated with which alternative representation forms and error
classes because not every representation form and error class is
suitable for each attribute. As in the case of the data schema,
the resultant representation and error schemas are considered
as proposals and can be reviewed as well as revised by the user
at the end of this step.

Before the actual pollution process can be started, the
schema-independent parameters need to be configured, too. Be-
cause the settings of these parameters depend on the intended
use of the generated data set, they cannot be automatically de-
rived from the input data, but need to be set by the user herself.
The most important schema-independent parameters are:

• The duplicate distribution defines how many duplicate
clusters of which size have to be generated.

• The degree of pollution defines to which extent the objects
of the test data set have to be polluted. In our prototype
DaPo (see Section 5), we model it by the inverse of
the average similarity8 between all objects of the same

8. The similarity between two objects is defined as the weighted
average Jaro-Winkler similarity between their attribute values.

duplicate cluster9 and hence configure it by specifying a
target similarity. Alternatively, a fixed number of iterations
can be defined instead of a desired degree of pollution.

• Optionally, the number of simulated sources can be explic-
itly set by the user.

Since some of these parameters (e.g. number of sources and
degree of pollution) can be helpful to reason appropriate repre-
sentation and error schemas, they can also be used as input to
the second step of the semiautomatic configuration phase.

4.2.3 Execution of the Pollution Process
In this main phase, the data pollution process and thus the
actual test data generation is executed. This execution is per-
formed in four steps:

• Duplicate Injection: Following the given configuration of
the duplicate distribution parameter, for each duplicate
cluster C one of the input objects is selected randomly and
duplicated |C| − 1 times where |C| represents the cluster’s
size. Thereafter, the generated duplicates are added to the
input set and we store the gold standard by assigning a
(duplicate) cluster-id to each object (see also Figure 1).
Finally, to distribute the newly inserted duplicates across
the whole data set, this set is shuffled, but the order of the
original data objects is maintained.

• Heterogeneity Injection: After duplicates are injected,
every data object is transformed according to the
representation schema of its source group. These transfor-
mations include changes in languages, data formats,
encodings and units of measurements (see Section 4.1.5).

• Error Injection: After the source-specific transformations
have been completed, the transformed data objects are pol-
luted by injecting errors. For this purpose, the previously
defined error schemas are iteratively applied to the data
set until the desired degree of pollution is reached. To val-
idate the stop condition, the current degree of pollution is
computed at the beginning of each iteration and compared
with the target value specified in the configuration.
To accomplish the concept of error inheritance, at the
end of each iteration some objects are overwritten
with other objects of the same duplicate clusters at
random. To control whether and how often such an
overwriting is applied, a probability can be defined in
each error schema. This probability corresponds to an
initial setting which holds for the first iteration and then
decreases automatically before each of the following
iterations. Of course, the representation of an overwritten
object needs to be transformed if its values are copied
from an object belonging to another source group. The
corresponding transformation process can be derived from
the representation schemas of both objects.

Example 1: To illustrate the pollution process, we consider
the example depicted in Figure 5. At the beginning (top left),
a clean data set with five objects (each a single tuple) is given
as input. In the first step, three duplicates are injected into this
data set by selecting two of the original objects (i.e. 2 and 4) at
random (note that the cluster-id is stored in attribute ‘C’). After
injection, all eight objects are shuffled, but the order between
the original five objects is maintained (i.e. only the positions of
the three injected objects change). In the next step, every object

9. The (average) similarity between two non-duplicates is primarily
determined by the nature of the given input set and is only marginally
affected by the pollution process.
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ID forename surname size sex
1 Jane Doe 167 f
2 Bill Hall 178 m
3 Jule Smith 174 f
4 Meg Lee 171 f
5 Paul Ryan 182 m

ID forename surname size sex C
1 Jane Doe 167 f 1
2 Bill Hall 178 m 2
- Bill Hall 178 m 2
- Bill Hall 178 m 2
3 Jule Smith 174 f 3
4 Meg Lee 171 f 4
- Meg Lee 171 f 4
5 Paul Ryan 182 m 5

inject
dupl.

ID forename surname size sex C
1 Jane Doe 167 f 1
2 Meg Lee 171 f 4
3 Bill Hall 178 m 2
4 Jule Smith 174 f 3
5 Meg Lee 171 f 4
6 Bill Hall 178 m 2
7 Paul Ryan 182 m 5
8 Bill Hall 178 m 2

shufflej
dupl.

ID forename surname size sex C
1 Jane Doe NULL 5.48 f 1
2 Meg Lee NULL 5.61 f 4
3 Bill Hall NULL 5.84 m 2
4 Jule Smith 174 0 3
5 Meg Lee 171 0 4
6 Bill Hall 178 1 2
7 Paul Ryan 182 1 5
8 Bill Hall 178 1 2

inject heterogeneity

ID forename surname size sex C
1 Jane Doe NULL 5.48 ff 1
2 Meg Lee NULL 5.61 f 4
3 Bill Hull NULL 5.84 m 2
4 Jule Smith 147 0 3
5 Meg Li 171 0 4
6 William Hall 178 1 2
7 Paul Ryan 1.82 1 5
8 Bil Hall 178 1 2

inject
errors

(1.iter.)

ID forename surname size sex C
1 Jane Doe NULL 5.84 ff 1
2 M. Lee NULL 5.61 f 4
3 Bill Hull NULL 5.84 m 2
4 Smith Jule 1.47 0 3
5 Meg Li 173 0 4
6 Willima Hall 178 1 2
7 Palu Ryan 1.82 1 5
8 William Hall 178 0 2

inject
errors

(2.iter.)

over-
write

. . .

Fig. 5. Example of the data pollution process with three injected duplicates (red-colored tuples) and two source groups (mint-/orange-colored tuples).

is transformed according to the representation schema of its
source group. In this example, we assume two of such groups
which are indicated by the mint- and orange-colored tuples. In
the case of the first group, fore- and surnames are stored in
a single attribute. Thus, for each of the first three objects, these
two values are merged and stored as forename whereas the sur-
name is set to NULL. Moreover, the size values are measured
in feet instead of cm and hence were transformed accordingly.
In the case of the second group, the gender information are
encoded by the two values ‘0’ (female) and ‘1’ (male). The
values of the remaining attributes remain unchanged. After
these transformations have been completed, the first iteration
of the error injection process starts and injects seven errors
(red-colored values) into the objects of both groups. At the
end of this iteration, the values of object 8 are overwritten by
the values of object 6 (error inheritance). Thereafter, the second
iteration starts and injects eight errors including a transposition
of the fore- and surname of object 4. Then, the pollution process
continues until the stop condition is satisfied.

5 SCALABLE DATA POLLUTION WITH DAPO

In this section, we present our prototypical data pollution tool
called DaPo which is based on the framework introduced in the
previous section. In the development of DaPo, we focused on
the main part (i.e. the pollution process) so far. For that reason,
its current implementation contains only some rudimentary ap-
proaches for reasoning data, representation and error schemas
from the data profile computed in the analysis phase.

As underlying platform for DaPo, we chose the cluster com-
puting framework Apache Spark which is especially suitable
for two reasons:

• Because it is a cluster computing framework, paralleliza-
tion and distribution are two of the main aspects which
are enabled and optimized by Spark.

• One of the main reasons for developing Spark is the
analysis of large data sets [15]. Thus, it is especially useful
for an efficient data profiling because it provides several
operations for distributed statistics computation.

Besides these two aspects, Spark has several other benefits.
First, the Spark API abstracts from parallelization and distri-
bution issues so that developing and deploying a potentially
distributed application is very comfortable for the user. Second,

Spark does not only offer the option of deploying an application
on a computer cluster, but also on a standard desktop computer
which enables a user spectrum ranging from big to small
companies even including private persons. Finally, because of
its in-memory approach, Spark is particularly well suited for
iterative processes such as the one injecting errors in DaPo.

Spark provides APIs for the programming languages Scala,
Java, Python and R. Since Spark itself has been (and still is)
implemented in Scala, this API is the most advanced one. For
this reason, DaPo is implemented in Scala, too.

5.1 Apache Spark

Before we begin to describe in which way data pollution is par-
allelized and distributed by DaPo in Section 5.2, we introduce
some background information on Apache Spark [15], [22].

Apache Spark is a cluster computing framework for large-
scale data processing which focuses on efficiency and fault tol-
erance in the execution of iterative and interactive (data mining)
algorithms. To enable these two properties, the high performant
in-memory data structure Resilient Distributed Datasets (short
RDDs) has been developed [22]. A large range of parallel high-
level operations on this data structure as well as constructs like
shared variables can be used via several APIs and ensure a
comfortable programming of distributed applications.

Spark is based on a master-slave architecture where a driver
process (typically running on the master node) controls the
program flow and distributes tasks to several executor pro-
cesses (each running on a worker node). An important aspect
in distributing tasks is to consider data locality and hence to
reduce the number of data exchanges between different worker
nodes to a minimum (‘ship code not data’). A worker node has
two jobs. First, it executes the tasks which have been assigned
by the driver (i.e. the executor process). Second, it provides its
main memory as in-memory storage for RDDs. If a worker node
fails, the application runs on the remaining worker nodes. A
Spark application can be executed in local mode (single desktop
computer) or distributed mode (computer cluster).

An RDD is a partitioned parallel collection of objects which
can be distributed among several cluster nodes. In principle,
it corresponds to an abstraction of distributed main memory
which enables an efficient reusage of interim results. Logically,
it is a read-only data structure which can be created by parsing
data from secondary memory, parallelizing a non-distributed



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2637378, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, SPECIAL ISSUE ON DATA QUALITY IN BIG DATA 10

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Fig. 6. Examples of narrow- and wide-dependencies [22].

collection, or applying a transformation (e.g. map, filter or
join) to existing RDDs.

Transformations cause dependencies between individual
RDDs. These dependencies can be categorized into two classes.
In the case of narrow-dependencies, for each input partition
there is only one output partition that depends on it. In contrast,
in the case of wide-dependencies, several output partitions
can depend on the same input partition. Some transforma-
tions, such as map, filter or union, always cause narrow
dependencies, but some transformations, such as join, can
also cause wide-dependencies or even always implicate wide-
dependencies (e.g. groupByKey). Examples of such depen-
dencies are graphically illustrated in Figure 6 where RDDs
are presented by frames and partitions are presented by blue-
colored boxes. Whereas narrow-dependencies enable a pipelin-
ing of transformations and thus can considerably increase the
degree of parallelization, wide-dependencies end in so-called
shufflings where objects of one input partition need to be dis-
tributed among several output partitions. Since such shufflings
often result in data transfers between different worker nodes,
wide-dependencies usually imply a significant synchronization
overhead which include serialization and several I/O accesses
(disk or network). Besides transformations, Spark provides so-
called actions which do not create new RDDs, but store their
results on secondary storage (e.g. in form of txt-files) or return
them directly to the user. Examples of such actions are reduce,
saveAsTextFile or count.

The creation of RDDs is lazy which means that the objects
of an RRD do not reside in physical memory until they are
required as input to a subsequent processing step. This lazy
evaluation is accomplished by maintaining a directed acyclic
lineage graph modeling the dependencies between the indi-
vidual RDDs and has two main reasons. First, it reduces run-
time (no unnecessary computations) and storage requirements.
Second, it increases fault tolerance because it helps to recon-
struct (interim) results of failed cluster nodes. Nevertheless,
if an (interim) result serves as input to multiple tasks, a lazy
evaluation cause a computation overhead because this result is
computed more than once. To avoid such recomputations and
to decrease the effort in the case of node failures, RDDs can be
explicitly persisted in memory (main or secondary). RDDs are
partitioned based on so-called partitioners which are provided
by Spark (e.g. hash or range) or can be explicitly defined by
the user. The crucial aspect in data partitioning is to enable a
local data processing for as many tasks as possible. An example
of a lineage graph is presented in Figure 7 where blue-colored
boxes represent non-persisted partitions, black-colored boxes
represent persisted partitions and a stage corresponds to a
pipeline of narrow-dependency operations.

join 

union 

groupBy

map 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: 

E: 

F: 

G: 

Fig. 7. Example of a lineage graph [22].

5.2 Parallel and Distributed Data Processing in DaPo
An effective distribution of the DaPo workflow by using Spark
depends on several issues which we discuss in this section.
Note, in most processing steps of DaPo, data values are pro-
cessed in an object-based fashion. Therefore, data is partitioned
horizontally (i.e. all values of a data object belong to the same
partition) instead of vertically (i.e. all values of an attribute
belong to the same partition).

5.2.1 Data Profiling
The Spark APIs provide several operations for statistical data
analysis such as countByValue(), stats() and count().
In DaPo, we use some of these operations to construct the
attribute-based data profile during the first main phase.

5.2.2 Duplicate & Error Injection
The crucial aspect for an efficient parallelization and distribu-
tion of data operations in Spark is whether such an operation
only concerns data belonging to the same partition (narrow-
dependencies) or it also concerns data belonging to different
partitions (wide-dependencies)

In the process of duplicate injection, each duplicate cluster
is created by selecting a single data object and by replicating
it several times. The replication process can be done for each
duplicate cluster independently (narrow-dependency) when
the driver specifies how many duplicate clusters of which sizes
have to be created by the individual worker nodes.

In the process of error injection, we have to distinguish
between row-, column- and field-errors. Whereas row- and
field-errors are limited to single data objects and hence only
concern data of the same partition (narrow-dependencies),
column-errors process values across multiple data objects and
hence can concern data which is stored at different partitions
(wide-dependencies).

Whether the process of error inheritance is a narrow- or
wide-dependency operation depends on whether all objects of
a duplicate cluster are always stored in the same partition or
can also be stored in different partitions (see next section).

5.2.3 Data Partitioning
A common method to increase the performance of distributed
applications is to avoid data shuffling by improving data local-
ity. Some operations in the DaPo workflow process the objects
of a duplicate cluster together. These operations include:

• injection of duplicates
• computation of the degree of pollution at the beginning of

each iteration
• error inheritance

Since these objects are processed together, it is beneficial to store
them within the same partition (and hence on the same worker
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TABLE 2
Data Sets Used as Experimental Input

Name #Objects Size (MB)
musicbrainz-10k.csv 10,000 0.89
musicbrainz-100k.csv 100,000 8.95
musicbrainz-1mio.csv 1,000,000 89.71
musicbrainz-10mio.csv 10,000,000 896.75
musicbrainz-100mio.csv 100,000,000 8,552.11

node). For that reason, all data objects are partitioned based on
their cluster-id throughout the whole pollution process.

Of course, other partitioning criteria, such as object groups,
can be beneficial as well. However, if object groups are used
to simulate multiple data sources in an integration scenario
and most of the generated duplicates have to be inter-source
duplicates, (almost) all objects of a duplicate cluster belong
to different groups and a partitioning based on object groups
as well as duplicate clusters is not possible. Nevertheless,
although all objects of the same group are polluted based
on the same error schema, each of these objects is polluted
independently in the case of row- and field-errors. Thus, as
in the general discussion, data locality is only beneficial in
the application of column-errors which are typically less often
applied to data objects than row- or field-errors. Moreover,
object representations are always transformed independently
(heterogeneity injection). Therefore, a partitioning based on
cluster-ids should be preferred to a partitioning based on object
groups if these two criteria are in conflict.

5.2.4 Data Caching
In DaPo, in every iteration of the error injection process, the
degree of pollution is computed. Each of these computations
causes a branch in the lineage graph and hence would be
executed based on the original input values if the interim
results are not explicitly persisted in main memory (or disk
if necessary). Obviously, such a caching increases the stor-
age requirements, but decreases runtime to a large extent.
Moreover, in DaPo such an explicit caching is even essential,
because errors are injected based on probabilities. Thus, the
pollution process is non-deterministic and its result cannot be
simply reproduced by re-executing the underlying code (i.e.
different executions lead to different results even if the same
error schemas are used). As a consequence, without caching,
the degree of pollution would always be computed based on a
data set which is different to the one produced by the latest iter-
ation of the injection process. To decrease storage requirements,
interim results are unpersisted if not required anymore.

6 EXPERIMENTAL EVALUATION

In this section, we present a set of experiments that were
conducted to evaluate the efficiency and scalability of DaPo
with respect to a varying size of the input set, used cluster
configuration or desired degree of pollution.

6.1 Input Data Sets
To evaluate the efficiency and scalability of DaPo in the genera-
tion of large test data sets, we require large input data sets. For
this purpose, we used the free available MusicBrainz database10

containing 11 GB meta data from the music domain (interpret,
songs, recordings, etc.) stored in a complex relational schema
and extracted a single CSV-file of 1.4 GB with around 16 million

10. https://musicbrainz.org/doc/MusicBrainz Database

TABLE 3
Computer Cluster Configurations Used in the Experiments

Name Mode HDFS #Nodes Spark-Executors

quantity #cores RAM
local local 7 1 1 41 5 GB
cluster-1 distrib. 3 2 1 4 6 GB
cluster-2 distrib. 3 3 2 8 12 GB
cluster-4 distrib. 3 5 4 16 24 GB
cluster-8 distrib. 3 9 8 32 48 GB
1 The four cores were shared with the driver process.

rows (each a music track) and 8 columns. Based on this file, we
generated the five input data sets depicted in Table 2.

6.2 Experimental Set Ups

To run the experiments on a computer cluster, we connected
nine standard desktop computers (Dell Optiplex 980) each with
four 2.67 GHz CPU cores (Intel Core i5-750), 8 GB RAM and
a 500 GB SATA-II hard drive with 7200 rpm in a switched star
topology with full duplex using a 1 Gbit/s Switch. On each
cluster node ran the same software including Ubuntu Server
12.04, Apache Spark 1.5.1 and Apache Hadoop 2.6.0. To de-
crease configuration and performance overhead, we did not use
virtual layers and ran Spark in standalone mode. From Hadoop
only the distributed file system HDFS was used and configured
in such a way that all data objects were available on each node
(full redundancy). One of the nine nodes was configured as
Spark master and HDFS-NameNode. The other eight nodes
were configured as Spark worker and HDFS-DataNodes.

To evaluate scalability, we used different configurations of
this computer cluster (see Table 3). In four of these configura-
tions, we deployed DaPo in distributed mode while varying the
number of available worker nodes. In each case, the driver ran
on the master node (allocating 2 GB RAM) and every executor
ran on a separate worker node (allocating 6 GB RAM). As
persistence layer, we used HDFS. In the fifth configuration, we
deployed DaPo in local mode and hence on a single cluster
node. Thus, the driver (2 GB RAM) as well as the only executor
(5 GB RAM) ran on the same computer sharing the given
resources. As persistence layer, we used the local file system.

We observed that the duplicate distribution influences the
runtime of the generation process only marginally. Therefore,
the relative amount of duplicates was set to 0.1, the maximal
size of a duplicate cluster was set to 20 and the distribution of
the duplicate cluster sizes was computed based on the equal-
pair strategy (i.e. the total number of duplicate pairs is equal
for each cluster size) in each experiment.

To minimize the influence of external factors on the exper-
imental results, we performed each of the conducted experi-
ments five times and used the average runtimes as final results.

Conceptually, heterogeneity injection is nothing else than an
additional iteration of the error injection process. Therefore, we
skipped this step by defining a single source group.

6.3 Experimental Results

In the first experiment, we varied the size of the input data set
(and hence of the generated test data set) and evaluated the
runtime of DaPo for all five cluster configurations. The target
similarity was fixed to 0.85 which results in two iterations of
the error injection process11. The results of this experiment are
presented in Figure 8 and demonstrate that DaPo was able to

11. This similarity setting is adopted from the real-life data set CDDB.
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Fig. 8. Runtime behaviors of the individual cluster configurations for in-
put data sets of different sizes (note that both axes scale logarithmically).

process all these data sets easily if enough hardware resources
were given. As expected, runtime increased with a growing size
of the input data set for each cluster configuration. Up to a size
of one million objects, the increase of runtime was sub-linear,
but for larger data sets this increase became super-linear. By
comparing the results of the individual cluster configurations,
we can see that the use of a computer cluster did not have much
positive impact on runtime when processing one of the smaller
data sets. On the contrary, DaPo achieved the shortest runtimes
for the smallest data set when it was deployed in local mode.
Nevertheless, for data sets with more than one million objects,
adding additional worker nodes reduced runtime considerably.
This runtime behavior is well illustrated in Figure 9 where
the speed up resulting from increasing the number of worker
nodes is presented in regard with the size of the input set. In
general, the larger the input set, the greater became the speed
up and hence the more beneficial was the addition of extra
worker nodes. Logically, the achieved speed up became better
if the relative amount of the constant orchestration overhead
became smaller and hence if the required amount of work (i.e.
number of processed objects) per worker node became larger.
This circumstance is perfectly illustrated in Figure 9 where the
speed up increased more (slope of the presented lines) when
the size of the input data set increased (follow the different
lines of a specific section from bottom to top) or the number of
worker nodes decreased (follow the sections of a specific line
from right to left).

In the same experiment, we studied the runtime behavior
of the individual (sub)phases of DaPo. The most important
of them are presented in Figure 10. The four main phases
are blue-colored and include loading the input set (import),
analyzing the input set and reasoning error schemas (prepa-
ration)12, polluting the data objects and writing the generated
test data set to disk (export). In addition to these main phases,
we also considered the subphases of the pollution phase. These
phases are green-colored and include injecting exact duplicates,
injecting errors, calculating the average duplicate similarity and
distributing objects of the same duplicate cluster across the
whole data set (shuffle duplicates). Note that the presented run-
times of the error injection phase do not include the runtimes of
the similarity calculation phase although the latter is executed
at the beginning of each iteration of the first.

12. Since we used a rudimentary approach for schema reasoning,
almost all of the entire runtime of these two phases results from the
analysis part and we consider them as a single phase in this evaluation.
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Fig. 9. Speed up resulting from increasing the number worker nodes for
different sizes of the input data set.

Figure 10 presents the runtimes (in seconds) of these phases
for one, ten and hundred million objects while considering dif-
ferent numbers of worker nodes. As expected, the preparation
and pollution phases dominated the import and export phases
by far. Interestingly, the preparation time was much longer than
the pollution time for small data sets, but the contrary was
the case for large data sets. Nevertheless, both phases scaled
very well for each of the three input sets so that an addition of
extra worker nodes was always valuable. The most dominating
parts of the pollution process were the error injection and
the similarity calculation phases where the latter one scaled
worse than the former so that the relative amount of time spent
for calculating similarity increased with a growing number of
worker nodes. However, in the case of the larger data sets, the
similarity calculation time also decreased significantly when we
add additional worker nodes. Recall that most of existing data
generation tools do not provide the setting of a target similarity
and hence do not need to spend time in such calculations.

In the second experiment, we varied the size of the target
similarity (and hence the number of required iterations) and
evaluated the runtime of DaPo for all five cluster configura-
tions. The size of the input data set was fixed to one million
objects. The results of this experiment are presented in Fig-
ure 11. As one can see, runtime increased disproportionately
with a decreasing target similarity. This can be explained as
follows: For most similarity measures, the similarity between
two (almost) identical objects sinks rapidly by injecting a few
errors, but the similarity between two (already) dissimilar
objects sinks only noticeably if many (additional) errors are
injected. As a consequence, the pollution effect of DaPo sank
with every additional iteration (even if the same number of
errors was injected) and the number of required iterations (and
hence runtime) increased disproportionately with a decreasing
target similarity. Note, the execution time per iteration was
stable (i.e. every iteration required (almost) the same runtime).
Noticeable, runtime increased dramatically with a decreasing
target similarity if DaPo was deployed in local mode. This can
be explained by the limited resources of the single cluster node.

6.4 Experimental Conclusions
The performed experiments proved that DaPo is able to gener-
ate test data sets with ten million objects on a single desktop
machine and hundred million objects on a computer cluster
with eight worker nodes in acceptable runtimes. Thus, for
smaller data sets, DaPo is also useful if no computer cluster is
available. DaPo in general and each of its computation phases
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Fig. 10. Runtime behavior (in seconds) of the individual (sub)phases for different cluster configurations and input data sets.

in particular scaled very well even if the achieved speed up
was always sub-linear and shrank with a decreasing size of
the input set and/or an increasing number of worker nodes.
Noticeable, the preparation as well as the similarity calculation
phase required a significant amount of the total runtime. Thus,
the additional features of an automatic preconfiguration and
providing a parameter for setting the desired degree of pollu-
tion came with considerable cost.

The runtime of DaPo was almost proportional to the num-
ber of required iterations. Since its memory requirements pri-
marily depend on the size of the input data set and this size
does not change during the error injection process, the number
of iterations can theoretically be increased at pleasure.

6.5 Comparison with Existing Tools

In Section 3, we presented five tools that can be used to generate
test data sets for duplicate detection. With respect to efficiency,
we compare DaPo with these systems in two ways. First by
deploying it in local mode and second by deploying it in
distributed mode with eight worker nodes (see Table 1). In
the first case, DaPo required 31 seconds, 2.1 minutes and 26
minutes to process one hundred thousand, one million and
ten million objects and hence was already faster than each of
these tools except DBGen (recall that TDGen and ProbGee were
even not able to process one million objects). In the second
case, DaPo required 24 seconds (100k objects), 46 seconds (1mio
objects) and 7.3 minutes (10mio objects) and thus came closer
to the runtime of DBGen even if this tool was still faster. Since
none of these tools provides an automatic preconfiguration, we
think that the comparison is fairer if we omit the expensive
analysis phase of DaPo by using predefined error schemas.
The corresponding runtimes are added to Table 1 (marked with
an *) and are another step closer to the runtimes of DBGen.

Unlike some of these tools, DaPo currently do not provide a
GUI and can only be used via command line. However, DaPo
is the only tool that scales horizontally and thus able to exploit
the computation power of a computer cluster. Compared to
ProbGee, TDGen and GeCo, DaPo achieved very much shorter
runtimes and provides similar (or even more) configuration
options to the user. DBGen is significantly faster than DaPo,
but it is very inflexible (not schema-independent, less configu-
ration options) and generates test data being much less realistic
because it is a synthesization tool. FebrlDG achieved similar
runtimes than DaPo, but has the same (or at least similar)
shortcomings as DBGen. Moreover, it was not able to process
10 million objects because of heap space issues. In conclusion,
DaPo is superior to these tools in almost all important aspects.

7 CONCLUSION & FUTURE WORK

Duplicate detection is an important challenge in today’s data
management where error-prone and heterogenously modeled
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Fig. 11. Runtime behaviors of the individual cluster configurations for
different values of the target similarity.

data objects are provided by a large number of autonomic
data sources. To evaluate the quality of new duplicate detection
algorithms or to adjust an existing algorithm to a specific appli-
cation scenario, realistic test data sets are required. Of course, in
times of big data, algorithms need to be efficient and scalable.
As a consequence, test data sets need to be large. Existing test
data generation tools, however, either lack in efficiency (i.e.
large test data sets cannot be generated in acceptable runtimes),
quality (i.e. the generated test data sets are not very realistic)
or flexibility (i.e. data generation is limited to a predefined
schema/domain). In this paper, we proposed an efficient, scal-
able and domain-independent framework for generating large
and realistic test data sets for duplicate detection and presented
a prototypical implementation of this framework called DaPo
which is based on Apache Spark.

In Section 2, we elaborated a list of desired properties which
should be provided by such a test data generation tool. In DaPo,
these desiderata are accomplished as follows:

• Efficiency & Scalability: As demonstrated by our
experimental evaluations, DaPo is very efficient and scales
vertically as well as horizontally. The last two desiderata
are realized by using the cluster computing framework
Apache Spark as underlying platform.

• Schema Independence: DaPo is schema- and domain-
independent by nature because it is a data pollution
tool which gets an arbitrary data source as input. This
independence is additionally supported by the first two
main phases which derive an enriched data schema from
the input source automatically.

• Realistic Data Values & Patterns: As demonstrated by
the tool DBGen [7], the generation of realistic data values
and patterns is difficult if these values are synthesized.
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Therefore, we accomplish this desiderata by designing
DaPo as a data pollution tool and hence by using a real-life
data set as basis.

• Realistic & Variable Error Patterns: This desiderata is
met by introducing the concepts of source/object groups
(to simulate multiple data sources), representation/error
schemas and error inheritance as well as by providing a
large range of error classes.

• Simple but Adaptable Configuration: On one hand, DaPo
provides a large set of parameters (including a desired
degree of pollution) which enable the user to adjust the
tool to a particular application scenario. On the other hand,
the mechanisms for computing an input-specific preconfig-
uration of these parameters automatically help the user by
reducing the configuration effort to a large extent.

Our data pollution framework presented in Section 4 is
broadly defined in a generic way. Nevertheless, there are some
aspects being worth for further considerations. The current
distinction of error classes into row-, column- and field-errors
results from considering single relational tables. Relational
databases, however, often consist of multiple tables which are
related by means of foreign keys. Moreover, the input data set
can also be provided in a non-relational form, such as key-value
and wide column stores, XML-files or JSON-documents [23],
[24], so that additional categories of error classes (e.g. for object
references and nested or schema-less objects) are required.

The development of DaPo is still in progress and there
are several aspects which require further considerations. The
most important of them concerns the development of more so-
phisticated approaches for reasoning data, representation and
error schemas. Moreover, the current implementation of DaPo
does not provide any mechanisms to extract complex integrity
constraints from the input source. Finally, it does not have a
GUI and its input as well as output are limited to CSV-files.
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