
CloudAware: A Context-adaptive Middleware for
Mobile Edge and Cloud Computing Applications

Gabriel Orsini, Dirk Bade, Winfried Lamersdorf
Distributed Systems Group

Department of Computer Science
University of Hamburg, Germany

Email: [orsini,bade,lamersd]@informatik.uni-hamburg.de

Abstract—The widespread use of mobile devices such as
smartphones and tablets is accompanied by an ever increasing
market for mobile applications, including resource demanding
services like speech- or face recognition, that formerly were
restricted to stationary devices. But as mobile devices remain
comparatively limited in terms of resources (e.g., computation,
storage and battery life), current approaches for augmentation
have advocated the integration of cloud servers as well as other
nearby devices to provide scalable computation- and storage
resources to mobile end users. A current solution is the so-called
computation offloading, which is the most prominent strategy
used in Mobile Cloud Computing (MCC) and its successor known
as Mobile Edge Computing (MEC). While MCC and MEC are
receiving increasing attention, current work is often not able
to cope with the quickly and constantly changing context (e.g.,
intermittent connectivity) of mobile devices. Therefore, this paper
presents the evaluation of CloudAware, a context-adaptive mobile
middleware for MCC as well as MEC that supports automated
context adaptation by linking the distribution features of mobile
middleware with context-aware self-adaptation techniques. In
particular, we present a system software infrastructure and a
data mining process which facilitate the development of elastic,
scalable and context-adaptive mobile applications and present
their evaluation using real usage data provided by the Nokia
Mobile Data Challenge (MDC) dataset.

I. INTRODUCTION

Mobile devices like smartphones, tablets and wearables
are continuously replacing stationary devices. Along with this
trend the porting of resource-hungry desktop applications and
mobile-first applications like augmented reality games have led
to a constant demand for higher performance and capabilities.
Although some resources like processing power, memory and
bandwidth are constantly improving to keep up with the
increasing requirements, other features like battery capacity
have only experienced moderate improvements of about 10%
per year.

To overcome these limitations and to enable even more
sophisticated applications to run on mobile devices, external
resources have to be integrated into the local execution of
mobile applications [1]. But, to ensure an acceptable perfor-
mance and latency it is not always useful to only rely on
centralized resource providers like cloud servers. It is often
beneficial to dynamically integrate the surrounding and nearby
devices, a concept known as Fog Computing [2] or (Mobile)
Edge Computing [3]. However, these concepts are posing
even bigger challenges to the mobile applications’ capability
to dynamically adapt to the constantly changing execution

environment. Just to name a few challenges: The information
about the current bandwidth to specific resources and a forecast
about their future availability, the current battery level or
the probability that an offloaded task will be successfully
executed are all part of the applications’ and devices’ so-called
context that needs to be integrated into the distribution strategy.
The mentioned concept has led to an increasing demand for
software that is able to exploit the potentials of spontaneous
interaction and therefore needs to be able to dynamically adapt
to the quickly and constantly changing context of mobile ad-
hoc scenarios. At present, many of the proposed solutions
provide only limited context-awareness and hence adaptation
capabilities that moreover take current user preferences like
saving energy or speeding up computations into account.

Filling this gap, this paper discusses the potential of
self-adaptation in the light of the particular requirements of
mobile edge computing. In previous work [4] the idea of a
context-adaptive MEC solution has been presented, which is
now extended to a self-adaptive mobile middleware named
CloudAware that aims at linking existing concepts of mo-
bile middleware with the specific requirements of MCC and
MEC. To provide dynamic adaptation through a configuration-
free programming model CloudAware employs compositional
adaptation and sensor-based reasoning to allow a flexible
adaptation to current as well as future context states, that
can hardly be foreseen by developers. In particular, we use
connectivity- and execution predictions that support the effi-
ciency of the so-called offloading decision in MCC- as well
as MEC scenarios. In this way, more generic and flexible
scenarios that go beyond than just offloading computations
become possible. To realize such scenarios and to support a
broad range of mobile applications, CloudAware only relies
on the presence of a Java Virtual Machine which enables our
prototype to augment Android applications without modifying
the underlying mobile operating system. The contribution in
this paper can be summarized as follows:

• A flexible architecture for the development of MCC-
and MEC applications that provides programming ab-
stractions and distribution transparency features with-
out modifying the underlying mobile operating sys-
tem.

• An evaluation of the developed CloudAware mobile
middleware that is based on realistic application and
device usage data provided by the Nokia Mobile Data
Challenge campaign.

The remainder of this paper is structured as follows: Sec-
tion II introduces the foundations of MEC and self-adaptation.
Afterwards, Section III describes typical application scenarios,
whose general requirements are matched with the related
work, presented in Section IV. Subsequently, our CloudAware
middleware is presented and evaluated in Section V. At the
end, we summarize our findings and give prospects for future
work in Section VI.

II. BACKGROUND

In this section we will first describe the concept of MEC
and mobile middleware as an enabler for the greater idea
of pervasive computing. Hereupon we will further give a
definition of self-adaptation in the light of mobile applications
and briefly describe its core enablers: computational reflection,
dynamic reconfiguration and context awareness.

A. Mobile Edge & Pervasive Computing

While Mobile Cloud Computing tries to push the limits of
mobile applications by including centralized resources to e.g.
perform computational offloading, Mobile Edge Computing
goes further by assigning the major part of remote operations
directly to the surrounding infrastructure. These resources,
typically located at the logical edges of a network, can include
LTE base stations, routers providing shared resources [5] and
are often directly connected to the mobile device, as shown in
Figure 1. Deploying replicated parts of a mobile application’s
business logic onto such edge computers can then bring a
large benefit to latency-sensitive tasks like streaming or cloud
gaming. Hence we consider MEC as a main enabler for the
more generic concept of Pervasive Computing, described next.

Pervasive and Ubiquitous Computing aim at integrating
computing capabilities into our everyday life. In this course,
smart objects sense their environment and communicate and
cooperate with each other in order to adapt to their surround-
ing’s needs [6]. The seamless integration of such (generally)
resource-poor and possibly mobile devices, which are in most
cases located at the logical edge of a network, and their tight
cooperation can be achieved by considering the current state
of a device, its user and the environment, referred to as the
three main categories of the so-called ”context”. But due to
the possible heterogeneity of context some kind of abstraction
that provides a standardized execution environment, referred

Cloud

Mist

Edge

Carrier
Router

xDSL
Router

Cloudlet

Base
Station

Fog

xDSL
Router

Fig. 1. MEC architecture and use-case [4]

to as a (mobile) middleware, is required. In the remainder of
this paper, we will refer to all of the mentioned concepts by
MEC only.

B. Self-Adaptation

We consider an early definition applicable to our perception
of self-adaptation as referred by Laddaga in [7]: ”Self-adaptive
software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better func-
tionality or performance is possible.” A well-known example
for self-adaptation can be found in the implementation of the
Transmission Control Protocol (TCP) of the Internet, which
dynamically adapts the packet window size to the current load
in the network. Current patterns for self-adaptation can be
briefly differentiated in two classes [8]: Parametric adaptation
and compositional adaptation. While the adaptation rules in the
former are often woven into the business logic, compositional
adaptation in contrast follows the paradigm of the separation
of concerns. Taking into consideration the simple example of
three parameters of which each can have 4 states - already
64 different states are possible and need to be considered
by the developer. Considering real-life examples that have
way more parameters and states, as also found by [9], it
becomes clear that compositional adaptation provides a far
more flexible concept to develop self-adaptive applications -
whose three main enablers, according to [10], are the sepa-
ration of concerns, computational reflection, and component-
based design. According to [9], self-adaptive systems can be
further differentiated by the level of anticipation they provide.
If a developer predefines the systems behavior, the degree
of anticipation is lower than in the case where no rules are
defined and the anticipation to the current context happens
dynamically at runtime, referred to as context-awareness. For
a detailed definition and a complete survey about the most
relevant context modeling approaches, we refer to [11].

III. APPLICATION CHARACTERISTICS

To further illustrate the idea of MEC, an application
scenario is exemplified in the following that serves as a
base for the evaluation presented in section V Subsequently,
the generalized main characteristic of MEC applications are
presented.

Image Processing: As all current smartphones have a built-
in camera, mobile image processing gains more attraction.
And with the advent of high-resolution cameras (e.g. Nokia’s
Lumia with 41 Megapixel) respective tasks becomes even
more challenging. Moreover, also professionals, journalists
for example, use mobile phone cameras to take snapshots,
which subsequently undergo typical processing steps like noise
reduction, color enhancements, object extraction, masking,
etc. before being published. Finally, more complex tasks like
image stitching to create 360 degree panorama images or face
recognition raise the bar even higher. Imagine you are on a trip
abroad and you need to process some images and send them
back to your office or your friends. Mobile communication is
costly, but your smartphone’s battery should still last a couple
of hours. Depending on your preferences, you could either
substitute communication with processing or vice versa, using
an MEC image processing app.

Further common application scenarios share the exempli-
fied characteristics: The device the user interacts with has
resource constraints, but the tasks that should be carried out
require either computational power (and energy), loads of data,
network bandwidth or additional resources. Depending on the
context, the tasks can be offloaded to surrogates (that depict
more powerful resource compared to the mobile device) at the
network’s edge where they are processed and results are finally
sent back to the initiating device.

IV. RELATED WORK

A lot of research on context-aware software has been
carried out to find mechanisms that best support dynamic
adaptation for specific use-cases. A current trend that follows
the separation of concerns principle, is aspect oriented pro-
gramming (AOP) [12] was designed to provide a separation
of concerns, as advocated by many researchers in the field
[13]. AOP separates the business logic of an application from
additional features (like context-aware behavior) by adding
additional behavior to existing code without modifying the
code itself. This is often helpful in order to dynamically react
to changes (and for example replace parts of the code to change
the behavior). This way, the concerns of context-awareness
and self-adaptation are treated independently of each other.
As the developers may now focus on individual aspects of
their code, development and maintenance tasks are rendered
easier, faster, and more cost efficient [13]. As an evolution
and directly tailored to the domain of self-adaptation, context
oriented programming (COP) [13] has been proposed as an
extension to AOP by providing additional features concerning
the separation of the definition of adaptations from their com-
position. Nevertheless AOP and COP require the developer to
learn a different language, which we do not consider easy and
quick in terms of a learning curve. The COP principle has been
implemented as an extension to many programming languages
(i.e., ContextJ (as an extension to Java), or ContextPy (as an
extension to Python)), a complete list of all COP variants is
found at [13].

Notable works that are similar to CloudAware have been
presented by Preuveneers and Barbers [14]. They present
a context-aware middleware for mobile devices that is
component-based and self-adaptive. Nevertheless, there are no
programming-level concepts that ease the development. An-
other prominent approach that aims at providing a self-adaptive
middleware is presented by Geihs et al. In MADAM [15],
and later in MUSIC [16], applications are assembled through
a component composition process and context-awareness is
achieved by exchanging the components’ implementations
with others having the same functional behavior. Still, adap-
tation rules need to be defined by the developer (e.g. using
annotations). Further well-known solutions include PACE [17],
SOCAM [18] and CAMPUS [19] whereas the last one provides
the most current approach of an automatized reasoning by
using the applications’ context. However, it can be concluded
that in most context-aware systems, the adaptation logic of
an application is implemented at the time of development.
Such an approach has limited flexibility and poses a high
burden for developers as it is almost impossible to foresee all
conceivable context states, especially in mobile environments
with a quickly changing context.

For the sake of completeness we also highlight some
prominent solutions from the domain of MCC and MEC and
their respective adaptation features. For a complete review of
related solutions in this field we refer to [20] and [1]. From
the MEC perspective, classical approaches like CloneCloud
[21], MAUI [22], Thinkair [23] and Cuckoo [24] have tried to
adapt to the environment by focusing on the offloading onto
centralized surrogates, either on the granularity of a thread
(CloneCloud), a method (MAUI and Thinkair) or a component
(Cuckoo). Even if all of them have shown that offloading can
be beneficial in terms of speedup or energy savings, this only
holds for cases in which little synchronization of a shared
state between the mobile device and the surrogate is required.
As an evolution to the mentioned solutions in the domain
of classical MCC other solutions like IC-Cloud [25] and
ToGo [26] have been proposed that take into consideration the
effects of intermittent connectivity, but only provide adaptation
features regarding the connectivity of the mobile device, which
is an important but still a small part of the applications’,
devices’ and users’ context.

To conclude, there is no ready-to-use solution, as none of
the current solutions is able to address all requirements. As a
consequence, we present the CloudAware mobile middleware,
a holistic approach to tackle the challenges of both domains:
computation offloading and context adaptation.

V. CLOUDAWARE

CloudAware differs from previous or similar approaches in
the domain of MEC and context-adaptive mobile middleware
by its primary design goal to support ad-hoc and short-time
interaction with not only centralized resources, but also nearby
devices. This idea is extended by the secondary design goal,
which is to provide an uninterrupted availability of a mobile
application even if no surrogates are available or the connec-
tion gets interrupted by using the mobile device as a fallback. It
remains the primary instance to hold the mobile applications’
relevant state. To achieve this type of spontaneous interac-
tion, classical client-server solutions, service composition, or
prominent MCC approaches are often not suitable as they are
not able to either cope with the requirements of the ad-hoc
interaction or as they are not as lightweight enough to meet the
limited resources of a mobile device. How CloudAware faces
these restrictions and which general assumptions motivate
specific design decisions has been described in previous work
[4] and will in the following only be summarized, while the
focus of this work is the evaluation of the prototype of the
CloudAware mobile middleware that is evaluated using real
data from the Nokia MDC dataset, introduced afterwards.

A. CloudAware Mobile Middleware

Concluding the previous explanations and resuming the
general objectives of MEC applications that have been worked
out in Section II, the specific design goals of CloudAware can
be summarized by the following key objectives:

• Speed up computation through parallelization

• Save energy or bandwidth by offloading computations

• Enable offloading for diverse mobility scenarios

This way, we are enabling (future) complex applications on
resource-constrained mobile devices by dynamically adapting
their execution to changing conditions in their physical and
logical environment.

B. Runtime Environment

CloudAware uses the principle of ”active components” a
concept developed together with the Jadex [27] middleware.
Jadex not only ships with several tools to ease the development
(like debugging, message inspection, simulation), but also
supports - among other features - diverse asynchronous com-
munication styles (remote method calls, transparent service
invocations, message passing and interaction protocols) as well
as secure messaging, an efficient binary message encoding,
the creation of ad-hoc networks, service discovery and NAT
traversal over relay servers to bypass firewalls. Moreover, the
Jadex middleware runs on desktop computers and servers as
well as on a broad range of mobile devices, including the
Android platform as it requires no modification of the mobile
devices’ operating system, but just relies on the presence of a
Java Virtual Machine that is available out of the box for almost
any device.

While carrying out our design decisions we rely on the
simple principle to build as much as possible upon widespread
commodity software, to leverage the reliability that comes
through extensive testing. Hence, we employ standard Java
and Android technology, extended by the Jadex runtime envi-
ronment that we use to implement the functionalities required
in CloudAware to perform MEC. For example, to separate
front-end user interaction from the offloadable back-end tasks,
we make use of Android’s service concept by using the
AIDL (Android Interface Definition Language) specification.
This allows developers to easily benefit from the offloading
capabilities, while changes to their present applications remain
small and are limited to the back-end of the application.
Furthermore, this allows the coexistence of regular and cloud-
augmented applications as they participate in the standard An-
droid mechanisms like resource scheduling and power manage-
ment. Hence, no modification of the Android operating system
is necessary, enabling the majority of current smartphones to
directly participate from the benefits of CloudAware.

C
lo
u
d
A
w
ar
e
‐e
n
ab

le
d

A
p
p
lic
at
io
n

Solver Discovery

CloudAware Base

@annot

C
lo
u
d
A
w
ar
e Coor‐

dinator
Predictor

SQLite Sensors

Context
Manager

Fig. 2. CloudAware: Execution Platform and Architecture [28]

Figure 2 depicts a bird’s eye view on the resulting execution
platform on mobile devices. As already mentioned, Jadex
and hence CloudAware support the Android platform. While
Jadex runs in an Android process, the CloudAware components
are executed in several independent threads. Thereby, we
can easily distribute load on multiple processor cores, while

Jadex’s asynchronous way of execution prevents deadlocks. Fi-
nally, MCC applications designed for CloudAware are running
encapsulated in specialized CloudAware components, hence
developers may just follow an object-oriented approach to
implement their applications using the CloudAware API.

C. Nokia MDC Dataset

In January 2009, the Nokia Research Center Lausanne
(NRC), the Idiap Research Institute, and the EPFL initiated
the creation of a large-scale mobile data research. This in-
cluded the design and implementation of the Lausanne Data
Collection Campaign (LDCC), an effort to collect sensor data
from smartphones created by almost 200 volunteers in the Lake
Geneva region over 18 months [29]. To our knowledge it is the
largest dataset that contains information about mobile devices
as well as application usage statistics, which is why we chose
the Nokia MDC dataset to derive the following information as
input to a simulation with the CloudAware mobile middleware:

• GSM/WiFi/Bluetooth state (on/off), discovered MAC
addresses and GSM cells, signal strength of WiFi
as well as GSM cells, extended with our own mea-
surements to get an assumption about the available
bandwidth.

• General information about the mobile device itself:
time since the last user interaction, silent mode switch,
charging state, battery level, free memory.

• Date, time, location, calendar events, average and
predicted remaining duration of stay at the current
location.

• Reasoned attributes: remaining duration of stay at the
same WiFi AP or GSM cell, user is at home/work,
traveling, moving, resting.

• Application usage data: The applications the user
interacts with and the specific screens of these ap-
plications.

D. Generic Context Adaptation Process

One of CloudAwares main features are context adaptation
features that have been described in previous work [30] as the
Generic Context Adaptation (GCA) process and will in the
following be briefly summarized. GCA has been designed as
a lightweight data mining process that is tailored to forecast
arbitrary context attributes out of a provided feature set.
More formally, GCA represents a data mining process that
provides three types of predictions: A binary classifier (e.g.
for predicting the future availability of a WiFi), a multi-class
classifier (e.g. to predict a bandwidth range) and a regression
mode to forecast real-valued attributes like the execution time
of an offloaded task. This way, historical data that has been
collected by the mobile device can be used to forecast a future
value of a certain context attribute.

To perform a prediction the GCA process needs to be
provided with the historical input data in the structure that
is used in the Nokia MDC dataset. It is furthermore required
to choose the context attribute to be predicted, the context
interval (that is required to assign different measurements to
a specific time interval) and the forecast horizons (how many

time intervals into the future) to initiate the learning phase.
The resulting predictive model can then directly be applied
to forecast the chosen context attribute. The data used in the
GCA process is mainly the same as in the MDC and is just
converted to a representation that is suitable to be presented
to machine-learning algorithms.

To be used together with CloudAware, the GCA process is
designed to be executed on a mobile device. As the preprocess-
ing is performed in SQL and the application of the data mining
models is performed in Java, the process is able to run on any
(mobile) that provides a Java virtual machine. Nevertheless,
the training of the data mining models is computationally
intensive and is currently intended to run on more powerful
cloud resources, whereupon the trained model is transferred to
the mobile device, to be used for predictions. We currently use
an interval of 5 minutes to collect the required sensor data to
not drain the battery too much.

E. Evaluation

The evaluation is performed by picking 20 users that
provided data for at least 18 months from the Nokia MDC
dataset and by using the provided context attributes to design
an event based simulation that considers the connectivity (i.e.
latency, intermittent connectivity and round trip times) of a
mobile device as well as the battery drain, charging state, the
limited computation power of a mobile device as well as the
energy that is required to compute and to send or receive a
specific amount of data via a specific interface (WiFi or GSM).
The developed sample application is inspired by the application
scenario mentioned in section III and applies different image
filters. It produces 20 different types of tasks. For each task
the execution time, its variance, as well as input and output
sizes (i.e. the amount of data that needs to be transferred
in case of an offloading) have been measured and linked to
real application events, that have been recorded in the MDC
dataset.

Simulation of the infrastructure: The used infrastructure
consists of a Samsung Galaxy S5, representing the mobile
device. The devices battery level found in the MDC dataset is
considered a baseline, while the prototyped sample application
generates an additional battery drain, therefore all tasks could
only successfully executed if the mobile device would be
connected to an energy source at all times.

The cloud is simulated by measurements from and to a
virtual server running at a German cloud service provider. To
reflect the MEC scenario we furthermore assume cloudlets
with the performance of an up-to-date desktop computer to
be available at the three most frequently visited locations of
each user. Furthermore, due to their limited resources, these
cloudlets are assumed to be overloaded at certain times of the
day, resulting in longer execution times or even timeouts that
lead to unsuccessful offloading.

Scheduling and optimization goal: For each of the of-
floadable tasks, it is decided whether to offload this task to
a cloud-server or a cloudlet by predicting its probability to
be executed successfully, meaning that the result is returned
to the mobile device. Therefore we consider all tasks equally
important and therefore execute them by their invocation time,
with the exception that already computed tasks may return

2=alle Services auf allen Geräten verfügbar 1=27% nicht auf Mobile verfügbar

SCENARIOID USERID USAGEPROFILE ACTIVE COMPLETED UNFINISHED TOTAL ON_MOBILE ON_CLOUD ON_CLOUDLET SIM_ENERGY EXEC_ENERGY SIM_INPUT_MB SIM_INPUT_WIFI_MB SIM_INPUT_TOTAL_MB EXEC_INPUT_MB SIM_OUTPUT_MB SIM_OUTPUT_WIFI_MB SIM_OUTPUT_TOTAL_MB EXEC_OUTPUT_MB
AVG_INVOCTIME_MO
BILE

AVG_INVOCT
IME_CLOUD

AVG_INVOCTIME_CLO
UDLET

AVG_INVOC
TIME

AVG_INVOCTIME_S
UCCESSFUL

SUCCESSRATE

1 Paper2 5479 1 0 3412 572 3984 3984 0 0 13212 13220 0 0 0 11798 0 0 0 9530 45173 0 0 45173 48770 0.86
2 Paper2 5479 2 0 3061 923 3984 0 3984 0 20039 32462 5673 3664 9337 11798 4709 3480 8189 8284 0 10525 0 10525 11687 0.77
3 Paper2 5479 3 0 692 3292 3984 0 0 3984 6657 11573 261 3790 4051 11798 133 1968 2101 3834 0 0 1263 1263 3926 0.17
4 Paper2 5479 4 0 3283 701 3984 1307 2677 0 18816 29973 3236 3650 6886 11798 2732 3471 6203 9145 4554 5321 0 9875 11928 0.82
5 Paper2 5479 5 0 3256 728 3984 924 3060 0 20264 32350 5054 3659 8713 11798 4471 3475 7946 9074 2371 8477 0 10848 12992 0.82
6 Paper2 5479 6 0 2713 1271 3984 2661 0 1323 14789 19574 130 3723 3853 11798 77 1929 2006 9360 29967 0 1050 31016 40984 0.68
7 Paper2 5479 7 0 2701 1283 3984 2637 0 1347 14851 19690 238 3728 3966 11798 133 1929 2063 9360 29841 0 1188 31029 41081 0.68
8 Paper2 5479 8 0 2659 1325 3984 1283 1410 1291 16892 28114 3251 3697 6948 11798 2740 1919 4659 9212 4559 3626 939 9123 12942 0.67
9 Paper2 5479 9 0 2623 1361 3984 899 1776 1309 18309 30467 5074 3702 8776 11798 4432 1924 6356 9131 2366 6662 1053 10081 14210 0.66

10 Paper2 5479 10 0 3283 0 3283 633 2650 0 18727 29808 3203 3621 6824 9730 2732 3471 6203 9078 5519 6405 0 11925 11925 1
11 Paper2 5479 11 0 3256 0 3256 239 3017 0 20163 32104 4941 3626 8567 9627 4471 3475 7946 8974 2888 9979 0 12867 12867 1
12 Paper2 5479 12 0 2713 0 2713 2050 0 663 11557 14473 124 2084 2208 8173 77 1929 2006 7691 40099 0 884 40984 40984 1
13 Paper2 5479 13 0 2701 0 2701 2026 0 675 11580 14522 180 2084 2264 8116 133 1929 2063 7635 40092 0 989 41081 41081 1
14 Paper2 5479 14 0 2659 0 2659 632 1394 633 14718 24031 3215 2050 5265 8167 2740 1919 4659 7530 6807 5388 743 12938 12938 1
15 Paper2 5479 15 0 2623 0 2623 238 1743 642 16096 26251 4907 2054 6961 8016 4432 1924 6356 7380 3577 9647 838 14063 14063 1
16 Paper2 5479 16 0 3296 688 3984 2017 1379 588 16885 25394 2980 1982 4962 11798 2594 1819 4412 9212 11747 3434 471 15652 17948 0.83

SCENARIOID USERID USAGEPROFILE ACTIVE COMPLETED UNFINISHED TOTAL ON_MOBILE ON_CLOUD ON_CLOUDLET SIM_ENERGY EXEC_ENERGY SIM_INPUT_MB SIM_INPUT_WIFI_MB SIM_INPUT_TOTAL_MB EXEC_INPUT_MB SIM_OUTPUT_MB SIM_OUTPUT_WIFI_MB SIM_OUTPUT_TOTAL_MB EXEC_OUTPUT_MB AVG_INVOCTIME_MOB AVG_INVOCTI AVG_INVOCTIME_CLOUDAVG_INVOCT AVG_INVOCTIME_SU SUCCESSRATE
1 Paper1 5479 1 0 2900 1084 3984 3984 0 0 10218 10226 0 0 0 11798 0 0 0 7258 29897 0 0 29897 37745 0.73
2 Paper1 5479 2 0 3061 923 3984 0 3984 0 20039 32462 5673 3664 9337 11798 4709 3480 8189 8284 0 10525 0 10525 11687 0.77
3 Paper1 5479 3 0 692 3292 3984 0 0 3984 6657 11573 261 3790 4051 11798 133 1968 2101 3834 0 0 1263 1263 3926 0.17
4 Paper1 5479 4 0 3238 746 3984 1171 2813 0 18925 30514 3873 3650 7523 11798 3256 3471 6727 8985 2491 7241 0 9732 11207 0.81
5 Paper1 5479 5 0 3217 767 3984 890 3094 0 20048 32253 5214 3659 8873 11798 4535 3475 8011 8937 1032 9272 0 10303 11833 0.81
6 Paper1 5479 6 0 2303 1681 3984 2655 0 1329 12183 16984 149 3728 3877 11798 86 1934 2020 7613 16536 0 1079 17615 26688 0.58
7 Paper1 5479 7 0 2293 1691 3984 2635 0 1349 12237 17081 238 3733 3971 11798 133 1934 2067 7613 16435 0 1189 17624 26728 0.58
8 Paper1 5479 8 0 2614 1370 3984 1147 1544 1293 17001 28655 3888 3697 7585 11798 3264 1919 5183 9051 2496 5527 956 8979 12056 0.66
9 Paper1 5479 9 0 2584 1400 3984 865 1810 1309 18094 30370 5233 3702 8935 11798 4497 1924 6421 8994 1027 7457 1053 9536 12787 0.65

10 Paper1 5479 10 0 3238 0 3238 485 2753 0 18767 30151 3727 3621 7348 9543 3256 3471 6727 8922 3056 8079 0 11135 11135 1
11 Paper1 5479 11 0 3217 0 3217 194 3023 0 19879 31838 5006 3626 8632 9463 4535 3475 8011 8842 1262 10418 0 11680 11680 1
12 Paper1 5479 12 0 2303 0 2303 1636 0 667 9332 12258 133 2089 2222 6241 86 1934 2020 5930 25623 0 1065 26688 26688 1
13 Paper1 5479 13 0 2293 0 2293 1616 0 677 9354 12300 180 2089 2269 6194 133 1934 2067 5883 25561 0 1168 26728 26728 1
14 Paper1 5479 14 0 2614 0 2614 484 1495 635 14758 24374 3739 2050 5789 7980 3264 1919 5183 7374 3778 7416 774 11967 11967 1
15 Paper1 5479 15 0 2584 0 2584 193 1749 642 15811 25985 4972 2054 7026 7853 4497 1924 6421 7247 1563 10189 851 12603 12603 1
16 Paper1 5479 16 0 3203 781 3984 1816 1523 645 16794 26191 3672 2237 5909 11798 3133 1847 4979 9051 7917 5372 543 13833 15993 0.8

NOTSET (0), MOBILEONLY (1), CLIENTSERVER (2), CLIENTSERVER_CLOUDLET (3), MCC_SPEEDUP (4), MCC_ENERGY (5), MEC_SPEEDUP (6), MEC_ENERGY (7),
CA_SPEEDUP (8), CA_ENERGY (9), MCC_SPEEDUP_OPTIMAL (10), MCC_ENERGY_OPTIMAL (11), MEC_SPEEDUP_OPTIMAL (12), MEC_ENERGY_OPTIMAL (13),
CA_SPEEDUP_OPTIMAL (14), CA_ENERGY_OPTIMAL (15), CA_SPEEDUP_GCA (16), CA_ENERGY_GCA (17), STAT (18);

Mobile Cloud Cloudlet Energy (kJ) Data transfered Time (sec.) Success rate (%) Energy (kJ) Data transfered (GB) Time (sec.) Success rate (%)
Mobile Only x 100% 0% 0% 4928 0,0 48,8 86% 0 Mobile Only 4928 0,0 48,8 86%
Cloud Only x 0% 100% 0% 7474 17,1 11,7 77% 0 Cloud Only 7474 17,1 11,7 77%
Cloudlet Only x 0% 0% 100% 2483 6,0 3,9 17% 0 Cloudlet Only 2483 6,0 3,9 17%
MCC Speedup x 33% 67% 0% 7018 12,8 11,9 82% 0 MCC Speedup 7018 12,8 11,9 82%
MEC Speedup x 67% 0% 33% 5516 5,7 41,0 68% 0 MEC Speedup 5516 5,7 41,0 68%
Cloudaware x 32% 35% 32% 6300 11,3 12,9 67% 0 Cloudaware 6300 11,3 12,9 67%
Cloudaware + x 9% 66% 24% 6003 13,0 17,9 83% 0 Cloudaware + GCA 6003 13,0 17,9 83%

100%

33%

67%

32%

9%

100%

67%

35%

66%

100%

33% 32%
24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCAMobile Cloud Cloudlet

86%

77%

17%

82%

68% 67%

83% 48,8

11,7

3,9

11,9

41,0

12,9

17,9

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCASuccess rate (%) Time (sec.)

0,0

17,1

6,0

12,8

5,7

11,3

13,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCAData transfered (GB)

4928

7474

2483

7018

5516

6300
6003

0

1000

2000

3000

4000

5000

6000

7000

8000

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCAEnergy (kJ)

Fig. 3. Offloading targets for tasks

2=alle Services auf allen Geräten verfügbar 1=27% nicht auf Mobile verfügbar

SCENARIOID USERID USAGEPROFILE ACTIVE COMPLETED UNFINISHED TOTAL ON_MOBILE ON_CLOUD ON_CLOUDLET SIM_ENERGY EXEC_ENERGY SIM_INPUT_MB SIM_INPUT_WIFI_MB SIM_INPUT_TOTAL_MB EXEC_INPUT_MB SIM_OUTPUT_MB SIM_OUTPUT_WIFI_MB SIM_OUTPUT_TOTAL_MB EXEC_OUTPUT_MB
AVG_INVOCTIME_MO

BILE

AVG_INVOCT

IME_CLOUD

AVG_INVOCTIME_CLO

UDLET

AVG_INVOC

TIME

AVG_INVOCTIME_S

UCCESSFUL
SUCCESSRATE

1 Paper2 5479 1 0 3412 572 3984 3984 0 0 13212 13220 0 0 0 11798 0 0 0 9530 45173 0 0 45173 48770 0.86

2 Paper2 5479 2 0 3061 923 3984 0 3984 0 20039 32462 5673 3664 9337 11798 4709 3480 8189 8284 0 10525 0 10525 11687 0.77

3 Paper2 5479 3 0 692 3292 3984 0 0 3984 6657 11573 261 3790 4051 11798 133 1968 2101 3834 0 0 1263 1263 3926 0.17

4 Paper2 5479 4 0 3283 701 3984 1307 2677 0 18816 29973 3236 3650 6886 11798 2732 3471 6203 9145 4554 5321 0 9875 11928 0.82

5 Paper2 5479 5 0 3256 728 3984 924 3060 0 20264 32350 5054 3659 8713 11798 4471 3475 7946 9074 2371 8477 0 10848 12992 0.82

6 Paper2 5479 6 0 2713 1271 3984 2661 0 1323 14789 19574 130 3723 3853 11798 77 1929 2006 9360 29967 0 1050 31016 40984 0.68

7 Paper2 5479 7 0 2701 1283 3984 2637 0 1347 14851 19690 238 3728 3966 11798 133 1929 2063 9360 29841 0 1188 31029 41081 0.68

8 Paper2 5479 8 0 2659 1325 3984 1283 1410 1291 16892 28114 3251 3697 6948 11798 2740 1919 4659 9212 4559 3626 939 9123 12942 0.67

9 Paper2 5479 9 0 2623 1361 3984 899 1776 1309 18309 30467 5074 3702 8776 11798 4432 1924 6356 9131 2366 6662 1053 10081 14210 0.66

10 Paper2 5479 10 0 3283 0 3283 633 2650 0 18727 29808 3203 3621 6824 9730 2732 3471 6203 9078 5519 6405 0 11925 11925 1

11 Paper2 5479 11 0 3256 0 3256 239 3017 0 20163 32104 4941 3626 8567 9627 4471 3475 7946 8974 2888 9979 0 12867 12867 1

12 Paper2 5479 12 0 2713 0 2713 2050 0 663 11557 14473 124 2084 2208 8173 77 1929 2006 7691 40099 0 884 40984 40984 1

13 Paper2 5479 13 0 2701 0 2701 2026 0 675 11580 14522 180 2084 2264 8116 133 1929 2063 7635 40092 0 989 41081 41081 1

14 Paper2 5479 14 0 2659 0 2659 632 1394 633 14718 24031 3215 2050 5265 8167 2740 1919 4659 7530 6807 5388 743 12938 12938 1

15 Paper2 5479 15 0 2623 0 2623 238 1743 642 16096 26251 4907 2054 6961 8016 4432 1924 6356 7380 3577 9647 838 14063 14063 1

16 Paper2 5479 16 0 3296 688 3984 2017 1379 588 16885 25394 2980 1982 4962 11798 2594 1819 4412 9212 11747 3434 471 15652 17948 0.83

SCENARIOID USERID USAGEPROFILE ACTIVE COMPLETED UNFINISHED TOTAL ON_MOBILE ON_CLOUD ON_CLOUDLET SIM_ENERGY EXEC_ENERGY SIM_INPUT_MB SIM_INPUT_WIFI_MB SIM_INPUT_TOTAL_MB EXEC_INPUT_MB SIM_OUTPUT_MB SIM_OUTPUT_WIFI_MB SIM_OUTPUT_TOTAL_MB EXEC_OUTPUT_MB AVG_INVOCTIME_MOBILEAVG_INVOCTIME_CLOUDAVG_INVOCTIME_CLOUDLETAVG_INVOCTIMEAVG_INVOCTIME_SUCCESSFULSUCCESSRATE

1 Paper1 5479 1 0 2900 1084 3984 3984 0 0 10218 10226 0 0 0 11798 0 0 0 7258 29897 0 0 29897 37745 0.73

2 Paper1 5479 2 0 3061 923 3984 0 3984 0 20039 32462 5673 3664 9337 11798 4709 3480 8189 8284 0 10525 0 10525 11687 0.77

3 Paper1 5479 3 0 692 3292 3984 0 0 3984 6657 11573 261 3790 4051 11798 133 1968 2101 3834 0 0 1263 1263 3926 0.17

4 Paper1 5479 4 0 3238 746 3984 1171 2813 0 18925 30514 3873 3650 7523 11798 3256 3471 6727 8985 2491 7241 0 9732 11207 0.81

5 Paper1 5479 5 0 3217 767 3984 890 3094 0 20048 32253 5214 3659 8873 11798 4535 3475 8011 8937 1032 9272 0 10303 11833 0.81

6 Paper1 5479 6 0 2303 1681 3984 2655 0 1329 12183 16984 149 3728 3877 11798 86 1934 2020 7613 16536 0 1079 17615 26688 0.58

7 Paper1 5479 7 0 2293 1691 3984 2635 0 1349 12237 17081 238 3733 3971 11798 133 1934 2067 7613 16435 0 1189 17624 26728 0.58

8 Paper1 5479 8 0 2614 1370 3984 1147 1544 1293 17001 28655 3888 3697 7585 11798 3264 1919 5183 9051 2496 5527 956 8979 12056 0.66

9 Paper1 5479 9 0 2584 1400 3984 865 1810 1309 18094 30370 5233 3702 8935 11798 4497 1924 6421 8994 1027 7457 1053 9536 12787 0.65

10 Paper1 5479 10 0 3238 0 3238 485 2753 0 18767 30151 3727 3621 7348 9543 3256 3471 6727 8922 3056 8079 0 11135 11135 1

11 Paper1 5479 11 0 3217 0 3217 194 3023 0 19879 31838 5006 3626 8632 9463 4535 3475 8011 8842 1262 10418 0 11680 11680 1

12 Paper1 5479 12 0 2303 0 2303 1636 0 667 9332 12258 133 2089 2222 6241 86 1934 2020 5930 25623 0 1065 26688 26688 1

13 Paper1 5479 13 0 2293 0 2293 1616 0 677 9354 12300 180 2089 2269 6194 133 1934 2067 5883 25561 0 1168 26728 26728 1

14 Paper1 5479 14 0 2614 0 2614 484 1495 635 14758 24374 3739 2050 5789 7980 3264 1919 5183 7374 3778 7416 774 11967 11967 1

15 Paper1 5479 15 0 2584 0 2584 193 1749 642 15811 25985 4972 2054 7026 7853 4497 1924 6421 7247 1563 10189 851 12603 12603 1

16 Paper1 5479 16 0 3203 781 3984 1816 1523 645 16794 26191 3672 2237 5909 11798 3133 1847 4979 9051 7917 5372 543 13833 15993 0.8

NOTSET (0), MOBILEONLY (1), CLIENTSERVER (2), CLIENTSERVER_CLOUDLET (3), MCC_SPEEDUP (4), MCC_ENERGY (5), MEC_SPEEDUP (6), MEC_ENERGY (7),

CA_SPEEDUP (8), CA_ENERGY (9), MCC_SPEEDUP_OPTIMAL (10), MCC_ENERGY_OPTIMAL (11), MEC_SPEEDUP_OPTIMAL (12), MEC_ENERGY_OPTIMAL (13),

CA_SPEEDUP_OPTIMAL (14), CA_ENERGY_OPTIMAL (15), CA_SPEEDUP_GCA (16), CA_ENERGY_GCA (17), STAT (18); 6707

5574

Mobile Cloud Cloudlet Energy (kJ) Data transfered (GB)Time (sec.) Success rate (%) weniger LTE: 16,9% Energy (kJ) Data transfered (GB) Time (sec.) Success rate (%)

Mobile Only x 100% 0% 0% 4928 0,0 48,8 86% 0 Mobile Only 4928 0,0 48,8 86%

Cloud Only x 0% 100% 0% 7474 17,1 11,7 77% 0 Cloud Only 7474 17,1 11,7 77%

Cloudlet Only x 0% 0% 100% 2483 6,0 3,9 17% 0 weniger Energie: 14,5% Cloudlet Only 2483 6,0 3,9 17%

MCC Speedup x 33% 67% 0% 7018 12,8 11,9 67% 0 MCC Speedup 7018 12,8 11,9 67%

MEC Speedup x 67% 0% 33% 5516 5,7 41,0 68% 0 MEC Speedup 5516 5,7 41,0 68%

Cloudaware x 32% 35% 32% 6300 11,3 12,9 67% 0 Cloudaware 6300 11,3 12,9 67%

Cloudaware + GCAx 9% 66% 24% 6003 13,0 17,9 83% 0 Cloudaware + GCA 6003 13,0 17,9 83%

3,7683511

100%

33%

67%

32%

9%

100%

67%

35%

66%

100%

33% 32%
24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCA

Mobile Cloud Cloudlet

86%

77%

17%

67% 68% 67%

83% 48,8

11,7

3,9

11,9

41,0

12,9

17,9

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCA

Success rate (%) Time (sec.)

0,0

17,1

6,0

12,8

5,7

11,3

13,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCA

Data transfered (GB)

4928

7474

2483

7018

5516

6300
6003

0

1000

2000

3000

4000

5000

6000

7000

8000

Mobile Only Cloud Only Cloudlet Only MCC Speedup MEC Speedup Cloudaware Cloudaware +
GCA

Energy (kJ)

Fig. 4. Success rates and execution times

to the mobile device with a higher priority. The offloading
decision is furthermore influenced by choosing the alternative
with the minimum invocation time and if equal the lowest
energy consumption.

Description of evaluated scenarios: Mobile Only: All
tasks are being executed on the mobile device, the success
rate is 86% as an empty battery state prevented to execute all
tasks. Cloud Only and Cloudlet Only: All tasks are being
executed on the respective surrogate. MCC Speedup and
MEC Speedup: Tasks are being assigned to the respective
surrogate or the mobile device based on the aforementioned
scheduling strategy. CloudAware: Tasks are being assigned to
the the cloud, the cloudlet or the mobile device based on the
aforementioned scheduling strategy. CloudAware supported
by GCA: Same as CloudAware but the context manager of
the CloudAware middleware provides predictions about the
probability for a specific task to be successfully executed
on a surrogate and furthermore predicts the expected time to
execute. This information is used to decide about the offloading
target.

TABLE I. SIMULATION RESULTS

Energy
(kJ)

Transfer
(GB)

Time
(s)

Success
(%)

Mobile Only 4928 0,0 48,8 86
Cloud Only 7474 17,1 11,7 77
Cloudlet Only 2483 6,0 3,9 17
MCC Speedup 7018 12,8 11,9 67
MEC Speedup 5516 5,7 41,0 68
CloudAware 6300 11,3 12,9 67
CloudAware
+ GCA 6003 13,0 17,9 83

Discussion: Table 1 reflects the results of our simulation,
together with Figure 3 and 4 it can be seen that already
the baseline version of CloudAware provides an speedup of
276% while executing 67% of the tasks. Using the GCA-
supported version of CloudAware further reduces the average
energy consumption about 15% while it is the only scenario
maintaining a similar success rate (83 %) compared with local
execution.

VI. CONCLUSION

Despite context-awareness in mobile middleware being a
well-investigated feature, available solutions are often domain
specific. Furthermore, the requirement for additional configura-
tion prevents their immediate use in the domain of MEC where
a quick, efficient and dynamic context-adaptation is necessary
in order to even anticipate future context scenarios that are
unforeseeable by the developer.

Consequently, we presented CloudAware as a holistic ap-
proach to bond computation offloading and context adapta-
tion, where we combine the requirements and benefits of
mobile clouds together with the broader and more generic
capabilities of mobile middleware, while relying on a strictly
generic model and employing compositional adaptation en-
abling a highly automated adaptation process. We evaluated
the CloudAware mobile middleware based on a real world
smartphone application and realistic context data provided by
the Nokia MDC dataset and demonstrated that this scenario
can benefit to a considerable degree from anticipation of future
context states. While a plethora of work on designing context
aware mobile services exists, the goal of this paper was the
demonstration of a generic approach to support the most
relevant mobile-cloud-interation scenarios through context-
adaptation.

Acknowledgment: Parts of the research in this paper used
the MDC Database made available by Idiap Research Institute.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wireless Comm.
and Mobile Computing, vol. 13, no. 18, pp. 1587–1611, 2011.

[2] Cisco Systems Inc, “Fog computing, ecosystem, architecture and
applications - research at cisco,” http://research.cisco.com/research\
#rfp-2013078, 2013, accessed 05.04.2016.

[3] ETSI, “Mobile edge computing,” http://www.etsi.org/
technologies-clusters/technologies/mobile-edge-computing, 2015,
accessed 05.04.2016.

[4] G. Orsini, D. Bade, and W. Lamersdorf, “Computing at the mobile edge:
Designing elastic android applications for computation offloading,” in
8th Joint IFIP Wireless and Mobile Networking Conference (WMNC).
IEEE Explore Washington/DC, USA, 10 2015, p. 8.

[5] Cisco Systems Inc., “Cisco iox,” https://developer.cisco.com/site/iox/,
accessed 03.06.2015.

[6] M. Satyanarayanan, “Pervasive computing: vision and challenges,”
Personal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.

[7] R. Laddaga and P. Robertson, “Self adaptive software: A position
paper,” in SELF-STAR: International Workshop on Self-* Properties
in Complex Information Systems, vol. 31. Citeseer, 2004, p. 19.

[8] K. Kakousis, N. Paspallis, and G. A. Papadopoulos, “A survey of
software adaptation in mobile and ubiquitous computing,” Enterprise
Information Systems, vol. 4, no. 4, pp. 355–389, 2010.

[9] K. Geihs, “Selbst-adaptive software,” Informatik-Spektrum, vol. 31,
no. 2, pp. 133–145, 2008.

[10] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng,
“Composing adaptive software,” Computer, 2004.

[11] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in
Workshop Proceedings, 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
ECOOP’97Object-oriented programming. Springer, 1997.

[13] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,
“A comparison of context-oriented programming languages,” in Inter-
national Workshop on Context-Oriented Programming. ACM, 2009.

[14] D. Preuveneers and Y. Berbers, “Towards context-aware and resource-
driven self-adaptation for mobile handheld applications,” in Proceedings
of the 2007 ACM symposium on Applied computing. ACM, 2007.

[15] M. Mikalsen, N. Paspallis, J. Floch, E. Stav, G. A. Papadopoulos,
and A. Chimaris, “Distributed context management in a mobility and
adaptation enabling middleware (madam),” in Proceedings of the 2006
ACM symposium on Applied computing. ACM, 2006, pp. 733–734.

[16] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,
A. Mamelli, and U. Scholz, “Music: Middleware support for self-
adaptation in ubiquitous and service-oriented environments,” in Soft-
ware engineering for self-adaptive systems. Springer, 2009.

[17] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
“Middleware for distributed context-aware systems,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE.
Springer, 2005, pp. 846–863.

[18] T. Gu, H. K. Pung, and D. Q. Zhang, “A middleware for building
context-aware mobile services,” in Vehicular Technology Conference,
2004. VTC 2004-Spring. 2004 IEEE 59th, vol. 5. IEEE, 2004.

[19] E. J. Wei and A. T. Chan, “Campus: A middleware for automated
context-aware adaptation decision making at run time,” Pervasive and
Mobile Computing, vol. 9, no. 1, pp. 35–56, 2013.

[20] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[21] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in Proceedings of
the 6. European Conference on Computer Systems, 2011, pp. 301–314.

[22] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[23] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012 Proceedings IEEE. IEEE,
2012, pp. 945–953.

[24] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a compu-
tation offloading framework for smartphones,” in Mobile Computing,
Applications, and Services. Springer, 2010, pp. 59–79.

[25] C. Shi, P. Pandurangan, K. Ni, J. Yang, M. Ammar, M. Naik, and
E. Zegura, “IC-Cloud: Computation offloading to an intermittently-
connected cloud,” Georgia Institute of Technology, Tech. Rep. GT-CS-
13-01, 2013.

[26] F. Berg, F. Dürr, and K. Rothermel, “Optimal predictive code off-
loading,” in Proceedings of the 11th International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, 2014.

[27] A. Pokahr and L. Braubach, “The active components approach for
distributed systems development,” International Journal of Parallel,
Emergent and Distributed Systems, 2013.

[28] G. Orsini, D. Bade, and W. Lamersdorf, “Cloudaware: Towards context-
adaptive mobile cloud computing,” in IFIP/IEEE IM 2015: 7th Intern.
Workshop on Management of the Future Internet (ManFI), 2015.

[29] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet,
Do, Trinh Minh Tri, O. Dousse, J. Eberle, and M. Miettinen, “From
big smartphone data to worldwide research: The mobile data challenge,”
Pervasive and Mobile Computing, vol. 9, no. 6, pp. 752–771, 2013.

[30] G. Orsini, D. Bade, and W. Lamersdorf, “Generic context adaptation
for mobile cloud computing environments,” in Proceedings of The 13th
International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2016), ser. Procedia Computer Science. Elsevier Science,
8 2016.

