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Abstract

Markets for mobile applications offer myriads of apps ranging from simple to quite demanding ones. The latter are on the rise
since every new generation of smartphones is equipped with more resources (CPU, memory, bandwidth, energy) to even allow
resource-demanding services like speech- or face recognition to be executed locally on a device. But compared to their stationary
counterparts, mobile devices remain comparatively limited in terms of resources. Because of this, current approaches aim at
extending mobile device capabilities with computation and storage resources offered by cloud services or other nearby devices.
This paradigm, known as Mobile Cloud Computing (MCC), is challenged by the dynamically changing context of mobile devices,
which developers are required to take into account to decide, e.g., which application parts are when to offload. To rise to such
and similar challenges we introduce the concept of Generic Context Adaptation (GCA), a data mining process that facilitates the
adaptation of (mobile) applications to their current and future context. Moreover, we evaluate our approach with real usage data
provided by the Nokia Mobile Data Challenge (MDC) as well as with CloudAware, a context-adaptive mobile middleware for
MCC that supports automated context-aware self-adaptation techniques.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Throughout the last decade, mobile devices became constant companions allowing to access information and ser-
vices anytime and anywhere. Due to the ongoing miniaturization and cost-reduction of constituents, these devices are
nowadays powerful enough to support lots of our everyday routines. Along with that trend, vendors like Google, Ap-
ple, and Microsoft built up marketplaces to easily distribute any kind of application to further extend the possibilities
of such devices. The users in turn got accustomed, demand for even more sophisticated applications and are willing
to invest in even more feature-rich and powerful devices, leading to a positive spiral of supply and demand in terms
of mobile computation power at hands that requires mobile devices.
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The mentioned situation has led to an increasing demand for a system support that is able to exploit the potentials
of spontaneous interaction and therefore needs to be able to dynamically adapt to the quickly and constantly chang-
ing context of mobile ad-hoc scenarios. At present, many of the proposed solutions provide only limited context-
awareness or just specific prediction capabilities that moreover often require configuration by the developers. Conse-
quently, we present the concept of Generic Context Adaptation (GCA), where we combine context awareness features
with machine learning to serve as a prediction engine for arbitrary context attributes in mobile environments. In this
way, more generic and flexible scenarios that go beyond than just adaptation to the current context but to a future
context become possible. The contributions in this paper can be summarized as follows:

• The concept of the GCA process that is able to predict arbitrary context attributes to anticipate the quickly
changing context of mobile applications.
• A simulation of the developed GCA process that is based on realistic context information provided by the Nokia

Mobile Data Challenge (MDC) campaign.
• An evalulation of the GCA process in a Mobile Cloud Computing (MCC) offloading scenario for image pro-

cessing.

The remainder of this paper is structured as follows: Section 2 introduces the foundations of context awareness and
MCC. Afterwards, Section 3 describes typical application scenarios, whose general requirements are matched with
the related work, presented in Section 4. Subsequently, the concept of GCA is presented and evaluated in Section 5.
At the end, we summarize our findings and give prospects for future work in Section 6.

2. Background

In this section we will describe the concept of MCC and context awareness being the two main foundations for the
remainder of our work.

2.1. Mobile Cloud Computing and related Paradigms

MCC tries to weaken the restrictions of mobile applications by offering centralized resources to augment mobile
devices. According to1 it is defined as the integration of cloud computing into the mobile environment to over-
come obstacles related to performance (e.g., battery life, storage and bandwidth), environment (e.g., heterogeneity,
scalability and availability), and security (e.g., reliability and privacy). We agree with this definition, extending the
consideration of environmental restrictions to the more general problem of context adaptation. An early definition
mentioned in the context of MCC which especially covers the aspect of mobility is the term cyber foraging. Coined
by Satyanarayanan in 20012 it is described as: ”...construed as ’living off the land’, [...] The idea is to dynamically
augment the computing resources of a wireless mobile computer by exploiting wired hardware infrastructure.”. Intro-
ducing the concept of cloudlets as an intermediate layer between mobile devices and cloud resources, cyber foraging
is expected to further improve latency and execution speed. A similar, but more recent definition that is more focused
on the edges of a network is the so-called (Mobile) Edge Computing. As an evolution to mostly centralized resource
augmentation strategies like MCC, mobile edge computing (MEC) or simply egde computing moves further in terms
of decentralization. MEC tries to move the major part of remote operations from central resources directly into the
surrounding infrastructure and so includes the logical extremes of a network. To do so, it replicates parts of an appli-
cation’s business logic onto nearby devices. Coined in 2004 by Akamai3 it was first used to describe the topology of
their content delivery networks that was used to cache often-requested contents at the logical edges of the network, but
today the definition is used to provide more complex services by using cloud computing principles in a pay-as-you-go
manner. Popular examples providing resource augmentation to increase the mobile devices computation power are
MAUI 4, CloneCloud 5 and ThinkAir 6.

2.2. Context Awareness:

According to Baldauf et al.7: ”Context-aware systems are able to adapt their operations to the current context
without explicit user intervention and thus aim at increasing usability and effectiveness by taking environmental
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context into account.”. To do so, they need to be able to monitor (context-) information about their internal and
external state. But as they often not only just monitor but react to a changing state, many context-aware applications
are as well self-adaptive8.

Although there exist several classifications for context-data, a common one is the differentiation between environ-
mental-, user- and resource context. Environmental context subsumes all perceived characteristics of the physical
environment like temperature, air quality, etc. The user context can be the user’s current destination and the device
context may contain information about the current battery level or the amount of available memory. Using this infor-
mation, context-aware systems are for example able to format the information to be presented to the user according
to the hardware and software features of the device (e.g., request a low-res video instead of a high-res one). Context-
aware systems can be implemented in many ways. For a survey about the most relevant context modelling approaches,
we refer to9.

3. Application Characteristics

To further illustrate the idea of MCC two application scenarios are exemplified in the following and serve as a base
for the evaluation presented in Section 5. Subsequently, the generalized main characteristic of MCC applications are
presented.

Machine Learning as a Service: If an application is able to forecast a user’s future activities, it can better adapt
its behavior to the current needs, e.g. defer tasks until appropriate resources are available. To do so, an application
must first learn about the user’s behavior and daily routines. Therefore, context data must be collected continuously
and be used to train prediction models. This not only involves quite huge amounts of data, but is also a computational
intensive task. Hence, the context data can be uploaded from the mobile device into the cloud where prediction models
are built or updated and only estimates of short term activity predictions are returned to the application afterwards.

Realtime Audio Fingerprinting: Modern smartphones are equipped with capabilities that allow their use as small
media libraries containing huge amounts of music and video files. Acoustic fingerprinting is one popular method to
identify songs using only short (and possibly noisy) fragments thereof. Suppose you are in a club, a really nice song
is playing and you want to know what song that is. You record a few seconds and calculate an acoustic fingerprint
which is broadcasted thereafter to all other smartphones nearby. On these devices the fingerprint is compared with the
music files in the local media library and if a match is found, the file or at least the meta-data is sent back to you.

Sensor Data Analysis: Myriads of sensors have already been woven into our everyday live. Often, these are
used to monitor certain conditions in their surrounding and communicate their observations to some kind of base
station which resides at the edge of the sensor network and acts as a gateway in order to e.g. further disseminate and
finally analyze the data. Typical scenarios include CCTV surveillance, environmental monitoring to detect wildfires,
tsunamis, earthquakes, etc. as well as crowd-sourced weather information. If all the raw observation data (e.g., the live
video stream) would be transfered to some central point of processing the required amount of bandwidth and central
processing capabilities would be extremely high. One solution is to reduce the amount of data as early as possible
(i.e. at the edge, see Figure 1) by using filters, aggregators or some kind of analysis techniques to infer higher-level
information. For example, instead of transmitting video streams from hundreds of surveillance cameras to a central
operating center, edge nodes could already perform a face recognition and only forward relevant information. This
way, the processing load is shifted to the edge right where the data originates from and valuable bandwidth in the rest
of the network is saved.

Sensors and 
Sensor Networks

Edge 
Node

Cloud Infrastructure

Fig. 1. Application Scenario: Edge Processing of Sensor Data
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4. Related Work

From the middleware perspective, research on context-aware software has mostly addressed mechanisms that best
support dynamic adaptation for specific use-cases. Early approaches in the field of self-adaptation were focused on the
integration of context handling and the applications’ business logic, whereas current solutions try to separate business
logic from the context awareness features, to allow both parts of the implementation to be handled and replaced
separately. Apart from some early approaches that explicitly handle the context some modularized approaches like
the Mobile Gaia10 have emerged, which provided raw sensor data to its applications.

Notable current approaches from the domain of context-aware mobile middleware have been presented by Preuve-
neers and Barbers11. They present a context-aware middleware for mobile devices that is component-based and
self-adaptive. Nevertheless, there are no programming-level concepts that ease the development. Another promi-
nent approach that aims at providing a self-adaptive middleware is presented in MADAM12, and later in MUSIC13,
applications are assembled by a component composition process and context awareness is achieved by exchanging
the components’ implementations with others having the same functional behavior. Still, adaptation rules need to be
defined by the developer (e.g. using annotations). Further well-known solutions include PACE14, SOCAM15 and
CAMPUS16 whereas the last one represents the most current approach of an automatized reasoning by using the
applications’ context. However, it can be concluded that in most context-aware systems, the adaptation logic of an ap-
plication is implemented at the time of development. Such an approach has limited flexibility and poses a high burden
for developers as it is almost impossible to foresee all conceivable context states, especially in mobile environments
with a quickly changing context.

Summarizing the previous findings, we conclude that several solutions have been proposed to contribute to the
fields of context adaptation. However, there is no ready-to-use solution, as none of the current solutions is able to
provide context adaptation capabilities on a broad range of context attributes. As a consequence, we present the
concept of Generic Context Adaptation, a holistic approach to tackle the challenges of both domains: computation
offloading and context adaptation through a generic context adaptation process.

5. Generic Context Adaptation

In January 2009, the Nokia Research Center Lausanne (NRC), the Idiap Research Institute, and the EPFL initiated
the creation of a large-scale mobile data research. This included the design and implementation of the Lausanne Data
Collection Campaign (LDCC), an effort to collect sensor data from smartphones created by almost 200 volunteers in
the Lake Geneva region over 18 months17. To our knowledge it is the largest dataset that contains information about
mobile devices as well as application usage statistics, which is why we chose the Nokia MDC dataset to derive the
following information as an input to a simulation of the prediction performance for several context attributes as well
as an evaluation of a previously presented MCC-offloading solution18:

• GSM/WiFi/Bluetooth state (on/off), discovered MAC addresses and GSM cells, signal strength of WiFi as well
as GSM cells, extended with our own measurements to get an assumption about the available bandwidth.
• General information about the mobile device itself: time since the last user interaction, silent mode switch

status, charging state, battery level, free memory.
• Date, time, location, calendar events, average and predicted remaining duration of stay at the current location.
• Reasoned attributes: remaining duration of stay at the same WiFi access point or GSM cell, user is at home/work,

traveling, moving, resting.
• Application usage data: The applications the user interacts with and the specific screens of these applications.

5.1. Generic Context Adaptation Process

The previously presented data serves as input to a data mining process called Generic Context Adaptation (GCA)
that is tailored to forecast any of the mentioned attributes by predicting it using the remaining provided attributes.
More formally, GCA represents a data mining process that provides three types of predictions:
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• A binary classifier (e.g. for predicting the future availability of a WiFi),
• a multi-class classifier (e.g. to predict a bandwidth range) and
• a regression mode to forecast real-valued attributes like the execution time of an offloaded task.

This way, historical data that has been collected by the mobile device can be used to forecast a future value of a
certain context attribute. To perform such a prediction the GCA process needs to be provided with the historical input
data. It is furthermore required to choose the context attribute to be predicted and the forecast horizons (the number
of time intervals to look ahead into the future) to initiate the learning phase. The resulting predictive model can then
directly be used to forecast the chosen context attribute. The data used in the GCA process is mainly the same as in
the MDC and is just converted to a representation that is suitable to be presented to machine learning algorithms.

5.1.1. General design decisions:
To be used together with a mobile middleware like CloudAware18, the GCA process is designed to be executed on a

mobile device. As the preprocessing is performed in SQL and the application of the data mining models is performed
in Java, the process is able to run on any (mobile) device that provides a Java virtual machine. Nevertheless, the train-
ing of the data mining models is computationally intensive and is currently intended to run on more powerful cloud
resources, whereupon the trained model is transferred to the mobile device, to be used for predictions. We currently
use an interval of five minutes to collect the required sensor data to not drain the battery too much. Furthermore, we
reduced the available preprocessing- and machine learning algorithms to provide a lightweight implementation of the
GCA process, that is able to run on mobile devices and hence is used for the evaluation presented in Section 5.2 and
5.3.

5.1.2. Preselection of suitable data mining algorithms:
During the selection of suitable algorithms we focused on classifiers and regression techniques that are robust to

outliers, already perform well even with little training data available and are ideally parameter free. For example, the
training of an artificial neural network is considered too heavyweight, both in terms of the runtime as well as in terms
of the amount of data that would be required. We picked the following algorithms, mainly based on their acceptable
runtime: k-Nearest Neighbor (k-NN), M5 decision trees, Naive Bayes, Logistic Regression, Support Vector Machines
as well as an adaptive boosting (AdaBoost) approach for each of the learners.

5.1.3. The GCA model selection process:
To achieve both, a good prediction performance as well as a lightweight model (in terms of training time), the

model selection process and the training process are separated in GCA. The model selection process aims at finding
the right data mining algorithm, suitable hyperparameters (if applicable) and a suitable set of principal components
for a certain context attribute and for an appropriate amount of data required for training. It is not intended to run on
the mobile device as it performs the following tasks:

• The training data is filtered for missing attributes, which are then filled with the attributes’ average.
• A simple time series prediction for the prediction target is performed and added to the feature set.
• To reduce the runtime of subsequent steps a principal component analysis (PCA) is applied.
• Training and test sets are split via linear sampling while the shares are 80% training- and 20% test-set.
• A preselection of the principal components is performed (adding features iteratively), as some of the chosen

algorithms perform better with only the most relevant principal components.
• Where applicable, a parameter optimization is performed and the parameters are saved for the later training.
• Each of the learners is trained and its prediction accuracy, the hyperparameters, the input attributes used and the

amount of data available for training are saved to a database.

5.1.4. The GCA training process:
With the information from the model selection process about which learner has the best performance for a certain

amount of data, the GCA training process now builds the requested prediction models. The training process performs
the same preprocessing as the model selection process, but then selects the hyperparameters, input attributes and the
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Fig. 2. Nokia MDC data characteristics (top) and evaluation of the prediction performance (bottom)

information about which learner achieved the best performance from the database. This configuration is then trained
with all available data. As a classification performance criterion we chose the F1-score, as the accuracy score is often
uninformative in unbalanced sample sets. As a regression performance criterion we chose the mean absolute deviation
(MAD) as the cost of a false prediction is considered equal for over- and for underestimation of the predicted target.

5.2. Evaluation with the Nokia MDC dataset

The top row diagrams in Figure 2 show that many of the discovered patterns in a mobile device’s context follow
time- or location-dependent patterns, hence adding an extensive modeling of time and location and even providing an
estimation about when the user is expected to leave his current location highly improved the forecasting performance,
shown in the bottom row of Figure 2. Here it can be seen that for binary classifications (left diagram) a good F1 score
is achieved that slowly decreases for wider prediction horizons. The same holds for the regression performance shown
in the right diagram.

5.3. Evaluation with the CloudAware Mobile Middleware

As a second evaluation scenario we chose CloudAware18, an MCC/MEC offloading solution which differs from
previous or similar approaches in the domain of MCC and context-adaptive mobile middleware by its primary de-
sign goal to support ad-hoc and short-time interaction with not only centralized resources, but also nearby devices.
How CloudAware faces these restrictions and which general assumptions motivate specific design decisions has been
described in previous work18 while the focus of this work are the results that have been achieved by employing the
concept of GCA to improve CloudAware’s offloading decision, i.e. when will offloading be beneficial considering
the predicted future context. The evaluation is performed by picking users that provided data for at least 18 months
from the Nokia MDC dataset and by using the provided context attributes to design an event-based simulation that
considers the connectivity (i.e. latency, intermittent connectivity and round trip times) of a mobile device as well
as the battery drain, charging state, the limited computation power of a mobile device as well as the energy that is
required to compute and to send or receive a specific amount of data via a specific interface (WiFi or GSM). The
developed sample application applies different image filters to pictures taken with a smartphone’s camera. It produces
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20 different types of tasks. For each task the execution time, its variance, as well as input and output sizes (i.e. the
amount of data that needs to be transferred in case of an offloading) have been measured and linked to real application
events, that have been recorded in the MDC dataset.

Simulation of the infrastructure: The used infrastructure consists of a Samsung Galaxy S5, representing the
mobile device. The devices battery level found in the MDC dataset is considered a baseline, while the prototyped
sample application generates an additional battery drain, therefore all tasks could only be successfully executed if the
mobile device would be connected to an energy source at all times. The cloud server is simulated by measurements
from and to a virtual server running at a german cloud service provider. To reflect the MEC scenario we furthermore
assume cloudlets with the performance of an up-to-date desktop computer to be available at the three most frequently
visited locations of each user. Furthermore, due to their limited resources, these cloudlets are assumed to be overloaded
at certain times of the day, resulting in longer execution times or even timeouts that lead to unsuccessful offloading.

Scheduling strategy and optimization goal: For each of the of the offloadable tasks, it is decided whether to
offload this task to a cloud-server or a cloudlet by predicting its probability to be executed successfully, meaning that
the result is returned to the mobile device. Therefore we consider all tasks equally important and therefore execute
them by their invocation time, with the exception that already computed tasks may return to the mobile device with
a higher priority. The offloading decision is furthermore influenced by choosing the alternative with the minimum
invocation time and if equal the lowest energy consumption. We defined seven different scenarios which differ in the
used offloading strategy:

• Mobile Only: All tasks are being executed on the mobile device, the success rate is 86% as an empty battery
state prevented to execute all tasks.
• Cloud Only and Cloudlet Only: All tasks are being executed on the respective surrogate.
• MCC Speedup and MEC Speedup: Tasks are being assigned to the respective surrogate or the mobile device

based on the aforementioned scheduling strategy.
• CloudAware: Tasks are being assigned to the cloud, the cloudlet or the mobile device based on the aforemen-

tioned scheduling strategy.
• CloudAware supported by GCA: Same as CloudAware but the context manager of the CloudAware middle-

ware provides predictions about the probability for a specific task to be successfully executed on a surrogate
and furthermore predicts the time to execute. This information is used to decide about the offloading target.

Evaluation: For the evaluation of the trained models we therefore perform a round-based training with a step-size
of a week (we assume a weekly re-training of the models sufficient as it depicts a good balance between the availability
of a significant amount of new data and the up-to-dateness of the prediction model). Figure 3 reflects the results of
our simulation. It can be seen that already the baseline version of CloudAware provides an speedup of 276% while
executing 67% of the tasks. Using the GCA-supported version of CloudAware further reduces the average energy
consumption about 15% while it is the only scenario maintaining a similar success rate (83 %) compared with local
execution. To summarize, it can be concluded that it is often not beneficial to just rely on past execution statistics and
that the use of machine learning can provide decision support in context-dependent offloading tasks.
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6. Conclusion

Augmenting the resources of mobile handheld devices can significantly improve their usability in areas such as
health care, mobile learning, entertainment, and daily routine. Nevertheless, this type of augmentation can only be
achieved by proper context adaptation and besides several efforts have already been directed towards context aware-
ness in mobile middleware, the available/surveyed solutions are often domain-specific. Furthermore, the requirement
for additional configuration prevents their immediate use in the domain of MEC where a quick, efficient and dynamic
context-adaptation is necessary in order to even anticipate future context scenarios.

While there exists lots of work on designing context-aware mobile services that are able to predict specific context
attributes it was the purpose of this paper to present a completely generic support for relevant mobile cloud interaction
scenarios through context adaptation. Furthermore, it is often difficult to integrate context adaption features into
applications as it is complex to achieve good context predictions for a multitude of configurations, devices and context
states that cannot be foreseen by the developers.

The presented approach of Generic Context Adaption provides a hands-free solution for developers to allow context
adaption without having to deal with context at all, but leaving the possibility to do so. Apart from basic services like
link- and connectivity prediction the presented approach is able to predict arbitrary context attributes that are time- and
location-dependent or correlate with other monitored context features. We evaluated the presented concept based on
a real-world smartphone application and realistic context data provided by the Nokia MDC dataset and demonstrated
that this scenario can benefit to a considerable degree from anticipation of future context states.

Acknowledgment: Parts of the research in this paper used the MDC Database made available by Idiap Research
Institute, Switzerland and owned by Nokia.
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