DEJAY: CONCEPTS FOR A DISTRIBUTED JAVA

MARKO BOGER, FRANK WIENBERG,

WINFRIED LAMERSDORF

Hamburg University - Department of Computer Science
Distributed Systems Group

Vogt-Kolln-Strasse 30, 22527 Hamburg

{boger, wienberg, lamersd } @informatik.uni-hamburg.de

Abstract

In the development of distributed programs two different concepts have to be consid-
ered, each being quite complex even on its own: concurrency and distribution. Both
are supported by Java, yet are treated with completely different mechanisms, although
stmilar problems like synchronization and communication need to be addressed. This pa-
per presents Dejay, a programming language based on Java that unifies concurrency and
distribution into the single mechanism of virtual processors. This allows a considerable
simplification for the development of distributed or concurrent programs and makes the
transition from a local to a distributed environment seamless.

Keywords: Distribution, Concurrency, Java

1. INTRODUCTION

The most popular implementation language used for distributed systems is Java. Com-
pared to other languages like C++ it simplifies the development for a distributed envi-
ronment by supporting important mechanisms for concurrency and distribution. But on
the other hand, concurrency and distribution are dealt with by using very distinct and
unrelated mechanisms: Threads are only used to express concurrency on a single machine,
but do not allow to express concurrency between remote machines. To deal with objects
on remote machines, though, Java offers RMI, that transparently hides distribution. But
it is not related to Java’s concurrency mechanism. As a consequence, Java seems to be
well suited and is indeed heavily used for applet and client/server style programming,
where the distinction between distribution and concurrency is very clear.

In distributed applications beyond client/server architectures though, objects may
need to migrate from one place to another. Then the difference between remote access
and concurrent execution becomes fuzzy. Java neither allows for migration of objects nor
is it prepared to deal with this relationship between concurrency and distribution. The
Java community is so far stuck with client/server style programming. Concepts better
suited for distribution are needed. As a key to achieve this, the paper proposes to accept
the challenges of concurrency and distribution by unifying them into a single concept.

Concider Dijkstra’s famous example of the five dining philosophers. In concurrent
programming each can be represented by a thread, all executing on the same machine.
If, on the other hand, each of the philosophers were implemented on a different machine,
socket communication, RMI or CORBA-like architectures could be used to support the

coordination of the philosophers’ meal. Starting from any of these implementation pos-
sibilities though, a transition to a different one would result in a complete rewrite. In a
system in which the philosophers could migrate from one node to another, the difference
between distribution and concurrency could vanish. For example, all five philosophers
could start out on one machine, executing concurrently, and then be migrated each to
a different machine at an arbitrary point in time, now executing distributedly. Then a
dining philosopher program could be written once and be executed either on one machine,
all philosophers executing concurrently, or distributed over several machines, one philoso-
pher per machine, or as a mixture of both, or even change at runtime by migrating the
philosophers from one machine to another, always using the same implementation. By
using the proposed mechanism for migration, the concurrent and distributed solutions
become unified.

We introduce an extension to Java called Dejay in section 2. We start by presenting
the conceptual background of Virtual Processors and continue with their creation, the
distinction between local and remote references, and migration and use for concurrency
of Virtual Processors. The section ends with a small example. Finally, some comments
on the relation to other projects (section 3) as well as a conclusion (section 4) are given.

2. DEJAY - A LANGUAGE FOR DISTRIBUTION

The following section presents a language called Dejay. It aims at simplifying the model-
ing, development and the programming of distributed systems and allows the execution
in an adequate concurrent and distributed way. Dejay is an enhancement of Java so
that the syntax of Dejay is very similar to it. In fact, in case of single-threaded non-
distributed applications, Dejay is identical to Java. But for multi-threaded or distributed
applications, Dejay simplifies Java: the threading mechanism of Java as well as the re-
mote method invocation mechanism RMI have completely been replaced and all keywords
concerning threads are not needed in Dejay. This reduces the complexity of the language
considerably. Instead of these, Dejay introduces the concept of Virtual Processors.

2.1. Virtual Processors

A Virtual Processor can be seen as an abstraction of a single-threaded physical processor
that controls objects in its address space and sequentially executes methods on these. The
advantage of such an abstraction is that it is independent of its physical location, so that
a Virtual Processor can be migrated from one physical processor to another. A Virtual
Processor can maintain connections to other Virtual Processors in such a way that these
connections remain valid even if either of the Virtual Processors is migrated. This means
that the physical location of a Virtual Processor is transparent and does not need to be
known. The location of a Virtual Processor can even be changed. To express concurrency,
two or more Virtual Processors would be executing on one physical processor. To express
distribution, Virtual Processors would be running on different machines. But since the
physical location of a Virtual Processor is transparent, these two concepts are essentially

the same. Since their physical location can also be changed by migration, each of these
concepts can be transformed into the opposing one.

Every object is contained in exactly one Virtual Processor. A reference from an object
to another within the same Virtual Processor is an ordinary local reference as in regular
Java. Objects in different Virtual Processors can also be referenced, but in a different
way. These remote references are syntactically identical to local references but distinct
in their semantics. A call along such a remote reference retains the semantics of the
equivalent local call but responds to the different needs of distribution and remoteness.
We therefore introduce a distinct type for such a remote reference. This means that the
difference between a local and a remote reference is expressed in the type system. Such a
remote type is generated automatically by a compiler from an existing class.

A call using a remote reference is redirected to the remote Virtual Processor by a
proxy mechanism completely transparent to the programmer. There, the incoming call is
queued until all other execution in this processor has terminated in order to keep execution
strictly sequential within a Virtual Processor. It is then executed and the result is sent
back to the calling party. A remote call can be either synchronous or asynchronous. If it
is asynchronous the remote processor will execute this method in parallel to the calling
processor so that the calling one can continue with other tasks. This is the means to
express and create concurrency.

Virtual Processors are also the unit of migration. Objects with tight couplings can
be assigned to one processor, making this concept a grouping mechanism for objects
with the processor as the execution unit of each of the resulting components. When the
Virtual Processor is migrated all objects controlled by it migrate together with it. The
granularity of migration is determined by the number and complexity of contained objects
and can therefore be designed and controlled by the programmer. One can choose to either
instancitate exactly one object per Virtual Processor, so that the migration granularity
is as fine as possible, but all references are remote. Or one can put a whole application
into a single Virtual Processor, resulting in only local references, and move it as a whole.
Most typically one would put closely related objects or objects that need to be co-located
in the same Virtual Processor and keep loosely related object in different ones.

2.2. Creation of Virtual Processors

The most important new concept of Dejay is the Virtual Processor. It can be started
on the same or on some other remote machine that is reachable over an IP-network and,
since the implementation of Virtual Processors relies on Voyager [5], has a Voyager daemon
running on a known port. In the following we will use an abbreviation for the IP-address
and the port number of such a daemon, such as 134.100.11.185:8000, and simply call
this X, Y, or Z.

In Dejay, the equivalent to spawning off a new thread is to create a new Virtual
Processor on the same machine. This is simply done by creating an instance of the class
Processor. The preceding "Dj" is explained in the next section.

// create a processor on local machine X
DjProcessor pl = new DjProcessor();

A typical use of this would be within a chat- or http-server that needs to handle new
incoming requests in concurrently executing handler classes. In Java this would mean
spawning off a new thread, but while in Java this can only be done on the same machine,
in Dejay this can be done on either the same or on any remote machine. To create a
Virtual Processor remotely its constructor is simply passed the name of the intended
machine.

// create a processor on a remote machine Y
DjProcessor p2 = new DjProcessor(Y);

2.3. Local and Remote References

The second important concept is that of local and remote references. We believe that a
distinction between an object that is local and an object that is remote should be made
at all times for two reasons. Firstly, the time delay of a local and of a remote call can
differ in several orders of magnitudes so that it is important to differentiate between
local and remote calls already at design time. Secondly, remote calls require a different
treatment to local calls, such as extended exception handling or asynchronous message
passing. To make this distinction we extend the type system of Dejay in comparison to
Java: a reference to a local object has a different type than a reference to a remote object.
Of course these two types have a very similar signature and fulfil the same functionality,
but they should be distinguishable, expressing the difference at any time. In this way the
semantics of a remote call can be changed while maintaining the same syntax.

To differentiate these two types of references, the type names of remote references are
constructed from the usual local type name (to express the similarity) but preceded by the
letters "Dj" (to express the difference). For every class compiled by the Dejay compiler
djc, class definitions for both types are generated.

Objects on the local Virtual Processor are created and used in the usual Java way.
Assume for example an object a of class A instantiated in Virtual Porcessor p1, located
on machine X. To create an instance b of class B on the same Virtual Processor, the code
of class A may contain the following :

// create an object on same processor
B b = new BQ);
b.some_method () ;

The creation of instances on remote Virtual Processors is done with the Dj-type of a class.
It does not matter whether a Virtual Processor is on the same or on a different physical
machine, for this difference is abstracted away by Dejay (and the location can change at
runtime anyway as we will see later). To create an instance of, for example, C on a remote
processor on a (potentially) different physical machine one would write the following:

// create an object on processor p2
DjC ¢ = new DjC(p2);

Machine X Machine Y Machine Z Machine X Machine Y Machine Z

|
|
|
|
|
4
|
|
|

- — — - =

a) before migration b) after migration

] Objects 1 Machine ___7 Virtual Processor

—— Local Reference --—----# Remote Reference

Figure 1: Physical situation before and after migration

2.4. Migration

A Virtual Processor can be moved from one machine to another simply by calling a
moveTo() method. As an argument this method accepts an IP address, a host name or a
reference to another Virtual Processor. It then migrates the complete Virtual Processor
(and all contained objects) to the specified machine or the machine running the specified
Virtual Processor, respectively, and leaves a forwarder behind, so that calls to this Virtual
Processor will be redirected to the new location. If no argument is given, it moves to the
machine of the calling object. Calling the moveTo() method on an object contained in a
processor will result in the movement of the entire processor as well.

// move processor pl to machine Z, including its object a and b
pl.moveTo(Z);

//equivalent: move a to Z, including its processor pl and object b
a.moveTo(X);

Logically, the situation has not changed, all references remain valid. But physically, a
component has migrated at runtime as shown in figure 1. Migration becomes simple and
secure. Objects are always moved as a group, keeping related objects together avoiding
the extra step of analyzing an object’s closure. To the programmer, communication
between objects belonging to different processors is the same whether the processors reside
on the same or on different machines. But moving the processors to a local machine
reduces communication to local method calls, thus reducing communication overhead
tremendously.

2.5. Concurrency

The concept of processors is also used to express concurrency. Concurrency can be used
to perform actions in parallel, which requires several physical processors. Or it can be
used to control different threads of control on one physical processor, only simulating
parallelism, for example to have one thread calculating while another is waiting for input.

If two Virtual Processors run on the same machine, parallel execution is only simulated.
If one of them is moved to a different machine, real parallelism is exploited.

In Dejay, method calls can be synchronous or asynchronous, while in Java, method calls
are only synchronous. Calling a method on a remote object, i.e. using RMI, may result
in long waiting times, since the calling object is blocked until the result is returned. To
simulate asynchronous behavior in Java, a new thread needs to be spawned off to handle
the call and await the result. This makes asynchronous calls tedious and error-prone.
But a simple mechanism for asynchronous calls is vital for distributed programming,
since parallelism on remote machines can be achieved by asynchronous calls. Therefore,
Dejay incorporates and facilitates the use of asynchronous calls.

By default, Dejay executes calls to remote objects in a synchronous fashion. The
thread of control is passed to the remote processor hosting the called object and is handed
back when the call returns. However, it is also possible to issue an asynchronous call to
a remote object that is executed in parallel and therefore spawns off a new thread of
control. Such a new thread rejoins the original one when the result is returned. As a
third possibility, one-way method calls can be used to omit the rejoining phase if the
method’s result is not needed.

To distinguish between these cases, a method call can contain an additional parameter.
This parameter specifies whether the call is a synchronous, an asynchronous or a one-way
method call. The argument is a constant of type Dejay.base.Messenger object. Three
different types of messengers exist that determine the semantics of the call, respectively:

// synchronous, blocks until the result is returned
// this is the default and Dejay.SYNC can be omitted
resultl = c.some_method(Dejay.SYNC);

// asynchronous call, continues immediately
result2 = c.some_method(Dejay.ASYNC) ;

// one-way call, continues immediately, no rejoining of threads
c.some_method (Dejay.ONEWAY) ;

To rejoin an asynchronous call and to use the returned result, wait-by-necessity is used.
That means that an application would automatically block when the variable the re-
sult is assigned to is first used. To explicitly wait for the result to return, a method
Dejay.wait(result2) can be called. It can also be tested if a result has returned by
calling Dejay.poll(result2), which returns a boolean value so that the programmer
can decide whether the program should wait or continue.

2.6. An Example

To demonstrate Dejay, a small example is given. Consider the following class HelloWorld.

public class HelloWorld{
public void sayHello(String s) {
System.out.println("Hello "+s);

Syntactically this class differs in nothing from a conventional Java-class. It is simply com-
piled with the Dejay compiler djc to produce a distribution-, concurrency- and migration-
aware class.

This class can be instantiated like any other Java class. But to demonstrate Dejays
abilities, an instance shall be created remotely and called so that it will print Hello Ping
on the screen of a remote machine X. Then the object is migrated to a different machine
Y. Called again, it will put out Hello Pong on that machine.

public class Startup {
static void main(String[] args) {
//First, say hello on machine X
DjProcessor pl = new DjProcessor(X);
DjHelloWorld hello = new HelloWorld(pl);
hello.sayHello("Ping");

//Then, say hello on machine Y
hello.moveTo(Y);
hello.sayHello("Pong");

}

We believe that this is the shortest and, more importantly, simplest way to express this
kind of functionality in an object-oriented, Java-like fashion. The advantages are even
bigger if the application is more complex and a virtual processor contains more than one
object. Then whole components can easily be moved around a network with all local and
remote references automatically retained.

3. RELATED WORK

Many other projects exist that examine distribution or concurrency concerns for object
oriented languages. For a recent overview on concurrent OO-languages, see [2|. However,
it has repeatedly been discussed that Java, as is, is not very well suited for distribution [3].
Especially the current mechanism for remote method invocation has widely been criticized
|6]. Therefore there is a great interest in Java-based or Java-extending solutions that aim
at improving the distribution abilities of Java. A number of projects try to achieve this by
providing better libraries or frameworks for distributed communication (Voyager, iBus,
JavaGroups, Java ACE, Habanero, JSDT) or by modifying the existing RMI mechanism
(NinjaRMI, JavaParty, FarGo). Some projects develop languages similar to Java (Info-
spheres, Pizza, JavaParty) or provide a modified virtual machine (DJ, Pjama). Others
incorporate new communication paradigms like Agents (Voyager, Odyssey, Mole, Straum)
or tuple spaces (JavaSpaces, T'Spaces).

The concept of Virtual Processors is similar to suggestions by [4] proposed for the
programming language Eiffel. Meyer shows that this concept integrates well with object-
orientation, synchronization and inheritance, but has so far not provided an implemen-
tation. Also he proposes to introduce a new keyword to distinguish between remote and

local references, while we propose different types. While Meyer has to introduce addi-
tional rules when and how this keyword is needed or forbidden, our solution smoothly
integrates into the existing type mechanism so that the usual type conformance checking
makes additional rules obsolete.

4. (CONCLUSION

This paper shows that the development of distributed systems does not have to be as hard
as it is today, where matters of concurrency and of distribution have to be dealt with using
completely distinct techniques. An abstraction unifying concurrency and distribution into
a single concept and allowing for transparent object migration was described. Dejay, a
new programming language based on Java, that implements this concept, was presented.
Dejay expresses distribution, grouping and migration of objects and concurrency using
the concept of Virtual Processors. It assembles a set of closely related objects and defines
a granularity of migration. Within this, execution is sequential, while other Virtual Pro-
cessors execute concurrently to it. The unification of concurrency and distribution into
a single concept makes the development of distributed systems simpler as compared to
existing solutions like Java RMI, CORBA, or Voyager.

REFERENCES

[1] Marko Boger. Migrating objects in electronic commerce applications. In Proceedings
of Trends in Distributed Systems for Electronic Commerce, 1998.

[2] J. Briot, R. Guerraoui, and K.-P. Léhr. Concurrency, distribution and parallelism in
object-oriented programming, December 1997. Technical Report B-97-14, FU Berlin,
FB Mathematik und Informatik.

[3] G. Brose, K.-P. Lohr, and A. Spiegel. Java does not distribute. In Proceedings of
Technology of Object-Oriented Languages and Systems TOOLS FEurope 97, Paris,
1997.

[4] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, second edi-
tion, 1997.

[5] ObjectSpace. Voyager, 1999. www.objectspace.com.

[6] Michael Philippsen and Matthias Zenger. Javaparty - transparent remote objects in
java. Concurrency: Practice and Experience, 9(11), November 1996.

