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Abstract—Current centralized cloud datacenters provide scal-

able computation- and storage resources in a virtualized infras-
tructure and employ a use-based ”’pay-as-you-go” model. But
current mobile devices and their resource-hungry applications
(e.g., speech- or face recognition) demand for these resources on
the spot, though a mobile device’s intrinsic characteristic is its
limited availability of resources (e.g., CPU, storage, bandwidth,
energy). Thus, mobile cloud computing (MCC) was introduced
to overcome these limitations by transparently making accessible
the apparently infinite cloud resources to the mobile devices and
by allowing mobile applications to (elastically) expand into the
cloud. However, MCC often relies on a stable and fast connection
to the mobile devices’ surrogate in the cloud, which is a rare
case in mobile scenarios. Moreover, the increased latency and
the limited bandwidth prevent the use of real-time applications
like, e.g. cloud gaming.
Instead, mobile edge computing (MEC) or fog computing tries
to provide the necessary resources at the logical edge of the
network by including infrastructure components to create ad-
hoc mobile clouds. However, this approach requires the repli-
cation and management of the applications’ business logic in
an untrusted, unreliable and constantly changing environment.
Consequently, this paper presents a novel approach to allow
mobile app developers to easily benefit from the features of MEC.
In particular, we present a programming model and framework
that directly fit the common app developers’ mindset to design
elastic and scalable edge-based mobile applications.

I. INTRODUCTION

For the first time in 2011, smartphones overtook traditional
PCs in terms of shipped units [1]. Along with this trend, the
constantly increasing use of mobile devices has led to the
porting of resource-hungry desktop applications and the devel-
opment of mobile-first applications that make use of the mobile
devices’ special capabilities (e.g., augmented reality apps).
However, in addition to limited interaction capabilities, mobile
devices lack computational power, storage capacity, energy
and they suffer from a network interface with low bandwidth,
high latency and intermittent connectivity. To overcome these
obstacles and to allow even more sophisticated applications
being used by mobile users, external resources have to be
woven into the local execution of mobile applications [2].

But still, the limited bandwidth and the high latency
can have a significant impact on the usability and the user
experience. Hence, to ensure an acceptable performance of
widely distributed mobile applications, it is not always possible
to rely on centralized cloud resources as the single backend.
Fog computing [4], a term coined by Cisco Systems and also
known as (mobile) edge computing [5], mist computing [6]

978-0-7695-5662-8/15 $31.00 © 2015 IEEE
DOI 10.1109/WMNC.2015.10

112

Virtual Machine

Linux

Virtual Machine

| Hypervisor |

| CGR 1120 / CGR 1240 Hardware |

Fig. 1. Cisco IOx architecture [3]

or under the concept of cloudlets [7], relies on the assumption
that it is impractical or even impossible to always send all data
across the whole internet from the mobile devices to the cloud
service provider. Accordingly, fog computing aims at providing
resources like computation power, storage and business logic at
the logical edge of the network and through a more geographi-
cally distributed platform, rather than at centralized spots, as it
happens nowadays through e.g. Amazon AWS and Microsoft
Azure cloud datacenters. A prominent example is Cisco’s
IOx operating system that allows to run third-party virtual
machine-based services directly on infrastructure components
like routers (see. Fig. 1), located at the edge of the network.
This enables to offer new mobile services like mobile gaming
[8] or augmented reality [9] and further resource-demanding
applications on current mobile devices.

In previous works, we introduced our idea of a context-
adaptive MCC framework [10]. This paper contributes with the
extension of the framework with elasticity features that allow
the development of both, cloud- and edge-augmented mobile
applications, by focusing on a holistic approach between
computation offloading and context adaptation that eases the
development of MCC/MEC applications by offering a flexible
architecture that provides programming abstractions, multi-
level distribution transparency and context adaptation features
without modifying the underlying mobile operating system.

The remainder of this paper is structured as follows: Sec-
tion II further clarifies the different characteristics of mobile
cloud- and mobile edge computing and related paradigms. Af-
terwards, application characteristics are exemplified in Section
III whose general requirements and challenges are explained
on the background of related work in Section IV. Finally,
our CloudAware framework is presented in Section V. At the
end, we summarize our findings and give prospects for open
challenges in Section VI.
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II. BACKGROUND

In this chapter we will further refine the definition of the

different MCC paradigms, its synonyms, as well as related
concepts and outline their differences. Afterwards, a typical
MCC architecture for computation offloading and their main
components are presented.
As Figure 2 indicates, the several terms for MCC like fog
computing, mist computing and MEC have been coined to
describe a concept, in which devices with limited capabilities
incorporate the resources of other (nearby) devices. We con-
clude that the main reason for the multitude of terms relies on
the fact, that the edge of the network is not clearly defined.
Whether it is the mobile device itself, a proximate LTE base
station or the mobile network operators’ core network. In the
following we will differentiate the two most distant concepts,
which are the mobile cloud computing (MCC) and the (mobile)
edge computing (MEC), integrate the remaining definitions and
conclude with a definition of the currently most prominent
term: fog computing.
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Fig. 2. Different perceptions of (mobile) edge computing

A. Mobile Cloud Computing

Mobile cloud computing tries to push the boundaries of
mobile applications by offering centralized resources to aug-
ment mobile devices. According to [2] it is defined as the
integration of cloud computing into the mobile environment
to overcome obstacles related to performance (e.g., battery
life, storage and bandwidth), environment (e.g., heterogeneity,
scalability and availability), and security (e.g., reliability and
privacy).

While this first generation of cloud-augmented mobile
applications was highly domain-specific and relies on a stable
connection to specific cloud servers, recent work [11]-[14] has
aimed to tackle this problem and generalize this approach to
allow more mobile applications to participate in MCC without
having to deal with the specific details of the underlying
infrastructure. Here, instead of relying on conventional service
calls, MCC applications mostly adopt the concept of code
offloading by migrating certain parts (code and state) of a
mobile application into the infrastructure or onto other nearby
devices, so-called cloudlets (see Section I), and collecting the
results once they are computed. However, in current MCC so-
lutions the elasticity, i.e. the ability to integrate surrogates and
parallelize tasks, is often limited to a single specific surrogate.
Moreover, context adaptation features to handle the effects
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of intermittent connectivity and providing mechanisms for
disconnected operation are often not considered. The common
denominator of many approaches and research efforts in the
domain of MCC is offloading computations rather than data. In
the following we concentrate on computation offloading, too,
but not solely.

B. (Mobile) Edge Computing

As an evolution to mostly centralized resource augmenta-
tion strategies like MCC, mobile edge computing or simply
egde computing moves further in terms of decentralization.
While MCC was the first step of connecting mobile devices
with centralized resources, MEC advances and tries to move
the major part of remote operations from central resources
directly into the surrounding infrastructure and so includes the
logical extremes of a network. To do so, it replicates parts of
an application’s business logic onto nearby devices. Coined in
2004 by Akamai [15] it was first used to describe the topology
of their content delivery networks that was used to cache
often-requested contents at the logical edges of the network,
but today the definition is used to provide more complex
services by using cloud computing principles in a pay-as-you-
go manner. Current ready-to-market solutions include switches
like the Cisco IOx operating system [3] that already provides
computation and storage in virtual machines at the logical edge
of the network or the Nokia Siemens Networks’ intelligent
base stations [16] that allow the integration of lightweight
third-party software components that extend the base stations’
core functionalities with application-specific features.

To summarize, the benefits of edge computing are its idea
to move load from the centralized resources, but even more im-
portant to avoid bottlenecks and single points of failure. MEC
aims at reducing latency by shifting computational efforts from
the centralized cloud to the mobile edge. Hence, providing a
continuous availability and reducing the latency to allow real-
time applications like cloud gaming. From a topology point of
view it can be seen as an ad-hoc or peer-to-peer interaction
between devices, located close to each other in terms of
network metrics. A similar concept, to be located somewhere
between MCC and MEC is the so-called fog computing,
defined by [17] as: ”[...] a highly virtualized platform that
provides compute, storage, and networking services between
end devices and traditional cloud computing data centers,
typically, but not exclusively located at the edge of network.”

Introducing the concept of an intermediate layer between
mobile devices and cloud resources, MEC and fog computing
are expected to further improve latency and execution speed.
Even if both, fog computing and MEC might appear similar to
grid computing, the difference is that the distribution logic is
not explicitly woven into the specific application, but implicitly
handled by an underlying infrastructure layer. However, when-
ever computations need to be performed quickly and locally,
they are candidates for fog computing.

Both, fog computing and its even younger brother mist
computing, also coined by Cisco and located somewhere
between the fog and the edge, extend the classical client-server
architecture to a more peer-to-peer based approach, similar or
equal to MEC [18]. In the remainder of this paper, we will
refer to all of the mentioned concepts by MEC only.



III.  APPLICATION CHARACTERISTICS

To further illustrate the idea of MEC, a generalized appli-
cation scenario is exemplified and the main characteristic of
MEC applications are presented: The device the user interacts
with has resource constraints, but the tasks that should be
carried out require either computational power (and energy),
loads of data, network bandwidth or additional resources.
Depending on the context, the tasks can be offloaded to
surrogates at the network’s edge where they are processed and
results are finally sent back to the initiating device.

The primary objectives for using edge nodes as intermedi-
aries between mobile devices and clouds are:

e  Provide services or deliver content close to the user’s
access point (LTE or WiFi)

e  Process or filter large amounts of data before they are
transferred

e  Speed up geo-distributed applications like sensor net-
works

e Perform distributed large-scale analysis of real-time
data

e  Allow latency-sensitive applications like cloud gaming
and real-time video analytics

IV. RELATED WORK

Several solutions have been proposed for the challenges
of MEC. Most of them try to either see the problem as a
software engineering- or a networking problem, which is why
related work exists in several domains and will be classified
accordingly. Further related work can also be found in the
domains of mobility- and connectivity prediction like in mobile
ad-hoc networking (MANET) or vehicular ad-hoc networking
(VANET). For complete surveys, we refer to [18]-[22]. In
the following, we will focus the most promising and current
work only. Furthermore we omit emerging software-defined
networking concepts as they only allow to inject routing logic
into the network hardware, but no generic application logic.
According to [23], neither an elastic resource, nor a program-
ming model for general purpose applications is available.

As mentioned earlier, the development of MCC applica-
tions performing computation offloading, is often complex
and requires proper support to ease the development. Models
like inter-process communication, remote method invocation
or service invocation cannot be employed right away to the
domain of mobile cloud computing [24]. Classical MCC
aproaches like CloneCloud [12], MAUI [11], Thinkair [13]
and Cuckoo [14] have tried to solve this issue by focusing
on the offloading onto centralized surrogates, either on the
granularity of a thread (CloneCloud), a method (MAUI and
Thinkair) or a component (Cuckoo). Even if all of them have
showed that offloading can be beneficial in terms of speedup
or energy savings, this only holds for cases in which little
synchronization of a shared state between the mobile device
and the surrogate is required. As an evolution to the mentioned
solutions in the domain of classical MCC other solutions have
been proposed that take the effects of intermittent connectivity
into consideration, the most promising ones will be described
next:
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Serendipity [25] is a framework that is able to distribute
computation tasks among other nearby mobile devices to speed
up computation or to save energy. A mobile device may
execute tasks locally or remotely on available surrogates based
on the selected optimization criterion. Hereby, offloading is
planned, using different algorithms, depending on the current
reliability of the mobile network connection: In more stable
scenarios a control channel is used to coordinate the offloading
tasks, whereas, when the future connectivity cannot be esti-
mated, more fault-tolerant and robust mechanisms come into
play. Similarly, IC-Cloud [26] focuses on the challenge of
dynamically offloading computation tasks to surrogates, by
taking into consideration that the necessary code and data can
be delivered and the results received in time before the next
link failure is likely to happen. Its offloading algorithms are
designed to handle different levels of intermittent connectivity,
from those in which the connectivity is predictable to those
in which the next link failure cannot be foreseen. As an
evolution of the two aforementioned ones, COSMOS [27]
provides computation offloading as a generic service on the
Android platform that incorporates the different connectivity
states.

Similar, ToGo [28] has been proposed as a framework
that predicts the length of stays at certain WiFi hotspots to
perform what the authors call “preemptive offloading”. For
this purpose, a hidden Markov model is trained to predict the
probability of the remaining time that a user is connected to a
certain hotspot. Using this information, computation tasks are
offloaded, if the expected waiting period is less than remaining
connection time. Furthermore, the authors introduce a safe-
point concept between the surrogate and the mobile device
that allows to re-use partial results of the remote execution.
After a link failure, the mobile device uses the previously
received safe-point to continue execution. Another approach
is presented by [29], where one waits for a re-connection to
receive the results of offloading. But both solutions do not
appear to be optimal in terms of efficiency or speed gains.

A first approach, that is directly tailored to the domain of
fog computing, is Mobile Fog [23]. The authors propose a
high-level programming model that they envision for future
internet applications which are geospatially distributed, large-
scale, and latency-sensitive. They propose to address the spe-
cific challenges of heterogeneous devices by providing suitable
event handlers and an application programming interface.

But the last-mentioned problem is not only relevant in
the domain of fog computing, although it is pushed to an
extreme here, but has as well tried to be solved in related
domains like connectivity prediction and location prediction,
as the connectivity of a mobile device is most dependent on
its physical location. Two prominent approaches that focus
on the aspect of connectivity prediction are presented next:
BreadCrumbs [30] calculates the future connectivity to WiFi
hotspots based on a model of the environment. Recorded
information is used to generate user-based models which are
then applied to schedule network usage based on connectivity
forecasts. BreadCrumbs relies on the fingerprinting of hotspots
that is combined with GPS data to predict a mobile user’s
bandwidth. In Wiffler [31] a similar approach is employed
for the domain of VANETSs to impove the bandwidth and
reduce the 3G usage by offloading communication onto WiFi.



Here, the main problem is the extremely short duration of
each WiFi connection. Focusing the aspect of the location
prediction even further, in NextPlace [32] a non-linear method
is employed to predict the time and duration of a user’s next
visit to one of his significant places. Their method identifies
patterns in a users’ mobility history that are similar to his
recent movements in order to predict his behavior. Similar,
Anagnostopopulus et al. [33] employ supervised learning to
perform a classification of trajectories which is then used
to predict the future location of mobile users. PnLUM [34]
provides a soft classifier for predicting a user’s future location.
Instead of one complex model for capturing user mobility
patterns, the authors use multiple models, each focusing only
on a certain aspect of location prediction such as the likelihood
of location transitions.

Summarizing the previous findings, we conclude that sev-
eral solutions have been proposed to contribute to the field of
MEC by addressing the aforementioned requirements. How-
ever, there is no ready-to-use solution, as none of the current
solutions is able to address all requirements. As a consequence,
we present the architecture of the CloudAware framework, a
holistic approach to integrate the challenges of both domains:
computation offloading and context adaptation.

V. CLOUDAWARE

CloudAware differs from previous or similar approaches
in the domain of MEC by its primary design goal to support
ad-hoc and short-time interaction with not only centralized
resources but also nearby devices. This idea is extended by
the secondary design goal, which is to provide an uninterrupted
availability of the mobile application even if no surrogates are
available or the connection gets interrupted by using the mobile
device as a fallback. It remains the primary instance to hold
the mobile applications’ relevant state. To achieve this type of
spontaneous interaction, classical client/server solutions, ser-
vice composition/orchestration, or prominent MCC approaches
are often not suitable as they are not able to cope with the
requirements of the ad-hoc interaction or as they are not as
lightweight enough to meet the limited resources of a mobile
device. How CloudAware faces these restrictions and which
general assumptions motivate specific design decisions, will
be highlighted in the following.

A. Main Challenges and General Design Decisions

The Offloading Granularity: In our previous work [20]
we analyzed different categories of approaches that allow
computation offloading. Our findings regarding a suitable
offloading granularity for MEC scenarios are as follows: The
most promising MCC solutions can be broadly classified in
two categories with respect to their offloading granularity: The
first relies on the concept of virtual machines and provides
almost full execution transparency by moving either the thread
[12] or the method call [11] to a more powerful surrogate
in the cloud. The main benefit of these approaches is their
almost automatic offloading that requires only little or even
no modification of the mobile applications’ source code and
can hence be considered “hands-free”. But this high level of
distribution transparency bears several drawbacks, as often
higher synchronization efforts are necessary, both for the
initial setup of the heavyweight virtual machine image and to
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preserve a consistent state between the two devices. Moreover,
performance gains by the parallelization of tasks are often
not achievable when the developer’s expert knowledge is not
captured appropriately, which is also stated by Porras et al.
[24] and Flinn [35].

To capture the expert knowledge, the second category of
MCC solutions relies on a more explicit modeling of the
applications’ dependencies by providing conceptual building
blocks, e.g. components, to ease the partitioning and to paral-
lelize tasks. This way, an initially linear program can e.g. be
easily refactored to a number of parallel tasks [24]. With regard
to the aforementioned requirements of MEC, we chose self-
contained components as the offloading granularity, as they
have proven by Giurgiu et al. [36] and with pCloud [37] to
be a viable concept in scenarios with intermittent connectiv-
ity where a loose coupling with only little synchronization
efforts is required. Following this approach, object-oriented
programming still remains the first choice to develop mobile
applications and well integrates into the common development
process and hence the typical developer’s skills and mindset, as
they represent a well-known engineering paradigm. In contrast
to service orchestration approaches, this approach enables the
developer to just “write his code” as usual.

The Network Model: Mitigating the effects of intermit-
tent connectivity can either be seen as a networking or as
a software engineering problem. Even if there is a current
trend to virtualize networks and their services, providing
edge computing as a generic network service would require
large standardization efforts, but standards are currently not
available and early standardization efforts are just emerging
[5]. Moreover, employing MEC and its transparent execution
of networked applications is almost impossible without proper
kernel and networking layer support and access to it, but
network carriers and mobile telecom providers do not allow to
access this information. Furthermore, the TCP protocol is not
designed to support seamless handovers between intermittently
connected devices at the edge of the network. To foster the
practical relevance of CloudAware, our approach is based
on the end-to-end architecture between mobile devices and
surrogates and is independent from the internal architecture
of cellular networks. Therefore, the assumed network model
consists of a primary mobile device and a set of further mobile
as well as fixed nodes that compose a temporary network by
relying on different connections/protocols like LTE, Wifi or
Bluetooth.

Context Adaptation: The main challenge in MCC is
considered the offloading decision [35]. This problem is mainly
related to the availability of other devices that qualify as
surrogates. In MEC, this problem is further aggravated by the
fact that the number and type of available devices changes
frequently. Therefore, the offloading decision needs to incor-
porate various aspects, most important the mobility pattern of
the user and the access medium that is used to offload a task
as these are the main aspects that decide about the bandwidth
and latency to the available surrogates [38]. Therefore, one
of CloudAware’s main features is the connectivity prediction,
that enables the framework to decide whether the offloading
to a specific surrogate will be successful. Similar problems
like activity recognition or -prediction, connectivity- and link
quality estimation and mobility- and location prediction via



mobility models have been examined thoroughly, since current
mobile devices are able to acquire the applications’, devices’
and users’ context through their physical (e. g. GPS or Wifi
signal strength) and logical (e. g. call- and sms logs) sensors.
Nevertheless, many of these approaches require long training
phases, are not suitable for the limited resources of mobile
devices and most of them focus on either specific datasets, sen-
sors or algorithms, restricting their use to a rather limited set
of scenarios. In contrast, we aim to develop a generic process
to evaluate context information of different MEC applications
to improve their offloading decision. We especially try to cover
a broad range of scenarios and different subsets of available
sensors, supporting the offloading decision with connectivity
predictions even in situations suffering from the fact that only
little, vague or no information is available to predict the future
context.

Design Goals: Concluding the previous explanations and
resuming the general objectives of MEC applications that
have been worked out in Section II, the specific design goals
of CloudAware can be summarized by the following key
objectives:

e  Speed up computation through parallelization
e  Save energy or bandwidth by offloading computations

o Enable offloading for diverse mobility scenarios

This way, we are enabling (future) complex applications on
resource-constrained mobile devices by dynamically adapting
their execution to changing conditions in their physical and
logical environment.

B. Runtime Environment

CloudAware relies on the “active components” middleware
Jadex [39]. The active components paradigm, a combination
of agent-, service-, and component-oriented engineering per-
spectives, supports different ways to realize CloudAware’s
constitutional components. The enabling execution environ-
ment Jadex has been chosen because it ideally complies
with general requirements like distribution, concurrency and
non-functional aspects of CloudAware’s targeted application
scenarios. Moreover, the Jadex middleware runs on desktop
computers and servers as well as on a broad range of mobile
devices, including the Android platform.
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Fig. 3. CloudAware: Execution Platform and Architecture

Figure 3 depicts a bird’s eye view on the resulting execution
platform on mobile devices. As already mentioned, Jadex
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and hence CloudAware support the Android platform. While
Jadex runs in an Android process, the CloudAware components
are executed in several independent threads. Thereby, we
can easily distribute load on multiple processor cores, while
Jadex’s asynchronous way of execution prevents deadlocks. Fi-
nally, MCC applications designed for CloudAware are running
encapsulated in specialized CloudAware components, hence
developers may just follow an object-oriented approach to
implement their applications using the CloudAware API. In
the following, we first introduce the wrapper components types
that the developer has to deal with and afterwards detail the
main services that CloudAware relies on.

C. Component Types

Ideally, the developer would just need to implement the
business logic of his application and the underlying edge
infrastructure would take care of an ideal partitioning, distri-
bution, grouping, task assignment and scheduling. In reality,
this is hardly feasible and often beneficial to let the developer
group the business logic into self-contained components. This
is why we encourage the developer to limit the interaction
alternatives by a small rule set and three predefined component
types that address the most common requirements we identified
in existing sample applications:

The Stateless Component: Using Java-based components

has several advantages, because they are very lightweight,
easily deployable and because of the fact that they only
require a Java virtual machine to be executed. A stateless
(SL) component is mainly used for simple offloading tasks.
It is possible to hold duplicates on different surrogates and
decide, based on the specific offloading request and the current
connectivity metrics like bandwidth, latency and the expected
runtime together with a connectivity prediction for the specific
surrogate which instance to use.
The SL component is suitable whenever the same global state
can be recreated after a loss of connection by delegating the
last service call to another instance of the same component,
which is CloudAware’s error handling for SL service calls.
While implementing sample applications we found most of
the components being stateless and we argue that they should
be used whenever possible, as they allow a higher degree of
freedom in the offloading decision.

The Stateful Component: Stateful (SF) components can
be considered the special case of SL components. They come
into play when a state needs to be preserved over multiple
service calls. Here, a particular component type may either
exist multiple times or can be restricted to a single running
instance by a singleton-annotation. Depending on this anno-
tation, in case of a connection loss, one either waits for a
reconnection or the service call is redirected to another avail-
able copy. Therefore, SF singletons should be used carefully
or be restricted to run on the user’s primary mobile device
itself via the local-annotation so that executability is ensured
at all times.

Even if SF components are only created on surrogates which
are likely to be reliable and reachable (this information is
generated by the Context Manager, described later in this
chapter), a connection loss needs to be handled appropriately.
For SF components that implement the singleton pattern there
is a further requirement: As long-running tasks might result



in a scenario where the connectivity to the formerly well-
reachable SF component falls below a certain limit, a relo-
cation can be necessary. As a simple object synchronization
is not always possible (e.g., open database connections cannot
be serialized) and often not efficient as well (e.g., often not
every dependency needs to be transferred), the SF component
that implements the singleton pattern requires a migrate()-
method to be implemented to move the relevant state to a
new instance on a different surrogate. During transfer, the
CloudAware framework ensures that service calls are deferred.
This allows to implement a broad range of business logic that
can handle periods of disconnected operation without further
modification. The SF component can as well be used to share
a common state (e.g., shared information) among a set of
users or provide a decentralized management among its users
without a connection to the Internet (e.g., disaster recovery and
the use of mobile base stations).

The Data Access Object: The third component type is
the Data Access Object (DAO) that provides an efficient way
of virtualized access to the local resources (e.g. sensors or
storage) of the mobile device to even allow the offloading of
SL- and SF components that rely on specific dependencies or
capabilities of the mobile device.

D. CloudAware Components

The CloudAware framework as presented in Figure 3 con-
sists of a runtime environment providing several components
to allow optimized offloading decisions. Among these are a
Coordinator to provide synchronization, a Discovery Service,
a Context Manager providing a (future) connectivity status and
a Partitioner as well as a Solver in order to create optimal
offloading strategies. In the following, the main responsibilities
of the components will be described briefly:

Discovery Service: It is the purpose of the discovery
service to integrate the different interfaces (i.e. LTE, Wifi
or Bluetooth) by spanning an overlay network. This overlay
network is augmented with cost metrics like the current
connection quality (i.e. latency and bandwidth) and further
information about the available surrogates, their resources and
current workload.

Partitioner: Partitioning mainly requires to estimate which
parts of the global application state will need to be synchro-
nized during the offloading, before parts of a mobile service
can be executed on a surrogate. While some solutions rely
on strong synchronization between a mobile device and cloud
servers, others completely disregard this topic and leave it to
the developer. We believe that the solution lies somewhere in
between and that a good solution should combine the best of
the two, depending on the current context. Because of this, we
introduced the concept of self-contained wrapper components
(SL, SF, and DAO). But this just solves part of the problem, as
it remains the task of the Partitioner to decide about a grouping
of components, which is at runtime used by the Solver to
decide about the allocation strategy of components and the
redirection of service calls — based on the expected interaction
(e.g., method calls among each other and the amount of data
exchanged). This process happens during the first executions
and is repeated if the current measurements significantly devi-
ate from the initially measured averages. Using these metrics,
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it will be decided by the Solver which components should
reside on the same surrogate and how service calls should
be made to and among them. Furthermore, these cost metrics
help to decide whether to duplicate a shared application or
assign it to one partition. Hence, it is the task of the developer
to build self-contained units and let CloudAware group them
into partitions with high cohesion.

Solver: Now that there is a set of components, enhanced
by the Partitioner with metrics that indicate their interaction at
runtime, it is the task of the Solver to decide for each service
call which instances on what surrogates to use for offloading.
This happens by calculating the cost that is derived from one
of the following optimization targets: i) speed up computation,
ii) save energy, iii) save bandwidth, iv) low latency, or v) use
a balanced mode.

As mentioned in the design goals, it is CloudAware’s main
focus to support a broad range of mobility scenarios and
heterogeneous devices to act as surrogates. This requires to
design a robust and somehow elementary offloading logic,
keeping in mind that devices that participate in the MEC
scenario are constantly entering and leaving the temporary off-
loading space. To anticipate this aspect, complex dependencies
between the devices should be avoided while still maintaining a
high resource utilization. The topmost goal is therefore, to keep
the dependency graph that exists in the temporary network of
surrogates as small as possible with respect to the number of
nodes and edges in order to be robust to connectivity losses.
In CloudAware this task is implemented by the following
rule: A mobile device can connect to multiple surrogates, but
surrogates may only re-issue service calls if their connection
is significantly more stable than to the mobile device.

The quality of the offloading decision is mainly limited by
two factors: Solving an optimization problem that delivers the
optimal allocation strategy for components to surrogates and
the awareness about the current and future networks metrics.
But as service calls vary in their runtimes and data usage based
on the parameters passed with the service call, and as the
complete confidence about the future network topology and
metrics in mobile scenarios are unrealistic, trade-offs have to
be made. As complete confidence is certainly not available
anyway and solving an optimization problem on a mobile
device is a computationally intensive task itself, that can easily
overcompensate the expected savings [11], CloudAware uses
an efficient minimum-effort strategy that always considers the
expected savings by employing the following basic ruleset
based on the average runtime (the chosen boundaries reflect
the experiments with different sample applications and will be
subject to adjustments in our future work):

e runtime less than 30 secs.: simple re-execution of the
last successful offloading in terms of conformity to the
optimization goal

e runtime less than 5 mins.: offloading strategy based
on past execution metrics and reasonably up-to-date
connectivity prediction

e longer runtime: new connectivity prediction for the
timespan of the expected runtime and well-evaluated
offloading strategy (amount of state required to be
transfered)

This approach reflects the different gains, that result from



the dynamics of the application behavior and the fact that it is
not required to forecast a timespan that excesses the expected
runtime of the service call.

Context Manager: It is often argued that the consideration
of the quickly changing context of mobile applications has a
high potential on the applications service quality but requires
the application to become context-aware [2]. Especially, to
really benefit from their surrogates, MEC applications perform-
ing computation offloading need a certain awareness about the
availability of their surrogates. More precisely, it is necessary
for an MEC application to know about the connectivity and
link quality to their surrogates, requiring information about the
current and a prediction about the future connectivity states to
them. But the classification of surrogates changes quite often,
even during a single method call. This is why the Context Man-
ager periodically re-evaluates the current quality of a surrogate.
This re-evaluation poses a significant challenge, as in terms of
providing a qualified decision whether and where to offload,
a forecast of the device’s connectivity and the bandwidth is
required. Forecasting the mobile device’s connectivity itself is
complicated as it not only relies on the physical location but on
many other factors, as for example other nearby devices using
the shared medium WiFi as well. To perform this prediction
we are currently developing a generic forecasting process that
is able to cover a broad range of scenarios, even those where
only limited information is available. We currently assume the
following information, including a reasonably long history, to
be relevant in this case:

e date, time, location, calendar events, charging y/n

e  LTE/WiFi/Bluetooth on/off: bandwidth, ping, signal
strength, discovered MAC addresses and GSM cells

e reasoned attributes: remaining time to stay at the same
location, at the same WiFi AP or GSM cell, user is at
home/work, traveling, moving, resting

This information is then used to predict how well a
surrogate will be reachable, which is, among other things,
the decision criterion whether it qualifies for the placement
of components and the invocation of service calls. As soon
as the connectivity is likely to change, this information needs
to be re-evaluated. Deciding about how often to perform this
energy-wise expensive task, is part of our future work.

Coordinator: Finally, it is the task of the Coordinator to
merge available information regarding the available surrogates,
the connectivity prediction and the Solver to execute a service
call, based on the chosen optimization target (e.g., saving
energy). Furthermore, the Coordinator is responsible for the
error management. In situations where the offloading is likely
to be unsuccessful or excesses the requested service level
(e.g. “speed up computation”) the service call is redirected to
another surrogate or executed locally. Whereas on other service
levels (e.g. “save energy”) the amount of required energy is
used to calculate the value (i.e. in terms of energy) of the result
on the remote surrogate and whether it is beneficial to wait for
a reconnect to receive the result. Additionally, the Coordinator
takes care of the privacy issues by just allowing service calls
to remote components that do not carry the “’local”-annotation.
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E. Use Case

A future application scenario can be envisioned by Jadex
platforms that run parallel to other virtual machines on nearby
devices to enable cloud gaming or other resource-intensive
tasks. In practice, this means that Docker [40] containers can
be used to bundle the required code fragments as well as the
residual parts (e.g., libraries) of the applications’ environment.
This allows an easy build process and a quick deployment
of lightweight application bundles as duplicate objects only
need to be stored and copied to every surrogate only once to
provide a minimal but self-contained execution environment.
These bundles can then be deployed to up-to-date routers and
base stations (see Section II) to allow MEC applications to
elastically expand onto edge devices by accessing a compo-
nent’s copy on a surrogate as shown in Figure 4 while the
offloading decision and its dependent tasks are handled by the
CloudAware framework. This scenario allows low latency tasks
like cloud gaming to benefit from surrogates located closer to
the edge of the network.
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Fig. 4. CloudAware: Migration Strategies

VI. CONCLUSION

Edge computing enables to offload computation-intensive
tasks from a user’s mobile device to edge servers in order to
speed up the execution, to make applications less dependent
from the devices capabilities and the availability of centralized
resources as well as to increase the overall user experience.
But, there is neither an MEC framework, nor a cloudlet
infrastructure available in the market yet, which we believe,
is due to the lack of proper development support, insufficient
context adaptation and the absence of “the app” relying on
cloud augmentation.

Therefore, we presented CloudAware as a holistic approach
to bond computation offloading and context adaptation. Fol-
lowing a component-based approach, expert knowledge of
developers is used for guiding offloading decisions. Moreover,
CloudAware is especially construed to deal with the effects of
intermittent connectivity and to address the lack of proper con-
text adaptation. In contrast to other related work in this area,
the specific focus of this work is on computation offloading
techniques that fit into the common development process of
mobile applications as well as the developers’ mindset.

Our prospects for the future are to provide a full evaluation
in a realistic testbed. To show the wide applicability of our
approach, we plan to simulate the offloading based on one of
the biggest publicly available datasets containing trajectories
and network availability metrics, namely the Nokia MDC



dataset [41]. Further open issues include caching concepts,
safe-pointing and security features.
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