
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 00:1–13
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Distributed Monitoring and Workflow Management for
Goal-oriented Workflows

Kai Jander1∗, Lars Braubach1 and Winfried Lamersdorf1

1Distributed Systems and Information Systems Group, University of Hamburg, Vogt-Kölln-Str. 30, 22527 Hamburg,
Germany

SUMMARY

Business process management has often focused on business processes with a production or administrative
focus, resulting in a task-centric approach for modeling and execution of workflow based on the processes.
However, the area of collaborative business processes exists, which includes important processes like
research and development which have not been adequately addressed by the techniques offered for
production workflows. For this, goal-oriented processes have been proven useful to allow for a more flexible
approach in modeling and executing workflow. In addition, distributed workflow management allows for
a more flexible approach regarding organizational structurs. However, the actual recording of action taken
in a process are still relevant for workflow analysis and reengineering. As a result, this paper presents a
distributed approach for generating, gathering, distributing and storing events resulting from the execution
of goal-oriented workflows in a distributed workflow environment while allowing the real-time association
of occuring actions with business goals in the process using drill-down analysis. Copyright c© 2015 John
Wiley & Sons, Ltd.

Received . . .

KEY WORDS: distributed workflow management;business process management;goal-oriented work-
flows;GPMN

1. INTRODUCTION AND MOTIVATION

In our previous paper (see [13]), we presented an approach for monitoring a distributed
workflow management system with enacted goal-oriented workflows. We’ve shown how distributed
monitoring components can collect events generated within the system, transmit them efficiently
and reconstruct a chain of causes to attribute specific actions of a workflow with their business
goals.

In this paper we expand on this work by given a deeper background in this section on the
specific types of business processes where goal-oriented workflows are used. In addition, we well
demonstrate use of a persistent storage system for persisting the events and also as an alternative
means of event distribution (see Section 5). Finally, the storage system is evaluated in terms of
expected functionality and performance in Section 6.

Business process management deals with identifying business processes within organizations
and shaping the resources of those organizations around those processes rather than optimizing
specialized department with a narrow focus on providing a specific function to an organization like
accounting. A major goal in this endeavor is the eventual partial or complete automation of such
business process with the use of IT systems. The resulting executable models reflecting the real

∗Correspondence to: Distributed Systems and Information Systems Group, University of Hamburg, Vogt-Kölln-Str. 30,
22527 Hamburg, Germany, E-mail: jander@informatik.uni-hamburg.de

Copyright c© 2015 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 KAI JANDER ET AL.

world business processes are called workflows and are executable on computer systems running an
execution environment that enacts the workflow models called a workflow management system (see
[26]).

Business processes and workflows can be categorized using a variety of factors. One approach
suggest by Leymann and Roller (see [19]) uses the degree of business value and the degree of
repetition and structuring for defining categories of workflows:

• Degree of Repetition describes the degree in which the same workflow model can be reused
for multiple enactments (executions) of workflow instances. For example, mass-produced
goods generally follow the same model of assembly everytime they are produced while
custom-designed software is generally tailored towards a specific customer and follows a
different development process for each one. A related concept is the degree of structuring,
which describes how rigidly a process can follow a pre-determined plan for execution. The
aforementioned mass-production rigidly follows the assembly plan, while the custom software
is developed more flexibly to adapt to specific and possibly changing customer requirements.

• Business value describe the relationship of the business process with regards to the purpose
of the organization. For example, the purpose of a bakery is to produce and sell bread, so
processes and workflows that deal with this purpose are considered to have high business
value while necessary but unrelated processes such as administrative tasks and file-keeping,
while necessary for the business, are considered to have a low business value.

Figure 1. Different categories of workflows, the focus of the goal-oriented modeling approach centering
around certain types of collaborative business processes and workflows, center chart adapted from [19]

Based on these scales, Leymann and Roller have proposed four different categories of workflows
(see Fig. 1), which have been addressed by traditional business process management approach to a
different degree:

• Ad-hoc business processes and workflows are often used to perform simple and low-priority
tasks with low business value within organizations based on an unstructured ad-hoc basis. An
example of this is for-your-information (FYI) routing. This process aims to distribute new
information to people within the organization who require that information. This is done by
sending the information to the people thought to be most interested in the information with the
request to pass it onto additional people known to the recipient who might be interested. The
approach is unstructured and does not require a lot of technical support to work as intended.

• The bureaucratic requirements of organizations are tackled with administrative business
processes and workflows. This can involve task such as processing forms and approving
purchase requests. They have a low business value since they are not directly involved in

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 3

the purpose of the organization, but generally are very repetitive and have a well-defined
structure.

• Production business processes and workflows are the core of an organization and are involved
in producing the product of the organization for its customers. In manufacturing, this
can be the actualy production of physical product but in service-oriented businesses with
standardized services such as banks, the product can be a service provided to a customer.
Since they are the most direct output of the organization, they have a high business value and
since the product is standardized, the repetition and structure is high as well.

• Finally, collaborative business processes and workflows center around loosely-organized
processes in which the participants are required to have a high degree of independence
to perform their tasks and collaborate with the other participants in the process to further
common goals. Typical example are research and development processes which are ultimately
important to the organization’s purposed and thus have a high business value but also
necessitate a certain amount of creative freedom for the people involved in the process.

Leymann and Roller point out that the focus of business process management is typically centered
on the production workflows. This is unsuprising, for three reasons: First, the high degree of
structuring means that targeting this category is relatively straightforward while the high degree
of repetition ensures that investments in the design of production workflows can amortize over
the high number of repeated enactments. Finally, the high business value directly influences the
competitiveness of the organizations. Furthermore, the structural similarities between the production
and administrative processes means that techniques developed for one can also often applied to the
other.

As such, many workflow modeling languages and systems are geared towards such processes.
However, this leaves the collaborative processes as a challenging area with a high potential due to
their high business value. However, they differ structurally from both administrative and production
processes and as a result, traditional workflow models such as the Business Process Model and
Notation (BPMN) [20] often lack good support for flexibility in a multitude of business situations
required by this category of processes, forcing the process designer to include numerous branches
for every conceivable situation.

This deficit has lead to a number of different approaches like ADEPT [18] attempting to
attenuate those limitations. Part of the difficulties stem from the fact that most approaches to
workflows are activity-based, which means they are focused on a specific order of actions with
branching explicitely inserted at certain points. While this is a fairly intuitive approach for modeling
workflows, it does not directly provide business reasons for activities, which can result in the
inclusion of unnecessary or unwanted activities that merely exist for technical rather than business
reasons in the workflow.

Figure 2. Example of a simplified goal-oriented process

An interesting concept for addressing both concerns are goal-oriented workflows [16]. In this
approach, Belief-Desire-Intention (BDI) agents [3] are used to model workflows. The BDI approach
allows the workflows to be based on business goals (see Figure 2), starting with the overall goal the

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 KAI JANDER ET AL.

business aims to accomplish with the workflow which is then subdivided into multiple subgoals
with various types of interactions such as priorities and inhibitions. These subgoals taken together
represent the top-level goal by completely covering all aspects of that goal. The subgoals themselves
can again be further decomposed until the goals are plain enough to be achievable by a simple action-
based workflow. If multiple solutions for a goal are possible, multiple plans can be attached to the
goal and a plan is chosen at runtime based on attached conditions and attributes. Key for both the
conditions and attributes of goals and plans is the existence of a workflow context, which not only
holds the internal state of the workflow but also contains information about the current business
situation, allowing this information to be accessed by goal and plan conditions.

The methodology of generating GPMN models is similar to Hierarchical task network (HTN)
[8] planning approaches, however, while the goal-structure of GPMN processes often end up being
hierarchical, they do have to be. In addition, GPMN-modelling is not used for feasibility analysis
or ahead-of-time planing. Rather, it allows process engineers to specify business contingencies and
competing objectives for long-running processes in dynamic environments such as R&D processes
at Daimler AG [15]. Instead, the resulting agent model can be directly executed by a BDI interpreter,
which uses a BPMN interpreter for concrete plans. The reasoning of BDI is split between the goal
deliberation cycle, which decides which of potentially several conflicting goals to follow and the
means-end reasoning which choses pre-defined plans to achieve selected goals. The BDI interpreter
reasoning engine uses an approach called Easy Deliberation [23] to resolve this cycle.

While this top-down and business-driven approach towards workflow modeling is very intuitive
and flexible, its adaptive behavior during runtime means that actions are not always attributable
to the goals [14]. In addition, goal-based workflows are also often used in dynamic environments
where not only the workflows but also the workflow management system are distributed to increase
flexibility and robustness [17]. As a result, a distributed monitoring system is necessary that links
the actions performed in the workflow with the goals and plans representing the business reasons.

Based on the requirements for a distributed workflow management system, distributed workflow
execution and cohesion between goals and action, the proposed system should be able to meet the
following objectives:

• Goal-Action Cohesion

– The primary goal of the approach is providing event information that allow attribution
of concrete business actions with business goals in a workflow.

– The user must be able to perform a “drill-down” analysis to trace causes of events from
the most detailed to the most high-level goals.

• Distributed Workflow Management

– The system must be adaptable to a wide variety of business infrastructures, including
transient and mobile systems and must respond in a robust fashion to changes in that
infrastructure.

– As a result, the system must be distributed, redundant, robust and adaptable.
Communication must be kept low for efficiency.

In this paper we present a component- and service-based approach attempting to solve these
objectives. It supports monitoring distributed goal-based workflows using a hierarchical structure
of events combined with a distributable monitoring system for gathering and redestribution of the
events to the workflow clients.

2. RELATED WORK

The approach presented in this paper primarily touches two important area of research. The first is
the area of Business Activity Monitoring (BAM). This area concerns itself how business transactions
happening within a company can be recorded and processed, either retroactively or in realtime. The
most common approach to this challenge is to record business transactions, either specifically for

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 5

monitoring purposes or incidentally as part of regular business record keeping, in a data warehouse
[5]. In addition, extract, transform, load (ETL) processes can be used to extract additional data from
other sources within the business [25]. The resulting data can be utilized in two ways: Complex
analysis can be performed and long-term statistics can be gained by applying data mining techniques
to the data available in the data warehouse [1]. This offers the user an in-depth and long-term
perspective of the perfomance of the organization. However, it can require substantial time and
computation to process the available data and thus may lag behind the current development of the
business. For example, online analytical processing (OLAP) allows for multidimensional analysis
of transactions and currently available data within the organization [2], but the data must already be
available in a structured fashion, for example in a data warehouse. The data is processed to allow
the user to approach it from multiple perspectives using multidimensional analysis [24] by forming
structures such as OLAP cubes.

Alternatively, realtime monitoring can be achieved using complex event processing (CEP) [10].
This approach gathers and processes events as a stream and generates useful information for the
BAM system. While aspects of this approach are similar to the approach presented here, it is focused
on the processing of data, rather than providing a stronger coherence between the operational and
strategic level by aligning actions and goals.

The resulting information can then be used to display information in a dashboard specific
to the interest to the business user. Statistics and indicators are provided to allow the user to
monitor the actual performance of the business and compare it with previously strategically defined
key performance indicators (KPI), which represent quantifiable values. However, the relationship
between the processed data and the KPIs is implicit and cannot be derived from the data warehouse
itself. As a result, the dashboard functionality of BAM systems often need to be customized
to restore this relationship, which can only be partially compensated through standardization of
common KPIs or interpretation of standardized charts on the dashboard. Furthermore, BAM focuses
primarily on statistical data and thus does not provide an easy way for attributing transactions of
the business with particular strategic goals. In contrast, the approach presented here focuses on
attributing actions and tasks to business goals, while the generation of statistics is less of a concern.
In addition, data mining solutions often focus on a centralized data warehouse solution while the
monitoring system presented here provides distributed realtime monitoring.

The second area concerns itself with distributed event systems [21]. A common approach here is
to employ event brokers, which receive published events from event publishers and then distribute
them among the other brokers within the system, making them available to event subscribers
throughout the system. Similar to this approach, we use one or more monitoring component instance
to implement the broker functionality and distribute our goal-based events as part of a larger
distributed workflow management system. The number of such brokers used can be chosen by the
user of the system, with additional brokers increasing the redundancy and thus the resilience of the
overall system and increasing the event processing performance by bundling event transfers.

3. EVENT STRUCTURE

The targeted goal-oriented workflows are based on the Jadex Active Components [22] approach.
This approach offers a number of different active component types such as micro agents, BDI
agents, BPMN workflows and the goal-oriented GPMN workflows, which are modeled as goal-plan
hierarchies but are translated to BDI agents for execution.

Events generally denote an occurence associated with an event source. An event source can be any
entity or part of an entity within the distributed system such as an active component itself or some
part of the component. In order to broadly distinguish events based on sources such as components,
goals and plans, a event source can be attached to the event. A number of default categories are
already provided for all active component types, including the component category for events
emitted by component instances itself, the execution category for the execution of components steps,
the service category for component services and the property category for component property.
More specialized categories are available for action-oriented and goal-oriented workflows. Event

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 KAI JANDER ET AL.

source categories for activities, goals and plans are available in addition to the workflow context fact
category. The latter category is also an example of an event source category where the modification
event applies.

While the exact nature of the event can vary wildly, a number of categories can be identified that
not only define the relationship with the event source and between events over time. For example,
BPMN offers three broad classes of event types: Start events, which mark the start of a process,
end events, which denote the process end and finally intermediate events which can occur while the
process is running.

Figure 3. Event types used over the event source life cycle

Similar to this, we have based our system on five different types of events based on the life cycle
of the source (see Figure 3). The first type are creation events, which are issued when the event
source is first created, providing similar semantics as BPMN start events. The counterpart for end
events are disposal events, issued when the life cycle of the event source has ended and the source
has been disposed. During the life cycle, two additional types of events can occur: When the state
of the source changes it results in a modification event, while the other event type is the occurrence
event, which simply denotes a point in time when an action took place. For example, an occurrence
event is generated when an agent receives an external message or an internal user event is triggered.
Finally, a special type of event, the bulk event, only applies when multiple events are aggregated
into a single event for efficiency when transferring events over the distributed system.

Figure 4. Events can have both sources and causes based on the static component model and their runtime
instances

Since the active component model uses a static component model, the component hierarchy can
be used to denote both the source and the cause of an event (cf. Fig. 4). For example, a goal-oriented
workflow component, when executed, consists of a component instance. If this component instance
adopts a new goal instance, a creation event is issued. The source of this creation event is the newly-
created goal instance, however, the cause of the event is the component instance which adopted the
goal. Once the means-end reasoning decides on a plan to perform in order to reach the goal, a plan
instance is created and another creation event is issued. In this case, the source is the plan instance
while the cause of the event is the goal instance that triggered the means-end reasoning. This chain
can be traced down the model hierarchy down to tasks within BPMN-based plans.

Since instances have unique identifiers, the events merely have to include the cause and source
identifiers, minimizing the size of each event. Nevertheless, once the events have been gathered, the

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 7

Platform

Goal-oriented

Workflow

Monitoring

Component

Event

Subscriber

IMonitoringService

Platform

Monitoring

Component

IMonitoringService

Platform

Monitoring

Component

Figure 5. Monitoring infrastructure

cause and effect chain can be recreated by cross-referencing them with other events. In addition,
events that are delayed due to the distributed nature of the system can be identified and estimates
can be given. For example, if the creation event of the plan instance is missing, the lower boundary
for the creation time of the plan instance is the creation time of its cause, i.e. the goal instance. This
can at the very least provide the user with an adequate approximation until the missing events arrive.

Each event also requires a timestamp, identifying when the event occurred, especially in
relationship to other events. In distributed systems, simple timestamps often pose an issue since
it is difficult to reliably synchronize clocks between nodes. Other approaches such as vector clocks
increase both complexity and data volume. However, in the case of goal-oriented workflows as
presented here, the problem is reduced since each individual workflow instance runs on a single
node and its events are therefore internally consistent. Only if the cause chains crosses node barriers,
for example due to service calls, caution has to be applied regarding synchronization. Nevertheless,
small inconsistencies can be corrected to a certain degree using the same approach as mentioned
above regarding missing events.

4. MONITORING ARCHITECTURE AND IMPLEMENTATION

The monitoring mechanism has been implemented using a monitoring service (IMonitoringService),
which allows producers to publish events and consumers to subscribe for certain types of events.
In Fig. 5 an overview of the architecture is depicted. It can be seen that in each platform a specific
monitoring component realizes the monitoring service. Each component that creates (internally or
intentionally) events, automatically publishes them to the corresponding service. For this purpose
each component searches for an IMonitoringService when an event has to be published. In case a
service is found the binding is fixed and the event is forwarded, if not the component stores the
unavailability of the service and the event is dismissed. It will try to search for the service again
when a new event occurs and after some specified time interval has elapsed.

Event consumers can subscribe at the monitoring service using an optional event filter. This
mechanism allows for reducing the network load as only events are transferred which pass the
filter test.

The global monitoring infrastructure is set up as a peer to peer infrastructure formed by multiple
monitoring components realizing an information exchange protocol. Knowing that events are
reported locally from the event sources, each monitoring service searches for all other monitoring
services and forwards local events to all remote services. In this way all monitoring services
internally build up a globally consistent event state. For scalability reasons, the monitoring
components only hold a certain amount of event in memory and dismiss older events. If longer
lasting book keeping is necessary they can also be configured using a distributed storage service (see
Section 5) can be used to distribute the events within the system, which, in addition to providing its
own synchronization, persistently stores older events.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 KAI JANDER ET AL.

4.1. Workflow environment

The monitoring service is further used to supplement a distributed workflow management system
[17] implemented as active components.

Workflow User Client
Client

Component

Workflow Management System

Monitoring

Work Item
Management

Execution

Authentication

Access

IExecutionService

IAAAService

IWorkitemHandlerIModelRepository

IWorkitemHandler

ILogService

ILogService

ILogService

ILogService

IExternalWfMS

Active Component

Provided Service

Required Service

Figure 6. Event types used over the event source life cycle

The system is largely derived from the Workflow Management Coalition Reference Model [11],
where the monitoring service represents the monitoring subsystems of a traditional workflow
management system. The workflow management system consists of multiple active components
similar to the monitoring service which use service calls to exchange information.

Aside from the monitoring, other components are available to provide the rest of the workflow
management functionality. The access component manages the access to workflow management
functionality for workflow clients. The authentication component verifies the credentials of users
and specifies their access rights. The execution component stores workflow models and launches
workflow instances. Finally, the work item component holds work items representing human tasks
for users to perform. Each component can be replicated to provide robustness and scalability.

Figure 7. Gantt chart monitoring of a goal-oriented workflow in the workflow client

The information gained by the monitoring component can be used to provide an overview of a
goal-oriented workflow instance. As shown in Fig. 7, users can select a running or past workflow
instance and is presented with a Gantt chart of event sources. The user can click on individual
sources and is provided with a view which includes the clicked item and sources that were created
as a result of the item, providing a drilled-down view on parts of the process instance. If only partial

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 9

information is available, an estimate can be shown to the user based on other event sources in the
hierarchy. However, due to the chaining of references a subtree may be omitted if the cause-source
hierarchy is interrupted. While this is remedied as soon as the missing information arrives, it is still
a limitation of the system.

5. EVENT PERSISTENCE AND DISTRIBUTION

An important aspect in such a dynamic and distributed workflow environment is ensuring that the
events are distributed among the nodes and persisted in a manner that allows nodes in the system to
disappear without events being lost. The disappearance of nodes can happen either through normal
operation such as a shutdown or through exceptional occasions like an abnormal termination of a
node or network outage.

The most extreme case is a complete shutdown of the system. After a subsequent recovery, users
of the system will expect the events to recover as well. As a result, the events have to be persisted
in permanent storage such as a hard disk.[7]

A straightforward solution for this issue is simply storing the event data locally into a database or
file. While this approach is likely to be the fastest in terms of performance (provided distribution is
done aynchronously), it replicates the events on every node. If there is a large number of nodes,
this means that events are replicated excessively, beyond what is necessary for recovery after
disappearance of nodes.

An alternative for storing the event data locally and using the default synchronization mechanism
for monitoring components, a remote database could be used to store the events and to synchronize
the monitoring services. However, this represents a single point of failure: The system is expected
to retain functionality even in the event of unexpected failures of nodes in the system. As a result, a
distributed storage solution is required.

This means that the solution for the problem is ultimately limited by the CAP-theorem (see [9]),
which means that the system cannot guarantee consistency, availability and partition tolerance at
the same time. However, since events are merely recorded and not further processed and the events
are generated locally in a consistent manner, there is no possibility for a disagreement of event
information due to partitioning in the scope of the monitoring service. The only exception of this
would be a malicious monitoring service injecting fraudulent events, which excluded by fact that
the system being assumed to be a friendly environment (see [17] for a discussion on the security
aspects of the workflow management system).

5.1. Existing Distributed Storage Solutions

A first approach could be a replicated relational database such as MySQL configured in a master-
slave configuration could be used (see [12]). Two modes of consistency are available for this option,
eager replication and lazy replication. Eager replication ensures the consistency of the data across
all nodes but increases the overhead due to the additional synchronization required. In contrast, lazy
replication employs a master-slave architecture where data can only be stored using the master node
but can be read from any slave node. Commits performed on the master node are asynchronously
transferred to the slave node, which may not always contain the most up-to-date data set.

However, when the master node fails, there is no easy mechanism for a failover. The system setup
is rigidly pre-configured and the promotion of a slave node to a new master node as well as the
addition of new nodes requires manual intervention. Furthermore, the data is always replicated on
all slave nodes, regardless of the need for such replication, similar to the local storage approach.

Due to this, a more specialized solution outside the traditional strict relational approach could be
used, for example by using a distributed NoSQL database which depart from the hard consistency
requirements and structural expressiveness of the SQL-based approaches. Interesting candidates
for storing the events in a distributed manner are Amazon Dynamo (see [6]), a distributed key-value
store and Google Bigtable (see [4]), which uses a more structured data model called Column Family.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 KAI JANDER ET AL.

All of these approaches have some drawbacks when considering them for the distributed storage
of events in a dynamic and distributed workflow management system. First, the configuration and
setup is relatively complex and requires an explicit configuration on certain parameters, such as the
number of nodes involved and in some cases designation of master nodes, a task requiring non-
trivial expertise and later maintenance once the system has been configured. Since the configuration
needs to be adapted to appearing and disappearing nodes, it does not lend itself well to a highly
dynamic workflow environment where the nodes of the system may appear and disappear any time.
In addition, while the systems can recover from the loss of nodes and maintain availability, node
replacement generally must be configured to incorporate the additional nodes. This is often not
an automatic process and requires the intervention of a system administrator with a centralized
authority for the system. As mentioned in Section 1, such a centralized authority may not be
available since the participants of the business processes targeted by the system are independent
and autonomous actors who often maintain their own IT infrastructure.

5.2. Dynamic Distributed Storage Service

As a result, the monitoring component uses a distributed persistence service to store the events for
each of the monitoring components. The system is based on the concept of a key-value store, similar
to a distributed hash table but assumes a more dynamic environment. Application can store values in
the storage system and request a certain replication level to ensure availability. This replication level
is maintained when nodes disappear by replacing them with other nodes available in the system.
Additional nodes that become available are automatically integrated in the system.

Figure 8. Architecture of the storage service, from [7]

Figure 5 shows the architecture of the system. The monitoring system can access the storage
service by requesting a service implementing the IStorageClientService interface, which offers the
relevant methods to store values. The distributed nature of the service is completely transparent for
the monitoring component, it simply stores the event using the storage service which is responsible
for further distribution. The storage is segmented using keyspaces in order to separate the storage of
multiple applications or parts of applications.

Internally, the StorageAgent component performs the distribution of the data as necessary for
the required replication level and maintains the records of this in case addition replication becomes
necessary due to lost nodes.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 11

The local storage for each node of the storage service is represented by the KeyspaceAgent, which
uses an internal local database to store the values. If a StorageAgent receives a request for a certain
value, it can attempt to request it from its local KeyspaceAgent, or, if it is locally unavailable, locate
it by calling other StorageAgents, with caching allowing a quick lookup if the value had already
been requested.

Since nodes in the system can disappear at any point, the storage service uses a peer-to-peer
approach where every node is considered equal and can all be used to record data. As a result, the
emphasize of the service is on the availability. In addition, the system is also resilient with regard to
partitioning. Since this means that strict consistency cannot be guaranteed, the storage service uses
vector clocks to determine inconsistent versions of recorded values in to allow a resolution of such
a conflict at a later point. However, as noted before, the generated events are only assume a single
value and as such cannot trigger conflicts in the storage service.

6. EVALUATION AND OUTLOOK

In Section 1 we provided two areas where the system had to fulfill a set of requirements. The
first area involved the cohesion between business goals and workflow actions. Here, the monitoring
system is required to establish a relationship between the actions of the workflow and the business
goals and allow the user to “drill down” from individual goals down to specific actions. The
modeling of the goal-oriented workflows allow the events to establish a cause-source hierarchy
to attribute actions to goals.

The first set of requirements was due to the required flexibility of a distributed workflow
management system. The events may be generated by workflows anywhere within the distributed
system, forwarded to interested nodes and the system should be robust and tolerate disappearing
nodes. These three requirements were achieved by implementing the monitoring system as a event
broker, forwarding all events it receives for publication to corresponding services. Unless a node
is permanently disabled before it can transmit new events, all events will eventually be available
to the workflow client. Low communication overhead was achieved by minimizing the amount of
information stored in the events, including only references to sources and causes and letting the
receiver reconstruct the chain. Furthermore, bulk events are available to bundle multiple events for
transfer.

The storage system has been tested regarding its functional requirements. This included tests
for data access for single and multiple node storage services, adding additional nodes to the
system, deliberate shutdown of nodes and deliberate termination of nodes simulating an unexpected
disappearance of a node (see [7]). In each case the system performed as expected and maintained
availability to the system.

Figure 9. Write performance for 1,000 write operations of the storage service compared to local database
storage (from [7])

In order to ensure the performance of the service, measurements have been taken under different
conditions (see Fig. 9) using 1000 write operations each. As a reference point, the performance of a
local unversioned database system and a local versioned database system have been measured. The
storage system was then tested with with a single node and multiple nodes, with the writes either

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 KAI JANDER ET AL.

committed consecutively or in parallel. As the figure shows, while the performance does degrade
compared to local storage, the overhead is not overly cumbersome and can be acceptable when the
advantages of the distributed approach are considered.

However, a remaining concern is the potential loss of multiple events of a specific event source
before they are recorded. Due to the events containing only a minimum of information, this would
interrupt a link between the main hierarchy tree and one of its subtrees. While there is a balance
involved with regard to the event sizes, this challenge could be address by including a more
information about the chain in each event by including not only the current causes but also a number
of previous causes, allowing the workflow client to include the subtree and only omit the missing
source.

REFERENCES

1. M. J. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley &
Sons, Inc., New York, NY, USA, 1997.

2. A. Berson and S. J. Smith. Data Warehousing, Data Mining, and Olap. McGraw-Hill, Inc., New York, NY, USA,
1st edition, 1997.

3. M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, 1987.
4. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst, 26(2):4:1–4:26, 2008.
5. S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology. SIGMOD Rec., 26(1):65–74,

March 1997.
6. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev, 41(6):205–220,
2007.

7. F. Demuth. Verteilter Speicherdienst für Nutzer-integrierende dynamische Cloud-Umgebungen. Diplomarbeit,
Distributed Systems and Information Systems Group, Computer Science Department, University of Hamburg,
November 2014. (in German).

8. K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and expressivity. In AAAI, volume 94, pages 1123–
1128, 1994.

9. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, June 2002.

10. T. Greiner, W. Düster, F. Pouatcha, R. von Ammon, H.-M. Brandl, and D. Guschakowski. Business activity
monitoring of norisbank taking the example of the application easycredit and the future adoption of complex event
processing (cep). In Proceedings of the 4th International Symposium on Principles and Practice of Programming
in Java, PPPJ ’06, pages 237–242, New York, NY, USA, 2006. ACM.

11. D. Hollingsworth. Workflow Management System Reference Model. Workflow Management Coalition, 1995.
12. Oracle Inc. MySQL 5.7 Reference Manual Replication, 2014.
13. K. Jander, L. Braubach, and W. Lamersdorf. Distributed event processing for goal-oriented workflows. In

Intelligent Distributed Computing VIII, Studies in Computational Intelligence, pages 49–58, Heidelberg, 2014.
Springer International Publishing.

14. K. Jander, L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex WfMS: Distributed Workflow Management for
Private Clouds. In Languages, Methodologies, and Development Tools for Multi-Agent Systems, pages 39–55.
Springer Berlin / Heidelberg, 2011.

15. K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K.-J. Wack. Goal-oriented processes with gpmn.
International Journal on Artificial Intelligence Tools (IJAIT), 20(6):1021–1041, 12 2011.

16. K. Jander and W. Lamersdorf. Gpmn-edit: High-level and goal-oriented workflow modeling. In WowKiVS 2011,
volume 37, pages 146–157, 2011.

17. K. Jander and W. Lamersdorf. Jadex WfMS: Distributed Workflow Management for Private Clouds. In Conference
on Networked Systems (NetSys), pages 84–91. IEEE Xplore, 2013.

18. N. Jennings, T. Norman, and P. Faratin. ADEPT: An agent-based approach to business process management. ACM
SIGMOD Record, 27(4):32–39, 1998.

19. F. Leymann and D. Roller. Production workflow concepts and techniques. Prentice Hall PTR, 2000.
20. Object Management Group (OMG). Business Process Modeling Notation (BPMN) Specification, version 2.0

edition, January 2011.
21. P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture. In Proceedings of the

22Nd International Conference on Distributed Computing Systems, ICDCSW ’02, pages 611–618, Washington,
DC, USA, 2002. IEEE Computer Society.

22. A. Pokahr and L. Braubach. The active components approach for distributed systems development. International
Journal of Parallel, Emergent and Distributed Systems, 28(4):321–369, 2013.

23. A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for bdi agent systems. In T. Eymann,
F. Klügl, W. Lamersdorf, M. Klusch, and M. Huhns, editors, Proceedings of the 3rd German conference on Multi-
Agent System TEchnologieS (MATES-2005). Springer, 2005.

24. P. Vassiliadis and T. Sellis. A survey of logical models for olap databases. SIGMOD Rec., 28(4):64–69, December
1999.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DIST. MONITORING AND WORKFLOW MGMT. FOR GOAL-ORIENTED WORKFLOWS 13

25. P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for etl processes. In Proceedings of the 5th
ACM International Workshop on Data Warehousing and OLAP, DOLAP ’02, pages 14–21, New York, NY, USA,
2002. ACM.

26. M. Weske. Business Process Management Concepts, Languages, Architectures. Springer Verlag, 2007.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe


	1 Introduction and Motivation
	2 Related Work
	3 Event Structure
	4 Monitoring Architecture and Implementation
	4.1 Workflow environment

	5 Event Persistence and Distribution
	5.1 Existing Distributed Storage Solutions
	5.2 Dynamic Distributed Storage Service

	6 Evaluation and Outlook 

