
CloudAware: Towards Context-adaptive
Mobile Cloud Computing

Gabriel Orsini, Dirk Bade, Winfried Lamersdorf
Distributed Systems Group

Department of Computer Science
University of Hamburg, Germany

Email: [orsini,bade,lamersd]@informatik.uni-hamburg.de

Abstract—The widespread use of mobile devices such as
smartphones and tablets is flanked by an ever increasing supply
of mobile applications. Along with this trend, expectations and
requirements of users rise as well. For example, users do not
want to compromise on comfortable daily routines as available
on desktop computers. However, an intrinsic characteristic of
mobile devices is their limited availability of resources (e.g., CPU,
storage, bandwidth, energy) hindering in particular computation-
intensive tasks. In this scenario, mobile cloud computing (MCC)
promises to overcome these limitations by offering apparently
infinite resources in the infrastructure that are transparently
accessible also for mobile applications. In order to easily benefit
from these offerings, dynamic code offloading has been proposed
by several approaches recently. However, such solutions either
do not consider the complexity arising from the dynamically
changing context in mobile environments adequately or have
a steep learning curve inhibiting easy adoption by developers.
Therefore, this paper presents a novel approach towards context-
adaptive mobile cloud computing. For that, first an extensive
requirements analysis was conducted merging ISO standards
with users’, applications’ and developers’ needs. Based on this,
an evaluation of related MCC-approaches allowed identifying
promising concepts as well as current shortcomings. As a result,
an MCC-framework, called CloudAware, is proposed that eases
the development of MCC-applications by offering programming
abstractions, multi-level distribution transparency, context adap-
tation features and is hands-free for end-users.

I. INTRODUCTION

Nowadays, mobile devices such as smartphones or tablets
accompany us anytime and anywhere. We get used to not only
make phone calls or send messages, but to use increasingly
sophisticated applications for a multitude of tasks ranging
from intelligent assistants in our daily routine to mobile
applications supporting our daily activities. Speech-, face- and
object recognition as well as image- and video-processing
are among the prominent examples for resource-demanding
features contained in such applications [1]. However, in ad-
dition to limited interaction capabilities, mobile devices lack
computational power, storage capacity, energy and they suffer
from a network interface with low bandwidth, high latency
and intermittent connectivity. To overcome these obstacles and
to allow even more sophisticated applications being used by
mobile users, external resources have to be weaved into the
local execution of mobile applications [2].

In this way, cloud computing provides, in principle, for
nearly infinite resources and makes them available for con-
ventional as well as new (mobile) applications. However,

the characteristics of mobile environments require a new ap-
proach for dealing with dynamically changing communication
qualities, intermittent connections and threats by untrusted
counterparts. MCC aims at tackling these challenges, allowing
even resource-demanding applications to be used in mobile
application scenarios. Here, instead of relying on conventional
service calls, MCC-applications mostly adopt the concept of
code offloading, by migrating certain parts (code and state)
of a mobile application into the infrastructure or onto other
nearby devices and collecting the results once appropriate.

Aiming at offering a platform which allows arbitrary ap-
plications to make use of generalized mobile cloud computing
principles, a multitude of projects arose within recent years.
But most of these either have drawbacks in terms of usability
or the ability to deal with the ever changing context of
a mobile application which is one of the most important
challenges to achieve efficiency [2]. Therefore, this paper
proposes CloudAware, an MCC-framework that realizes a
holistic approach between computation offloading and context
adaptation that eases the development of MCC-applications
by offering programming abstractions, multi-level distribution
transparency and context adaptation features.

The rest of the paper is structured as follows: Section II in-
troduces the fundamental idea of MCC and related paradigms.
Afterwards, MCC requirements are subsequently analysed
with related concepts of ISO standards and then explained
on the background of related work in Section III. Finally,
the identified most promising concepts are incorporated in
our CloudAware framework which is presented afterwards in
Section IV. At the end, we summarize our findings and give
prospects for future work in Section V.

II. BACKGROUND

As the lack of resources of mobile devices is a major
problem for many of the aforementioned applications, new en-
gineering paradigms are required. In the following, important
views of the problem that received attention in current research
efforts along with a typical architecture for computation off-
loading are presented. Based on this, a common definition of
context awareness is given and extended to our view of context
adaptation.

A. Mobile Cloud Computing

Mobile cloud computing tries to overcome restrictions of
mobile devices and (thus) applications by making centralized



Local Execution 
Environment

1) Request Processing

Execution 
Component

2) Process

3) Return Results

MCC App
Surrogate

Fig. 1. Offloading of application components to surrogates

resources available to mobile devices. According to [1], MCC
is defined as the integration of cloud computing into the
mobile environment in order to overcome obstacles related
to performance (e.g., battery life, storage and bandwidth),
environment (e.g., heterogeneity, scalability and availability),
and security (e.g., reliability and privacy). An early definition
mentioned in the context of MCC which especially covers the
aspect of mobility is the term cyber foraging [3]. Introducing
the concept of cloudlets as an intermediate layer between
mobile devices and cloud resources, cyber foraging is expected
to further improve latency and execution speed. A similar,
but more recent definition is the so-called fog computing,
defined by [4] as ”[...] a highly virtualized platform that
provides compute, storage, and networking services between
end devices and traditional cloud computing data centers,
typically, but not exclusively located at the edge of network.”
The common denominator of the mentioned approaches and
research efforts in these domains is offloading computation
rather than data. In the following we concentrate on this
criterion too, but not solely.

B. Typical MCC-Architecture

Figure 1 depicts a general MCC system perspective: A mo-
bile client running an application may offload certain tasks to
be processed on a so-called surrogate expecting the execution
results to be subsequently returned. Even if architectural details
vary, most of the present MCC-solutions share some common
components to enable this type of computation offloading [2]:
A partitioner that analyzes the application and determines
which parts of the code are offloading candidates and a context
monitor that senses contextual information like available surro-
gates, battery status and network connectivity. This information
is used by a solver and the context monitor to decide, whether
and on which surrogate to execute the offloading candidates.
Finally, a coordinator handles additional necessary tasks like
discovery, authentication and synchronization.

In a typical MCC architecture the offloading decision is one
of the main challenges which involves finding an appropriate
granularity for application partitioning and a context-adaptive
deployment strategy to use the right surrogates in a hetero-
geneous and insecure environment with limited bandwidth
and intermittent connectivity. Different paradigms like mobile
agents, virtualization and classical client-server architectures
are used to support this, while most solutions rely on virtual-
ization [2].

C. Context Adaptation

In addition to the mentioned restrictions of limited re-
sources, the quickly changing environment of a mobile de-
vice and hence the integration into a heterogeneous system
landscape poses further challenges. Solutions in the field
of ubiquitous computing and mobile cloud computing often
require an extensive consideration of the users’ context in order
to quickly adapt to the current situation and use case. Context,
in the mentioned sense, is defined by [5] as ”[...] information
that is part of an application’s operating environment and
that can be sensed by the application. This typically includes
the location, identity, activity and state of people, groups
and objects.” If mobile devices are able to sense and react
to their context through physical (e.g. GPS) or virtual (e.g.
network connectivity) sensors, they are called context-aware.
In order to properly adapt, a more detailed specification of
context adaptation introduces further, partially overlapping
distinctions [6], namely: parametric adaptation, compositional
adaptation and anticipated or non-anticipated adaptation. The
last two criteria can be crucial ones for future MCC-scenarios,
we therefore consider them main requirements for resource
augmentation in environments with intermittent connectivity.
Hence, we describe context adaptation for MCC as:

The ability of an MCC-application to react to current
and future connectivity states and re-evaluate the
non-anticipated deployment strategy along with the
available resources accordingly by using composi-
tional adaptation.

Recent MCC-solutions consider context adaptation only as
a minor factor to allow offloading parts of the computation
to a surrogate, while we consider it the essential criterion to
enhance the user experience, which will be reflected upon in
the developed approach in Section IV.

III. CHALLENGES AND EXISTING SOLUTIONS

In order to develop MCC-applications, various challenges
have to be addressed. This section presents an overview1 of
requirements, based on the ISO criteria for software quality
and inferred from several use cases.

A. Major Challenges in MCC

As mentioned in Section I, the development of MCC-
applications performing computation offloading, is often com-
plex and requires proper support to ease the development.
Models like inter-process communication, remote method in-
vocation or service invocation cannot be employed right away
to the domain of mobile cloud computing [8]. This means
that not only the problems of classical distributed systems
exist, which include heterogeneity and the requirement of
openness, security, scalability, failure handling, concurrency,
transparency and quality of service [9], but also the afore-
mentioned restrictions of MCC need to be taken into account,
i.e. the limited resources, the need of context adaptation in
heterogeneous environments as well as security issues.

Additionally, an MCC-solution should comply with general
criteria for good software like reliability, usability, efficiency,

1For further details refer to [7]



maintainability and portability as defined in the ISO/IEC 2501n
criteria for software quality (former ISO 9126) [10]. In an
experiment, we considered both the general requirements of
these categories as well as the mentioned issues of MCC in
order to adapt the ISO requirements to the domain of MCC and
then evaluated 40 existing solutions based on the combined
requirements catalogue [7] accordingly. In conclusion, the
solutions we focus on in our evaluation all share a common
criterion: They allow the application developer to stay in
his/her world, which means keeping the additional effort to
learn how to use a solution as small as possible.

B. Classification of Surveyed Solutions

Surveying already existing solutions, we classified these ac-
cording to their nature in terms of performing the computation
offloading:

Specialized Languages: There exist quite a lot specialized
programming languages for different domains or specific sce-
narios, which establish a new or extend an existing paradigm
for the sake of more convenient programming. But, these
languages require a developer to become acquainted with the
new language syntax and programming style and of a mobile
operating system to support the execution of the language. A
prominent example is AmbientTalk [11].

Frameworks and Middlewares: In contrast to specialized
languages, frameworks ease the development by providing a
kind of frame in which the developer just has to fill in the
application logic. While such frameworks and middlewares are
approved ways for realizing distributed applications, it is often
difficult to easily transform an object-oriented architecture into
a component-based one. Prominent examples are ASM [12],
Agilla [13] and CoDAMoS [14].

Distributed VMs: While the aforementioned solutions
require the partitioning of distributed applications to be done
by the developer explicitly, there are approaches to automate
this task. A more or less generic approach are distributed
virtual machines (e.g., Jessica2 [15], exCloud [16]). The high
degree of distribution transparency eases the development of
applications, but the effectiveness of the approach depends
on the choice of adequate heuristics and is restricted. When
it comes to intermittent connectivity, these solutions are not
suitable.

Pervasive & UbiComp Solutions: There also exist several
solutions in the domain of smart home and - more generally -
pervasive and ubiquitous computing applications. Approaches
like Vivendi/Chroma [17] and Gaia [18] work on the system
level and take care of context data acquisition and resource
discovery. But, the effort to become acquainted with such
systems is still very high and support is required already at
the operating system level. Their main purpose is not the
computation offloading, but rather includes moving complete
programs from one host to another.

Native MCC-solutions (non VM-based): Solutions
specifically targeted at MCC can be classified into VM-based
and non VM-based. The idea behind the latter is to simply
offload application tasks onto other devices to unburden the
master from computational intensive tasks. In order to do so,
application internals are analyzed and deployment strategies

are created which are applied upon execution of the applica-
tion. But the state of the art (e.g., [19]) does not consider the
current context in order to create migration strategies which
are hence often suboptimal and do not allow for dynamic
adaptation. Moreover, the developer needs to obey certain rules
for the strategies to be effective at all.

Native MCC-solutions (VM-based): An even higher de-
gree of distribution transparency is achieved by VM-based
approaches. CloneCloud [20] for example uses a complete
image of a mobile device which is running in a VM on a server
to execute parts of an application and decides at runtime which
threads to offload using a profiler. MAUI [21] also profiles a
running application to make offloading decisions on the level
of methods. The used heuristics include aspects like the state
size, approximate CPU cycles to save, bandwidth, latency, etc.

C. Results of the Evaluation

Summarizing the previous findings we conclude that recent
work has concentrated on improving the usability, partitioning
and the scalability issues, but that more complex requirements
like parallelization and proper context adaptation still remain
open to some extent. Several solutions have been proposed to
contribute to the field of MCC by addressing the presented re-
quirements. However, there is no ready-to-use solution, as none
of the current solutions is able to address all requirements. As
a consequence, we present the architecture of the CloudAware
framework, an holistic approach to integrate the challenges of
both domains: computation offloading and context adaptation.

IV. CLOUDAWARE

In the preceding section we presented the discussion of
many different solutions employing different levels of abstrac-
tion and granularity. We observed that VM-based solutions
and distributed VMs perform comparably well in scenarios
where little or no context adaptation is required and serve
as convincing approaches due to their ease of use by hiding
the distribution details from both, the developer and the end-
user. However, this high distribution transparency bears several
drawbacks in terms of scalability, as only limited multi-
threading is possible due to comparably high synchronization
requirements. Caused by this limitation, VM-based solutions
are often restricted to interact with one single surrogate at a
time and disallow the interaction between surrogates. Even if
a fine-grained and sophisticated distribution like in ThinkAir
[22] or CloneCloud [20] is carried out, the first-order entity
of the applications’ partitioning still remains an object-oriented
approach that is not directly suitable to match the requirements
of an optimal distribution.

It is also stated by Porras et al. [8] and Flinn [23] that
manual partitioning can be more efficient, as application-
specific knowledge is included. They argue that the inclusion
of distribution details into the original application logic often
alters the entire program structure, as it may become more
useful to execute an initially linear program as a number
of parallel tasks. Furthermore, the automated partitioning can
easily be overruled by inexperienced developers accomplishing
common misconceptions like global variables and other so-
called anti-patterns.



Thus, we decided for a component-based approach to offer
both: On the one hand to include the developer’s expert
knowledge on how the partitioning can optimally support an
efficient offloading strategy and on the other hand to achieve
a loose coupling that requires less synchronization efforts
to manage the effects of intermittent connectivity, which we
believe is not possible with totally automatic solutions where
handling connectivity issues is the special case, but not the
standard case. Using components to serve as a first-order entity
furthermore well integrates into the common development
process and hence the typical developer’s skills and mindset,
as they represent a well-known engineering paradigm.

As already shown in the approach by Giurgiu et al. [19] and
µCloud [24] the concept of self-contained components can be
a viable and effective solution to approach the aforementioned
obstacles of opportunistic scenarios. However, we differ by
the fact that we explicitly try to manage the quickly changing
context by considering the mobile devices’ context as well
as by providing a classification of component- and surrogate
types to drastically reduce the complexity of the offloading
decision and maintain the same security level like with local
execution. Furthermore, we employ the actor model to avoid
the aforementioned concurrency issues to further decrease
synchronization efforts and allow better scalability.

A. CloudAware Environment

To address the aforementioned issues we introduce
CloudAware, an MCC-framework based on the ”active com-
ponents” middleware Jadex [25]. The active components
paradigm, a combination of agent-, service-, and component-
oriented engineering perspectives, supports different ways to
realize CloudAware’s constitutional components (e.g. simple
and intentional agents as well as services and workflows).
The enabling execution environment Jadex has been cho-
sen because it ideally complies with general requirements
like distribution, concurrency and non-functional aspects of
CloudAware’s targeted application scenarios. Moreover, the
Jadex middleware runs on desktop computers and servers as
well as on a broad range of mobile devices, as it requires
no modification of the mobile devices’ operating system, but
just relies on the presence of a Java Virtual Machine that is
available out of the box for all almost any device.

C
lo
u
d
A
w
ar
e
‐e
n
ab

le
d
 

A
p
p
lic
at
io
n

Solver

Discovery

Context 
Manager

CloudAware Base

@annot

C
lo
u
d
A
w
ar
e

Coordi‐
nator

Fig. 2. CloudAware: Execution Platform and Architecture

Figure 2 depicts a bird’s eye view on the resulting execution
platform on mobile devices. As already mentioned, Jadex
and hence CloudAware support the Android platform. While
Jadex runs in an Android process, the CloudAware components

are executed in several independent threads. This way, we
can easily distribute load on multiple processor cores, while
Jadex’s asynchronous way of execution prevents deadlocks. Fi-
nally, MCC-applications designed for CloudAware are running
encapsulated in CloudAware components, hence developers
may just follow an object-oriented approach to implement their
applications using the CloudAware API and optionally may
make use of more sophisticated paradigms supported by Jadex,
like agents or workflows.

B. CloudAware Components

The CloudAware framework as presented in Figure 2 con-
sists of a runtime environment providing several components
to allow optimized offloading decisions. Among these are a
Coordinator to provide synchronization, a Discovery Service, a
Context Manager providing a (future) connectivity status and a
Solver that uses component annotations, the Context Manager
and further statistics in order to create optimal offloading
strategies. In the following, the main responsibilities of the
components will be described briefly:

Discovery Service: The current generation of mobile
devices provides a considerable amount of communication
interfaces (e.g., Bluetooth, WiFi, LTE). Using common mobile
device APIs, the CloudAware Discovery Service is able to
integrate the different interfaces and provides interoperability
over heterogeneous networks by spanning an overlay network
that additionally includes MCC-specific cost metrics based on
the measurements of the current connection quality and actual
surrogate workload.

Solver: Even if the source code is already partitioned into
components, a decision on the optimal deployment strategy
needs to be carried out, which is the task of the Solver.
This includes the basic decision about which components
to execute locally and which ones to run on surrogates,
as well as a grouping of components with high interaction
among each other. Here, the execution time, network latency,
bandwidth cost, energy consumption and the amount of input
and output data need to be taken into account. But as the
context may change quickly, this offloading decision needs
to be re-evaluated periodically. It is yet another task of the
Coordinator to decide how often to perform this re-evaluation,
while not overcompensating offloading savings by the Solver’s
computations itself. But the Solver’s optimization is not limited
to a single goal, but on different, even conflicting, goals.
While computing an execution plan, the Solver can optimize on
energy savings, high performance, bandwidth saving or follow
a balanced strategy based on the learned user behavior. Doing
so, the optimal execution plan is derived and handed over to
the Coordinator. To constantly improve its reliability the Solver
periodically performs self-tuning by analyzing past execution
plans based on their performance indicators.

Context Manager: The Context Manager provides infor-
mation about the current and future connectivity statuses to
certain surrogates and networks, enabling the Coordinator to
schedule long-running tasks while assuring that the results
will be delivered. It’s function differs from the Discovery
Service by the fact that all information provided by the Context
Manager is to be considered uncertain due to the mentioned
issues of the quickly changing context. To perform compu-
tation offloading it is most important to know what latency



and bandwidth to expect to which surrogates. Furthermore it
is necessary to know if these surrogates will be reachable and
until when or if the connection is expected to be back up later.
To provide this forecast on how the connectivity of the mobile
device will change over the time, the Solver employs various
data mining algorithms from the domain of machine learning
in order to perform supervised learning generating prediction
models that allow a connectivity forecast. Being computational
intensive itself, the model generation is only carried out when
the device is connected to a power-source, whereas applying
the precomputed models is easily available on mobile devices.
In this way, the Context Manager is designed to efficiently deal
with the mobile device’s limited resources.

Coordinator: It is the task of the Coordinator to merge
the information from the Discovery Service and the Context
Manager to employ the Solver and to realize the generated
execution plans. Furthermore, the Coordinator handles the
error management, which involves to recover to a consistent
state, even if some surrogates fail or the mobile device suffers
from network outages. Currently, the Coordinator handles lost
connection states by re-executing tasks locally or on other
surrogates. Additionally, the Coordinator takes care of the
privacy issues related to computation offloading by enforcing
that only components marked as offloading candidates by the
developer may be offloaded to potentially untrusted surrogates.

C. CloudAware Component Types

To limit the amount of possible execution plans and to
further reduce the complexity of the offloading decision, we
introduced categories, both for surrogates and for component
types. Having analyzed typical mobile applications that repre-
sent candidates for resource augmentation, we found that most
features can be broadly classified into two types of operations;
idempotent compute jobs and long running non-idempotent
operations. For this purpose, we distinguish between three
different component types and require the developer to classify
the application components accordingly:

Stateless Component: For the class of idempotent com-
pute jobs we envision the Stateless Component (SL). The SL
is suitable for all tasks that, in case of an error, can recover
to the same global state by being recreated by the Coordinator
on a different surrogate and by replaying the last service-call
addressed to them. As the error handling is performed by the
Coordinator the execution of such components always leads to
a result if suitable surrogates are available.

Stateful Component: For the more infrequent case of
non-idempotent operations we require a different mechanism
that is able to properly recover from connectivity failures
and re-establish the identical global state. At the same time,
this component type, named the Stateful Component (SF),
qualifies for long-running transactions that are not necessarily
expected to complete while connected to the mobile device,
as they offer synchronization features to allow disconnected
operation. Here, the component that initiates the service-call
needs to provide recovery mechanisms on a functional level to
compensate the error.

Data Access Object: The third component type is the
Data Access Object (DAO) that provides an efficient way
of virtualized access to the local resources (e.g. sensors or

storage) of the mobile device to even allow the offloading
of stateless and stateful components that rely on specific
dependencies or capabilities of the mobile device.

D. CloudAware Surrogate Types

To further support the Solver in creating the offloading
strategy, we also classify the surrogates into three types:

1st Level Surrogates: First-level surrogates are considered
to be generally available and well-connected to the mobile
device. Examples include the smartphone itself or the user’s
own stationary computer. Most of the time they are expected
to be reliable candidates for the offloading of SL and SF com-
ponents. Moreover, they are considered a trusted environment.

2nd Level Surrogates: Second-level surrogates differ from
the previous type by the fact that their availability and latency
is lower, as wireless links (like LTE) are required to reach
them. But they depict good candidates for long-running or
parallelizable tasks, as their resources can be generally con-
sidered high. Hence, they qualify for SL and SF components.
Assuming a further service-level agreement with the service
provider, even these surrogates can be considered trusted.

3rd Level Surrogates: This type covers all remaining
surrogates that cannot be assigned to one of the first two types
of surrogates. To support opportunistic scenarios, CloudAware
can employ these surrogates for SL components that do not
require a trusted environment.

Using the aforementioned classification of components,
developers are now required to only annotate their components
to indicate which parts of the application’s back-end qualify to
be offloaded. Tasks like resource discovery, code deployment
and the offloading decision are then handled by the framework.
Based on the presented taxonomies, a simple use case to
demonstrate the different roles is exemplified in the following.

E. CloudAware Use Case

Once a mobile data mining application like face recognition
is running for the first time CloudAware tries to offload
the stateful (SF) training component onto a trustworthy and
powerful surrogate (e.g., a cloud server), where the machine
learning takes place and the recognition model is generated.
Having synchronized the results back to the mobile device,
the succeeding analysis tasks, implemented as stateless com-
ponents (SL), make use of the previously trained model and
can easily be offloaded to all available surrogates that the
CloudAware-framework expects to deliver the result in time.

In case of a sudden loss of connection to one of the
surrogates, CloudAware re-balances the computation to the
mobile device alone and tries do discover new surrogates that
qualify for offloading. Based on the forecast of the CloudAware
Context Manager and the optimization goal to achieve best
application performance, the Coordinator may decide to shift
the continuous load to whatever surrogate that is expected to
be reachable when the computation is likely to finish.

The depicted architecture easily allows an adaptation to
intermittent connectivity and a quickly changing context, while
maintaining a seamless application flow. To cover network fail-
ures, we assure that there is always a consistent or recoverable



Training
Model

Generate

SF

Analysis

Model
Use

Local Runtime Environment

GUI

SL

1st Level Surrogate

2nd Level 
Surrogate

SL
Analysis

3rd Level Surrogate

SL
Analysis

SF
TrainingSynchronize

Offload

Offload

Face Recognition 
Model

Fig. 3. CloudAware:Face Recognition Use Case

state on the primary (mobile) device. Due to the comparatively
low number of components the offloading decision is solved
with only a little overhead. Currently, we are implementing
selected sample applications like the face recognition app in
order to evaluate their performance in real applications, which
we plan to present in our future work.

V. CONCLUSION

Computation offloading scenarios in opportunistic net-
works have been shown to be a promising approach to
overcome the limitations of mobile devices and enhance the
user experience. Still, there is neither an MCC-solution nor
a cloudlet infrastructure available at the market. We argue
that this is the case because existing MCC-solutions do not
address all relevant challenges. Especially context adaptation
is hardly considered, although it can bring a vast asset to future
mobile services. Hence, we presented CloudAware as a holistic
approach to connect computation offloading and context adap-
tation. Following a component-based approach, expert knowl-
edge of developers is taken into account to guide offloading
decisions. Moreover, CloudAware is especially construed to
deal with the effects of intermittent connectivity and to address
the lack of proper context adaptation. While many other works
exist, the purpose of this paper is to focus on computation
offloading techniques that fit into the common development
process of mobile applications, primarily to support a broad
range of mobile services and, secondly, to be easy to learn for
developers. We conclude that to simplify the development, a
convenient, but effective programming abstraction is required
and that the potentials of MCC can only be unleashed by
proper context adaptation, which will be a future source of
challenging research problems.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2011.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[3] M. Satyanarayanan, “Pervasive computing: vision and challenges,”
Personal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in In Proceedings of the 1. Edition of
the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–16.

[5] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: aiding
the development of context-enabled applications,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, ser. CHI
’99. New York, NY, USA: ACM, 1999, pp. 434–441.

[6] K. Geihs, “Selbst-adaptive software,” Informatik-Spektrum, vol. 31,
no. 2, pp. 133–145, 2008.

[7] G. Orsini, D. Bade, S. Stella, and W. Lamersdorf, “Cloudaware,” 2014,
submitted to MobiSys 2015.

[8] J. Porras, O. Riva, and M. D. Kristensen, “Dynamic resource manage-
ment and cyber foraging,” in Middleware for Network Eccentric and
Mobile Applications. Springer, 2009, pp. 349–368.

[9] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design, 5th ed. Boston, USA: Addison-Wesley, 2012.

[10] International Organization for Standardization, “ISO/IEC
FCD 25000, software engineering software product
quality requirements and evaluation - guide to SQuaRE,”
http://www.iso.org/iso/home/store/catalogue tc
/catalogue detail.htm?csnumber=35744, 2014, accessed 07.07.2014.

[11] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D. Meuter,
“AmbientTalk: Object-oriented event-driven programming in mobile ad
hoc networks,” in Proceedings of the XXVI International Conference of
the Chilean Society of Computer Science, ser. SCCC ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 3–12.

[12] M. Shiraz and A. Gani, “A lightweight active service migration frame-
work for computational offloading in mobile cloud computing,” J.
Supercomput., vol. 68, no. 2, pp. 978–995, May 2014.

[13] C.-L. Fok, G.-C. Roman, and C. Lu, “Mobile agent middleware for
sensor networks: an application case study,” in IPSN. IEEE, 2005, pp.
382–387.

[14] CoDAMoS Project, “CoDAMoS: Context-driven adaptation of mobile
services,” http://www.cs.kuleuven.be/ distrinet/projects/CoDAMoS/,
2003, accessed 09.07.2014.

[15] W. Zhu, C.-L. Wang, and F. C. M. Lau, “JESSICA2: a distributed java
virtual machine with transparent thread migration support,” in IEEE
International Conference on Cluster Computing, 2002, pp. 381–388.

[16] R. K. K. Ma, K. T. Lam, C.-L. Wang, and C. Zhang, “A stack-on-
demand execution model for elastic computing,” in 39th International
Conference on Parallel Processing (ICPP), 2010, pp. 208–217.

[17] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. D. Herbsleb,
“Simplifying cyber foraging for mobile devices,” in MobiSys, E. W.
Knightly, G. Borriello, and R. Cceres, Eds. ACM, 2007, pp. 272–285.

[18] M. Romn, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt, “Gaia: a middleware platform for active spaces,”
Mobile Computing and Communications Review, vol. 6, no. 4, pp. 65–
67, 2002.

[19] I. Giurgiu, O. Riva, and G. Alonso, “Dynamic software deployment
from clouds to mobile devices,” in Middleware, ser. LNCS, vol. 7662.
Springer, 2012, pp. 394–414.

[20] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in Proceedings of
the 6. European Conference on Computer Systems, 2011, pp. 301–314.

[21] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” in ACM MobiSys 2010, 2010.

[22] S. Kosta, A. Aucinas, H. Pan, R. Mortier, and Z. Xinwen, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in IEEE Proc. INFOCOM, 2012.

[23] J. Flinn, Cyber Foraging: Bridging Mobile and Cloud Computing, ser.
Synthesis digital library of engineering and computer science. Morgan
& Claypool, 2012.

[24] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and B. S.
Lee, “µcloud: Towards a new paradigm of rich mobile applications,”
Procedia Computer Science, vol. 5, no. 0, pp. 618 – 624, 2011.

[25] A. Pokahr and L. Braubach, “The active components approach for
distributed systems development,” International Journal of Parallel,
Emergent and Distributed Systems, 2013.


