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Abstract—As mobile devices are becoming more advanced in
technology, the type of software they are able to process de-
velops from simple apps to complex applications. Fortunately,
a main area in software engineering research is dedicated to
examining the handling of complexity. The common approach
of adding abstraction layers is embodied in various middle-
ware solutions, including application-oriented middleware that
feature generic abstractions for decomposition and distribution
as well as support for non-functional criteria and higher-level
concepts in programming. However, embedding middleware into
a mobile operating system environment bears many challenges.
The several attempts of porting a middleware to Android have
only been partially successful, as they either require developers
to use an uncommon programming language or abandon the
well-proven Android design principles. We propose a universal
architecture for integrating middleware into the Android OS
while maintaining the core features of the Android application
framework. The presented architecture provides the shared use
of middleware libraries during runtime as well as a middleware
execution platform for shared use of different apps and an event-
based mechanism for middleware/android component coupling.

Keywords–Android; Middleware; Mobile Applications; Software
Agents.

I. INTRODUCTION

The possibilities of mobile applications increase with the
advent of faster hardware, bigger screens and more stable
broadband connections. This ongoing evolution of mobile
computing leads to larger applications and increases the need
for methods reducing software complexity [1]. While reducing
complexity has played a central role in software engineering
right from the beginning, there is still no silver bullet; com-
plexity can only be coped with abstraction [2]. Several types of
middleware can aid software developers by providing some of
the abstractions that are needed to create nowadays programs.

A helpful categorization of middleware is shown in
Figure 1. This paper focuses on a subset which we call
application-oriented middleware. This subset includes com-
ponent and agent-oriented middleware. In addition to com-
munication, they provide support for decomposition or other
generic programming abstractions; thus supporting application
development in multiple aspects.

Android, as well as other mobile operating systems, has
been developed with limited resources in mind. Processing
performance, available memory, and battery capacity have been
considered at system level. In consequence, the system was
designed to run rather small, self-contained applications or

Figure 1. Middleware taxonomy, based on [3].

apps, which are executed in separate virtual machine envi-
ronments for security and safety reasons [4]. App developers
are restricted to fixed design principles to make sure their
application integrates properly with the operating system. For
example, apps have to be split up in activities and services,
depending on whether the given part represents UI or executes
background tasks. Activities and services are subject to a
specific life cycle, which is executed by Android. Acting as a
framework, the Android OS is allowed to start, stop, pause and
resume apps if it needs to for various reasons such as limited
resources, user interaction or even an incoming phone call.

The strict requirements for application developers lead to
limitations in software architecture design and the integration
of middleware. As applications are executed in different VM
processes and the developer cannot influence application load-
ing, it is not possible to share libraries in a convenient and
secure way [4]. As apps get bigger and use more libraries,
the possibility of them sharing code and thus reduce memory
footprint increases. Middleware, in contrast, is built to handle
more than one running application and thus supports access to
common functionality by design.

Furthermore, since the Android system determines the way
applications are loaded, instantiated and started, there is little
chance for the application to influence mechanisms like class
and resource loading. Application-oriented middleware, how-
ever, form an abstraction layer between operating system and
applications as shown in Figure 2. This usually requires the use
of specific classloading or startup mechanisms, as middleware
provides a runtime environment called platform to control the
life-cycle execution of runtime application components [5][6].

This paper presents an architecture that deals with these
challenges and integrates a middleware platform within an
Android application; to be used and accessed by client applica-



tions and achieving a higher level of abstraction during applica-
tion development. As the presented architecture is independent
of a specific middleware implementation, it is conceptually
applicable to various middleware.

The article is structured as follows: Section II introduces
the requirements we would like to fulfill. Section III provides
an overview on related work. Section IV explains the chal-
lenges of the Android operating system regarding middleware
integration. Section V describes the architecture we propose to
cope with these challenges. Section VI presents a prototypical
implementation of the architecture, which is then evaluated
in Section VII. Finally, Section VIII concludes the paper and
gives an outlook on future work.

II. REQUIREMENTS

In contrast to embedding a middleware into an Android
application [7][8], the goal of this paper is the integration
of middleware into the Android operating system as an ab-
straction layer to be used by other applications as shown in
Figure 2.
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Hardware

Figure 2. Middleware layer between applications and operating system,
based on [9, p. 23].

This goal leads to the following functional requirements:
1) Independent deployment: The middleware is de-

ployed independently of other applications and can
be used by client applications (which in turn do not
need to include middleware libraries).

2) Multi-client capable: Multiple applications can run
on a single instance of the middleware.

As outlined in the introduction, the Android application
framework introduces several design principles to simplify ap-
plication development in the context of mobile devices. These
principles should obviously still be applicable when develop-
ing applications using an integrated middleware. Application-
oriented middleware can provide additional programming ap-
proaches, such as agent-orientation, which should be available,
too. Furthermore, components developed with middleware con-
cepts should be able to interoperate with Android application
components. This leads to the following criteria:

3) Concept integration: Concepts of both the integrated
middleware and the Android operating system should
be available to the developer.

4) Component coupling: Components running on the
middleware and components based on Android
paradigms must be able to communicate easily.

As non-functional requirements cannot generally be ful-
filled by an integration architecture, but are determined by
the concrete middleware and application, they will not be
considered here.

III. RELATED WORK

In this section, other work regarding the use of middleware
on mobile operating systems is reviewed with respect to the
requirements given in the previous section.

A. Component-Oriented middleware
Component-oriented middleware realizes the idea of inter-

changeable and reusable software components. They imple-
ment a component model, which defines syntax and semantics
of component definitions and their relations [10]. Several
approaches, all based on OSGi [11], have been proposed for
the use on Android devices.

Equinox was originally developed to provide a plugin-
based architecture for the Eclipse IDE. In the progress of
evaluating the application of Equinox on Android devices,
necessary changes were added by Hargrave and Bartlett in
2008 [12]. For the time being, Equinox does not provide a
concept for integrating UI. In consequence, it is uninteresting
for many real-world scenarios.

The Apache OSGi implementation Felix supports execution
on Android since version 1.0.3. It is possible to use the
Felix command line shell to add bundles and run console
applications, just as with Equinox. Furthermore, Felix can
be embedded in Android Apps and executed during the ini-
tialization of an app [7]. Based on this approach, Escoffier
showed how to create Android apps that dynamically load .jar
bundles. Felix uses a special ViewFactory Interface for creating
application UI from within any bundle [13].

The commercial OSGi implementation ProSyst mBS was
designed for embedded hardware, and features explicit support
for Android devices. As in Felix, application components are
deployed as .jar bundles and can contain UI, which has to
be implemented using the interface ApplicationFactory instead
of activities. As opposed to the previously described OSGi
implementations, the ProSyst platform is deployed inside a
standalone Android application. To launch an individual appli-
cation, a dummy app is installed on the device, instructing the
platform application to load a specific application bundle and
display its UI [14]. This execution model enables sharing of
the middleware platform between applications, while keeping
the original user experience.

B. Agent-Oriented middleware
Software agents provide a high-level approach to imple-

ment complex and concurrent software systems. In order to
use such an abstraction, a runtime environment (platform) is
required to provide services e.g., for executing or discovering
agents.

JaCa-Android [8] was specifically developed for Android
and combines the Agents & Artifacts paradigm with an agent
runtime called CArtAgO [15]. Agents are implemented us-
ing Jason, an AgentSpeak implementation [16]. The runtime
model is based on embedding the runtime platform into
applications, including a central JaCa-Middleware application,
which provides several artifacts to enable using services like
contact management, localization or SMS from within agents.
User interfaces are developed using default Android activities
and are represented to the agents as artifacts to enable com-
munication between them. The Agents & Artifacts approach
allows for an elaborated integration of agent and Android
design principles, but introduces an implementation language
that is very different from traditional languages.

Another agent-oriented middleware is JADE, which also
features an Android version. Jade-Android can either integrate
with a back-end or be executed as standalone platform. In



any case, the runtime platform is included in applications;
increasing the application sizes and loading times. Agents can
communicate with Android activities using the Object-to-Agent
Interface (O2A). O2A utilizes Android intents sent by agents
and received by activities as well as Java interfaces, which are
used by activities to call agent methods [17].

In Table I, all previously described approaches are com-
pared in respect to the requirements stated in Section II. It can
be seen that no approach is able to fulfill all requirements to
a satisfactory degree.

TABLE I. FEATURE OVERVIEW.

Independent Single Concept Component
deployment instance integration coupling

Equinox + + - -
Felix - - o -
ProSyst + + o o
JaCa - - + +
JADE - - + +

Legend: +: supported, o: partly supported, -: not supported.

IV. CHALLENGES OF THE ANDROID OS
Several properties of Android prevent middleware devel-

opers from simply porting and using a Java SE middleware.
In order to fulfill all the requirements mentioned in Section II,
integrating the middleware into the Android operating system
has to be done with great care. We will focus on three of
the most critical characteristics of Android that have to be
considered.

First, Android implements an effective way to run every
application on its own virtual machine. To avoid loading core
libraries twice, a central VM process called Zygote is used to
load them into memory. This process is forked each time a
new VM is needed, providing every running VM access to the
previously loaded core libraries [18]. This works fine for shar-
ing Android core libraries, but the process separation prevents
applications from sharing common libraries at runtime. For
the integration of middleware, this is turning into a problem:
As per requirement #1, we want middleware and client ap-
plications to be deployed independently; but at the same time
run multiple applications on one middleware instance (#2). To
achieve this, every running client application must have access
to classes which are included in the middleware application.

Second, Android applications, specifically their activities
and services, utilize a preset life cycle. While dynamic library
sharing is impossible due to the above-mentioned process sepa-
ration, this also complicates static sharing, i.e., using the same
filesystem copy of a library. An Android application’s entry
point is an activity or application object [19, p. 75], which
is instantiated before developers gain control of execution. In
particular, replacing or modifying the class loader that is used
to load the application’s activities and services is not possible,
which renders statical sharing of libraries a hard problem.

In Figure 3, the control flow of an application with two
activities is shown. The first activity requests startup of the
second activity in its onCreate() method; passing control to
the system. This is why some implementations from Section III
don’t allow the use of activities to implement UI, but rather
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Figure 3. Control flow during application startup and activity change.

provide special interfaces to be implemented by the application
developer. This way, they can ensure the right class loader is
used to call the interface methods.

Third, Android introduces a simple way to access Re-
sources from code. Resources can be images, UI layouts, string
values and arbitrary binary files such as sounds. At compile
time, every resource is assigned an id, which is stored in
the generated class R, pointing to the correspondent file. For
resolving resources at runtime, Android automatically uses the
R class belonging to the current application context. In con-
sequence, loading an application-external class that contains
resource ids (e.g., UI), which is what middleware has to do to
show application-specific UI, will usually fail. This is mirrored
by the fact that in current implementations which allow sharing
of middleware libraries, it is not possible to use resources such
as XML-UI layouts (see Section III).

V. ARCHITECTURE

Our middleware-embedding architecture is based on sepa-
rate Android applications with no additional .jar deployment,
as this would differ from default Android concepts (require-
ment #3). One application provides the middleware runtime
and contains all middleware-specific classes and libraries.
This middleware app can then be called from client apps,
providing access to middleware libraries and functionality.
While keeping both application types separated at deployment
time, our architecture executes client apps in the middleware
process to allow for sharing of middleware libraries at runtime.
To preserve Android and middleware concepts, the proposed
architecture does not allow to create or modify UI inside
of middleware components. Instead, middleware and Android
components are created separately, while a convenient way to
communicate between them is part of the architecture.

The following subsections will describe the startup pro-
cedure as well as three important architectural details: UI
instantiation, service binding and communication between
Android and middleware components.

A. Startup phase
The interaction on startup of a client app is illustrated in

Figure 4. First, the client app has to send a special startup intent
adressed to the middleware app, which is started on demand.
This intent must contain information about the client app: the
full path to the client app’s installed APK file, and the name
of the main activity to launch. This behavior can be extracted



to a base activity class that can be extended by the application
developer.

Android System Client App Middleware App

onCreate()

create startup intent

startActivity(intent)

onCreate(intent)
load Client
App classes

show view

Figure 4. Interaction on application startup.

Upon reception of the intent, the middleware app will
access the client app’s classes by creating a class loader that
points to the correspondent APK. Interestingly, it is possible
for applications to read other applications’ compiled code, if it
is not explicitly forward-locked [20, p. 79]. After loading the
classes, the middleware app will instantiate the main activity,
which has been specified in the startup intent. The mechanism
that is used to display the client app’s UI will be introduced
in the next section.

B. UI instantiation and management
As discussed earlier, app developers are not able to influ-

ence activity instantiation and presentation themselves. For-
tunately, since the release of Android 3.0, there is a way to
manage sub-views, which are called Fragments, from inside an
application. Fragments implement their own life cycle, which
is derived from the system-executed activity life cycle, but
executed by a Fragment Manager instead [21]. Contrary to
activities, this enables the use of fragments that are instantiated
by application-own code, which in turn is the requirement for
using a custom class loader.

In consequence, we are not allowing activities inside a
client app, but instead use fragments as top-level replacement.
As fragments were introduced to allow the partition of user
interfaces, they also provide all capabilities to implement
Android user interfaces (including fragments in fragments) and
thus provide a viable replacement for activities. Three essential
elements are needed in order to make the replacement work:

• A basic FragmentActivity inside the middleware
app which will contain the client application’s layout.

• A mechanism that implements switching between
shown fragments and used resource contexts, depend-
ing on active client application.

• A base class extending Fragment that will (possibly
transparently) replace activities in the client app. This
class will be called ClientAppFragment and its
instances are referred to as client fragments.

To focus on architectural design, we omit discussion of
these elements here. They are discussed in detail in [22].

C. Service binding
When executing a client app inside the middleware pro-

cess, the Android service binding mechanism needs special
attention. Generally, binding an Android service returns the
control flow to the Android system, which then determines
which service to call and whether it has to be started or is
already running. As this procedure is similar to starting an
activity, it does not allow the developer to influence class
loaders beforehand. This makes it impossible to build services
that in turn use middleware libraries or communicate with the
middleware. Since this is obviously undesirable, we propose
an alternative way services are bound by client apps.

The used approach was inspired by the way Android
handles fragments. Instead of letting the system create, bind
and destroy services, a single service is always bound to the
middleware app’s main activity. All service calls originating
from client fragments are handled by this universal service,
which manages the (quite simple) service life cycle and
maintains all existing service instances and connections.

The binding process is shown in Figure 5. In step (1),
a binding is requested by a client fragment. The request,
containing the classname of the targeted service, is han-
dled by the universal service. In step (2), the service is
instantiated and its life cycle is executed until onBind()
is called, returning a binder object in step (3). The binder
object is passed to the corresponding client fragment by calling
onServiceConnected() in step (4), finally establishing the
connection between client fragment and client service.

Client
Fragment

ClientAppFragment

- bindService()

Universal
Service

- serviceInstances
- serviceConnections

+ startService()
+ bindService()

bindService()
Client
Service

new

onCreate()

onBind()

return
binder

Service

 onServiceConnected
(binder)

Fragment

(1)

(4)

(2)

(3)

Figure 5. Universal service handles binding of client services.

Calls to external services, e.g., from other third-party apps,
are still handled by the original service binding mechanism. Its
possible to differentiate between internal and external services
by the type of intent used: Explicit intents always refer to
application-internal classes, while implicit intents can address
external services [21].

D. Communication/Coupling
Besides displaying UI and binding services, at some point,

the client app has to interact with the middleware in terms
of starting the platform or using an already running instance,
starting or stopping a middleware-supported runtime element,
or looking up middleware services and components. Since
interactions of this kind generally take place during the whole



application lifetime, they should not be executed inside short-
living activities/fragments, but rather in long-living Android
services. For the sake of convenience, we only allow one ser-
vice inside an application to communicate with the middleware
directly; we will call this service platform service.

In the requirements section, we further demanded easy
communication between relevant Android components, which
we cut down to services and middleware components. The
latter can be software components, agents, or any other run-
time elements that are supported by the used middleware.
For coupling between the platform service and middleware
components, we use the observer pattern to allow for loose
coupling of the components: a middleware component can be
called from the platform service through interface methods
or using the middleware’s service model if available. The
platform service can in turn register for typed events that
are thrown inside middleware components; either by calling
a static method or by integrating an appropriate event service
into the middleware itself, which can be used by runtime
components.

E. Overview
Figure 6 shows an overview of the architecture containing

the elements described above. Green dots represent connec-
tion endpoints, embodied on Android by implementations of
the classes ServiceConnection and Binder. On the left
side, the fragment activity provided by the middleware app
is shown. It loads all needed client fragments and displays
them according to their life cycle, which is executed by the
fragment manager. Client fragments communicate with client
services on the right side, which are contained in the universal
service. Their life cycles are executed by a service manager
and the platform service is able to access the underlying
middleware platform for managing and communicating with
runtime components. Everything that is shown runs inside the
same process and application context.

Universal ServiceFragment Activity

Fragment Manager

UI Service
Connection

Client Fragment 1

Client Fragment 2

Client Fragment n

(all loaded from
ClientApp)

Client Service 1

Client Service 2

Client Service n
(platform service)

(all loaded from
ClientApp)

Service Manager

Client Services

life-cycle
execution

life-cycle
execution

Middleware Platform

Runtime component 1 Runtime component nRuntime component 2

access

communicate

Figure 6. Overview of the middleware integration architecture.

VI. IMPLEMENTATION

While the Android-specific implementation is rather uni-
versal and could be generalized, the used middleware might
need some extensions. For example, it must provide a class
loading mechanism that supports dynamic adding of class load-
ers. This is required for running a shared middleware platform,
as it is unknown in advance which client application classes

will be needed in the future. Upon requests by applications, the
middleware must to be able to distinguish between individual
applications and their classes to make sure classes can be
loaded and the correct runtime components are managed.
Since middleware may already handle dynamic class loading,
this is a modest requirement. In addition, the aforementioned
class loading mechanism has to support the Android class
loaders; supporting the android-specific class formats. The
presented integration architecture was implemented using the
active component middleware Jadex [23].

In this implementation, the middleware platform is ac-
cessed by a service extending JadexPlatformService. This
abstract class provides methods for configuring platform op-
tions, such as platform name, whether to use a shared or
an app-private platform, and other Jadex-specific options.
After the platform was started in shared mode by calling
startPlatform(), subsequent calls from other client apps
provide access to the shared platform in the callback method
onPlatformStarted(). Furthermore, the service can start
Jadex components with startComponent() and register for
events with registerEventReceiver().

On the UI side, an app has to define a class inher-
iting from JadexClientLauncherActivity and imple-
ment a method returning the class name of the app’s de-
fault fragment. This activity will be the one initiating the
startup procedure described in Section V. Whenever the de-
veloper would like to implement further activities, he has
to extend ClientAppMainFragment instead. In this class,
startActivity() and startService() are modified to
start other ClientAppMainFragments and to use the uni-
versal service. This, as well as loading resources, layouts and
assets from the right client app package, is done transparently.
When fragments are required, the developer can implement
ClientAppFragment to get access to the main fragment.

VII. EVALUATION

For evaluation, two versions of a demo application were
compared against each other regarding startup time and appli-
cation size. The first app was implemented using the described
architecture and is thus capable of using a shared platform,
while the second embeds the Jadex platform, as it would
have to without the presented architecture. For this purpose,
the applications just contain one client app fragment and
bind itself to a platform service which starts up a platform
component. In consequence, they model the smallest possible
Jadex applications in each setup and the total startup time
heavily depends on the platform startup time.

3414msApp with embedded platform

3593msClientApp (private platform)

211ms ClientApp (shared platform)

0ms 3600ms

Figure 7. Application startup time comparison.

Figure 7 compares application startup times, showing the
average of ten measurements on a Samsung Galaxy Nexus
i9250. We differentiated between a client app starting its own
platform and the case of using an already running platform.



As the chart indicates, the latter case drastically reduces the
application startup time. In comparison to embedding the
platform, using the integration architecture does not signif-
ically influence startup time when using a private platform.
Additionally, Table II shows corresponding application sizes.
As splitting application and middleware results in only 132
KB overhead compared to embedding the platform, the profit
of using the integration architecture is confirmed again.

TABLE II. APPLICATION SIZE COMPARISON.

Own classes DEX size APK size

Embedded 64 KB 3.516 KB 1.548 KB
Clientapp 58 KB 274 KB 136 KB
Middleware app 49 KB 3.532 KB 1.544 KB

Nevertheless, the proposed architecture comes with some
limitations, which are mostly induced by circumventing the
process separation of Android and running multiple apps in one
process. First, client-side manifest declarations are ineffective,
as the client app is only started by itself to initiate the startup
phase. Afterwards, only the manifest of the middleware app
is respected. This is especially critical for permissions, while
intent receivers, or styles, could be handled by passing them
through for the middleware app to handle. For evaluation
purposes, our middleware app was given all necessary per-
missions. While app internal services are already handled by
the architecture, externally visible services cannot be declared.

Second, access to the Android storage options, such as
databases, preferences and private files is shared between all
client apps running on the middleware. Since they run in the
same process and use the same application context, they also
have access to the same storage resources. To a certain extent,
this could be prevented by enhancing the middleware.

Last, stability can only decrease when running multiple
apps in one process. With big apps, one might also reach
resource limits such as heap space sooner, which in the worst
case might lead to termination of the middleware including all
client apps.

VIII. CONCLUSION AND FUTURE WORK

This paper presented an approach that enables the inte-
gration of middleware into the Android system. In particular,
the architecture allows different apps to use one middleware
platform jointly at runtime. It further provides full access to the
sophisticated Android design principles, which are unavailable
on most current middleware implementations for Android. An
event-based mechanism ensures smooth interaction between
application components running on the middleware platform
and Android application components. Most of the problems
handled in the presented architecture arise from the fact that
Android itself provides an extensive framework and runtime
environment, complicating the integration of middleware.

With the presented architecture, other middleware can be
integrated into Android, allowing developers to program using
alternative programming principles, decomposition features
and non-functional criteria of modern application-oriented
middleware. Future work may include removing limitations
where possible, evaluating the architecture using other middle-
ware, as well as implementing a generic integration solution
that abstracts from the concrete middleware platform.
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