
ORESTES: a Scalable Database-as-a-Service
Architecture for Low Latency

Felix Gessert#1, Florian Bücklers#1, Norbert Ritter#1
#Computer Science Department, University of Hamburg

Vogt-Kölln Straße 33, 22527 Hamburg, Germany
{gessert,bueckler,ritter}@informatik.uni-hamburg.de

Abstract— Today, the applicability of database systems in cloud

environments is considerably restricted because of three major
problems: I) high network latencies for remote/mobile clients, II)
lack of elastic horizontal scalability mechanisms, and III) missing
abstraction of storage and data models. In this paper, we propose
an architecture, a REST/HTTP protocol and a set of algorithms to
solve these problems through a Database-as-a-Service middleware
called ORESTES (Objects RESTfully Encapsulated in Standard
Formats). ORESTES exposes cloud-hosted NoSQL database sys-
tems through a scalable tier of REST servers. These provide data-
base-independent, object-oriented schema design, a client-inde-
pendent REST-API for database operations, globally distributed
caching, cache consistency mechanisms and optimistic ACID
transactions. By comparative evaluations we offer empirical evi-
dence that the proposed Database-as-a-Service architecture in-
deed solves common latency, scalability and abstraction problems
encountered in modern cloud-based applications.

I.�� INTRODUCTION
The emergence of cloud computing, Database-as-a-Service

(DBaaS) and “NoSQL” databases has demonstrated a clear de-
mand for scalable database systems with cloud-capable, web-
based interfaces [1]. There has been a popular shift in applica-
tion design towards relying on DBaaS systems to manage ap-
plication data. A very recent development is that of “Backend-
as-a-Service” (BaaS), where the cloud database service takes
the place of a classic application server and allows applications
(in particular mobile and web applications) to directly connect
to it. Despite the surge of interest in DBaaS and BaaS, there are
unsolved problems. The most prominent one is that of high net-
work latencies incurred by database requests from remote cli-
ents. In this paper, we propose a solution to this problem which
leverages the existing global web caching infrastructure to
serve database objects with minimal latency.

Different studies have shown the dramatic effect of latency
on user behavior. For instance, Amazon found that an addi-
tional latency of 100ms resulted in 1% less revenue and Google
measured that increasing the load time of search results by
500ms decreased user traffic by 20% [2]. As an average web
page load performs 90 HTTP requests [2] - many of which fetch
data from the backend - the DBaaS/BaaS plays an eminent role
for user-perceived latency. This is particularly true when data
fetched from the DBaaS/BaaS is used to render the web site or
web app and thus blocks other operations that incur latency.

ORESTES (Objects RESTfully Encapsulated in Standard
Formats) is our proposed BaaS/DBaaS architecture to over-
come these current limitations of the Backend-as-a-Service
model. ORESTES targets the read-intensive, latency-sensitive

workloads common for most web applications (e.g. blogs, so-
cial media or e-commerce platforms). A REST interface and
server-side schema management allow the database to be ac-
cessed by globally distributed users (e.g. mobile devices), sys-
tems (e.g. a PaaS cloud) and applications (e.g. a web app).

Data is stored in a scalable underlying (NoSQL) database
system that can be chosen according to functional and non-
functional requirements. For example an application needing
complex queries, linearizable consistency and scalability would
employ the ORESTES middleware on top of a database system
such as MongoDB whereas an application requiring high write-
availability would choose an underlying database system such
as Riak or Cassandra. ORESTES exposes the same CRUD (cre-
ate, read, update, delete) operations and the same object-ori-
ented schema interface for all systems, while allowing data-
base-specific query languages and extensions. To achieve read
scalability and solve the latency problem, caching is performed
by various kinds of web caches at the HTTP level. To make this
kind of caching feasible, we introduce a cache consistency al-
gorithm based on Bloom filters that prevents stale cache reads
and ensures consistency. As we found many applications in
need of transactions for some infrequent operations (e.g. a res-
ervation process), we introduce a generic mechanism for opti-
mistic ACID transaction handling at the middleware level.

�O�R�Z���O�D�W�H�Q�F�\��independent
of geographic location

�F�R�Q�V�X�P�H�V and �V�D�Y�H�V��data directly
from/to cloud database service

�2�U�H�V�W�H�V
REST

Middleware

global content �G�L�V�W�U�L�E�X�W�L�R�Q��
through web caching

Internet

databases benefit from web technologies. The main problem
which needs to be solved by our approach is the caching model
of HTTP: the caching lifetimes of objects are predefined and
ad-hoc invalidations usually impossible [3]. Web caches cannot
natively provide cache coherence if ad-hoc changes may occur.
Therefore we propose four consistency strategies:

1.�� Read-Any (RA): clients may receive any version; stale-
ness is bounded by a defined cache expiration time.

2.�� Read-Newest (RN): clients receive the newest version
using HTTP cache revalidation, i.e. a refresh.

3.�� Transactional (TA): the clients’ read sets are validated
and checked for stale reads at commit time.

4.�� Bloom-Filter-Bounded (BFB): by loading a Bloom fil-
ter of recent changes, clients are guaranteed to see only
object versions that are at least as recent as the database
state by the time the Bloom filter was generated.

Read-Any and Read-Newest follow from the HTTP caching
model. RA has the strongest latency benefits while RN guaran-
tees strong consistency. Transactional offers optimistic ACID
transactions allowing arbitrary cache reads. Bloom-Filter-
Bounded gives the best tradeoff between consistency and la-
tency and can be combined with RA and TA. TA and BFB are
explained in a later section. A consistency strategy can be cho-
sen per operation, session, transaction or application and mixed
according to the application’s needs.

The proposed architecture is illustrated in Figure 3. The
ORESTES middleware is comprised of stateless REST servers
which are realized on top of a scalable database system. Build-
ing on the numerous advancements in the area of distributed
databases, write scalability and query processing remain the
duty of the underlying database system. Any database system

supporting CRUD operations can be plugged into ORESTES. For
transaction support a compare-and-swap and a consistent read
operation are also required. The data model (schema), authen-
tication, multi-tenancy, access control, cache consistency and
object versioning are completely performed in the ORESTES
middleware. Database-specific capabilities (queries, counters,
etc.) form additional parts of the REST API. Server-side caches
and CDN caches are managed by the middleware, i.e. object
updates are propagated as cache invalidations. If ORESTES is
deployed in an IaaS Cloud environment, it can leverage elastic
resource provisioning to start additional caching servers, data-
base nodes and REST servers.

Clients, which can either be rich clients (SPA, mobile appli-
cations) or classic applications (e.g. application servers) access
the ORESTES middleware through the caching hierarchy of ex-
isting HTTP Caches. Concrete latency numbers and cache hit
ratios depend on the workload, geographic position and carrier
networks but rough estimations are given in the right part of
Figure 3. Incoming client requests are load-balanced over the
server-side caches and REST servers, which is enabled by the
stateless REST API. The properties the proposed architecture
tries to satisfy are summarized in Table 1.

TABLE I
REQUIREMENTS AND THEIR IMPLEMENTATION

Property Mechanism

Low latency Existing HTTP caches, e.g. browser caches
and Content Delivery Networks

Schema Server-side schema management (schema
definition, evolution and validation)

Standard formats HTTP content negotiation, default JSON
representations

Infrastructure-as-
a-Service Cloud

Load Balancer

REST-Server

Cache

Scalable Database System

HTTP
REST-API Transactions

Schema Management

Cache Consistency

Auto-Scaling Multi-Tenancy

Security and Access Control

Edge Cache
Network

Proxy Caches
Mobile
Client

Application
(Server)

Paas Cloud or
Corporate DC

Global Content
Delivery Network

Cachescale,
invalidate

scale

REST-Server

100%50%0%

�3���&�D�F�K�H���+�L�W��

~0 ms Client-
(Browser)-
Caches

ISP Caches

CDN
Caches

Reverse-
Proxy
Caches

Proxy
Caches

~1 ms

~10 ms

~15 ms

~40-500 ms

Cache Hit Probability

Latency benefit

Browser
Client

Mobile
Client

Browser
Client

r

ISP Caches

�$�3�,�����5�(�6�7��:
Read, Query, Create, Update, Delete,
Begin Transaction, Commit, ...

Application

REST-Server

 database protocols

Fig. 3 ORESTES Architecture.

217

Cache consistency Probabilistic algorithm based on a Bloom
filter of potentially stale database objects

ACID transactions Scalable optimistic concurrency control
Read scalability
and elasticity

Web caching, load balancing, workload-
aware spawning of new web caches

1. REST/HTTP API
In the ORESTES REST API abstractions are represented by

resources identified by URLs, e.g. queries, transactions, ob-
jects, schema, etc. Operations are expressed through the HTTP
verbs GET, PUT, POST, and DELETE. Resources are inte-
grated through Hypermedia, i.e. mutual referencing, similar to
web links. For example, a resource for query results has a list
of references to the objects matching the query predicate (see
example in Figure 4). This is necessary as the HTTP caching
model is URL-based and thus only accelerates point lookups by
object id. Objects can be received (GET), created/replaced
(PUT), updated (POST) and destroyed (DELETE).

Database object (JSON)

�W�U�D�Q�V�D�F�W�L�R�Q�V
���W�U�D�Q�V�D�F�W�L�R�Q

�G�D�W�D
���G�E

�Q�D�P�H�V�S�D�F�H
���D�U�W�L�F�O�H�V

�F�O�D�V�V
���3�R�V�W

�7�,�'
����

�F�K�D�Q�J�H�V
���F�K�D�Q�J�H�V�H�W

�W�U�D
���W�U

�^
�������B�R�E�M�H�F�W�,�Q�I�R�������^
�����������F�O�D�V�V�����������G�E���D�U�W�L�F�O�H�V���3�R�V�W������������
�����������R�L�G�����������G�E���D�U�W�L�F�O�H�V���3�R�V�W����������������������
�����������Y�H�U�V�L�R�Q������������
�����`��
�������I�L�H�O�G�V�������^
�����������S�R�V�W�H�U�����������G�E���X�V�H�U�V���8�V�H�U��������������������
�����������W�L�W�O�H���������1�H�Z���D�U�W�L�F�O�H“��
�����������F�R�P�P�H�Q�W�V�������>�����1�L�F�H“�������*�U�H�D�W“ �@��������
�����������G�D�W�H�������'�D�W�H������������
�����������Y�L�H�Z�V��������������
�����`
�`

�'�D�W�D�E�D�V�H���2�E�M�H�F�W

changed

matched
query

REST Resources

GET PUT POST DELETE
HypermediaHTTP Interface

references

Schema,
Auth., etc.

Fig. 4 Example part of the ORESTES REST interface.

ORESTES requires objects to carry version numbers (Etags)
in order to allow optimistic concurrency. The nature of version
numbers is opaque, so any versioning scheme of the underlying
database can easily be exposed including version counters,
timestamps, vector clocks and content hashes. By default, all
resources in ORESTES are represented as JSON objects. ORES-
TES follows the REST architectural style as described by Field-
ing [4]. Statelessness of communication and thus load balanc-
ing is enabled by not relying on implicit state from request to
request (e.g. cookies) [5]. Other constraints (caching, client-
server, uniform interface, layered system) are similarly met,
yielding a property that other protocols like TCP wire proto-
cols, RPC and SOAP services cannot deliver: inherent read
scalability and low latency provided by the infrastructure [6].

2. Schema Management
ORESTES introduces an object-oriented data model based on

concepts of object databases (e.g. Versant, db4o), object-rela-
tional mapping (e.g. Hibernate) and persistence APIs (e.g. JDO,
JPA, Entity Framework). For schema-free database systems
schema management is completely handled in the ORESTES
middleware. The schema consists of classes which define typed

fields. Types can be primitives (Integer, String, etc.), typed ref-
erences and collections (Sets, Lists and Hashes). Nesting of
classes is allowed for denormalization to achieve best perfor-
mance on aggregate-oriented NoSQL databases. Inheritance is
supported through horizontal partitioning (“table-per-class”),
i.e. inheritance of class fields. This does not require joins for
polymorphic reads/queries but can be handled through a union
operation over the class hierarchy in the middleware. Fields can
have constraints (e.g. not null, domain checks) which can be
checked in ORESTES. Consistency Constraints that limit availa-
bility (e.g. uniqueness constraints [7]) are disallowed.

Access Control Lists may be associated with a schema to
constrain reads and writes to certain users, groups and roles at
field or class level. That way a schema for user profiles could
limit updates to the creator and limit general read access to pub-
lic fields. Objects of classes that constrain read access are not
cached, so permissions can be checked in ORESTES.

For schema updates, communication between the REST
servers is necessary: each server has to know the schema. ORES-
TES supports two kinds of schema updates:

1.�� Safe Updates (adding fields, changing field types to a
parent type): updates are commutative, associative and
idempotent and can be performed asynchronously

2.�� Unsafe Updates (deleting and renaming fields, chang-
ing field types to a non-parent type): updates can lead to
update anomalies and have to be coordinated

Schemas are constructed as state-based CRDTs (Commuta-
tive, Convergent, Replicated Data Types) [8] for safe updates.
Any REST server receiving a safe schema update asynchro-
nously broadcasts the update to all other servers. Every server
applies a merge function to the current and received schema.
Due to the properties of this function, schema updates can be
batched (associativity), concurrently performed (commuta-
tivity) and resent arbitrarily (idempotence). Safe Updates thus
are non-blocking, efficient and fault-tolerant. Unsafe updates
on the other hand need coordination to prevent race conditions
and update anomalies. In ORESTES they are therefore coordi-
nated through a two-phase commit protocol, which blocks the
database between the prepare and commit phase and is poten-
tially unavailable in case of network partitions.

IV.��SOLVING THE LATENCY PROBLEM
Recent cloud computing services and NoSQL database in-

terfaces are often exposed as REST/HTTP services [1]. Unlike
these, ORESTES uses infrastructure-level HTTP caching
through mechanisms explained in this section.

1. Leveraging Web Caching
In ORESTES, all database objects are explicitly marked as

cacheable for a fixed timespan TTL (e.g. 30 minutes). This de-
creases database utilization and reduces network latency, as
web caches are optimized for serving many clients concurrently
and with minimal delay - without contacting the server. We dis-
tinguish between six types of caches that are leveraged in ORES-
TES, based on their network location (see Figure 5) [3], [5]. A
Client Cache can be directly embedded in the application (1),
e.g. a browser cache. Server Caches (5), e.g. in-memory data

218

time increases as some purposefully costly operations (like an
unindexed query) are performed (Figure 10). The execution
times in the third runs using ORESTES demonstrate that the da-
tabase can perform these operations better, when the effort of
serving objects is shifted to the cache. Writes are slightly
slower in ORESTES as they are issued as separate requests
(“HTTP cache invalidation by side-effect”), while VOD clients
buffer writes and transfers them in bulk at commit time.

1. Effects of geographical distribution
We study the performance of ORESTES for the case of geo-

graphical application/database distribution. Web caching is
performed in the client’s network, which is located in Hamburg,
Europe. The database is deployed in the California, USA, cre-
ating the typical Backend-as-a-Service setup. Client and web
cache are VMs with 2GB of RAM and one core of a 3.4 GHz
Xeon Sandy Bridge processor. The round-trip time between cli-
ent and database is �s�z�r�I�O�� G ���w�I�O over a virtual private net-
work (VPN). We compare different web caches: Squid 2, Squid
3, Microsoft TMG and a patched version of Squid 3 for which
we contributed a fix for a mistake in the TCP specification of
the Nagle algorithm that is out of the scope of this paper.

0 100 200 300 400 500 600

Squid 2
Squid 3 patched

Microsoft TMG
No cache

VOD (client cache)

Cache Hits Cache Misses

�/�D�W�H�Q�F�\���>�P�V�@

�6
�H

�W
�X

�S

 Fig. 11 Latency of reads, blue box: 25 to 75 percentile, bars: total range.

The experiments are performed using a working set size of
300 objects, 3 consecutive runs and different read/write ratios
(50%/90%/99% reads). Figure 11 shows the latency of fetching
an object for the different setups comparing ORESTES without
web caching, ORESTES with different web caches and the native
VOD protocol. VOD’s in-memory cache hit latencies are too
small for the millisecond scale. An average HTTP cache hit has

a network latency of roughly �s-�t���I�O which is faster than a lo-
cal disk access. The figure also shows that Squid 2 and VOD
need two resp. three TCP round-trips.

As shown in Figure 12, ORESTES outperforms native VOD
for all read ratios. As foreshadowed by the stochastic analysis,
the increasing number of cache hits in the second and third run
further reduces the overall execution time. Microsoft TMG and
the patched Squid 3 web caches yield the best performance: the
performance advantage of ORESTES (web caching) over native
VOD (client caching) is factor 2.5 in the first, 6.46 in the second
and 10.87 in the third run. ORESTES profits from read-intensive
workloads. This becomes obvious when considering the share
of reads in the total execution times as illustrated in Figure 13
for a read ratio of 90%. Read operations dominate the execution
of all configurations, but the impact on VOD is strongest.

In summary, the experiments show that the proposed ORES-
TES middleware is indeed capable of achieving a massive la-
tency reduction speeding up read-intensive applications while
still allowing complex queries and transactions. We are cur-
rently working on extending the evaluations to SCOT transac-
tions, different caching topologies and database backends, BFB
strategies and parameters as well as exactly quantifying hori-
zontal scalability and availability of ORESTES.

VI.��RELATED WORK
Work on REST interfaces in systems such as CouchDB,

Riak, Azure Table Storage, PNuts, Neo4J, HBase, SimpleDB,
database.com, Datomic [15], [16] focuses on interoperability
and accessibility. ORESTES builds upon this work and extends
it to actively use infrastructure support (caching and load bal-
ancing) as well as more complex database concepts (schema
management, transactions). A scalability pattern often found in
large-scale web applications is that of Memcache or other in-
memory caches serving requests in place of the primary data
store. ORESTES is similar to this approach but also reduces
wide-area latency (required for BaaS), automates the process,
offers BFB consistency and supports transactions. Approaches

50 100 150 200 250

300 / 1

300 / 2

300 / 3

3000 / 1

3000 / 2

3000 / 3

30000 / 1

30000 / 2

30000 / 3

�7�L�P�H���>�V�@

�6
�H

�W
�X

�S
���

>
���

R
�E

�M
�H

�F
�W

�V
���

U
�X

�Q
�@

VOD (client cache)

Orestes (Squid 3 patched)

0 50 100 150 200 250

1

2

3

�7�L�P�H���>�V�@

�5
�X

�Q

�9�2�'�����F�O�L�H�Q�W���F�D�F�K�H��

0 50 100 150 200 250

1

2

3

�7�L�P�H���>�V�@

�5
�X

�Q

�2�U�H�V�W�H�V�����6�T�X�L�G�������S�D�W�F�K�H�G��

reads
writes
querys
other (e.g. transactions)

Fig. 9 Average execution time of 50 concurrent clients. Bars indicate the em-
pirical standard deviation. The y-axis shows stored objects and the run.

Fig. 10 Average execution time of the cloud computing scenario broken down
into types of operations for a read ratio of 90% and 30000 database object.

221

