Interaction-Oriented Rule Management for
Mobile Agent Applications

M.T. Tu, F. Griffel, M. Merz, W. Lamersdorf *
Distributed Systems Group, Computer Science Department,
University of Hamburg
Vogt—Kolln-Str. 30, D—22527 Hamburg
[tulgriffel Imerz|lamersd]@informatik.uni-hamburg.de

Abstract

The characteristic features of delegation and interaction make the mo-
bile agent programming paradigm on the one hand attractive for a wide
range of distributed applications — in particular those related to E-Com-
merce — but on the other hand also pose a considerable semantical risk
potential. In this paper, we present a generic approach of imposing rules
on the behavior of mobile agents aiming primarily at reducing this kind
of risk without impairing the agents’ basic decision logic and interaction
ability. On the contrary, strong emphasis will be put on the algorithms, de-
sign and implementation of rules used to support the interaction between
agents.

Keywords: dynamic rule management, mobile agent, interaction support, E-
Commerce.

1 Introduction

1.1 Motivation

Mobile agent technology is increasingly considered as the right mean to build
innovative, user-friendly and more “intelligent” E-Commerce applications (s.
[KJ98] for a broad overview). However, the reason of its popularity is not mainly
technological, since there are no application problems known that would neces-
sarily require agent technology to be solved', but rather conceptual, that means
mobile agent technology seen as a programming paradigm seems to provide ex-
actly the right abstraction level and the right model to build a lot of distributed
applications, especially those in the area of electronic commerce. This is due
to the fact that agents are commonly regarded as autonomous components to
which some given tasks can be completely delegated. In case of mobile agents,
the delegation capability is even more distinctive because due to their location
independence, the delegating instance, which is often a human principal, does
not have to care of providing a place for the agents to act and therefore can go
offline while his software delegate is carrying out the tasks. Moreover, agents
are generally conceived to carry out tasks that require an essential amount of

*This work is supported, in part, by grant no. Lal061/1-1 from the German Research
Council (Deutsche Forschungsgemeinschaft, DFG)

'Even arguments regarding performance have to be verified carefully, since there is always
a trade-off between migration and communication costs.

interaction or communication with the environment such as making inquiries,
taking orders, negotiating deals etc. so that they represent the adequate ab-
straction of instances that can fill out corresponding roles such as buyers, sellers
or mediators in commercial transactions.

However, it is quite obvious that exactly these characteristic abilities of del-
egation and interaction also pose a great risk potential because the decisions
delegated to an agent could bring about results that are not desired by its
principal. Of course, this risk potential and the corresponding “surprise effect”
could be reduced to a minimum by restricting the decision logic to a finite set
of concrete, i.e. fully specified, situations which can be interpreted and han-
dled by the agent, but such a “hardwiring” solution would in turn substantially
reduce the interaction ability of the agents — especially in open enviroments,
where potential business partners are generally unknown — and the agents’ over-
all functionality, consequently. In other words, the more decision autonomy is
delegated to the agents, the greater the risk of undesired or unforseen deci-
sions that has to be taken into account is. In this paper, we present a generic
approach of imposing rules on the behavior of mobile agents aiming primarily
at reducing this kind of “semantical” risk without impairing the agents’ basic
decision logic and interaction ability. On the contrary, strong emphasis will be
put on the algorithms, design and implementation of rules used to support the
interaction between agents. Moreover, it will become clear that by adding rules
of appropriate types to the agents at run-time, their functionality can not only
be modified but also extended in a flexible and dynamic way.

1.2 Related Works

One of the probably most important and interesting trends which the field of
Distributed Applications has witnessed during the last few years is the emer-
gence of so-called Business Objects (BOs) [Sim94, AF98]. Currently, both the
specification and development of BOs are mainly being driven by the efforts of
a few, but very influential organisations and companies, most typically those
of the Object Management Group (OMG) — through the standardization of the
Business Object Facility [OMG98a] — and those of IBM — through its product
SanFrancisco [IBM98].

In general, the main idea behind BOs is that the whole business of an enter-
prise should be modeled and supported by high-level constructs that directly
represent the semantics of real-world business entities and processes. Taken
as a goal, this might not sound like a real novelty since at present, a lot of
enterprises are already applying quite sophisticated software and information
systems to support and /or automate their business processes. The real progress
which is expected from using BOs is rather to be found in the way of model-
ing and handling the business by means of software components which can be
described by the following “vision”?: The business is processed by freely inter-

2The fact that this seemingly visionary goal is concretely being translated into action can
be positively interpreted as that the state-of-the-art of distributed systems has now reached
a stage at which it really seems promising to develop complete support not only on different

operating, reusable and portable software objects spread across the distributed
enterprise. Especially, it should be possible to specify several semantical aspects
of the reusable BOs such as state declarations, attributes, relationships, rules
etc. in a dynamic and simple manner so that an average developer or even non-
technical personnel could set up and maintain the business applications by tak-
ing prefabricated BOs out of a building kit and adding the application-specific
semantics to these objects. Indeed, the possibility of dynamically incorporat-
ing some types of semantics into BOs can be considered the most important
characteristic that differs them from more “conventional” objects, apart from
the trivial fact that a BO always represents some business entity. However,
presently available implementations of platforms for BOs such as SanFrancisco
only provide very limited support for such add-on semantics and there are no
products compliant to the BO standard of the OMG available yet.

The mechanisms presented in this paper can be considered as an approach of
realizing one type of add-on semantics, which corresponds to Event Condition
Rules (ECRule) in the BOCA terminology. In BOCA [OMGY98a, OMG98b],
ECRules are specified as “an abstraction for any behavior specification that is
enforced based on one or more events” ([OMG98b], p.64) and are classified into
3 subtypes:

e Invariant: “A requirement on the state of the object as an expression that
must evaluate to true.”

e StateTransitionRule: “specifies the conditions under which the type will
go from one state to another.”

e ECARule (Action Rule): “augments ECRule with a generic action speci-
fication.”

Since BOCA aims at a standard, it is not concerned with implementation as-
pects. Also, at the current state of specification, semantical considerations still
stay behind syntactical ones, i.e. those related to data structures. As presented
in the next section, a substantial part of our approach is dedicated to designing
and implementing different activation semantics. Especially, our rule system is
conceived to support (semantical) interaction between distributed applications
which is something beyond the current functionality of the BOCA rules.

The rest of the paper is organized as follows: In Section 2, the concept of
interaction-oriented rule management — including rule types, rule expressive-
ness, generic processing functionality and different modes of activating rules
locally or remotely — is outlined. Thereafter, a concrete rule management archi-
tecture satisfying the requirements of decentralization, event-orientation, mo-
bility and transactional activation is presented in Section 3. Relevant aspects
of the prototype implementations are then described in Section 4 and finally,
the paper is concluded by Section 5.

system levels but also and rather directly on the application level.

2 An Interaction-Oriented Rule Management Ap-
proach

As mentioned above, the ability of correct interaction is essential for mobile
agent applications in open and dynamic environments (such as E-Commerce
over the Internet) and therefore should be supported by generic rule manage-
ment mechanisms. In this section, the basic rule concept for such an interaction-
oriented rule management approach including the logical expressiveness, the
corresponding processing functionality and the activation semantics of different
rule types is described.

2.1 Rule Types

In order to be able to process rules of different types in a uniform way, a generic
rule concept, which can be considered the abstract supertype of all concrete
rules, is needed. In our approach, this concept consists of:

e A condition: Every rule contains a logic, represented by a well-formed
logical expression.

o A trigger list: Every rule is triggered by occurences of certain event types
which are registered in the trigger list.

e An activation: Every concrete rule type must have an activation semantics
specifying what to be performed when a triggering event has occurred.

Based on this generic rule concept, different concrete rule types — including
those suggested by BOCA — can be defined which only differ in their activation
semantics:

1. Requirement rule (R-rule)®: A R-rule represents a requirement that has
to be satisfied when a triggering event occurs. Thus, its activation causes
the condition part to be evaluated and an exception will be thrown if it
evaluates to wrong.

2. State transition rule (S-rule): S-rules implement the concept of “switching
from one (discrete) state to another”. Therefore, every S-rule is associated
with two state specifications and the activation semantics: If the first state
is the current one and the condition part evaluates to true, then the second
one becomes the current state.

3. Action rule (A-rule): An A-rule is associated with the specification of an
action to be performed when the condition part evaluates to true.

4. Policy (P-rule): A policy represents a goal that should be fulfilled by
performing some (generic) action (s. [TGML97]). Thus, a P-rule is as-
sociated with the specification of an action and the activation semantics:

3This type corresponds to an invariant in the BOCA terminology.

when the condition part evaluates to false, the action is performed. After
that, the condition part is re-evaluated, and if it still evaluates to false,
an exception is thrown.

2.2 Expressiveness of Rule Conditions

The condition of a rule can be considered its most important part, since it
essentially determines the rule activation. As will be elaborated in the follow-
ing, the basic idea of realizing support for interaction between mobile agents or
distributed applications in general is providing a matching function that com-
putes the common basis of two or more rules (belonging to different cooperation
partners). Such a function can basically be reduced to matching or unifying
the rule conditions, and it depends on the expressiveness of the condition part
whether corresponding algorithms can be found. In [TGML97], an algorithm
is presented that can process expressions which contain only one variable or
property in each atomic constraint. In the next subsection, we present process-
ing functions which are not restricted with respect to the number of properties
in an atomic constraint, i.e. which can handle rule conditions of the following
expressiveness:

Condition: A condition is either a (atomic) constraint or a logical combination
of constraints using the operators AND, OR and NOT.

Constraint: A (atomic) constraint is a full-ordered relation between the linear
combination of n properties and a literal.

Property: Properties are used to express and/or modify the (partial) behavior
of an object explicitly. A property consists of a name, a type and a value.

Restrictions:

Due to the need of finding generic and efficient algorithms, a few restrictions
are currently imposed on these definitions:

e The NOT operator is only allowed on constraints.*

e Although constraints are in the first place supposed to represent a (linear)
relationship between numerical properties, e.g. (2*xspeed - cost > 0),
also string properties can be processed by our functions. In case of strings
however, the left-hand side of the constraint can only contain one property,
since in general, a linear combination of strings does not make sense.

2.3 Generic Processing Functions

In order to provide a dynamic rule management system to control and influ-
ence the behavior — especially the interaction and cooperation behavior — of

“Even though breaking down general negation to the constraint level can always be achieved
by applying DeMorgan transformations on any negative expression, it conflicts with transform-
ing conditions into DNF which is required for the unify-algorithm presented below.

distributed applications in a flexible way, generic functions to process rules are
needed, i.e. functions that are independent of a specific application seman-
tics. In [TGML97], we presented generic functions to evaluate, compare, unify,
arbitrate and activate policies which are restricted to one property in the condi-
tion part. Meanwhile, new algorithms which are based on the simplex method
([Sch87]) have been developed to overcome this restriction for all numerical
types so that these functions can now process rules of the expressiveness speci-
fied above. The simplex method also enables the development of a new function
to determine optimal rules. In the rest of this section, we will outline the new
algorithm for the most important function to provide support for the interac-
tion behavior of distributed applications, i.e. the unify function. Extensions of
the other functions are based on the same principle.

The unification of two rules of the same type is based on the unification of
the respective condition parts which is defined as the weakest condition that
logically implies both of these conditions. Formally:

Definition 2.1 Unify:
For all well-formed conditions C1,Cy, R : R = unify(C1,Cs) iff
R — Cy and R — Cy and =(3R') : (R' # R)A(R' — C1)A(R' — Co)A(R — R))

Example 2.2 Given

P1 = ((cost < 50) N (speed > 5)) V ((cost < 100) N (speed > 10))
P2 = ((cost < 90) N (speed > 20)) V (speed < 5)

P1’ = (cost - 2 * speed > 0)

P2’ = (cost - 2 * speed < 0)

Then

unify(P1, P2) = (cost < 90) N\ (speed > 20)

unify(P1’, P2’) = (cost - 2 * speed = 0)

The algorithm to compute this function is mainly based on transforming the
input conditions into a special normal form called LDNF and determining im-
plications between the disjuncts which can be solved with the aid of the simplex
method. In the following algorithm, places where this method comes into effect
are marked by comments beginning with “SM”.

Definition 2.3 LDNF (Lean Disjunctive Normal Form):
A condition P = (dy Vda Vds V...V dy,) in Disjunctive Normal Form is in
LDNF if¥(1 < i,j <n;i # j) : =(di — dj)

Algorithm 2.4 Unify:

Py, P, in LDNF

// SM: LDNF reduction

D; := set of all disjuncts in P;
Dy := set of all disjuncts in P
TMP := ()

For every d; in Dy

For every d; in Dj
If (di — dj) then TMP := TMP U{d;}
If (dj — di) then TMP := TMP U{d,}
// SM: check implications
D1 = Dl\ TMP
D2 = DQ\ TMP
For every d; in D;
For every d; in Dp
If (d; Ad;) = FALSE then TMP := TMP U{(d; A d;)}
// SM: check conjunction
unify(P;,P,) := disjunction of all elements of TMP

Checking Implications with the Simplex Method:

Since the reduction of well-formed conditions to LDNF is also based on testing
implications between disjuncts, the test of (di — dj) is the basic step in this
algorithm which can be done as follows:

di — dj = =(di A\ (—d;))

with:
di:=a;, Naj, N...Na;,
dj =aj;, Naj, N... \aj,

where a’s represent atomic constraints, we can derive:

di - d; = (2.1)
—|((az~1 A @i, N Nag, N (—|aj1))

\

ai, Naipg A ... Naj, A (—aj,))

\

(a;
LV

(ail Aaj, N Nag, N (‘!Gjm)))

Each of the conjunctions on the right-hand side corresponds to an unequation

system (since it contains only atomic constraints), the solvability of which can

be determined be the simplex method®. If there does not exist a solution for

every conjunction, then (di — dj) = TRUE holds.

2.4 Rule Activation Modes

In order to provide adequate support for interactive mobile agents — or applica-
tion components in a distributed environment in general — a rule which belongs
to a certain component should not always be activated locally, i.e. with respect

®This can be done basically by determining an objective function and setting up a simplex
tableau in such a way that all atomic constraints connected by ’A’ in each line are seen as
restrictions. A detailed elaboration of this method would clearly exceed the size of this paper
and is therefore omitted here.

to and effecting the behavior of the local component, but it should also be able
to activate the same rule remotely, i.e. effecting the behavior of a component
other than that containing the rule. For example, in a warehouse scenario, a
customer should be able to pass his rule with respect to payment modalities as
a requirement to be fulfilled by the provider, i.e. to be activated on the ware-
house side. Therefore, the following activation modes are proposed to support
such a remote activation concept besides the local activation:

In general, the activation of a rule can take place in two modes, namely IN-
TERNAL or EXTERNAL. In the first case, the activation semantics of the
corresponding rule type is applied to the component the rule belongs to. In the
latter case, the rule is applied to an external component, the reference of which
is passed as part of the triggering event. To enable different kinds of interaction
semantics, the EXTERNAL mode is subdivided into ONEWAY, CALLBACK
and FILTER (s. Table 2.1).

‘ Mode ‘ Description ‘

ONEWAY In this mode, a copy of the rule semantics (i.e. condition,
activation and mode) is created and passed to the external
component for activation. (Thereafter, the copy is deleted.)
CALLBACK | In addition to the ONEWAY semantics, the external com-
ponent returns the allocation of the properties which are
referred to in the rule as the common cooperation basis so
that both sides can enforce the exactly same configuration
with respect to these properties.®

FILTER In order to maintain the autonomy of application compo-
nents, the activation of external rules should not take place
directly, but only through the use of corresponding filter
rules. That means, when an external rule of mode ONEWAY
or CALLBACK is activated, there must exist a correspond-
ing rule of mode FILTER kept at the target component, with
which the first one is unified. The result of the unification?,
if not empty, is then activated.

Table 2.1: External activation modes

3 The DynamiCS Rule System Architecture

In the following, we describe the concrete system design for the implementation
of rules that can be dynamically imposed on mobile agent applications, as de-
veloped in the DynamiCS®project at University of Hamburg. The requirements
to be fulfilled by this design are:

5This mode is used, for example, when it is necessary that both customer and provider
utilize the same support services with exactly the same parameters.

"This represents the common basis for the pending transaction between the components.

8 Dynamically Configurable Software

e Decentralization: In order to meet the requirements of mobile agents
or software components in general as autonomous, encapsulated entities,
rules should not be managed centrally, but rather held directly by the
applications which serve as rule containers.

e Object- and Event-Orientation: Although rules are semantically add-
ons for applications?, they should be implemented as first-class objects
which can activate themselves upon occurences of corresponding events,
since this enables an efficient decentralized rule management. Every rule
object directly acts as an event listener that only reacts to events of types
belonging to its trigger list.

e Mobility: Since rules should be (technically) first-class objects that can
be added to mobile agents at run-time, it would be efficient (and also more
elegant) to have rules themselves implemented as mobile objects that can
migrate from one agent to another.

e Transactional activation: In case the activation of a requirement rule
or a policy which happens after some activity, i.e. one or more function
calls, have been carried out in the application, results in false, then it
should be possible to rollback the respective activity so that the violation
of rules can be avoided to a maximal degree. This implies that rule-
sensitive activities have to be carried out as transactions.

3.1 Rule Events

In DynamiCS, rule interactions take place exclusively through so-called rule
events which are typed objects that are sent to and received from an event
channel. Rule events are subdivided into trigger events and reply events. In
general, rule events can be generated from application objects or from rule
objects. The most typical trigger events are those associated with method
calls. If these are directly caused by application objects, they are called method
rule events, otherwise, i.e. if such triggering events are caused by rule objects,
they are denoted filter rule events, since those events are destined for filter rules
(s. Table 2.1).

The corresponding event classes are illustrated in Fig. 3.1. Every rule event
inherits from the abstract base class RuleEvent the attribute contextID which
is the identifier of the context, in which the event is generated!?. This ID
is used to map reply events to the correct source. Every MethodRuleEvent
carries the signature of the method being called and the state indicating
whether the event stands for, e.g., “before execution” or “after execution”.
FilterRuleEvents are generated by rule objects in EXTERNAL mode to trans-
fer the rule semantics which is coded in unifyParam to the corresponding filter
rule of the remote target object (s. Section 3.4). ReplyRuleEvents are used

%or appliances in the current BOCA terminology
10This ID can, but must not be unique for each event. For example, it can be the ID of the
application object that generated the event.

RuleEvent

contextID
[|
MethodRuleEvent ReplyRuleEvent
signature content
State
target
FilterRuleEvent

unifyParam

Figure 3.1: Rule event class diagram

to indicate (by the attribute content) whether the activation of the rule was
successful and also to return the setting of corresponding properties in case of
the CALLBACK mode (s. Table 2.1).

3.2 Rule Objects

As mentioned, rules in DynamiCS are active objects acting as event listeners
and activate themselves upon occurences of corresponding trigger events. Rule
objects can be added to every application object providing the interface of a
rule container which determines the context for activation.

Rule <<interface>> <<interface>>
RuleEventListener Mobility
name =
mode F
context ; <<interface>>
. <<interface>> PropertyMan
triggerEvents RuleContainer perty
activationState
evaluate() addRule() getProperty()
unify() ... removeRule() getProperties() ...
T getRules() ...
Requirement StateTransRule ActionRule Policy
stateVector actionSpec
activate() activate() activate() activate()

Figure 3.2: Rule object diagram
As depicted by Fig. 3.2, every rule inherits from the abstract base Rule class

which consists of a name, an activation mode (s. Section 2.4), a context which is
a pointer to the current container, a list of triggerEvents, an activationState

10

indicating whether the rule is being activated (and therefore not ready to re-
act to further trigger events kept in the event channel), the condition part
and provides the generic methods implementing the logic to process rule con-
ditions. Furthermore, every rule implements the RuleEventListener and the
Mobility interfaces. Every application object to be supported by rules must
provide besides the RuleContainer also the PropertyMan interface represent-
ing the external access to relevant application or interaction properties. Every
concrete rule type implements the specific rule semantics by its own activate
method and additional attributes.

3.3 Rule-Sensitive Dynamic Invocation Interface

DynamiCS provides a rule-sensitive dynamic invocation interface (RS-DII) which
can be used by any application component to carry out method calls (local or re-
mote) in a rule-safe way, using the usual API very similar to the DII of CORBA
products. However, the RS-DII offers two additional features:

e When a method is called, two instances of MethodRuleEvent are gener-
ated, one before and one after the call is performed using an usual DII
mechanism. During the method call, any rule exceptions'!' thrown by rule
objects are caught and delivered further to the application object (making
the call) and the call is interrupted (s. also 3.4).

o A distributed transaction service is employed to roll-back the method in
case a rule exception has been thrown after the method has been carried
out.

Two versions of the RS-DII have been developed, the first of which — called
Dynamic — is used to make a single call, and the second - called DynamicVector
— is used to perform several calls in a rule-sensitive and transactional manner.

3.4 Rule Activation

In order to get a complete view of the interaction of the described rule-related
objects, let’s look at a typical scenario of activating rules in EXTERNAL mode
when a method is called, as illustrated by Fig. 3.3.

agent 1 and agent 2 represent two rule-sensitive mobile agents supporting
the RuleContainer interface. Now, when agent 1 calls a method offered by
agent 2 using the RS-DII (1), this mechanism first delays the call and pushes
a MethodRuleEvent into the event channel which delivers it to all rule objects
(implementing the RuleEventListener interface) which are listening for the
corresponding event type and contextID (2). In this case, a rule of agent 1 in
CALLBACK mode is triggered and due to the semantics of this mode, this rule
first creates a copy of itself, packs it as a unifyParam into a FilterRuleEvent

""Note that rule (violation) exceptions are thrown by means of events of type
ReplyRuleEvent (s. 3.1).

11

agent 1 agent 2
properties properties
1 | RSDH 6 methodA()
methodName — --------- -
: methodB()
: paramList :
ruleContainer target ruleContainer
CALLBACK [N FILTER
rule v rule
12
A o A
3 o -4

Figure 3.3: Activation of rules in EXTERNAL mode

and sends this event to the event channel (3), thereupon the corresponding
FILTER rule of agent 2 is triggered. There, both rules are matched using the
unify method, and if the result is non-empty, it is activated on agent 2 side.
Thereafter, the allocation of the corresponding properties of agent 2 (as the
common setting for the pending cooperation) is sent back via a ReplyRuleEvent
to the the CALLBACK rule of agent 1 (4). Using this common setting as the
actual condition part, the activation of the rule is now completed as if it was
in INTERNAL mode. Then, a ReplyRuleEvent is sent back to the RS-DII
component by agent 1 meaning that the rule has been activated successfully
(5) and the method call can now be carried out in the usual way (6). However,
after the method has been performed by agent 2, a similar chain of events is
generated and in case any rule exception is thrown, the RS-DII component will
enforce the process to roll-back the method.

4 Implementation Issues

The current prototype of the presented rule management architecture is com-
pletely implemented in Java which is presently the most relevant language to
develop innovative distributed applications in practice.

As illustrated by Fig. 4.1, the DynamiCS rule system implementation consists
of:

e the logic library providing generic rule processing functions including
those to evaluate, compare, unify and optimize rule conditions. This
library is implemented in plain Java.

e the rule object layer providing implementations of the rule types, de-
fault rule container and rule-sensitive agent classes which can be used

12

management tools, applications

S - DynamiCS -----mmmmmmmmme s -
rule objects, default rule container & rule
rule-sensitive agent, RS-DII events
Voyager — -~ oo e Visibroker

generic processing functions (logic library)

Figure 4.1: DynamiCS rule system implementation layers

as skeletons to build rule-sensitive applications. These classes as well as
the RS-DII are implemented on top of Voyager ([Obj98]) which provides
an efficient toolkit to develop Java-based mobile application objects. The
event channel and rule event classes are based on the Event Service of Vis-
ibroker ([Inp98]) which is one of the most wide-spread CORBA products
at present.

¢ the application layer providing management tools and sample E-Commerce
related applications.

Currently, the distributed transaction service employed by the RS-DII is a
self-developed prototype which could be soon replaced by the announced, but
not yet available Voyager Transaction Service ([Obj98]) which promises better
transparency and performance since it is directly integrated with the Voyager-
DII.

Fig. 4.2 shows the graphical user interface of the rule management tool which
is an applet that can be used to contact a rule-sensitive mobile agent, list the
rules and corresponding properties carried with him, add new, delete or clone
and move rules to other agents or applications.

5 Summary and Outlook

In this paper, we have presented a dynamic approach to impose rules on mobile
agent applications aiming both at making their behavior more reliable in the
sense of not violating certain semantical conditions as well as improving their
interaction behavior. First, after describing the motivation and overall context
of the work, we outlined the concept of interaction-oriented rule management
including rule types, rule expressiveness, the corresponding unify algorithm to
find the common basis of two rules and different modes of activating rules lo-
cally or remotely. Then, a concrete rule management system architecture which
satisfies the requirement of decentralization, object- and event-orientation, mo-
bility and transactional activation was presented. Finally, some relevant aspects

13

=1 AWTapp S OX

Applet |
RULE CONTAINER RULE SPECIFICATION

Address/Alias ¢ [psysL 8000/ MyAgent [+ Show Rule
Bind Rules in Container : ethod_of_payment HODE: a
dit_available o
: Ri_Requirement eredit cal Iback
List Rules k2 _Falicy ek CONTEXT: =
5 = R3_StateTrans Pronartias ¢ . usys 1 s BEEE-MyAgent
List Properties b I Rale Details: Lo oocorens,
Remowe Rule beqin_order “
CONDITION: 5
Activate Rule budget > 520 =
HOBILITY CONTROLS
Adivess of Destination/Alias : weysL:8000/AMyAgent ||v\| Mave Rule || Clone Rule

Applet started.

Figure 4.2: Rule management tool Ul

of the current prototype implementation of the DynamiCS rule management
approach were given.

Since the rule management mechanisms described in this paper are not only
appropriate to restrict or modify the interaction behavior of mobile agents, but
might obviously extend their application semantics in a very dynamic manner
— especially through the use of action and state transition rules — more prac-
tical research seems to be necessary to explore the potential as well as risk of
such rule-sensitive applications. Moreover, the presented mechanisms are not
only restricted to mobile agents, but also applicable to software components
in general, particularly those that can be dynamically assembled from building
blocks which are themselves active, autonomous components. We will discuss
the specific requirements for rule management mechanisms resulting from such
a componentware view ([Gri98]) in another paper.

References

[AF98] P. Allen and S. Frost. Component-Based Development for Enter-
prise Systems. Cambrige University Press, 1998.

[Gri9g] Frank Griffel. Componentware. dpunkt—Verlag, 1998. (In German).
[IBM98] SanFrancisco, 1998. www.ibm.com/Java/Sanfrancisco/.

[Inp98] Inprise. Visibroker = product documentation, 1998.
www.inprise.com/techpubs/visibroker/visibroker33/.

[KJ98] M. Knapik and J. Johnson. Developing Intelligent Agents for Dis-
tributed Systems. McGraw-Hill, 1998.

14

[Obj98]

[OMG98a]

[OMG98b]

[Sch87]

[Sim94]
[TGML97]

ObjectSpace. Voyager — user guide & white papers, 1998.
www.objectspace.com/developers/voyager/white/index.html.

Business Object Component Architecture Revision 1.1. OMG Doc-
ument 98-01-07, 1998.

Business Object Component Architecture Revision 1.2. OMG Doc-
ument 98-07-01, 1998.

A. Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1987.

O. Sims. Business Objects. McGraw-Hill, 1994.

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Generic Policy
Management for Open Service Markets. In H. Konig and K. Geihs,
editors, Proc. of the Int. Working Conference on Distributed Appli-
cations and Interoperable Systems (DAIS’97), Cottbus, Germany.
Chapman & Hall, September 1997.

15

