
Dynamic Support Service Selection
for Business Transactions

in Electronic Service Markets

M. Merz, T. Tu, W. Lamersdorf

Distributed Systems Group - Computer Science Dept. - Hamburg University

email: [merz|tu|lamersd]@informatik.uni-hamburg.de

Abstract

Business transactions in an electronic service market are expected to appear
spontaneously, anonymously, and with varying requirements of infrastructural
support. This support generally covers security requirements such as authenti-
cation, privacy, and public key certification as well as payment protocols or the
demand for notary services. The latter two aspects are considered in particular
in this paper. Due to the variety and ever-changing setting of such services, a
flexible integration into electronic commerce infrastructures is required.

This paper proposes the embedding of support services into business transac-
tions at run-time on the basis of a CORBA DII distribution platform. The ar-
chitectural approach is described.

1 Introduction
Taking pattern from the definition given by Schmid [Schm93], an electronic market
(EM) is a medium that realises market co-ordination at any time and place and
increases transparency for all subjects involved in market transactions. It should
reduce transaction costs in all three transaction phases: information gathering,
contraction, and settlement. Electronic market systems (EMS) provide the computa-
tional infrastructure required by EMs. In this contribution, the EMS concept is
restricted to systems that are not specifically designed to support electronically one
single market segment such as stock exchange systems, but it rather assumes an
arbitrary variety of on-line services across a multitude of business fields. Such a
generalised EMS has not been realised yet for the Internet, since it lacks a full
support of all transaction phases. Nevertheless, several research projects focus on
distinct aspects and components of such an EMS like, e.g., electronic currency
representations [JaWa95, ChFN88], notary and certification services [MML94b,
LaNM94], or specific support of information gathering like traders, browsers or
search engines [PMGG95, MMLT96]. An approach similar to the one discussed in
this paper is the InterPay project, described in [CKPG+95] although Cousins et al.
focus only on the integration of payment services.

1.1 Electronic Service Markets

An electronic service market is an infrastructure that allows free emergence and
evolution of demand and supply of software services. The basic element of EM
activities is a market transaction, which involves a customer and a supplier and
comprises the delivery of a service against payment. Service suppliers who are
immediately involved as a partner (a human user or a software entity) in market
transactions are distinguished from third party service providers who support the
market transaction. The latter are called support services that may act on a com-
mercial basis similar to customer and supplier. However, their usage depends on the
first level transaction. On a conventional market the purchase of goods may thus
involve subordinated transactions to settle insurance coverage, to effect payment, to
involve legal support for contractual matters etc. These activities depend on the
actual purchase and may occur in varying combinations with different providers
(such as lawyers, banks or insurance companies).

The Market

Communication Infrastructure
(The Internet)Transport Protocols

Distribution Platforms

Cryptographic Function

Directory Services
. . .

?
Economic Gap

Bank Notary

SuppliersCustomers

Traders

Fig. 1: The economic gap between distribution platforms and market mechanisms

If the EMS is to support market transactions in a similarly flexible way as it is
possible in conventional markets, several shortcomings of existing distribution
platforms have to be overcome:

• Often statically typed communication mechanisms prevent the ad-hoc utilisation
of services in general. [MML94a] argues that platforms such as DCE only allow
software components to interact that are tightly coupled at the level of interface
and semantics. An EMS purely based on statically typed interfaces requires an a-
priori standardisation of commercial services as well as support services. This
approach restricts the free emergence of both commercial services and support
services at an intolerable extent.

• On the other hand, environments such as the WWW or Java-based applications
allow an immediate deployment of commercial services and consequently for cli-
ents to access them immediately. Client components are not semantically coher-
ent to the server functionality here. They are rather used as generic user access
tools such as Netscape© browsers or abstract machines that allow for remote exe-
cution of Java or mobile agent code. Although market requirements for the evo-
lution of demand and supply are satisfied better, this approach lacks an architec-
tural structure that assigns respective roles to the software components involved.
This either leads to an individual configuration for each of the potential support
services as known, e.g., from the Ecash payment service that is integrated into
CGI scripts at the server side, or support functions that are tightly integrated into
HTTP servers and clients as known from privacy and authentication enhance-
ments in the case of Netscape tools.

Both approaches would principally allow to facilitate market transactions by closing
the economic gap between the technical infrastructure and market processes (Fig. 1).
However, both also imply high set-up costs at the same time if an alternative support
service emerges as an attractive completion to existing ones. Both approaches thus
delay innovation at the infrastructure level.

Support Service Layer

Customer Supplier

Communication Infrastructure

Payment Service

Notary Service
Certification Service

Generic
User Access

Tool
(Client)

Service
Adaption Tool

(Client)

People

Electronic Service Market
Applications

Business Transaction
Authenticaton Service

Fig. 2: The electronic market system

This paper focuses on the dynamic per-session integration of support services. An
overall EMS architecture is assumed that generally enables customer and suppliers to
carry out business transactions. Both customer and supplier are refered to as transac-
tion parties in the following. The transaction itself is represented by a session (as
communication channel) at the EMS level. It will not be established unless both
parties agree on the underlying contractual conditions. The business transaction is
performed by the invocation of remote procedures at the supplier’s server. The task
of support services is to enforce the agreed contractual conditions of both parties. A
communication channel that ensures a secure communication is assumed as an
integral part of the EMS. For the rest of the paper, notary and bank services are
therefore selected as representative examples of support service.

The rest of the paper is organised as follows: Section 2 provides a realistic business
scenario that is well applicable to derive requirements for an EMS architecture.
Section 3 focuses on the role of support services in general and an architecture that
allows for a run-time integration of support services into market transactions.
Thereafter, the OSM architecture is presented which has primarily been dedicated to
match the requirements identified before. The utilisation of CORBA DII and the
Java-based integration of support services is sketched. Finally, implications of this
architecture for a type-conforming client/server communication are discussed on the
basis of a notary service example.

2 A Business Scenario
A customer intends to make a flight reservation. This transaction comprises a book-
ing activity and the transfer of funds from the client to the service provider. Service
providers such as travel agencies may sporadically appear on the service market with
new service offers and they might not be trusted by the client. The provider is ac-
cessed sporadically as well by - from his point of view - untrusted clients. At the
same time, one or both of the parties may require to carry out the booking transaction
anonymously, i.e., neither of the parties themselves nor any third party is expected to
unveil their identities.

In the case of a booking transaction, anonymity cannot be fully achieved since the
service provided requires identifying data from the customer by its nature. However,
one of the parties may either happen to repudiate an action that has been carried out
as a part of the transaction, or - even more sophisticatedly - the parties may accuse
one another of not keeping a contractually agreed specification of the transaction.

Due to the lack of trust, one party may suggest to involve a notary service in order to
audit messages exchanged and to certify message delivery in a non-repudiative way.
The other party has the option either to agree to this suggestion and to accept a
suggested notary service or to refuse. The latter case will cancel the session estab-
lishment. The suggestion of a support service (such as a notary) may be made op-
tionally by one or both parties.

Both parties maintain individual accounts at potentially different banks that, in turn,
may support different payment protocols. In the scenario, the customer is assumed to
maintain an Ecash account at ‘German Federal’ and a NetBill account at ‘Aachen
Savings’, whilst the travel agency has a SET (Secure Electronic Transactions) at
‘Bill’s Bank’ and Ecash at ‘German Federal’. Obviously, there exists a common
denominator (‘German Federal’) that allows both parties to carry out an Ecash-based
payment. However, the proper selection of payment providers with respect to this
information as well as the run-time integration of client software for payment serv-
ices remains an open issue.

As a conclusion drawn from this scenario, two major requirements can be derived for
a generic service market infrastructure if support services are to be flexibly inte-
grated in a generic way:

• Classes, protocols, and instances of support services have to be given an agreed
unique name in order to specify the requirements of both parties. A common
naming schema is therefore required for the classification and identification of
support services.

• A technique that allows to dynamically access appropriate support services in an
arbitrary combination when a client/server session is established. This combina-
tion may vary from session to session. Since the implementor of the EMS infra-
structure can not influence autonomous support service developers this access
mechanism needs an abstract interface for all classes of services.

3 Support Service Requirements

3.1 The Classification of Support Services

Support services can be generally classified by the functions they supply. Some of
these functions (payment and notary) have been involved in the business scenario.
Others may be distinguished as complementary functions such as quality assertion
services, which certify a distinct quality of service property to the client, or protocol
validation services, which allow to restrict both client and server to a calling se-
quence (or lifecycle), originally specified by the server as a part of an augmented
service description.

Many more support services may emerge that cannot be covered at design time by
the EMS architecture. Therefore, a flexible naming schema is required that allows
the registration of newly introduced support service classes at run-time.

Within support service classes, several support service protocols may be selected
alternatively to perform the required function. The payment example of the scenario
illustrated the options for client and server to involve payment service like Ecash,
SET, or NetBill. These protocols are standardised, i.e., an agreed protocol identifier
will lead to a well-known behaviour of the respective service. Also in the case of
notary services several notary protocols may be available and have thus to be identi-
fied by agreed protocol names.

Finally, for a single support service protocol, a large set of individual support service
providers may exist. ‘German Fed’ may be one provider of the Ecash payment
service besides several more banks that support the same protocol.

This leads to a 3-level hierarchy of support services classes, protocols, and provid-
ers. The transaction parties may align their specification of support service require-
ments to this schema as illustrated below:

1. Customer:

 SS-Class: Notary
∧∧ SS-Class:Payment(SS-Prot: Ecash(Bank: ‘German Fed‘,

 Addr: ‘mint.gf.de‘)

 ∨∨ SS-Prot: NetBill(Bank: ‘Aachen Savings‘,
 Addr:‘mint.as.de‘)
);

2. Supplier:

 SS-Class: Notary(SS-Prot: ISO-Notary(Name:‘Voscherau‘,
 Addr:‘henning.hh.de‘))

∧∧ SS-Class: Payment(SS-Prot: Ecash(Bank: ‘German Fed‘,
 Addr: ‘mint.gf.de‘)

 ∨∨ SS-Prot: SET(Name: ‘Bill’s Bank‘,
 Addr: ‘mint.bs.de‘)
);

These requirement specifications can be considered as predicates in conjunctive
normal form since class-level requirements are combined by logical AND operators
and protocols by logical ORs1. As access information, the provider level comprises a
sequence of attributes for each provider specified. In the case of banks, names and
internet addresses are shown. Further information is omitted for clarity matters.

After having identified a standardised classification schema for support services, a
matching can be carried out by the unification of both terms. In principal, this
schema is also applicable to the matching of more than two parties at the logical
level. However, if a conflict resolution is required, one party has to be assigned a role
as an initiator for this resolution process. To keep this simple in the following, only
two-party matches are considered.

Some further conventions on the unification semantics are required:

1. How to treat a unilatereal requirement (one party requires a notary whilst the
other doesn't even specify such a requirement)?

2. How to resolve different levels of specification? In the case of the scenario ex-
ample, the client only requires any notary, whilst the server specifies it at the
provider level (e.g., "Voscherau")?

3. How to resolve conflicting requirements (e.g., if the parties specify different
notaries)?

4. How to resolve the contrary case: both parties only specify that any notary is to be
involved, yet none of them names a distinct provider?

Since the number and types of support services and parties involved in a business
transaction can vary greatly from one application to another, a generic mechanism is
needed to resolve these possible conflicts when matching the participants' require-
ments. In general, the resulting requirements returned by the matching process have

1 The semi-formal notation of this example is chosen to illustrate some possible requirements

of customers and suppliers. As input for the matching engine, a conversion to a fully formal
notation needs to be performed.

to be such that all participants' requirements are fulfilled. Such a mechanism can
work as follows:

For the first case, a semantics appears to be suitable that forces the other party (with
less specific requirements) to agree if it can employ the support service required by
the more specific party. That means, an undesired service would have to be refused
explicitly by a negative statement. This "agree-if-not-specified" semantics seems to
be practical, but other semantics could be imposed on the matching process (as meta-
policies) as well.

The second case can be understood as an implicit agreement of the less specific party
to the requirements of the other. This policy would oblige the client to accept the
notary selected by the server.

The third case will lead to a rejection of the session if no additional means to resolve
the conflict exists. Therefore, if the transaction should still take place, some kind of
meta-policy, also called arbitration policy, would have to be used. An arbitration
policy may state, for example, that with respect to notary services, the client's re-
quirement can be overwritten by the server's.

The final case may be resolved by picking the first, a random or a default notary
service that can be employed by both parties. However, these policy management
assumptions may either be a static part of the infrastructure or themselves subject to
run-time configurations by means of meta-policies. The latter case would require a
dedicated policy management function which is not the issue of this paper. There-
fore, these policy management approaches will be assumed for the selection policies
mentioned above will be assumed for the following sections.

Due to these policy assumptions, the resulting requirements for both client and
server will look as follows:

 SS-Class: Notary(SS-Prot:ISO-Notary(Name:“Voscherau“,
 Addr:“henning.hh.de“))

∧∧ SS-Class:Payment(SS-Protocol: Ecash(Bank: ‘German Fed‘,
 Addr: ‘mint.gf.de‘));

After such a matching has been carried out successfully, the actual session between
client and server can be established.

3.2 Session establishment and interaction

After having introduced a naming schema for support services, a suitable represen-
tation for requirement specifications, and a semantics for matching the requirements
of both parties, the actual access to support services for client and server applications
needs to be investigated.

Binding to support services
An RPC service is assumed as the underlying communication mechanism. In the
scenario, the supplier is assumed to offer the conditions under which a session
establishment between the customer’s client and the supplier’s server is accepted.

Therefore, a transfer mechanism is required that communicates this information
from server to client. This service representation does not only contain a specifica-
tion of the service interface but also arbitrary additional information on the server’s
semantics. Among these data objects, also support service requirements from the
server’s side can be embedded. In COSM, the service representation is used as a
carrier for these description objects [MML94a].

As a dynamic user access tool, the generic client has been configured at start-up time
with the customer’s support service requirements. Therefore, it only needs to acquire
the service representation in order to perform the matching process discussed above.
After the resulting requirements have been obtained, the actual connection to support
service providers has to be established from both the client and the server side. As far
as the EMS infrastructure is concerned, a dynamic binding mechanism is required
for the run-time access of support services.

For this purpose, the usage of proxy objects as mobile client components appears
suitable to satisfy the binding requirements (Fig. 3). On the client application’s side,
communication with proxies takes place across a standardised interface that allows
proxies for any support service class to interact with the client application. Regard-
ing the support service, the specific (notary or payment) protocol is abstracted away.
The same applies to the server application’s side: here are proxy objects acquired
likewise in order to communicate with support services. They are dynamically bound
corresponding to their client side counterparts. Again, interaction between the server
application and server-side proxies is standardised as well.

EMS Infrastructure

Notary

Generic
Client

Server
E.g.:

Image Archive

Service
Representation

Support Services

Proxy

Proxy

Proxy

ProxyBank

Application Parameter Stream

Fig. 3: A configured session with dynamically bound support services

Interactions between client, server and support services
Different support service protocols require an individual integration into the cli-
ent/server data exchange: beyond the actual RPC parameter transfer, communication
links exist between client and server proxies and with support services. This com-
munication may occur before RPC parameters or results are actually transferred or
thereafter: In case of a notary service, hash values of parameters are generated by
both parties before and after parameters and results are transmitted. On the other

hand, in the case of a payment service such as Ecash, electronic coins can be inserted
into the parameter list such that no immediate interaction is required between the
client and the bank.

If the application parameter stream could be utilised for the data transfer between
corresponding proxies, a flexible link could be established between them. By em-
bedding proxy parameters into application parameters lists, they could be transferred
as ‘piggyback’ data. This applies for example to the exchange of session keys be-
tween notary proxies on the client and server side.

However, this approach requires, first, an application parameter representation that
is inspectable at run-time by support service proxies and, second, the posibility to
read or append elements of the parameter lists. Such operations are not feasible if
application parameters are statically typed. Since distribution platforms such as DCE
or CORBA define a transfer syntax that neither assigns type-tags nor names to
parameter values, a dynamically typed transfer syntax is required. Here, only
CORBA values of type Any allow to be interpreted and therefore intercepted when
transferred at run-time.

Consequently, a suitable solution is to utilise the CORBA DII at both client and
server sides. The applications provide RPC parameters and results as named value
lists (actually named value trees in the EMS framework). If this representation
allows each proxy to insert individual data values in a standardised way, they are
enabled to communicate with their corresponding counterparts at the other parties
side.

To support an agreed parameter embedding technique, the various options of support
service classes and protocols need to be reflected by the schema of named value trees:
additional ‘slots’ are used by proxy objects next to application parameters. The
resulting value tree for a client which is supported by a notary and a payment service
is shown schematically in Fig. 4. Here, the distinguished parameter SuppSvc refers
to a list of selected support service classes, each represented by another subordinated
list. This list contains protocol-specific data values that are exchanged between
proxies of the respective class.

Type: List
Name: "MoreData"
Value: 12

Type: List
Name: "Images"
Value: 5

Type: List
Name: "Names"
Value:

Type: String
Name: "No. 2"
Value: "World"

Type: String
Name: "No. 1"
Value: "Hello"

Type: List
Name: "SuppSvc"
Value:

Type: List
Name: "Notary"
Value:

Type: List
Name: "Bank"
Value:

Type: Opaque
Name: "Cert."
Value: §?!%

Type: Opaque
Name: "Coin"
Value: @°&...

.

. . .

Application Parameters

Support Service Parameters

Fig. 4: Parameters transfered between client and server

Type compatibility for dynamically augmented value lists
As parameter and result values are extended by proxies, they become a subtype of the
previous version. This can be demonstrated on the basis of value lists: the original
value list {PS1,... PSn} (as expected by the server) is extended by additional parame-
ters {PN1-PNn, PB1-PBn} from the client’s notary and bank proxy (PNc and PBc, respec-
tively). When transfered to the server, this extended list represents the interface type
actually requested by the client. Its parameter type is a subtype of the interface
provided by the server: { PS1, ... PSn}. Due to the contravariance for parameter types,
this implies that the provider’s signature actually is a subtype of the requested one,
i.e., both are compatible (see [CaWe85]):

Provided Signature (SigS) <: Requested Signature (SigC)

foo { P
S1
, ... P

Sn
}: { R

S1
, ... R

Sn
 } <:

foo { P
C1
, ... P

Cn+j
 }: { R

C1
, ... R

Cn-i
 } with i,j

>= 0

By extending the parameter list follows:

SigS <: SigC <: Requested Signature with extended parameter List (SigC+)

Sig
c
 <: foo { P

C1
, ... P

Cn+j
, P

N1
-P

Nk
 P

B1
-P

Bl
 } : { R

C1
, ... R

Cn-i
 }

with i,j, k, l >= 0

Correspondingly, proxies from the server’s side may extend the result list by addi-
tional data values. Such an extension implies a subtype of the originally provided
signature:

SigS+ <: SigS <: SigC

foo { P
S1
, ... P

Sn
 }: { R

S1
, ... R

Sn
, R

N1
-R

Nk
 R

B1
-R

Bl
 } <: Sig

S

Proxy
(Bank)

RPC

SigSSigC

SigC+B

SigC+B+N

SigC+B+N

SigS+B+N

SigS+B

SigS+B+N

:>

:>

:>

Proxy
(Notary)

Proxy
(Notary)

Proxy
(Bank)

Fig. : Subtype matching with extended parameter and result lists

Finally, a combination of both extensions will lead to conforming interfaces types of
client and server due to the transitive character of subtype relations:

Sig
S+
 <: Sig

C+

The original subtype relationship between client and server is still given (see Fig 5).
Since parameter values are identified by their names rather than by their position
within the value list, the original list order may also be rearranged arbitrarily by
intermediary proxies without affecting the identification of distinct values.

4 OSM - An Electronic Service Market Infrastructure
The COSM (Common Open Service Market) project at Hamburg University aimed at
establishing a suitable EMS architecture[OSM96]. However, current investigations
in the course of the follow-up project OSM (Open Service Model) lead to an integra-
tion of market infrastructure components such as support services, traders, and
matching mechanisms that deal with protocol specifications.

Beyond other functions, the OSM project aims at implementing the dynamic support
service integration that was discussed above. For OSM, Java has been selected as the
implementation language and CORBA as the architecture framework. The usage of
Java facilitates dynamic loading and binding of proxy objects whilst CORBA DII
provides a flexible parameter transfer mechanism that supports the value exchange
between corresponding proxy objects.

In OSM, a service profile is used as an agreed data structure in order to specify
service interfaces and semantics, to capture session specific context information, to
provide a contractual basis for the business transaction, and to store persistently this
information at the generic client side.

A service profile can also include service type specifications for trader import and
export functions [ISO-ODP95a] and for catalogue services. It further contains de-
scriptions of negotiation protocols as well as service access protocols. In the first
case, service selection is supported by brokers, which arrange client-server bindings
on the basis of standardised negotiation protocol. The latter describe valid interac-
tion protocols between clients and servers after a session has been established.

5 Summary and Outlook
This paper presents a flexible technique for the integration of (trusted) third parties
into an electronic commerce session in order to support secure business transactions.
To achieve this, a naming schema and a flexible binding mechanism are required for
support services. Concerning both aspects, a solution was suggested that allows for
the independent development of client and server applications, EMS infrastructure
components, and arbitrary classes of support services. The presented approach
doesn’t hinder a free evolution of all software components involved (clients, servers,
and support services).

However, several open issues still need to be addressed:

• Security: in an anonymous and competitive environment, malicious proxies or
support services may occur. The scenario sketched above lacks a security
mechanism that ensures a binding only to validated, certified, and therefore
trusted proxies. While anonymity, autonomy, and competition dominate the ap-
plication level, security requirements should thus govern the infrastructure layer.

• Matching and conflict resolution mechanisms can turn out to be much more
sophisticated than a unification mechanism based on first-order predicate logic:
what if both transaction parties don’t have a payment protocol in common, but
there exists a third party agent that is able to provide a clearing service between,
e.g., Ecash and SET? This cannot be derived from the requirement specification
because of several reasons: first, the EMS as a distributed system is far too decen-
tralised for providing matching information of this kind in a consistent way. Sec-
ond, the number of possible matches facilitiated by clearing services cannot be
captured by a limited requirement specification as the number of payment proto-
cols and their interrelations grow.

A possible solution to this general problem could be to factor out the requirement
matching task to a general policy management service. Different approaches to deal
with this and other questions like those mentioned in Section 3.1 are currently being
examined as a subject of research at Hamburg University.

6 References
[CaWe85] L.Cardelli, P.Wegner: "On Understanding Types, Data Ab-

straction, and Polymorphism". In: ACM Computing Surveys,
17(4), 1985, S. 471-522

[ChFN88] D. Chaum, A. Fiat, M. Naor: "Untraceable Electronic Cash".
In: S. Goldwasser, Ed., Proc. CRYPTO ’88, Springer, Berlin
Heidelberg New York, 1988

[CKPG+95] S.B. Cousins, S.P. Ketchpel, A. Paepcke, H. Garcia-Molina,
S.W. Hassan, M. Röscheisen: "InterPay: Managing Multiple
Payment Mechanisms in Digital Libraries". In: Proc. 2nd An-
nual Conference on Digital Libraries, Austin, Texas, USA, June
11-13, 1995.

[ISO-ODP95a] ISO / IEC JTC 1 / SC21: "ODP Trading Function". Draft
International Standard 13235, 1995

[JaWa95] P. Janson, M. Waidner: "Electronic Payment over Open Net-
works". INFORMATIK - Zeitschrift der Schweizer Informati-
korganisation, 1(3) Juni 1995

[LaMN94] C. Lai, G. Medvinsky, B. C. Neuman: "Endorsements, Licen-
sing, and Insurance for Distributed System Services". In: Proc.

2nd ACM Conference on Computer and Communication Securi-
ty, 1994

[MML94a] M. Merz, K. Müller-Jones, W. Lamersdorf: "Service Trading
and Mediation in Distributed Computing Systems". In: L. Svo-
bodova, Ed., Proc. 14th 'International Conference on Distri-
buted Computing Systems', Poznan, Poland, IEEE Computer
Society Press, 1994, S. 450-457

[MML94b] M. Merz, K. Müller-Jones, W. Lamersdorf: "Trusted Third-
Party Services in COSM". In: EM - Electronic Markets, In-
stitute for Information Management, University St. Gallen,
Switzerland, Heft 12, Sept. 1994

[MMLT96] S. Müller, K. Müller-Jones, W. Lamersdorf, T. Tu: "Global
Trader Cooperation in Open Service Markets". In: Proc. Intl.
Workshop ‘Trends in Distributed Systems’, Aachen, Oct. 1st-
2nd 1996, Springer, Berlin Heidelberg New York, 1996

[OSM96] Home Page of the Open Service Model project at Hamburg
University: http://osm-www.informatik.uni-hamburg.de, 1996

[PMGG95] A. Puder, S. Markwitz, F. Gudermann und K. Geihs, "AI-based
Trading in Open Distributed Environments". In: Proc. IFIP
International Conference on Open Distributed Processing,
Brisbane/Australia 1995

[Schm93] B. Schmid: "Electronic Markets". in: R. Alt, St. Zbornik (Eds.)
Electronic Markets Newsletter, 1993, S. 3-4

